CN116702018A - GA-PDPL algorithm-based cross-test electroencephalogram emotion recognition method and device - Google Patents

GA-PDPL algorithm-based cross-test electroencephalogram emotion recognition method and device Download PDF

Info

Publication number
CN116702018A
CN116702018A CN202310420313.1A CN202310420313A CN116702018A CN 116702018 A CN116702018 A CN 116702018A CN 202310420313 A CN202310420313 A CN 202310420313A CN 116702018 A CN116702018 A CN 116702018A
Authority
CN
China
Prior art keywords
pdpl
dictionary
model
eeg
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310420313.1A
Other languages
Chinese (zh)
Other versions
CN116702018B (en
Inventor
苏吉普
常洪丽
胡静
宋铁成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202310420313.1A priority Critical patent/CN116702018B/en
Publication of CN116702018A publication Critical patent/CN116702018A/en
Application granted granted Critical
Publication of CN116702018B publication Critical patent/CN116702018B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Evolutionary Biology (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Evolutionary Computation (AREA)
  • Pure & Applied Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Computational Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Physiology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明公开了一种基于GA‑PDPL算法的跨被试脑电情感识别方法及装置,方法包括:将被试脑电情感数据输入预先训练好的GA‑PDPL模型,利用被试脑电情感数据和GA‑PDPL模型输出的综合字典和分析字典计算被试脑电情感数据与每个脑电情感类别的残差;GA‑PDPL模型为在DPL模型中增加综合字典和分析字典的字典对,并引入编码系数矩阵构建得到,通过具有多个被试的脑电情感数据对GA‑PDPL模型进行训练,并在训练过程中利用遗传算法对构建的GA‑PDPL模型中的参数进行优化;将多个残差值中的最小残差值对应的脑电情感类别作为被试脑电情感数据对应的情感类别。本发明的方法识别速度快,且准确率高。

The invention discloses a method and device for cross-subject EEG emotion recognition based on the GA-PDPL algorithm. The method includes: inputting the EEG emotion data of the EEG into the pre-trained GA-PDPL model, and using the EEG emotion data of the EEG and the comprehensive dictionary and analysis dictionary output by the GA-PDPL model calculate the residual error of the subject's EEG emotion data and each EEG emotion category; the GA-PDPL model is to increase the dictionary pair of the comprehensive dictionary and the analysis dictionary in the DPL model, and Introduce the encoding coefficient matrix to construct, and train the GA-PDPL model through the EEG emotion data of multiple subjects, and use the genetic algorithm to optimize the parameters in the constructed GA-PDPL model during the training process; The EEG emotion category corresponding to the minimum residual value in the residual value is used as the emotion category corresponding to the EEG emotion data of the subject. The method of the invention has fast recognition speed and high accuracy.

Description

基于GA-PDPL算法的跨被试脑电情感识别方法及装置Cross-subject EEG emotion recognition method and device based on GA-PDPL algorithm

技术领域Technical Field

本发明涉及脑电信号技术领域,特别涉及一种基于GA-PDPL算法的跨被试脑电情感识别方法及装置。The present invention relates to the technical field of electroencephalogram (EEG) signals, and in particular to a method and device for cross-subject EEG emotion recognition based on a GA-PDPL algorithm.

背景技术Background Art

脑电图(Electro Encephalo Gram,EEG)会随着情感的变化发生变化,因此,可以根据脑电图进行情感识别。Electroencephalogram (EEG) changes with changes in emotions, so emotion recognition can be performed based on EEG.

因为EEG信号在个体之间可能会有很大差异,所以脑电图情绪识别的最大挑战之一是开发可以推广到新的、看不见的对象的模型。现有的情感识别模型识别速度较慢,且准确率较低,亟待解决。Because EEG signals can vary greatly between individuals, one of the biggest challenges in EEG emotion recognition is developing models that can generalize to new, unseen subjects. Existing emotion recognition models have slow recognition speeds and low accuracy, which needs to be addressed urgently.

发明内容Summary of the invention

本发明提供一种基于GA-PDPL算法的跨被试脑电情感识别方法,识别速度快,且准确率高。The present invention provides a cross-subject EEG emotion recognition method based on a GA-PDPL algorithm, which has fast recognition speed and high accuracy.

本发明第一方面实施例提供一种基于GA-PDPL算法的跨被试脑电情感识别方法,包括以下步骤:获取待识别的被试脑电情感数据;将所述被试脑电情感数据输入预先训练好的GA-PDPL模型,利用所述被试脑电情感数据和所述GA-PDPL模型输出的综合字典和分析字典计算所述被试脑电情感数据与每个脑电情感类别的残差,得到多个残差值;其中,所述GA-PDPL模型为在DPL模型中增加综合字典和分析字典的字典对,并引入编码系数矩阵构建得到,通过具有多个被试的脑电情感被试样本和对应的脑电情感类别标签对所述GA-PDPL模型进行训练,并在训练过程中利用遗传算法对构建的所述GA-PDPL模型中的参数进行优化;将所述多个残差值中的最小残差值对应的脑电情感类别作为所述被试脑电情感数据对应的情感类别。The first aspect of the present invention provides a cross-subject EEG emotion recognition method based on the GA-PDPL algorithm, comprising the following steps: obtaining the EEG emotion data of the subject to be identified; inputting the subject's EEG emotion data into a pre-trained GA-PDPL model, and using the subject's EEG emotion data and the comprehensive dictionary and analysis dictionary output by the GA-PDPL model to calculate the residual between the subject's EEG emotion data and each EEG emotion category, to obtain multiple residual values; wherein the GA-PDPL model is constructed by adding a dictionary pair of a comprehensive dictionary and an analysis dictionary to a DPL model, and introducing a coding coefficient matrix; the GA-PDPL model is trained by having EEG emotion subject samples of multiple subjects and corresponding EEG emotion category labels, and during the training process, a genetic algorithm is used to optimize the parameters in the constructed GA-PDPL model; the EEG emotion category corresponding to the minimum residual value among the multiple residual values is used as the emotion category corresponding to the subject's EEG emotion data.

可选地,在本发明的一个实施例中,在将所述被试脑电情感数据输入预先训练好的GA-PDPL模型之前,还包括:Optionally, in one embodiment of the present invention, before inputting the subject's EEG emotion data into a pre-trained GA-PDPL model, the method further includes:

在DPL模型中增加字典对搭建PDPL模型,得到:Add dictionary pairs to the DPL model to build the PDPL model and we get:

其中,D为综合字典,P为分析字典,K为脑电情感类别,Fk为情感类别k的脑电情感被试样本,λ为标量常数,为Fk的补集,di为D的第i个原子;Where D is the comprehensive dictionary, P is the analysis dictionary, K is the EEG emotion category, Fk is the EEG emotion subject sample of emotion category k, λ is a scalar constant, is the complement of F k , d i is the i-th atom of D;

引入编码系数矩阵A对所述PDPL模型进行放宽,得到:The coding coefficient matrix A is introduced to relax the PDPL model, and the following is obtained:

其中,A为编码系数矩阵,;Among them, A is the coding coefficient matrix,;

利用具有多个被试的脑电情感被试样本和对应的脑电情感类别标签对所述GA-PDPL模型进行训练,更新所述PDPL模型中的编码系数矩阵A、综合字典D和分析字典P,使得所述PDPL模型最小化,并在更新过程中利用遗传算法优化所述GA-PDPL模型的多个经验参数。The GA-PDPL model is trained using EEG emotion subject samples with multiple subjects and corresponding EEG emotion category labels, and the coding coefficient matrix A, comprehensive dictionary D and analysis dictionary P in the PDPL model are updated to minimize the PDPL model. During the updating process, a genetic algorithm is used to optimize multiple empirical parameters of the GA-PDPL model.

可选地,在本发明的一个实施例中,所述利用具有多个被试的脑电情感被试样本和对应的脑电情感类别标签对所述GA-PDPL模型进行训练,更新所述PDPL模型中的编码系数矩阵A、综合字典D和分析字典P,使得所述PDPL模型最小化,包括:Optionally, in one embodiment of the present invention, the GA-PDPL model is trained using EEG emotion subject samples with multiple subjects and corresponding EEG emotion category labels, and the coding coefficient matrix A, the comprehensive dictionary D and the analysis dictionary P in the PDPL model are updated to minimize the PDPL model, including:

1)固定综合字典D和分析字典P,更新编码系数矩阵A:1) Fix the comprehensive dictionary D and the analysis dictionary P, and update the coding coefficient matrix A:

其中,τ为标量常数;Where τ is a scalar constant;

得到编码系数矩阵A的封闭形式的解决方案:The closed-form solution for the encoding coefficient matrix A is obtained:

其中,I为单位矩阵;Where I is the identity matrix;

2)固定编码系数矩阵A,更新综合字典D和分析字典P:2) Fixed coding coefficient matrix A, update comprehensive dictionary D and analysis dictionary P:

得到分析字典P的封闭形式的解决方案:Get the closed-form solution for the analytic dictionary P:

其中,γ为标量常数;Where γ is a scalar constant;

引入变量S优化综合字典D:Introduce variable S to optimize the comprehensive dictionary D:

通过ADMM算法得到综合字典D的最优解:The optimal solution of the comprehensive dictionary D is obtained through the ADMM algorithm:

通过1)和2)对所述PDPL模型进行多轮优化训练,更新所述PDPL模型中的编码系数矩阵A、综合字典D和分析字典P,使得所述PDPL模型最小化。Through 1) and 2), the PDPL model is subjected to multiple rounds of optimization training, and the coding coefficient matrix A, comprehensive dictionary D and analysis dictionary P in the PDPL model are updated to minimize the PDPL model.

可选地,在本发明的一个实施例中,在训练过程中利用遗传算法对构建的所述GA-PDPL模型中的参数进行优化,包括:Optionally, in one embodiment of the present invention, the parameters in the constructed GA-PDPL model are optimized using a genetic algorithm during the training process, including:

初始化:生成具有随机分配参数值的初始解决方案群体;Initialization: Generate an initial population of solutions with randomly assigned parameter values;

评估:使用投影字典对学习算法和适应度函数评估种群中每个解的适应度;Evaluation: Use the projected dictionary to evaluate the fitness of each solution in the population using the learning algorithm and fitness function;

选择:根据适应度选择要用作下一代父母的解决方案的子集;Selection: Selecting a subset of solutions to be used as parents for the next generation based on fitness;

突变:通过交叉组合所选父母的参数来创建新的解决方案;Mutation: creating new solutions by combining parameters of selected parents through crossover;

评估:对某些解决方案的参数引入随机变化,以探索搜索空间的新区域;Evaluation: Introducing random changes to some of the solution parameters to explore new areas of the search space;

替换:从上一代和新一代中选出最好的解组成下一代;Replacement: Select the best solution from the previous and new generations to form the next generation;

终止:当满足停止条件时终止算法;Termination: The algorithm is terminated when the stopping condition is met;

输出:返回遗传算法找到的最优解,对应所述GA-PDPL模型的最优经验参数值。Output: Returns the optimal solution found by the genetic algorithm, corresponding to the optimal empirical parameter values of the GA-PDPL model.

可选地,在本发明的一个实施例中,将所述多个残差值中的最小残差值对应的脑电情感类别作为所述被试脑电情感数据对应的情感类别的确定公式为:Optionally, in one embodiment of the present invention, the formula for determining the EEG emotion category corresponding to the minimum residual value among the multiple residual values as the emotion category corresponding to the EEG emotion data of the subject is:

其中,ft为待识别的被试脑电情感数据,Di为第i类的综合子字典,Pi为第i类的分析子字典。Among them, f t is the EEG emotion data of the subject to be identified, Di is the comprehensive sub-dictionary of the i-th category, and Pi is the analysis sub-dictionary of the i-th category.

本发明第二方面实施例提供一种基于GA-PDPL算法的跨被试脑电情感识别装置,包括:获取模块,用于获取待识别的被试脑电情感数据;识别模块,用于将所述被试脑电情感数据输入预先训练好的GA-PDPL模型,利用所述被试脑电情感数据和所述GA-PDPL模型输出的综合字典和分析字典计算所述被试脑电情感数据与每个脑电情感类别的残差,得到多个残差值;其中,所述GA-PDPL模型为在DPL模型中增加综合字典和分析字典的字典对,并引入编码系数矩阵构建得到,通过具有多个被试的脑电情感被试样本和对应的脑电情感类别标签对所述GA-PDPL模型进行训练,并在训练过程中利用遗传算法对构建的所述GA-PDPL模型中的参数进行优化;输出模块,用于将所述多个残差值中的最小残差值对应的脑电情感类别作为所述被试脑电情感数据对应的情感类别。The second aspect of the present invention provides a cross-subject EEG emotion recognition device based on the GA-PDPL algorithm, including: an acquisition module, used to obtain the EEG emotion data of the subject to be identified; an identification module, used to input the subject's EEG emotion data into a pre-trained GA-PDPL model, and use the subject's EEG emotion data and the comprehensive dictionary and analysis dictionary output by the GA-PDPL model to calculate the residual between the subject's EEG emotion data and each EEG emotion category to obtain multiple residual values; wherein the GA-PDPL model is obtained by adding a dictionary pair of a comprehensive dictionary and an analysis dictionary to the DPL model, and introducing a coding coefficient matrix to construct it, and the GA-PDPL model is trained by EEG emotion subject samples with multiple subjects and corresponding EEG emotion category labels, and during the training process, a genetic algorithm is used to optimize the parameters in the constructed GA-PDPL model; an output module, used to use the EEG emotion category corresponding to the minimum residual value among the multiple residual values as the emotion category corresponding to the subject's EEG emotion data.

可选地,在本发明的一个实施例中,所述装置还包括:搭建模块,用于,在DPL模型中增加字典对搭建PDPL模型,得到:Optionally, in one embodiment of the present invention, the device further comprises: a building module, configured to add a dictionary pair to the DPL model to build a PDPL model, to obtain:

其中,D为综合字典,P为分析字典,K为脑电情感类别,Fk为情感类别k的脑电情感被试样本λ为标量常数,为Fk的补集,di为D的第i个原子;Among them, D is the comprehensive dictionary, P is the analysis dictionary, K is the EEG emotion category, Fk is the EEG emotion subject sample of emotion category k, λ is a scalar constant, is the complement of F k , d i is the i-th atom of D;

引入编码系数矩阵A对所述PDPL模型进行放宽,得到:The coding coefficient matrix A is introduced to relax the PDPL model, and the following is obtained:

其中,A为编码系数矩阵;Among them, A is the coding coefficient matrix;

1)固定综合字典D和分析字典P,更新编码系数矩阵A:1) Fix the comprehensive dictionary D and the analysis dictionary P, and update the coding coefficient matrix A:

其中,τ为标量常数;Where τ is a scalar constant;

得到编码系数矩阵A的封闭形式的解决方案:The closed-form solution for the encoding coefficient matrix A is obtained:

其中,I为单位矩阵,;Where, I is the identity matrix,;

2)固定编码系数矩阵A,更新综合字典D和分析字典P:2) Fixed coding coefficient matrix A, update comprehensive dictionary D and analysis dictionary P:

得到分析字典P的封闭形式的解决方案:Get the closed-form solution for the analytic dictionary P:

其中,γ为标量常数;Where γ is a scalar constant;

引入变量S优化综合字典D:Introduce variable S to optimize the comprehensive dictionary D:

通过ADMM算法得到综合字典D的最优解:The optimal solution of the comprehensive dictionary D is obtained through the ADMM algorithm:

通过1)和2)对所述PDPL模型进行多轮优化训练,更新所述PDPL模型中的编码系数矩阵A、综合字典D和分析字典P,使得所述PDPL模型最小化;Through 1) and 2), the PDPL model is subjected to multiple rounds of optimization training, and the coding coefficient matrix A, the comprehensive dictionary D and the analysis dictionary P in the PDPL model are updated to minimize the PDPL model;

在训练过程中利用遗传算法对构建的所述GA-PDPL模型中的参数进行优化,包括:During the training process, the genetic algorithm is used to optimize the parameters in the constructed GA-PDPL model, including:

初始化:生成具有随机分配参数值的初始解决方案群体;Initialization: Generate an initial population of solutions with randomly assigned parameter values;

评估:使用投影字典对学习算法和适应度函数评估种群中每个解的适应度;Evaluation: Use the projected dictionary to evaluate the fitness of each solution in the population using the learning algorithm and fitness function;

选择:根据适应度选择要用作下一代父母的解决方案的子集;Selection: Selecting a subset of solutions to be used as parents for the next generation based on fitness;

突变:通过交叉组合所选父母的参数来创建新的解决方案;Mutation: creating new solutions by combining parameters of selected parents through crossover;

评估:对某些解决方案的参数引入随机变化,以探索搜索空间的新区域;Evaluation: Introducing random changes to some of the solution parameters to explore new areas of the search space;

替换:从上一代和新一代中选出最好的解组成下一代;Replacement: Select the best solution from the previous and new generations to form the next generation;

终止:当满足停止条件时终止算法;Termination: The algorithm is terminated when the stopping condition is met;

输出:返回遗传算法找到的最优解,对应所述GA-PDPL模型的最优经验参数值。Output: Returns the optimal solution found by the genetic algorithm, corresponding to the optimal empirical parameter values of the GA-PDPL model.

可选地,在本发明的一个实施例中,将所述多个残差值中的最小残差值对应的脑电情感类别作为所述被试脑电情感数据对应的情感类别的确定公式为:Optionally, in one embodiment of the present invention, the formula for determining the EEG emotion category corresponding to the minimum residual value among the multiple residual values as the emotion category corresponding to the EEG emotion data of the subject is:

其中,ft为待识别的被试脑电情感数据,Di为第i类的综合子字典,Pi为第i类的分析子字典。Among them, f t is the EEG emotion data of the subject to be identified, Di is the comprehensive sub-dictionary of the i-th category, and Pi is the analysis sub-dictionary of the i-th category.

本发明第三方面实施例提供一种电子设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序,以执行如上述实施例所述的基于GA-PDPL算法的跨被试脑电情感识别方法。The third aspect of the present invention provides an electronic device, comprising: a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor executes the program to perform the cross-subject EEG emotion recognition method based on the GA-PDPL algorithm as described in the above embodiment.

本发明第四方面实施例提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行,以执行如上述实施例所述的基于GA-PDPL算法的跨被试脑电情感识别方法。The fourth aspect of the present invention provides a computer-readable storage medium having a computer program stored thereon, which is executed by a processor to perform the cross-subject EEG emotion recognition method based on the GA-PDPL algorithm as described in the above embodiment.

本发明实施例的基于GA-PDPL算法的跨被试脑电情感识别方法及装置,使用综合字典和分析字典来增强特征表示,利用遗传算法进行参数优化,选择最好的词典和参数,从而达到最好的识别效果,识别速度快,且准确率高。The cross-subject EEG emotion recognition method and device based on the GA-PDPL algorithm of the embodiment of the present invention uses a comprehensive dictionary and an analysis dictionary to enhance feature representation, uses a genetic algorithm to optimize parameters, and selects the best dictionary and parameters, thereby achieving the best recognition effect, fast recognition speed, and high accuracy.

本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the present invention will be given in part in the following description and in part will be obvious from the following description, or will be learned through practice of the present invention.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and easily understood from the following description of the embodiments in conjunction with the accompanying drawings, in which:

图1为根据本发明实施例提供的一种基于GA-PDPL算法的跨被试脑电情感识别方法的流程图;FIG1 is a flow chart of a cross-subject EEG emotion recognition method based on a GA-PDPL algorithm according to an embodiment of the present invention;

图2为本发明实施例提出的一种基于GA-PDPL算法的跨被试脑电情感识别装置的方框示意图;FIG2 is a block diagram of a cross-subject EEG emotion recognition device based on a GA-PDPL algorithm proposed in an embodiment of the present invention;

图3为发明实施例提供的电子设备的结构示意图。FIG. 3 is a schematic diagram of the structure of an electronic device provided by an embodiment of the invention.

具体实施方式DETAILED DESCRIPTION

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the accompanying drawings, wherein the same or similar reference numerals throughout represent the same or similar elements or elements having the same or similar functions. The embodiments described below with reference to the accompanying drawings are exemplary and are intended to be used to explain the present invention, and should not be construed as limiting the present invention.

图1为根据本发明实施例提供的一种基于GA-PDPL算法的跨被试脑电情感识别方法的流程图。FIG1 is a flow chart of a cross-subject EEG emotion recognition method based on a GA-PDPL algorithm provided according to an embodiment of the present invention.

如图1所示,该基于GA-PDPL算法的跨被试脑电情感识别方法包括以下步骤:As shown in FIG1 , the cross-subject EEG emotion recognition method based on the GA-PDPL algorithm includes the following steps:

在步骤S101中,获取待识别的被试脑电情感数据。In step S101, the EEG emotion data of the subject to be identified is obtained.

在步骤S102中,将被试脑电情感数据输入预先训练好的GA-PDPL模型,利用被试脑电情感数据和GA-PDPL模型输出的综合字典和分析字典计算被试脑电情感数据与每个脑电情感类别的残差,得到多个残差值;其中,GA-PDPL模型为在DPL模型中增加综合字典和分析字典的字典对,并引入编码系数矩阵构建得到,通过具有多个被试的脑电情感被试样本和对应的脑电情感类别标签对GA-PDPL模型进行训练,并在训练过程中利用遗传算法对构建的GA-PDPL模型中的参数进行优化。In step S102, the EEG emotion data of the subject is input into a pre-trained GA-PDPL model, and the residual between the EEG emotion data of the subject and each EEG emotion category is calculated using the comprehensive dictionary and analysis dictionary output by the GA-PDPL model to obtain multiple residual values; wherein, the GA-PDPL model is constructed by adding a dictionary pair of a comprehensive dictionary and an analysis dictionary to the DPL model, and introducing a coding coefficient matrix, and the GA-PDPL model is trained by using EEG emotion subject samples of multiple subjects and corresponding EEG emotion category labels, and during the training process, a genetic algorithm is used to optimize the parameters in the constructed GA-PDPL model.

在本发明的实施例中,GA-PDPL模型为通过具有多个被试的脑电情感被试样本和对应的脑电情感类别标签对GA-PDPL模型进行训练得到的。获取包含有若干被试脑电情感特征样本和对应的脑电情感类别标签的脑电情感数据库,脑电数据库中的一个样本可以表示为b和c分别是EEG信号的频带数和电极数。总共有K个脑电情感类别的样本对应的标签可以表示为y∈{1,2,3,...,k,...,K}。用F={F1,...,Fk,...,FK}和Y={y1,...,yk,...,yK}分别表示一组来自K类的训练样本和训练标签,其中, 为第k类的训练样本集,p=b×c,为训练标签集,n是每个类的样本数。In an embodiment of the present invention, the GA-PDPL model is obtained by training the GA-PDPL model with EEG emotion samples of multiple subjects and corresponding EEG emotion category labels. An EEG emotion database containing several EEG emotion feature samples of subjects and corresponding EEG emotion category labels is obtained. A sample in the EEG database can be represented as b and c are the number of frequency bands and electrodes of the EEG signal, respectively. There are a total of K EEG emotion categories whose corresponding labels can be expressed as y∈{1, 2, 3, ..., k, ..., K}. Let F = {F 1 , ..., F k , ..., F K } and Y = {y 1 , ..., y k , ..., y K } represent a set of training samples and training labels from K categories, respectively, where is the training sample set of the kth class, p = b × c, is the training label set, and n is the number of samples in each class.

判别字典学习方法(DPL)侧重于从F中获取熟练的数据表示模型,以通过利用训练数据的类标签信息来解决分类任务。这可以在下面提出的框架内制定:Discriminative dictionary learning (DPL) approaches focus on obtaining an adept data representation model from F to solve classification tasks by leveraging the class label information of the training data. This can be formulated within the framework proposed below:

在训练模型(1)中,λ≥0是标量常数,综合字典D,F在D上的编码系数矩阵A被使用。数据保真度项保证了D的表示能力,而lp-norm正则化器||A||p强加于A。此外,一个判别函数Ψ(D,A,Y)用于保证D和A的判别力。In the training model (1), λ ≥ 0 is a scalar constant, and the comprehensive dictionary D, the encoding coefficient matrix A of F on D is used. Data fidelity term The representation power of D is guaranteed, while the lp - norm regularizer ||A|| p is imposed on A. In addition, a discriminant function Ψ(D, A, Y) is used to ensure the discriminative power of D and A.

等式(1)中的判别模型旨在训练一个可以稀疏表示信号F的综合字典D。不幸的是,获取该词典的代码A需要费时的lrnomm稀疏编码过程。为了提高效率,可以找到一个分析字典满足A=PF,无需稀疏编码即可实现F的高效表示。为了实现这一点,使用综合字典D学习了一个分析字典,从而产生了以下公式化模型:The discriminant model in equation (1) aims to train a comprehensive dictionary D that can sparsely represent the signal F. Unfortunately, obtaining the code A of this dictionary requires a time-consuming l rnomm sparse coding process. To improve efficiency, an analysis dictionary can be found Satisfying A = PF, an efficient representation of F can be achieved without sparse coding. To achieve this, an analysis dictionary is learned using the comprehensive dictionary D, resulting in the following formulated model:

在DPL模型中,分析字典P用于F的解析编码,而综合字典D用于F的重构,整个过程中应用了判别函数Ψ(D,P,F,Y)。为了提高模型的效率,学习结构化综合字典和分析字典D=[D1,D2,...,Dk]和P=[P1,P2,...,PK]。k类的每个子字典对由 为了确保使用结构化分析字典P将来自类别i(其中i≠k)的样本投影到零空间,因此设计了Pk。这是通过利用稀疏子空间聚类来实现的,这表明在某些非相干条件下,信号可以由其相应的字典表示。这个过程的方程式如下所示:In the DPL model, the analytical dictionary P is used for parsing and encoding F, while the comprehensive dictionary D is used for reconstructing F. The discriminant function Ψ(D, P, F, Y) is applied in the whole process. In order to improve the efficiency of the model, the structured comprehensive dictionary and analytical dictionary D = [D 1 , D 2 , ..., D k ] and P = [P 1 , P 2 , ..., P K ] are learned. Each sub-dictionary pair of class k is composed of and To ensure that samples from class i (where i≠k) are projected into the null space using the structured analysis dictionary P, Pk is designed. This is achieved by exploiting sparse subspace clustering, which shows that under certain incoherent conditions, the signal can be represented by its corresponding dictionary. The equation for this process is shown below:

结构化综合字典D也可用于重构数据矩阵F。具体来说,子字典Dk可以有效地从投影码矩阵PkFk重构数据矩阵Fk。因此,字典对被用来最小化重构误差:The structured comprehensive dictionary D can also be used to reconstruct the data matrix F. Specifically, the sub-dictionary D k can effectively reconstruct the data matrix F k from the projected code matrix P k F k . Therefore, the dictionary pair is used to minimize the reconstruction error:

基于前面的讨论,在DPL模型中增加字典对搭建PDPL模型,得到的PDPL模型的公式可以表示如下:Based on the previous discussion, we add dictionary pairs to the DPL model to build the PDPL model. The formula of the PDPL model can be expressed as follows:

综合字典D包含由di表示的原子,其中第i个原子的能量受到限制以避免平凡解Pk=0,它稳定了DPL。此外,表示整个训练集F中Fk的补集。虽然稀疏编码对于分类可能不是必不可少的,但DPL模型提供了更快的计算速度并展示了极具竞争力的分类性能。因此,以下方法用于分类目的。为了优化(5)中的非凸目标函数,引入了一个编码系数矩阵A,并将(5)放宽为以下问题:The comprehensive dictionary D contains atoms denoted by d i , where the energy of the i-th atom is restricted to avoid the trivial solution P k = 0, which stabilizes the DPL. In addition, represents the complement of Fk in the entire training set F. Although sparse coding may not be essential for classification, the DPL model provides faster computation speed and demonstrates highly competitive classification performance. Therefore, the following method is used for classification purposes. In order to optimize the non-convex objective function in (5), a coding coefficient matrix A is introduced, and (5) is relaxed to the following problem:

(6)中的目标函数由涉及Frobenius范数的项组成,标量常数τ,这使得解决起来很简单。为了启动分析字典P和综合字典D,从具有单位Frobenius范数的随机矩阵开始,之后继续在在最小化(6)的过程中更新A、D和P。The objective function in (6) consists of terms involving the Frobenius norm and a scalar constant τ, which makes it simple to solve. To start the analytical dictionary P and the synthetic dictionary D, we start with random matrices with unit Frobenius norm and then continue to update A, D, and P in the process of minimizing (6).

利用具有多个被试的脑电情感被试样本和对应的脑电情感类别标签对上述搭建的GA-PDPL模型进行训练,更新PDPL模型中的编码系数矩阵A、综合字典D和分析字典P,使得PDPL模型最小化,并在更新过程中利用遗传算法优化GA-PDPL模型的多个经验参数。The GA-PDPL model constructed above is trained using EEG emotion subject samples with multiple subjects and corresponding EEG emotion category labels, and the coding coefficient matrix A, comprehensive dictionary D and analysis dictionary P in the PDPL model are updated to minimize the PDPL model. During the updating process, the genetic algorithm is used to optimize multiple empirical parameters of the GA-PDPL model.

最小化过程在以下两个步骤之间交替进行:The minimization process alternates between the following two steps:

1)固定综合字典D和分析字典P,更新编码系数矩阵A:1) Fix the comprehensive dictionary D and the analysis dictionary P, and update the coding coefficient matrix A:

可以获得这个标准最小二乘问题的封闭形式的解决方案:A closed-form solution to this standard least-squares problem can be obtained:

2)固定编码系数矩阵A,更新综合字典D和分析字典P:2) Fixed coding coefficient matrix A, update comprehensive dictionary D and analysis dictionary P:

得到分析字典P的封闭形式的解决方案:Get the closed-form solution for the analytic dictionary P:

其中,γ为标量常数,是一个小数。Among them, γ is a scalar constant, which is a decimal.

引入变量S优化综合字典D:Introduce variable S to optimize the comprehensive dictionary D:

通过ADMM算法得到综合字典D的最优解:The optimal solution of the comprehensive dictionary D is obtained through the ADMM algorithm:

通过1)和2)对PDPL模型进行多轮优化训练,更新PDPL模型中的编码系数矩阵A、综合字典D和分析字典P,使得PDPL模型最小化。Through 1) and 2), the PDPL model is optimized for multiple rounds of training, and the coding coefficient matrix A, comprehensive dictionary D and analysis dictionary P in the PDPL model are updated to minimize the PDPL model.

由于在每个优化步骤中变量A和P的封闭形式解的快速收敛,所提出的DPL模型具有快速的训练过程。D的优化基于ADMM,当相邻两次迭代之间的能量差小于0.01时,它也很快收敛并停止迭代。分析字典P和综合字典D是收敛后分类的输出。式(9)中的目标函数用于提升分析字典P的判别力,同时最小化重建误差。目标之间的这种平衡使模型能够实现区分和表示能力。算法流程如下所示:The proposed DPL model has a fast training process due to the fast convergence of the closed-form solutions of variables A and P in each optimization step. The optimization of D is based on ADMM, which also converges quickly and stops iterating when the energy difference between two adjacent iterations is less than 0.01. The analysis dictionary P and the comprehensive dictionary D are the outputs of the classification after convergence. The objective function in formula (9) is used to improve the discriminative power of the analysis dictionary P while minimizing the reconstruction error. This balance between objectives enables the model to achieve both discrimination and representation capabilities. The algorithm flow is as follows:

在训练过程中,使用谢菲尔德大学遗传算法工具箱(gatbx),利用遗传算法(GA)进行PDPL模型参数的优化。During the training process, the genetic algorithm (GA) was used to optimize the PDPL model parameters using the Genetic Algorithm Toolbox (gatbx) from the University of Sheffield.

初始化:生成具有随机分配参数值的初始解决方案群体。初始化参数如表1所示,包括最大遗传代数、种群大小、交叉函数、变异概率和PDPL的t参数。此外,GA优化的PDPL参数包括以下四种:m、τ、λ和γ,其阈值范围和编码方式见表2。Initialization: Generate an initial population of solutions with randomly assigned parameter values. The initialization parameters are shown in Table 1, including the maximum number of genetic generations, population size, crossover function, mutation probability, and t parameter of PDPL. In addition, the PDPL parameters optimized by GA include the following four: m, τ, λ, and γ, and their threshold ranges and encoding methods are shown in Table 2.

表1 GA的初始化参数Table 1 GA initialization parameters

最大遗传代数Maximum genetic generation 5050 种群大小Population size 2020 选择函数Select Function sussus 变异概率Mutation probability 0.70.7 tt 2020

表2描述长度以及如何解码染色体中每个子串的矩Table 2 describes the length and how to decode the matrix of each substring in the chromosome.

FieldDFieldD mm ττ λλ γγ lenlen 99 99 99 99 lblb 11 00 00 00 ubub 310310 0.10.1 0.010.01 0.0010.001 codecode graygray graygray graygray graygray scalescale arithmeticarithmetic arithmeticarithmetic arithmeticarithmetic arithmeticarithmetic lbinlbin 00 00 ll 11 ubinubin 11 11 11 11

评估:使用投影字典对学习算法和适应度函数评估种群中每个解的适应度。将适应度函数设计为PDPL在测试集上的识别准确率:Evaluation: Use the projection dictionary to evaluate the fitness of each solution in the population using the learning algorithm and fitness function. The fitness function is designed to be the recognition accuracy of PDPL on the test set:

Fitness=Accuracytest (13)Fitness=Accuracy test (13)

选择:根据其适应度选择要用作下一代父母的解决方案的子集。Selection: Select a subset of solutions to be used as parents for the next generation based on their fitness.

交叉:通过交叉组合所选父母的参数来创建新的解决方案。Crossover: Create new solutions by combining the parameters of selected parents through crossover.

突变:对某些解决方案的参数引入随机变化,以探索搜索空间的新区域。Mutation: Introducing random changes to the parameters of some solutions to explore new areas of the search space.

评估:评估通过交叉和变异创建的新解决方案的适用性。Evaluation: Evaluate the fitness of new solutions created through crossover and mutation.

替换:从上一代和新一代中选出最好的解组成下一代。Replacement: Select the best solution from the previous and new generations to form the next generation.

终止:当满足停止标准时终止算法,例如达到最大世代数或达到所需的适应度水平。Termination: Terminates the algorithm when a stopping criterion is met, such as reaching a maximum number of generations or reaching a desired fitness level.

输出:返回GA找到的最优解,对应投影字典对学习算法的最优参数值。Output: Returns the optimal solution found by GA, corresponding to the optimal parameter value of the projection dictionary for the learning algorithm.

在步骤S103中,将多个残差值中的最小残差值对应的脑电情感类别作为被试脑电情感数据对应的情感类别。In step S103, the EEG emotion category corresponding to the minimum residual value among the multiple residual values is used as the emotion category corresponding to the EEG emotion data of the subject.

在识别阶段,输入待识别的被试脑电情感数据ft后,为每个类计算未知类别的查询样本ft的残差。将最小残差对应的类别指定为测试样本的类别:In the recognition stage, after inputting the subject's EEG emotion data f t to be recognized, the residual of the unknown query sample f t is calculated for each class. The class corresponding to the minimum residual is designated as the class of the test sample:

如果i类达到等式(14)中的最小残差,则将样本ft分配给类i,其中Di和Pi分别表示该类的综合子字典和分析子字典。If class i achieves the minimum residual in equation (14), the sample ft is assigned to class i, where Di and Pi represent the comprehensive sub-dictionary and analysis sub-dictionary of the class, respectively.

为验证本发明的有效性,提出的GA-PDPL与先进的方法在SEED和MPED数据集上的独立于受试者的EEG情绪识别设置中进行比较,分别如表3和表4所示。从表中可以得出结论,所提出的方法在与主题无关的协议下优于当前的常规方法。与其他方法相比,所提出方法使用综合字典和分析字典来增强特征表示。进一步利用遗传算法进行参数优化,选择最好的词典和参数,从而达到最好的识别效果。To verify the effectiveness of the present invention, the proposed GA-PDPL is compared with the state-of-the-art methods in the subject-independent EEG emotion recognition setting on the SEED and MPED datasets, as shown in Tables 3 and 4, respectively. From the table, it can be concluded that the proposed method outperforms the current conventional methods under the subject-independent protocol. Compared with other methods, the proposed method uses a comprehensive dictionary and an analytical dictionary to enhance feature representation. The genetic algorithm is further used for parameter optimization to select the best dictionary and parameters to achieve the best recognition effect.

表3SEED数据集上独立于受试者的实验的平均准确度(ACC)和标准差(STD)Table 3 Average accuracy (ACC) and standard deviation (STD) of subject-independent experiments on the SEED dataset

表4MPED数据集上独立于受试者的实验的平均准确度(ACC)和标准差(STD)Table 4 Average accuracy (ACC) and standard deviation (STD) of subject-independent experiments on the MPED dataset

根据本发明实施例提出的基于GA-PDPL算法的跨被试脑电情感识别方法,使用综合字典和分析字典来增强特征表示,利用遗传算法进行参数优化,选择最好的词典和参数,从而达到最好的识别效果,识别速度快,且准确率高。The cross-subject EEG emotion recognition method based on the GA-PDPL algorithm proposed in an embodiment of the present invention uses a comprehensive dictionary and an analysis dictionary to enhance feature representation, utilizes a genetic algorithm to optimize parameters, and selects the best dictionary and parameters, thereby achieving the best recognition effect, fast recognition speed, and high accuracy.

其次参照附图描述根据本发明实施例提出的基于GA-PDPL算法的跨被试脑电情感识别装置。Next, the cross-subject EEG emotion recognition device based on the GA-PDPL algorithm proposed in accordance with an embodiment of the present invention will be described with reference to the accompanying drawings.

图2为本发明实施例提出的一种基于GA-PDPL算法的跨被试脑电情感识别装置的方框示意图。FIG2 is a block diagram of a cross-subject EEG emotion recognition device based on the GA-PDPL algorithm proposed in an embodiment of the present invention.

如图2所示,该基于GA-PDPL算法的跨被试脑电情感识别装置10包括:获取模块100、识别模块200和输出模块300。As shown in FIG2 , the cross-subject EEG emotion recognition device 10 based on the GA-PDPL algorithm includes: an acquisition module 100 , a recognition module 200 and an output module 300 .

其中,获取模块100,用于获取待识别的被试脑电情感数据;识别模块200,用于将被试脑电情感数据输入预先训练好的GA-PDPL模型,利用被试脑电情感数据和GA-PDPL模型输出的综合字典和分析字典计算被试脑电情感数据与每个脑电情感类别的残差,得到多个残差值;其中,GA-PDPL模型为在DPL模型中增加综合字典和分析字典的字典对,并引入编码系数矩阵构建得到,通过具有多个被试的脑电情感被试样本和对应的脑电情感类别标签对GA-PDPL模型进行训练,并在训练过程中利用遗传算法对构建的GA-PDPL模型中的参数进行优化;输出模块300,用于将多个残差值中的最小残差值对应的脑电情感类别作为被试脑电情感数据对应的情感类别。Among them, the acquisition module 100 is used to obtain the EEG emotion data of the subject to be identified; the identification module 200 is used to input the EEG emotion data of the subject into a pre-trained GA-PDPL model, and use the comprehensive dictionary and analysis dictionary output by the EEG emotion data of the subject and the GA-PDPL model to calculate the residual between the EEG emotion data of the subject and each EEG emotion category to obtain multiple residual values; wherein the GA-PDPL model is obtained by adding a dictionary pair of a comprehensive dictionary and an analysis dictionary to the DPL model, and introducing a coding coefficient matrix to construct it, and the GA-PDPL model is trained by using EEG emotion subject samples with multiple subjects and corresponding EEG emotion category labels, and the genetic algorithm is used to optimize the parameters in the constructed GA-PDPL model during the training process; the output module 300 is used to use the EEG emotion category corresponding to the minimum residual value among the multiple residual values as the emotion category corresponding to the EEG emotion data of the subject.

可选地,在本发明的一个实施例中,装置还包括:搭建模块,用于,在DPL模型中增加字典对搭建PDPL模型,得到:Optionally, in one embodiment of the present invention, the apparatus further comprises: a building module, configured to add a dictionary pair to the DPL model to build a PDPL model, to obtain:

其中,D为综合字典,P为分析字典,K为脑电情感类别,Fk为情感类别k的脑电情感被试样本,λ为标量常数,为Fk的补集,di为D的第i个原子;Where D is the comprehensive dictionary, P is the analysis dictionary, K is the EEG emotion category, Fk is the EEG emotion subject sample of emotion category k, λ is a scalar constant, is the complement of F k , d i is the i-th atom of D;

引入编码系数矩阵A对PDPL模型进行放宽,得到:The coding coefficient matrix A is introduced to relax the PDPL model, and we get:

其中,A为编码系数矩阵;Among them, A is the coding coefficient matrix;

1)固定综合字典D和分析字典P,更新编码系数矩阵A:1) Fix the comprehensive dictionary D and the analysis dictionary P, and update the coding coefficient matrix A:

其中,τ为标量常数;Where τ is a scalar constant;

得到编码系数矩阵A的封闭形式的解决方案:The closed-form solution for the encoding coefficient matrix A is obtained:

其中,I为单位矩阵;Where I is the identity matrix;

2)固定编码系数矩阵A,更新综合字典D和分析字典P:2) Fixed coding coefficient matrix A, update comprehensive dictionary D and analysis dictionary P:

得到分析字典P的封闭形式的解决方案:Get the closed-form solution for the analytic dictionary P:

其中,γ为标量常数;Where γ is a scalar constant;

引入变量S优化综合字典D:Introduce variable S to optimize the comprehensive dictionary D:

通过ADMM算法得到综合字典D的最优解:The optimal solution of the comprehensive dictionary D is obtained through the ADMM algorithm:

通过1)和2)对PDPL模型进行多轮优化训练,更新PDPL模型中的编码系数矩阵A、综合字典D和分析字典P,使得PDPL模型最小化;Through 1) and 2), the PDPL model is optimized for multiple rounds of training, and the coding coefficient matrix A, comprehensive dictionary D and analysis dictionary P in the PDPL model are updated to minimize the PDPL model;

在训练过程中利用遗传算法对构建的GA-PDPL模型中的参数进行优化,包括:During the training process, the genetic algorithm is used to optimize the parameters in the constructed GA-PDPL model, including:

初始化:生成具有随机分配参数值的初始解决方案群体;Initialization: Generate an initial population of solutions with randomly assigned parameter values;

评估:使用投影字典对学习算法和适应度函数评估种群中每个解的适应度;Evaluation: Use the projected dictionary to evaluate the fitness of each solution in the population using the learning algorithm and fitness function;

选择:根据适应度选择要用作下一代父母的解决方案的子集;Selection: Selecting a subset of solutions to be used as parents for the next generation based on fitness;

突变:通过交叉组合所选父母的参数来创建新的解决方案;Mutation: creating new solutions by combining parameters of selected parents through crossover;

评估:对某些解决方案的参数引入随机变化,以探索搜索空间的新区域;Evaluation: Introducing random changes to some of the solution parameters to explore new areas of the search space;

替换:从上一代和新一代中选出最好的解组成下一代;Replacement: Select the best solution from the previous and new generations to form the next generation;

终止:当满足停止条件时终止算法;Termination: The algorithm is terminated when the stopping condition is met;

输出:返回遗传算法找到的最优解,对应GA-PDPL模型的最优经验参数值。Output: Returns the optimal solution found by the genetic algorithm, corresponding to the optimal empirical parameter value of the GA-PDPL model.

可选地,在本发明的一个实施例中,将多个残差值中的最小残差值对应的脑电情感类别作为被试脑电情感数据对应的情感类别的确定公式为:Optionally, in one embodiment of the present invention, the EEG emotion category corresponding to the minimum residual value among multiple residual values is used as the emotion category corresponding to the EEG emotion data of the subject. The determination formula is:

其中,ft为待识别的被试脑电情感数据,Di为第i类的综合子字典,Pi为第i类的分析子字典。Among them, f t is the EEG emotion data of the subject to be identified, Di is the comprehensive sub-dictionary of the i-th category, and Pi is the analysis sub-dictionary of the i-th category.

需要说明的是,前述对基于GA-PDPL算法的跨被试脑电情感识别方法实施例的解释说明也适用于该实施例的基于GA-PDPL算法的跨被试脑电情感识别装置,此处不再赘述。It should be noted that the aforementioned explanation of the embodiment of the cross-subject EEG emotion recognition method based on the GA-PDPL algorithm is also applicable to the cross-subject EEG emotion recognition device based on the GA-PDPL algorithm of this embodiment, and will not be repeated here.

根据本发明实施例提出的基于GA-PDPL算法的跨被试脑电情感识别装置,使用综合字典和分析字典来增强特征表示,利用遗传算法进行参数优化,选择最好的词典和参数,从而达到最好的识别效果,识别速度快,且准确率高。The cross-subject EEG emotion recognition device based on the GA-PDPL algorithm proposed in the embodiment of the present invention uses a comprehensive dictionary and an analysis dictionary to enhance feature representation, utilizes a genetic algorithm to optimize parameters, and selects the best dictionary and parameters, thereby achieving the best recognition effect, fast recognition speed, and high accuracy.

图3为本发明实施例提供的电子设备的结构示意图。该电子设备可以包括:FIG3 is a schematic diagram of the structure of an electronic device provided by an embodiment of the present invention. The electronic device may include:

存储器301、处理器302及存储在存储器301上并可在处理器302上运行的计算机程序。A memory 301 , a processor 302 , and a computer program stored in the memory 301 and executable on the processor 302 .

处理器302执行程序时实现上述实施例中提供的基于GA-PDPL算法的跨被试脑电情感识别方法。When the processor 302 executes the program, the cross-subject EEG emotion recognition method based on the GA-PDPL algorithm provided in the above embodiment is implemented.

进一步地,电子设备还包括:Furthermore, the electronic device also includes:

通信接口303,用于存储器301和处理器302之间的通信。The communication interface 303 is used for communication between the memory 301 and the processor 302 .

存储器301,用于存放可在处理器302上运行的计算机程序。The memory 301 is used to store computer programs that can be run on the processor 302 .

存储器301可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。The memory 301 may include a high-speed RAM memory, and may also include a non-volatile memory (non-volatile memory), such as at least one disk memory.

如果存储器301、处理器302和通信接口303独立实现,则通信接口303、存储器301和处理器302可以通过总线相互连接并完成相互间的通信。总线可以是工业标准体系结构(Industry Standard Architecture,简称为ISA)总线、外部设备互连(PeripheralComponent,简称为PCI)总线或扩展工业标准体系结构(Extended Industry StandardArchitecture,简称为EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图3中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。If the memory 301, the processor 302 and the communication interface 303 are implemented independently, the communication interface 303, the memory 301 and the processor 302 can be connected to each other through a bus and communicate with each other. The bus can be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus or an Extended Industry Standard Architecture (EISA) bus. The bus can be divided into an address bus, a data bus, a control bus, etc. For ease of representation, only one thick line is used in FIG3, but it does not mean that there is only one bus or one type of bus.

可选的,在具体实现上,如果存储器301、处理器302及通信接口303,集成在一块芯片上实现,则存储器301、处理器302及通信接口303可以通过内部接口完成相互间的通信。Optionally, in a specific implementation, if the memory 301, the processor 302 and the communication interface 303 are integrated on a chip, the memory 301, the processor 302 and the communication interface 303 can communicate with each other through an internal interface.

处理器302可能是一个中央处理器(Central Processing Unit,简称为CPU),或者是特定集成电路(Application Specific Integrated Circuit,简称为ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。The processor 302 may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention.

本实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如上的基于GA-PDPL算法的跨被试脑电情感识别方法。This embodiment also provides a computer-readable storage medium on which a computer program is stored, characterized in that when the program is executed by a processor, the above-mentioned cross-subject EEG emotion recognition method based on the GA-PDPL algorithm is implemented.

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或N个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, the description with reference to the terms "one embodiment", "some embodiments", "example", "specific example", or "some examples" etc. means that the specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the present invention. In this specification, the schematic representations of the above terms do not necessarily refer to the same embodiment or example. Moreover, the specific features, structures, materials or characteristics described may be combined in any one or N embodiments or examples in a suitable manner. In addition, those skilled in the art may combine and combine the different embodiments or examples described in this specification and the features of the different embodiments or examples, without contradiction.

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“N个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as "first" and "second" may explicitly or implicitly include at least one of the features. In the description of the present invention, the meaning of "N" is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.

流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更N个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。Any process or method description in a flowchart or otherwise described herein may be understood to represent a module, fragment or portion of code comprising one or more executable instructions for implementing the steps of a custom logical function or process, and the scope of the preferred embodiments of the present invention includes alternative implementations in which functions may not be performed in the order shown or discussed, including performing functions in a substantially simultaneous manner or in reverse order depending on the functions involved, which should be understood by technicians in the technical field to which the embodiments of the present invention belong.

应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,N个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。It should be understood that the various parts of the present invention can be implemented by hardware, software, firmware or a combination thereof. In the above embodiment, the N steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system. For example, if implemented by hardware, as in another embodiment, it can be implemented by any one of the following technologies known in the art or their combination: a discrete logic circuit having a logic gate circuit for implementing a logic function for a data signal, a dedicated integrated circuit having a suitable combination of logic gate circuits, a programmable gate array (PGA), a field programmable gate array (FPGA), etc.

本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。A person skilled in the art may understand that all or part of the steps in the method for implementing the above-mentioned embodiment may be completed by instructing related hardware through a program, and the program may be stored in a computer-readable storage medium, which, when executed, includes one or a combination of the steps of the method embodiment.

Claims (10)

1.一种基于GA-PDPL算法的跨被试脑电情感识别方法,其特征在于,包括以下步骤:1. A cross-subject EEG emotion recognition method based on GA-PDPL algorithm, characterized by comprising the following steps: 获取待识别的被试脑电情感数据;Obtain the EEG emotion data of the subject to be identified; 将所述被试脑电情感数据输入预先训练好的GA-PDPL模型,利用所述被试脑电情感数据和所述GA-PDPL模型输出的综合字典和分析字典计算所述被试脑电情感数据与每个脑电情感类别的残差,得到多个残差值;其中,所述GA-PDPL模型为在DPL模型中增加综合字典和分析字典的字典对,并引入编码系数矩阵构建得到,通过具有多个被试的脑电情感被试样本和对应的脑电情感类别标签对所述GA-PDPL模型进行训练,并在训练过程中利用遗传算法对构建的所述GA-PDPL模型中的参数进行优化;The subject's EEG emotion data is input into a pre-trained GA-PDPL model, and the residual between the subject's EEG emotion data and each EEG emotion category is calculated using the subject's EEG emotion data and the comprehensive dictionary and analysis dictionary output by the GA-PDPL model to obtain multiple residual values; wherein the GA-PDPL model is constructed by adding a dictionary pair of a comprehensive dictionary and an analysis dictionary to the DPL model, and introducing a coding coefficient matrix, and the GA-PDPL model is trained by using EEG emotion subject samples of multiple subjects and corresponding EEG emotion category labels, and during the training process, the parameters in the constructed GA-PDPL model are optimized using a genetic algorithm; 将所述多个残差值中的最小残差值对应的脑电情感类别作为所述被试脑电情感数据对应的情感类别。The EEG emotion category corresponding to the minimum residual value among the multiple residual values is used as the emotion category corresponding to the EEG emotion data of the subject. 2.根据权利要求1所述的方法,其特征在于,在将所述被试脑电情感数据输入预先训练好的GA-PDPL模型之前,还包括:2. The method according to claim 1, characterized in that before the subject's EEG emotion data is input into the pre-trained GA-PDPL model, it also includes: 在DPL模型中增加字典对搭建PDPL模型,得到:Add dictionary pairs to the DPL model to build the PDPL model and we get: 其中,D为综合字典,P为分析字典,K为脑电情感类别,Fk为情感类别k的脑电情感被试样本,为范数计算,λ为标量常数,为Fk的补集,di为D的第i个原子;Among them, D is the comprehensive dictionary, P is the analysis dictionary, K is the EEG emotion category, Fk is the EEG emotion subject sample of emotion category k, is the norm calculation, λ is a scalar constant, is the complement of F k , d i is the i-th atom of D; 引入编码系数矩阵A对所述PDPL模型进行放宽,得到:The coding coefficient matrix A is introduced to relax the PDPL model, and the following is obtained: 其中,A为编码系数矩阵;Among them, A is the coding coefficient matrix; 利用具有多个被试的脑电情感被试样本和对应的脑电情感类别标签对所述GA-PDPL模型进行训练,更新所述PDPL模型中的编码系数矩阵A、综合字典D和分析字典P,使得所述PDPL模型最小化,并在更新过程中利用遗传算法优化所述GA-PDPL模型的多个经验参数。The GA-PDPL model is trained using EEG emotion subject samples with multiple subjects and corresponding EEG emotion category labels, and the coding coefficient matrix A, comprehensive dictionary D and analysis dictionary P in the PDPL model are updated to minimize the PDPL model. During the updating process, a genetic algorithm is used to optimize multiple empirical parameters of the GA-PDPL model. 3.根据权利要求2所述的方法,其特征在于,所述利用具有多个被试的脑电情感被试样本和对应的脑电情感类别标签对所述GA-PDPL模型进行训练,更新所述PDPL模型中的编码系数矩阵A、综合字典D和分析字典P,使得所述PDPL模型最小化,包括:3. The method according to claim 2, characterized in that the GA-PDPL model is trained using EEG emotion subject samples with multiple subjects and corresponding EEG emotion category labels, and the coding coefficient matrix A, comprehensive dictionary D and analysis dictionary P in the PDPL model are updated to minimize the PDPL model, including: 1)固定综合字典D和分析字典P,更新编码系数矩阵A:1) Fix the comprehensive dictionary D and the analysis dictionary P, and update the coding coefficient matrix A: 其中,τ为标量常数;Where τ is a scalar constant; 得到编码系数矩阵A的封闭形式的解决方案:The closed-form solution for the encoding coefficient matrix A is obtained: 其中,I为单位矩阵;Where I is the identity matrix; 2)固定编码系数矩阵A,更新综合字典D和分析字典P:2) Fixed coding coefficient matrix A, update comprehensive dictionary D and analysis dictionary P: 得到分析字典P的封闭形式的解决方案:Get the closed-form solution for the analytic dictionary P: 其中,γ为标量常数;Where γ is a scalar constant; 引入变量S优化综合字典D:Introduce variable S to optimize the comprehensive dictionary D: 通过ADMM算法得到综合字典D的最优解:The optimal solution of the comprehensive dictionary D is obtained through the ADMM algorithm: 通过1)和2)对所述PDPL模型进行多轮优化训练,更新所述PDPL模型中的编码系数矩阵A、综合字典D和分析字典P,使得所述PDPL模型最小化。Through 1) and 2), the PDPL model is subjected to multiple rounds of optimization training, and the coding coefficient matrix A, comprehensive dictionary D and analysis dictionary P in the PDPL model are updated to minimize the PDPL model. 4.根据权利要求3所述的方法,其特征在于,在训练过程中利用遗传算法对构建的所述GA-PDPL模型中的参数进行优化,包括:4. The method according to claim 3, characterized in that the parameters in the constructed GA-PDPL model are optimized using a genetic algorithm during the training process, comprising: 初始化:生成具有随机分配参数值的初始解决方案群体;Initialization: Generate an initial population of solutions with randomly assigned parameter values; 评估:使用投影字典对学习算法和适应度函数评估种群中每个解的适应度;Evaluation: Use the projected dictionary to evaluate the fitness of each solution in the population using the learning algorithm and fitness function; 选择:根据适应度选择要用作下一代父母的解决方案的子集;Selection: Selecting a subset of solutions to be used as parents for the next generation based on fitness; 突变:通过交叉组合所选父母的参数来创建新的解决方案;Mutation: creating new solutions by combining parameters of selected parents through crossover; 评估:对某些解决方案的参数引入随机变化,以探索搜索空间的新区域;Evaluation: Introducing random changes to some of the solution parameters to explore new areas of the search space; 替换:从上一代和新一代中选出最好的解组成下一代;Replacement: Select the best solution from the previous and new generations to form the next generation; 终止:当满足停止条件时终止算法;Termination: The algorithm is terminated when the stopping condition is met; 输出:返回遗传算法找到的最优解,对应所述GA-PDPL模型的最优经验参数值。Output: Returns the optimal solution found by the genetic algorithm, corresponding to the optimal empirical parameter values of the GA-PDPL model. 5.根据权利要求1-4任一项所述的方法,其特征在于,将所述多个残差值中的最小残差值对应的脑电情感类别作为所述被试脑电情感数据对应的情感类别的确定公式为:5. The method according to any one of claims 1 to 4, characterized in that the formula for determining the EEG emotion category corresponding to the minimum residual value among the multiple residual values as the emotion category corresponding to the EEG emotion data of the subject is: 其中,ft为待识别的被试脑电情感数据,Di为第i类的综合子字典,Pi为第i类的分析子字典。Among them, f t is the EEG emotion data of the subject to be identified, Di is the comprehensive sub-dictionary of the i-th category, and Pi is the analysis sub-dictionary of the i-th category. 6.一种基于GA-PDPL算法的跨被试脑电情感识别装置,其特征在于,包括:6. A cross-subject EEG emotion recognition device based on GA-PDPL algorithm, characterized by comprising: 获取模块,用于获取待识别的被试脑电情感数据;An acquisition module is used to acquire the EEG emotion data of the subject to be identified; 识别模块,用于将所述被试脑电情感数据输入预先训练好的GA-PDPL模型,利用所述被试脑电情感数据和所述GA-PDPL模型输出的综合字典和分析字典计算所述被试脑电情感数据与每个脑电情感类别的残差,得到多个残差值;其中,所述GA-PDPL模型为在DPL模型中增加综合字典和分析字典的字典对,并引入编码系数矩阵构建得到,通过具有多个被试的脑电情感被试样本和对应的脑电情感类别标签对所述GA-PDPL模型进行训练,并在训练过程中利用遗传算法对构建的所述GA-PDPL模型中的参数进行优化;A recognition module, used for inputting the subject's EEG emotion data into a pre-trained GA-PDPL model, and calculating the residual between the subject's EEG emotion data and each EEG emotion category using the subject's EEG emotion data and the comprehensive dictionary and analysis dictionary output by the GA-PDPL model to obtain multiple residual values; wherein the GA-PDPL model is constructed by adding a dictionary pair of a comprehensive dictionary and an analysis dictionary to the DPL model, and introducing a coding coefficient matrix, and the GA-PDPL model is trained by using EEG emotion subject samples of multiple subjects and corresponding EEG emotion category labels, and the parameters in the constructed GA-PDPL model are optimized using a genetic algorithm during the training process; 输出模块,用于将所述多个残差值中的最小残差值对应的脑电情感类别作为所述被试脑电情感数据对应的情感类别。The output module is used to use the EEG emotion category corresponding to the minimum residual value among the multiple residual values as the emotion category corresponding to the EEG emotion data of the subject. 7.根据权利要求6所述的装置,其特征在于,所述装置还包括:搭建模块,用于,在DPL模型中增加字典对搭建PDPL模型,得到:7. The device according to claim 6, characterized in that the device further comprises: a building module, used to add a dictionary pair to the DPL model to build a PDPL model, to obtain: 其中,D为综合字典,P为分析字典,K为脑电情感类别,Fk为情感类别k的脑电情感被试样本,为范数计算,λ为标量常数,为Fk的补集,di为D的第i个原子;Among them, D is the comprehensive dictionary, P is the analysis dictionary, K is the EEG emotion category, Fk is the EEG emotion subject sample of emotion category k, is the norm calculation, λ is a scalar constant, is the complement of F k , d i is the i-th atom of D; 引入编码系数矩阵A对所述PDPL模型进行放宽,得到:The coding coefficient matrix A is introduced to relax the PDPL model, and the following is obtained: 其中,A为编码系数矩阵;Among them, A is the coding coefficient matrix; 1)固定综合字典D和分析字典P,更新编码系数矩阵A:1) Fix the comprehensive dictionary D and the analysis dictionary P, and update the coding coefficient matrix A: 其中,τ为标量常数;Where τ is a scalar constant; 得到编码系数矩阵A的封闭形式的解决方案:The closed-form solution for the encoding coefficient matrix A is obtained: 其中,I为单位矩阵;Where I is the identity matrix; 2)固定编码系数矩阵A,更新综合字典D和分析字典P:2) Fixed coding coefficient matrix A, update comprehensive dictionary D and analysis dictionary P: 得到分析字典P的封闭形式的解决方案:Get the closed-form solution for the analytic dictionary P: 其中,γ为标量常数,Where γ is a scalar constant, 引入变量S优化综合字典D:Introduce variable S to optimize the comprehensive dictionary D: 通过ADMM算法得到综合字典D的最优解:The optimal solution of the comprehensive dictionary D is obtained through the ADMM algorithm: 通过1)和2)对所述PDPL模型进行多轮优化训练,更新所述PDPL模型中的编码系数矩阵A、综合字典D和分析字典P,使得所述PDPL模型最小化;Through 1) and 2), the PDPL model is subjected to multiple rounds of optimization training, and the coding coefficient matrix A, the comprehensive dictionary D and the analysis dictionary P in the PDPL model are updated to minimize the PDPL model; 在训练过程中利用遗传算法对构建的所述GA-PDPL模型中的参数进行优化,包括:During the training process, the genetic algorithm is used to optimize the parameters in the constructed GA-PDPL model, including: 初始化:生成具有随机分配参数值的初始解决方案群体;Initialization: Generate an initial population of solutions with randomly assigned parameter values; 评估:使用投影字典对学习算法和适应度函数评估种群中每个解的适应度;Evaluation: Use the projected dictionary to evaluate the fitness of each solution in the population using the learning algorithm and fitness function; 选择:根据适应度选择要用作下一代父母的解决方案的子集;Selection: Selecting a subset of solutions to be used as parents for the next generation based on fitness; 突变:通过交叉组合所选父母的参数来创建新的解决方案;Mutation: creating new solutions by combining parameters of selected parents through crossover; 评估:对某些解决方案的参数引入随机变化,以探索搜索空间的新区域;Evaluation: Introducing random changes to some of the solution parameters to explore new areas of the search space; 替换:从上一代和新一代中选出最好的解组成下一代;Replacement: Select the best solution from the previous and new generations to form the next generation; 终止:当满足停止条件时终止算法;Termination: The algorithm is terminated when the stopping condition is met; 输出:返回遗传算法找到的最优解,对应所述GA-PDPL模型的最优经验参数值。Output: Returns the optimal solution found by the genetic algorithm, corresponding to the optimal empirical parameter values of the GA-PDPL model. 8.根据权利要求6或7所述的装置,其特征在于,将所述多个残差值中的最小残差值对应的脑电情感类别作为所述被试脑电情感数据对应的情感类别的确定公式为:8. The device according to claim 6 or 7, characterized in that the formula for determining the EEG emotion category corresponding to the minimum residual value among the multiple residual values as the emotion category corresponding to the EEG emotion data of the subject is: 其中,ft为待识别的被试脑电情感数据,Di为第i类的综合子字典,Pi为第i类的分析子字典。Among them, f t is the EEG emotion data of the subject to be identified, Di is the comprehensive sub-dictionary of the i-th category, and Pi is the analysis sub-dictionary of the i-th category. 9.一种电子设备,其特征在于,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序,以实现如权利要求1-5任一项所述的基于GA-PDPL算法的跨被试脑电情感识别方法。9. An electronic device, characterized in that it comprises: a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor executes the program to implement the cross-subject EEG emotion recognition method based on the GA-PDPL algorithm as described in any one of claims 1 to 5. 10.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行,以用于实现如权利要求1-5任一项所述的基于GA-PDPL算法的跨被试脑电情感识别方法。10. A computer-readable storage medium having a computer program stored thereon, characterized in that the program is executed by a processor to implement the cross-subject EEG emotion recognition method based on the GA-PDPL algorithm as described in any one of claims 1-5.
CN202310420313.1A 2023-04-19 2023-04-19 GA-PDPL algorithm-based cross-test electroencephalogram emotion recognition method and device Active CN116702018B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310420313.1A CN116702018B (en) 2023-04-19 2023-04-19 GA-PDPL algorithm-based cross-test electroencephalogram emotion recognition method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310420313.1A CN116702018B (en) 2023-04-19 2023-04-19 GA-PDPL algorithm-based cross-test electroencephalogram emotion recognition method and device

Publications (2)

Publication Number Publication Date
CN116702018A true CN116702018A (en) 2023-09-05
CN116702018B CN116702018B (en) 2024-03-01

Family

ID=87834636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310420313.1A Active CN116702018B (en) 2023-04-19 2023-04-19 GA-PDPL algorithm-based cross-test electroencephalogram emotion recognition method and device

Country Status (1)

Country Link
CN (1) CN116702018B (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594084A (en) * 2013-10-23 2014-02-19 江苏大学 Voice emotion recognition method and system based on joint penalty sparse representation dictionary learning
CN103793694A (en) * 2014-02-10 2014-05-14 天津大学 Human face recognition method based on multiple-feature space sparse classifiers
CN103793695A (en) * 2014-02-10 2014-05-14 天津大学 Joint training method of sub-dictionaries in multiple characteristic spaces and for face recognition
US20160232340A1 (en) * 2015-02-11 2016-08-11 Samsung Electronics Co., Ltd. Electrocardiogram (ecg)-based authentication apparatus and method thereof, and training apparatus and method thereof for ecg-based authentication
CN106096506A (en) * 2016-05-28 2016-11-09 重庆大学 Based on the SAR target identification method differentiating doubledictionary between subclass class
CN106725452A (en) * 2016-11-29 2017-05-31 太原理工大学 Based on the EEG signal identification method that emotion induces
CN107515978A (en) * 2017-08-17 2017-12-26 广东工业大学 Method for constructing response surface model based on genetic algorithm and system for applying it
CN110705343A (en) * 2019-08-20 2020-01-17 西南科技大学 Face recognition method and system for structure-incoherent projection dictionary pair learning
CN114201605A (en) * 2021-11-23 2022-03-18 上海大学 Image emotion analysis method based on joint attribute modeling
CN114330535A (en) * 2021-12-24 2022-04-12 南京工业大学 Pattern classification method for learning based on support vector regularization dictionary
CN115062711A (en) * 2022-06-23 2022-09-16 常州工业职业技术学院 EEG emotion recognition method based on multi-source domain adaptive dictionary learning and sparse representation
CN115204209A (en) * 2022-05-20 2022-10-18 大连大学 Electroencephalogram dictionary learning method based on optimized label consistency
CN115496950A (en) * 2022-09-30 2022-12-20 常州工业职业技术学院 Image classification method based on semi-supervised discriminative dictionary pair learning with neighborhood information embedding

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103594084A (en) * 2013-10-23 2014-02-19 江苏大学 Voice emotion recognition method and system based on joint penalty sparse representation dictionary learning
CN103793694A (en) * 2014-02-10 2014-05-14 天津大学 Human face recognition method based on multiple-feature space sparse classifiers
CN103793695A (en) * 2014-02-10 2014-05-14 天津大学 Joint training method of sub-dictionaries in multiple characteristic spaces and for face recognition
US20160232340A1 (en) * 2015-02-11 2016-08-11 Samsung Electronics Co., Ltd. Electrocardiogram (ecg)-based authentication apparatus and method thereof, and training apparatus and method thereof for ecg-based authentication
CN106096506A (en) * 2016-05-28 2016-11-09 重庆大学 Based on the SAR target identification method differentiating doubledictionary between subclass class
CN106725452A (en) * 2016-11-29 2017-05-31 太原理工大学 Based on the EEG signal identification method that emotion induces
CN107515978A (en) * 2017-08-17 2017-12-26 广东工业大学 Method for constructing response surface model based on genetic algorithm and system for applying it
CN110705343A (en) * 2019-08-20 2020-01-17 西南科技大学 Face recognition method and system for structure-incoherent projection dictionary pair learning
CN114201605A (en) * 2021-11-23 2022-03-18 上海大学 Image emotion analysis method based on joint attribute modeling
CN114330535A (en) * 2021-12-24 2022-04-12 南京工业大学 Pattern classification method for learning based on support vector regularization dictionary
CN115204209A (en) * 2022-05-20 2022-10-18 大连大学 Electroencephalogram dictionary learning method based on optimized label consistency
CN115062711A (en) * 2022-06-23 2022-09-16 常州工业职业技术学院 EEG emotion recognition method based on multi-source domain adaptive dictionary learning and sparse representation
CN115496950A (en) * 2022-09-30 2022-12-20 常州工业职业技术学院 Image classification method based on semi-supervised discriminative dictionary pair learning with neighborhood information embedding

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ABHIJIT DAS等: "Fast and Efficent Multimodal Eye Biometrics using Projective Dictionary Pair Learning", 《2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC)》, pages 1 - 7 *
史颖欢: "医学图像处理中的机器学习方法及其应用研究", 《中国博士学位论文全文数据库信息科技辑》, pages 33 - 51 *

Also Published As

Publication number Publication date
CN116702018B (en) 2024-03-01

Similar Documents

Publication Publication Date Title
US11741361B2 (en) Machine learning-based network model building method and apparatus
CN109948735B (en) Multi-label classification method, system, device and storage medium
US20210271980A1 (en) Deterministic decoder variational autoencoder
WO2020238039A1 (en) Neural network search method and apparatus
CN108287881A (en) A kind of optimization method found based on random walk relationship
WO2018036547A1 (en) Data processing method and device thereof
CN109147868B (en) Protein function prediction method, device, equipment and storage medium
CN103914527B (en) Graphic image recognition and matching method based on genetic programming algorithms of novel coding modes
CN110929028A (en) Log classification method and device
CN109948680A (en) Classification method and system of medical record data
CN118094342B (en) Unsupervised domain adaptive fault diagnosis method and system for rotating machinery
CN113539372A (en) An efficient method for predicting the association between lncRNAs and diseases
CN116910210A (en) Intelligent question-answering model training method and device based on document and application of intelligent question-answering model training method and device
CN116560984A (en) Test case clustering grouping method based on call dependency graph
CN114420221B (en) Knowledge graph-assisted multi-task drug screening method and system
CN116702018B (en) GA-PDPL algorithm-based cross-test electroencephalogram emotion recognition method and device
CN114974421A (en) Single-cell transcriptome sequencing data interpolation method and system based on diffusion-noise reduction
CN114417095A (en) A method and apparatus for dividing a data set
CN114912458A (en) A sentiment analysis method, apparatus and computer readable medium
CN118296442A (en) Multi-omics cancer subtype classification method, system, device, medium and program product
US11609936B2 (en) Graph data processing method, device, and computer program product
CN113282839B (en) Internet data push processing method and system
US20230073573A1 (en) Dynamic variable quantization of machine learning inputs
CN116403713A (en) Method for predicting autism spectrum barrier risk genes based on multiclass unsupervised feature extraction method
CN116882471A (en) Efficient parameter training method, device and storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant