CN116694049A - 生质基全分解/抗菌塑料母粒组成物 - Google Patents

生质基全分解/抗菌塑料母粒组成物 Download PDF

Info

Publication number
CN116694049A
CN116694049A CN202210186544.6A CN202210186544A CN116694049A CN 116694049 A CN116694049 A CN 116694049A CN 202210186544 A CN202210186544 A CN 202210186544A CN 116694049 A CN116694049 A CN 116694049A
Authority
CN
China
Prior art keywords
algae
composition
biomass
chitosan
antibacterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210186544.6A
Other languages
English (en)
Inventor
林孙基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202210186544.6A priority Critical patent/CN116694049A/zh
Publication of CN116694049A publication Critical patent/CN116694049A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/223Packed additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/10Block- or graft-copolymers containing polysiloxane sequences
    • C08J2483/12Block- or graft-copolymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/325Calcium, strontium or barium phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及生物可降解塑料技术领域,公开了一种生质基全分解/抗菌塑料母粒组成物,包括:环境生物可分解高分子材料;水生植物纤维材料;天然可分解高分子抗菌材料;矿物粉体填料;己二酸二酯;1,1,1‑三羟甲基丙烷;及聚醚改性有机硅。本发明有低成本、优异机械性能、释放远红外线及抑菌功效。

Description

生质基全分解/抗菌塑料母粒组成物
技术领域
本发明涉及生物可降解塑料技术领域,特别指可降低生产成本的一种质基全分解/抗菌塑料母粒组成物。
背景技术
由于环保意识高涨与石化产品原料来源短缺,目前开发出生物可分解的组成物所作成的塑料制品。一般常见的生物可分解的组成物系聚乳酸(Polylactic Acid PLA)。当生物可分解塑料弃置于自然环境中时,所含的聚乳酸会被环境中的微生物代谢分解。若生物可分解塑料直接焚化或掩埋后,仅会产生水和二氧化碳,因此不会对环境造成冲击。
目前生物可分解塑料制品仍有技术上的瓶颈,而无法完全取代习知的石化产品所制备的塑料制品。例如当生物可分解的聚乳酸(Polylactic Acid PLA)璃化转变温度为55℃,熔点为175℃,高分子量的PLA强度高,但韧性较差,且制品耐冲击性明显不佳,以致不耐长途运输、久存,而无法提供物品足够的保护。
为了解决上述易碎裂等技术问题,目前经济环保的可降解产品多是以含木质素较高的植物纤维(如秸秆、椰衣等)及淀粉(如玉米淀粉等)为主料,再填充无机填料,用以改善改善材料的力学性能差、易碎裂等问题。
目前市场上的植物纤维均是由农林作物、农林废弃物或其它陆生植物的秆茎制备得到。如采用稻壳、稻草、麦秆、玉米秆、棉花秆、高粱秆、甘蔗渣、棕榈渣、木屑、竹屑等农林废弃物资源或其它陆生植物的秆茎作为原材料制备得到的。
由于植物纤维因具有多元化料源,生长周期短、可生物降解性和环保性,被广泛应用于各个领域。植物纤维质轻、可生物降解等特性,可用作于一次性餐饮容器、绿色包装材料及建筑材料,不会造成环境污染等,是一种应用领域宽广、用途广泛的环保材料。
植物体在长期的生长进化过程中形成了复杂的物理和化学结构以防御微生物和动物的攻击。这种植物材料抵抗微生物及酶降解的各种特性统称为木质纤维素的“抗生物降解屏障”。因此,为了破坏细胞壁的刚性和致密结构,脱除木素和半纤维素,使纤维素充分暴露,从而提高纤维素的可及度,原料往往需要进行预处理以破坏这种“保护性”结构。
此外,天然纤维化学成分组成对复合材料的力学性能影响显着,纤维表面处理可以提高纤维和基体间结合力,提高制备复合材料的性能。木质纤维素如稻/麦秸杆主要由纤维素、木质素、半纤维素、蜡质以及果胶等成分组成。秸秆结构不均,外层灰分含量明显高于内层,稻/麦秸秆苯-醇抽出物的主要成分是脂肪和蜡,它们使麦秸表面致密、光滑,形成一层高级脂肪族衍生物生成的疏水性角质蜡状膜,从而阻碍了高分子基体浸润到秸杆纤维内部;内表面由木质素、半纤维素及果胶等组成,这些组分与高分子基体的兼容性极差,它们的存在会降低秸秆纤维与基体间的结合力。
因此,为了充分发挥秸秆纤维在基体中的增强作用,必需要对木质纤维素进行适当的表面处理。然而现有使用酸碱化学法的处理方式,必然带来后续环境污染的困扰。
有鉴于上述缺憾,发明人有感其未臻于完善,遂竭其心智悉心研究克服,凭其从事该项产业多年的累积经验,进而研发出一种可分解抗菌纤维塑料母粒组成物,该组成物利用水生植物纤维材料、环境生物可分解高分子塑料、天然可分解高分子抗菌材料及矿物粉体填料,依照各混掺比例以80~150℃温度进行熔融共混后以挤压制成颗粒状,提供作为挤出、吹制、射出或热压成型等塑料母粒,利用本发明制成的产品可提升制品机械性能及抗菌活性值的性能指标(performance metrics),且回收分解不会残留有害物质影响环境污染;并为避免被碳边境税转嫁降低竞争力,延伸永续发展概念达成净零碳排,本发明将协助生产制造商提供实际的解决方案,让企业在绿色转型中找到获利方式。
发明内容
本发明主要目的在于提供一种有成本低、优异机械性能、释放远红外线及抑菌功效的生质基全分解/抗菌塑料母粒组成物。
为了实现上述本发明目的,其所采用的技术手段为:提供一种生质基全分解/抗菌塑料母粒组成物,至少包括:
环境生物可分解高分子材料,选自天然高分子材料、微生物合成高分子材料、化学合成高分子材料或其组合;
水生植物纤维材料,选自海水藻类及/或淡水藻类所提取的纤维;
天然可分解高分子抗菌材料,选自几丁聚糖(chitosan)及/或海藻酸(Alginicacid);
矿物粉体填料;
己二酸二酯;
1,1,1-三羟甲基丙烷;及
聚醚改性有机硅。
在上述本发明组成物中,用于本发明实施例中的环境生物可分解高分子材料主要用以作为组成物的黏结剂。该环境生物可分解高分子材料可以使用本领域常用的天然高分子材料、微生物合成高分子材料及化学合成高分子材料。其中该天然高分子包括有几丁聚糖(Chitosan)及其衍生物、淀粉及其衍生物、明胶、动植物类多醣体等;该微生物合成高分子包括有聚羟基烷酸酯/聚羟基脂肪酸酯(PHAs)、聚羟基丁酸酯(PHB)、聚羟基烷酸酯(PHA)、聚-3-羟基丁酸酯(P3HB)、聚-4-羟基丁酸酯(P4HB),聚羟基戊酸酯(PHV),聚羟基己酸酯(PHH)、聚羟基辛酸酯(PHO)、聚(3-羟基丁酸-co-3-羟基戊酸酯)(PHBV)。该化学合成高分子包括有聚羟基酸类的聚乳酸(PLA)及聚羟基乙酸(PGA);聚环内酯类的聚ε-己内酯(PCL)及聚环丁内酯(PBL);脂肪族聚酯类的聚醚砚(PES)、聚己二酸对苯二甲酸丁二醇酯(PBAT)及聚丁二酸丁二醇酯(PBS);及聚碳酸酯类的聚三亚甲基碳酸酯(PTMC)等。它们可以单独使用或多种组合使用。
优选地,该环境生物可分解高分子材料为淀粉、聚乳酸(PLA)及聚己二酸对苯二甲酸丁二醇酯(PBAT)。
用于本发明实施例中的环境生物可分解高分子材料含量没有特别限制,只要可以使组成物制成的产品显示出良好的复合材料性能即可。优选地含量为基于组成物总重量15~60wt.%,更优为30~45wt.%。
为了获得制品有一定的冲击强度(Impact Strength)及弯曲强度(Bendingstrength),本发明组成物使用水生植物纤维材料作为塑料(环境生物可分解高分子材料)的补强材料。
用于本发明实施例中适合的水生植物纤维材料为海水藻类或淡水藻类所提取的纤维。海水藻类包括但不限定为丝藻、浒苔、石莼、铜藻、马尾藻、硬毛藻、杉叶蕨藻、鼠尾藻、羽状蕨藻、总状蕨藻、龙须菜等不可食用藻类或其使用后的残粕部分。淡水藻类包括但不限定为褐藻类(brown algae)、红藻类(red algae)、绿藻(green algae)类或蓝藻类(bluealgae),例如绿藻、硅藻、新月藻、微胞藻、衣藻、水葫芦(布袋莲)等不可食用藻类或其使用后的残粕部分。
优选地,该水生植物纤维材料为丝藻。
用于本发明的水生植物纤维材料含量没有特别限制,只要可以使组成物制成的产品显示出良好的冲击强度(Impact Strength)及弯曲强度即可。优选地含量为基于组成物总重量30~80wt.%,更优为40~50wt.%。
前述优选地,丝藻提取的纤维是取自于本发明人以台湾专利公告号TW202140871(一种自水生植物取得纤维的方法及其制品)所制得的水生植物纤维材料,由本发明人申请的台湾专利公告号TW202140871申请人GING CHI INDUSTRY CO.,LTD晶淇工业股份有限公司提供。
水生植物纤维的优点:(1)水生植物是海洋中最大的碳汇集场,吸碳速率快,属于蓝碳材料之一。(2)是世界上增长最快的植物,生长周期短由数天~数周;与陆生植物相比快约数十倍。(3)源于植物,施于自然,循环资源便捷,料源生生不息,原料成本低廉。(4)可减少相关后续制品碳足迹排放与缴付碳税。(5)原料不含木质素等杂质,处理简易不会造成环境处理负荷问题。
用于本发明实施例中的矿物粉体填料没有特别限制,只要该矿物粉体填料能够使再生胶制品具有一定的补强或机能作用即可。可以用于本发明实施例中的矿物粉体填料,主要含有氧化镁、氧化铝、氧化钙、二氧化钛、氧化铁、氧化钾、氧化钠、二氧化硅或羟基磷灰石钙等成分的无机矿物或非金属矿物,例如碳酸钙、碳酸镁、滑石粉、皂石粉、云母粉、高岭土、电气石、硅石、白云石、微晶瓷、电气石、硼硅酸盐矿物等。它们可1种单独使用或2种以上组合使用。
优选地,该矿物粉体填料为二氧化硅、微晶瓷及电气石。
用于本发明实施例中的矿物粉体填料含量没有特别限制,只要其可以使本发明组成物制成的产品可以显示出良好的抗冲击性、韧性及远红外线功能即可。
优选地,该矿物粉体填料含量为基于组成物总重量3~10wt.%,更优为5~7wt.%。
用于本发明实施例中的该电气石(Tourmaline)主要用以提供制品具有释放负离子、远红外线及吸附重金属等特性;该二氧化硅主要用以增加制品抗冲击性。该微晶瓷为是由30wt.%羟基磷灰石钙(Calcium Hydroxylaptite,CaHA)与70wt.%的凝胶构成,其结构是直径25~45微米(μm)的CaHA微晶球(microspheres),具有优异的生物兼容性己生物分解性,作为聚乳酸(PLA)的填充材料,透过含有弹性体凝胶及无机矿物羟基磷灰石钙(CalciumHydroxylaptite,CaHA)成分,可以改变材料成形时的物理性质,可使得成品更柔软及易于弯曲。
上述本发明组成物中,为了获得制品有一定的柔软性,在组成物中添加己二酸二酯增塑剂。用于本发明实施例中的己二酸二酯,选自日本大八化学工业株式会社的编号DAIFATTY-101的己二酸二酯。优选地,该己二酸二酯含量为基于组合物的总重量0.5~5wt.%。
己二酸二酯(DAIFATTY-101)本身为生物降解的树脂,不仅获得了日本生物塑料协会的生物降解认证,还获得了欧洲OK compost的认证。已确认与己二酸二酯相容的可生物降解树脂包括:PLA、PBAT、PBS、PHBH和淀粉基树脂。高刚性是聚乳酸的缺点之一,而己二酸二酯与聚乳酸有优异兼容性,且增塑效率高,添加己二酸二酯,可获得约300%的聚乳酸伸长率,可提升聚乳酸制品的韧性及抛弃制品能加速被微生物分解的功效。
上述本发明组成物中,为了获得制品有一定的耐冲击性,在组成物中添加1,1,1-三羟甲基丙烷扩链剂。PLA是一种半结晶聚合物,由于其在常规加工技术中的极慢的结晶速度和快速的冷却速度,在加工后常常变成非晶态,促使产品硬度变高而易脆,耐冲击力较差,且柔韧性(flexibility)不佳。1,1,1-三羟甲基丙烷具良好的抗结晶性,作为PLA的扩链剂可以提升制品强度及柔软性。
优选地,该1,1,1-三羟甲基丙烷含量为基于组合物总重量0.1~2.0wt.%。
上述本发明组成物中,为了获得制品有一定的表面张力及提升拉伸强度,在组成物中添加聚醚改性有机硅的表面改质剂,使本发明可适用于各类不同表面张力的制品上。可用于本发明聚醚改性有机硅,包括有德国UniqChem公司产品350W、487U、488U或德国BKY公司产品BKY-3400、BKY-3450、BKY-3451。
用于本发明实施例中的表面改质剂选自德国毕克化学工业(BYK)公司产品BKY-3451。优选地,该聚醚改性有机硅含量为基于组合物总重量0.3~2.0wt.%。
上述本发明组成物中,为了获得一定的抑制细菌作用的制品,本发明添加天然可分解抗菌高分子材料。用于本发明实施例中的天然可分解抗菌高分子材料包括但不限定为几丁聚糖(chitosan)、海藻酸(Alginic acid)或其衍生物。
由于几丁聚糖(Chitosan)自身具有抗菌性质,几丁聚糖(Chitosan)抗菌材料为带正电荷的天然有机物,可使制品带正电荷而具有良好的生物降解性、生物兼容性及抑菌功能。几丁聚糖(Chitosan)对大肠杆菌及金黄色葡萄球菌有良好的抑制作用。可以使用的几丁聚糖(chitosan),例如:日本TOKYO CHENMICAL INDUSTRY CO.,LTD,产品名称chitosan9438,(50-100mPa.s,0.5wt.%in 0.5wt.%Acetic Acid at 20℃);日本Junsei Chemical Co.,Ltd,产品名称chitosan3114;日本Kanto Chemical Co.,Inc.产品名称chitosan9785;日本Nacalai Tesque,Inc.产品名称chitosan6061;台湾友何贸易股份有限公司(UNI-ONWARD CORP),厂牌名称ARO。
用于本发明实施例中的几丁聚糖(Chitosan)选自台湾友何贸易股份有限公司(UNI-ONWARD CORP),厂牌名称ARO,产品名CHITOSAN,MOLECULAR WEIGHT:100,000~300,000(分子量约100,000~300,000)。该几丁聚糖(Chitosan)优选含量为基于组合物的总重量7~15wt.%,更优为8wt.%。
海藻酸(Alginic acid)是一种高粘性的高分子化合物,它可以提升聚乳酸(PLA)与纤维素的黏结力。可以使用的海藻酸(Alginic acid),是来自褐藻的海藻酸,例如:美国Alfa Chemistry,产品名称Alginic acid sodium salt;美国Lianyungang TiantianSeaweed Industry Co.,Ltd.,产品名称Sodium alginate;美国American InternationalChemical,Inc.,产品名称Sodium Alginate;德国Beckmann-Kenko GmbH,产品名称Sodiumalginate;德国JRS PHARMA GMBH AND CO KG,产品名称SODIUM ALGINATE;台湾友何贸易股份有限公司UNI-ONWARD CORP(ALGINIC ACID,FROM BROWN ALGAE)。用于本发明实施例中的海藻酸(Alginic acid),选自台湾友何贸易股份有限公司(UNI-ONWARD CORP),产品名为ALGINIC ACID,FROM BROWN ALGAEBROWN ALGAE。用于本发明实施例中的海藻酸(Alginicacid)含量优选为基于组合物的总重量2~15wt.%。
上述本发明组成物中,进一步包含本领域常用的功能性添加剂,例如抗静电剂、阻燃剂、润滑剂、着色剂、耐磨剂或抗氧化剂等。由于该等添加剂为各种习知产品,应为本发明所属技术领域中具有通常知识者所熟知,不再赘述。
具体实施方式
为了清楚说明本发明能够达到的目的,以下根据表1所示实验组E1~E10及种对照组C1~C2的组成物对本发明一种生质基全分解/抗菌塑料母粒组成物进一步说明功效及特征。
本发明实施例使用的主要原料如下:
(1)聚乳酸Polylactic Acid(PLA):选自台湾友何贸易股份有限公司(UNI-ONWARDCORP),厂牌名称SIA,产品名POLYLACTIC ACID.MOLECULAR WEIGHT:60,000
(2)热塑性淀粉:选自台湾友何贸易股份有限公司(UNI-ONWARD CORP),厂牌名称SIA,来自马铃薯的淀粉S(tarch from potato)
(3)聚己二酸对苯二甲酸丁醇酯Polybutylene Adipate Terephthalate(PBAT):选自厂牌Chang Chun长春,PBAT PBAT ECO-A20系列
(4)丝藻纤维Thread Alagae fibler:选自GING CHI INDUSTRY CO.,LTD台湾晶淇工业股份有限公司,纤维直径3~9微米(μm),平均约5.5微米(μm)
(5)几丁聚糖Chitosan:选自台湾友何贸易股份有限公司(UNI-ONWARD CORP),厂牌名称ARO,产品名CHITOSAN,MOLECULAR WEIGHT:100,000~300,000
(6)海藻酸(Alginic acid):选自台湾友何贸易股份有限公司(UNI-ONWARDCORP),产品名为ALGINIC ACID,FROM BROWN ALGAEBROWN ALGAE
(7)二氧化硅silica(SiO2):选自台湾友何贸易股份有限公司(UNI-ONWARDCORP),厂牌名称ALF,品名Silicon(IV)oxide,99.5wt.%<10Micron APS Powder(氧化硅(IV),99.5wt.%<10微米APS粉末)
(8)电气石(Tourmaline):选自品牌:DAIZEN,100-1000目粉状,放射远红外线(4~14微米)
(9)微晶瓷Radiesse:选自德国Merz提供的Radiesse瑞得喜
(10)己二酸二酯:选自日本大八化学工业株式会社的编号DAIFATTY-101
(11)1,1,1-三羟甲基丙烷:选自台湾友何贸易股份有限公司(UNI-ONWARD CORP),厂牌名称ALD,品名TRIMETHYLOLPROPANE,97wt.%
(12)聚醚改性有机硅:选自德国毕克化学工业(BYK)产品BYK-3451
E1组成物,包含:60wt.%聚乳酸(PLA);30wt.%丝藻纤维(Thread Alagaefibler);5wt.%几丁聚糖(chitosan);3wt.%二氧化硅(SiO2);1wt.%己二酸二酯;0.3wt.%1,1,1-三羟甲基丙烷;及0.7wt.%聚醚改性有机硅。
E2组成物,包含:45wt.%聚乳酸(PLA);40wt.%丝藻纤维(Thread Alagaefibler);8wt.%几丁聚糖(chitosan);3wt.%二氧化硅(SiO2);1wt.%己二酸二酯;0.3wt.%1,1,1-三羟甲基丙烷;及0.7wt.%聚醚改性有机硅。
E3组成物,包含:30wt.%聚乳酸(PLA);50wt.%丝藻纤维(Thread Alagaefibler);11wt.%几丁聚糖(chitosan);7wt.%二氧化硅(SiO2);1wt.%己二酸二酯;0.3wt.%1,1,1-三羟甲基丙烷;及0.7wt.%聚醚改性有机硅。
E4组成物,包含:15wt.%聚乳酸(PLA);7wt.%热塑性淀粉;60wt.%丝藻纤维(Thread Alagae fibler);7wt.%几丁聚糖(chitosan);6wt.%二氧化硅(SiO2);3wt.%电气石(Tourmaline);1wt.%己二酸二酯;0.3wt.%1,1,1-三羟甲基丙烷;及0.7wt.%聚醚改性有机硅。
E5组成物,包含:18wt.%热塑性淀粉;70wt.%丝藻纤维(Thread Alagaefibler);5wt.%几丁聚糖(chitosan);5wt.%电气石(Tourmaline);1wt.%己二酸二酯;0.3wt.%1,1,1-三羟甲基丙烷;及0.7wt.%聚醚改性有机硅。
E6组成物,包含:60wt.%聚乳酸(PLA);30wt.%丝藻纤维(Thread Alagaefibler);5wt.%海藻酸(Alginic acid);3wt.%微晶瓷(Radiesse);1wt.%己二酸二酯;0.3wt.%1,1,1-三羟甲基丙烷;及0.7wt.%聚醚改性有机硅。
E7组成物,包含:45wt.%聚乳酸(PLA);40wt.%丝藻纤维(Thread Alagaefibler);8wt.%海藻酸(Alginic acid);5wt.%微晶瓷(Radiesse);1wt.%己二酸二酯;0.3wt.%1,1,1-三羟甲基丙烷;及0.7wt.%聚醚改性有机硅。
E8组成物,包含:30wt.%聚乳酸(PLA);50wt.%丝藻纤维(Thread Alagaefibler);11wt.%海藻酸(Alginic acid);7wt.%微晶瓷(Radiesse);1wt.%己二酸二酯;0.3wt.%1,1,1-三羟甲基丙烷;及0.7wt.%聚醚改性有机硅。
E9组成物,包含:22wt.%聚乳酸(PLA);60wt.%丝藻纤维(Thread Alagaefibler);8wt.%海藻酸(Alginic acid);8wt.%微晶瓷(Radiesse);1wt.%己二酸二酯;0.3wt.%1,1,1-三羟甲基丙烷;及0.7wt.%聚醚改性有机硅。
E10组成物,包含:8wt.%聚乳酸(PLA);8wt.%热塑性淀粉;8wt.%聚己二酸对苯二甲酸丁醇酯(PBAT);70wt.%丝藻纤维(Thread Alagae fibler);2wt.%海藻酸(Alginicacid);2wt.%微晶瓷Radiesse;1wt.%己二酸二酯;0.3wt.%1,1,1-三羟甲基丙烷;及0.7wt.%聚醚改性有机硅。
C1组成物,包含:93wt.%聚乳酸(PLA);5wt.%二氧化硅(SiO2);1wt.%己二酸二酯;0.3wt.%1,1,1-三羟甲基丙烷;及0.7wt.%聚醚改性有机硅。
C2组成物,包含:93wt.%聚己二酸对苯二甲酸丁醇酯(PBAT);5wt.%二氧化硅(SiO2);1wt.%己二酸二酯;0.3wt.%1,1,1-三羟甲基丙烷;及0.7wt.%聚醚改性有机硅。
根据上述实施例E1~E10及对照组C1(PLA塑料)及C2(PBAT塑料)所配制的组成物,如表1所示,再将每种组成物分别用螺杆机挤出制成5片平均厚度3.5mm板材(包含3片长120㎜×宽25㎜试片及2片长5cm×宽5cm试片),提供机械性能(3片)及抗菌活性值(2片)的总体性能指标(performance metrics)的试验。其中:
(一)机械性能试验方式:
检体种类:塑料试片长120㎜×宽25㎜(3片每片厚度3.5㎜)。
试验项目包括:
1.弯曲试验(Bending test):测试的标准ASTM D790。测试载荷达到最大值的弯曲应力就叫做弯曲强度(Bending strength),单位为Mpa。
2.冲击试验(Impact Test):试验标准ASTM D256。测定艾氏摆耐冲击强度(ImpactStrength),单位为J/m。
3.拉伸试验(Tensile test):测试的标准:ASTM D-638。采用Instron Tester测试仪,测试拉伸强度(Tensile Strength),单位为Mpa。
(二)抗菌试验(Antibacterial testing)方式:检体种类:塑料试片长5cm×宽5cm(2片每片厚度3.5㎜)抗菌试验(Antibacterial testing):测试的标准JIS Z-2801(ISO22196)。抗菌活性值(Antibacterial Activity Value)A〔3≥A≥2:有抗菌效果〕;〔A≥3强效抗菌〕试验菌株:1.金黃葡萄球菌(Staphylococcus aureus,ATCC 6538P);2.大肠杆菌(Escherichia coli,ATCC 8739);试验菌量浓度:2.5×105~1.0×106CFU/mL,在24±1小时之后的抑制微生物的发生成长或繁殖(测量塑料试片无孔表面的抗菌活性值Antibacterial Activity Value)。
首先,请参阅表1中,对照组的C1(PLA塑料)及C2(PBAT塑料)机械性能分别为:
C1:弯曲强度(Bending strength)为55MPa,冲击强度(Impact Strength)为18J/m,拉伸强度(Tensile Strength)为45MPa;对金黃葡萄球菌(ATCC 6538P)和大肠杆菌(ATCC8739)的抗菌活性质A<2,显示无抗菌效果。
C2:弯曲强度(Flexural strength)为66MPa,冲击强度(Impact Strength)为23J/m,拉伸强度(Tensile Strength)为68MPa;对金黃葡萄球菌(ATCC 6538P)和大肠杆菌(ATCC8739)的抗菌活性质A<2,显示无抗菌效果。
C2(PBAT塑料)的弯曲强度为C1(PLA塑料)的120%;冲击强度为C1(PLA塑料)的127%;拉伸强度为C1(PLA塑料)的150%。
再请参阅表1,由表1中可得知本发明实施例E1~E10的机械性能都优于对照组C1(PLA塑料)及C2(PBAT塑料),其中:
E1~E5显示聚乳酸(PLA)添加不同比例丝藻纤维,矿物粉体填料使用不同比例二氧化硅及电气石,抗菌材料使用不同比例几丁聚糖的机械性能及抗菌活性值的性能指标(performance metrics);其中以E1在60wt.%聚乳酸(PLA)+30wt.%丝藻纤维时的弯曲强度(Bending strength)为117MPa,冲击强度(Impact Strength)为35J/m,拉伸强度(Tensile Strength)为115MPa,获得最优机械性能。E6~E10显示聚乳酸(PLA)添加不同比例丝藻纤维,矿物粉体填料使用不同比例微晶瓷,抗菌材料使用不同比例海藻酸的机械性能及抗菌活性值的性能指针(performance metrics)。其中以E6在60wt.%聚乳酸(PLA)+30wt.%丝藻纤维的弯曲强度(Bending strength)为115MPa,冲击强度(Impact Strength)为36J/m,拉伸强度(Tensile Strength)为113MPa,获得最优机械性能。
在表1中E1~E5可看出,本发明添加丝藻纤维至本发明的组成物中,是为了增加该聚乳酸基材的强度,添加较少量的植物纤维丝藻纤维对热变形温度、耐冲击强度、拉伸强度及弯曲强度等效果可能不佳。但当聚乳酸(PLA)添加丝藻纤维达到一定比例时(约40wt.%),可能造成纤维纠结聚集现象产生,使得机械性质强度会有所下降(E3~E5有下降趋势),但机械性能仍然高于对照组,可能由聚乳酸(PLA)或热塑性淀粉的黏度随含量增加有关,因为黏度会随浓度增加,E4及E5虽然生物可分解高分子(聚乳酸及热塑性淀粉)添加量降至22wt.%及18wt.%,但几丁聚糖含量维持5~7wt.%,两者含量互补之下,使的机械性能仍然维持一定的水平。
另外,在E1~E5中,矿物粉体填料二氧化硅(SiO2)添加重量百分比分别为3%、5%、7%、6%时,并没有随含量增加而提升材料的机械性能;由E1~E5中可看出,矿物粉体填料二氧化硅(SiO2)添加量为5wt.%时具有较佳材料机械性能。因此,在本发明实施例E1~E5中以E2显示最佳机械性能。
再请参阅表1,在实施例E6~E10中可看出,当矿物粉体填料改由微晶瓷(Radiesse),添加重量百分比比为3%、5%、7%、8%、2%时,其中,E7(45wt.%聚乳酸(PLA)+40wt.%丝藻纤维+5wt.%微晶瓷(Radiesse))时的弯曲强度(Bending strength)为104MPa,冲击强度(Impact Strength)为30J/m,拉伸强度(Tensile Strength)为100MPa;由此可知,E7矿物粉体填料使用微晶瓷(Radiesse)优于E2使用二氧化硅(SiO2),但在实际实施时考虑市场成本,因此选择使用二氧化硅(SiO2)。
又,再请参阅表1,在实施例E1~E5中分别添加5wt.%、8wt.%、11wt.%、7wt.%、5wt.%几丁聚糖(chitosan)可看出,抗菌活性值(A)以实施例E5含量8wt.%时才能具有强效抗菌效果(抗菌活性值A>3)。但在实施例E6~E10添加海藻酸(Alginic acid)时,实施例E6~E10都具有强效抗菌效果(抗菌活性值A>3)。因此,就抗菌活性值的性能指标(performance metrics)而言,使用几丁聚糖(chitosan)要在含量8wt.%以上才能具有强效抗菌效果,但使用海藻酸(Alginic acid)只要3wt.%以上就有强效抗菌效果,因此,在实际实施时考虑虑市场成本时,可以选择低成本的海藻酸(Alginic acid)。
此外,表1中E4及E5实施例的组合物中添加有电气石(Tourmaline)矿物粉体填料,使得本发明制品具有可释放负离子及放射远红外线(4~14微米)。使用本发明组成物制成的农业薄膜制品具有促进植物茎的伸长和孢子或种子的萌发,以及叶绿素的形成和二氧化碳的分解作用。
表1中的E1~E10实施例的组合物有优于对照组C1(PLA塑料)及C2(PBAT塑料)的机械性能;因此,本发明一种柔性高折射率涂料组成物及由其组成物制得的制品,确实可以获得抗菌、释放远红外线及优异机械性能。
以上所述的实施例为本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (10)

1.一种生质基全分解/抗菌塑料母粒组成物,至少包括:
基于组成物总重量15~60wt.%环境生物可分解高分子材料;该环境生物可分解高分子材料,选自天然高分子材料、微生物合成高分子材料、化学合成高分子材料或其组合;
基于组成物总重量30~80wt.%水生植物纤维材料;该水生植物纤维材料选自海水藻类及/或淡水藻类所提取的纤维;
基于组成物总重量2~15wt.%天然可分解高分子抗菌材料;该天然可分解高分子抗菌材料选自几丁聚糖(chitosan)及/或海藻酸(Alginic acid);
基于组成物总重量2~10wt.%矿物粉体填料;
基于组成物总重量0.5~5wt.%己二酸二酯;
基于组成物总重量0.1~2wt.%1,1,1-三羟甲基丙烷;及
基于组成物总重量0.3~2wt.%聚醚改性有机硅。
2.根据权利要求1所述的生质基全分解/抗菌塑料母粒组成物,其特征在于,该天然高分子材料选自几丁聚糖(Chitosan)、淀粉、明胶、动物多醣体、植物多醣体或其组合。
3.根据权利要求1所述的生质基全分解/抗菌塑料母粒组成物,其特征在于,该微生物合成高分子材料选自聚羟基烷酸酯/聚羟基脂肪酸酯(PHAs)、聚羟基丁酸酯(PHB)、聚羟基烷酸酯(PHA)、聚-3-羟基丁酸酯(P3HB)、聚-4-羟基丁酸酯(P4HB),聚羟基戊酸酯(PHV),聚羟基己酸酯(PHH)、聚羟基辛酸酯(PHO)、聚(3-羟基丁酸-co-3-羟基戊酸酯)(PHBV)或其组合。
4.根据权利要求1所述的生质基全分解/抗菌塑料母粒组成物,其特征在于,该化学合成高分子材料选自聚羟基酸类、聚环内酯类、脂肪族聚酯类、聚碳酸酯类或其组合;其中该聚羟基酸类选自聚乳酸(PLA)、聚羟基乙酸(PGA)或其组合;该聚环内酯类选自聚ε-己内酯(PCL)、聚环丁内酯(PBL)或其组合;该脂肪族聚酯类选自聚醚砚(PES)、聚己二酸对苯二甲酸丁二醇酯(PBAT)、聚丁二酸丁二醇酯(PBS)或其组合;该聚碳酸酯类选自聚三亚甲基碳酸酯(PTMC)。
5.根据权利要求1所述的生质基全分解/抗菌塑料母粒组成物,其特征在于,该海水藻类选自丝藻、浒苔、石莼、铜藻、马尾藻、硬毛藻、杉叶蕨藻、鼠尾藻、羽状蕨藻、总状蕨藻、龙须菜或其组合。
6.根据权利要求1所述的生质基全分解/抗菌塑料母粒组成物,其特征在于,该淡水藻类选自褐藻类(brown algae)、红藻类(red algae)、绿藻(green algae)类、蓝藻类(bluealgae)、水葫芦或其组合。
7.根据权利要求1所述的生质基全分解/抗菌塑料母粒组成物,其特征在于,该天然可分解抗菌高分子材料选自于几丁聚糖(chitosan)、海藻酸(Alginic acid)或其组合。
8.根据权利要求1所述的生质基全分解/抗菌塑料母粒组成物,其特征在于,该矿物粉体填料为含氧化镁、氧化铝、氧化钙、二氧化钛、氧化铁、氧化钾、氧化钠、二氧化硅或羟基磷灰石钙的成分。
9.根据权利要求1所述的生质基全分解/抗菌塑料母粒组成物,其特征在于,该矿物粉体填料选自于碳酸钙、碳酸镁、滑石粉、皂石粉、云母粉、高岭土、电气石、硅石、白云石、微晶瓷、电气石、硼硅酸盐矿物或其组合。
10.根据权利要求1所述的生质基全分解/抗菌塑料母粒组成物,其特征在于,进一步包括:基于组成物总重量0~3wt.%功能性添加剂,该功能性添加剂选自于抗静电剂、阻燃剂、润滑剂、着色剂、耐磨剂、抗氧化剂或其组合。
CN202210186544.6A 2022-02-28 2022-02-28 生质基全分解/抗菌塑料母粒组成物 Pending CN116694049A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210186544.6A CN116694049A (zh) 2022-02-28 2022-02-28 生质基全分解/抗菌塑料母粒组成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210186544.6A CN116694049A (zh) 2022-02-28 2022-02-28 生质基全分解/抗菌塑料母粒组成物

Publications (1)

Publication Number Publication Date
CN116694049A true CN116694049A (zh) 2023-09-05

Family

ID=87843856

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210186544.6A Pending CN116694049A (zh) 2022-02-28 2022-02-28 生质基全分解/抗菌塑料母粒组成物

Country Status (1)

Country Link
CN (1) CN116694049A (zh)

Similar Documents

Publication Publication Date Title
Zhong et al. Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review
Kumar et al. Blends and composites of polyhydroxyalkanoates (PHAs) and their applications
Rajan et al. Polyhydroxybutyrate (PHB): a standout biopolymer for environmental sustainability
Varghese et al. Novel biodegradable polymer films based on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and Ceiba pentandra natural fibers for packaging applications
Akhir et al. Formulation of biodegradable plastic mulch film for agriculture crop protection: a review
US6669771B2 (en) Biodegradable resin compositions
Fortunati et al. New multifunctional poly (lactide acid) composites: Mechanical, antibacterial, and degradation properties
Yu et al. Polymer blends and composites from renewable resources
Jiang et al. Biodegradable polymers and polymer blends
Ibrahim et al. Properties and applications of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites
Nesic et al. Bio-based packaging materials
Popa et al. Biodegradable materials for food packaging applications
Li et al. Formulation, performance and environmental/agricultural benefit analysis of biomass-based biodegradable mulch films: A review
Stoica Biodegradable nanomaterials for drink packaging
Bairwan et al. Recent advances in poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) biocomposites in sustainable packaging applications
Paul et al. Starch‐PHA Blend‐Based Biopolymers with Potential Food Applications
CN116694049A (zh) 生质基全分解/抗菌塑料母粒组成物
Anankaphong et al. Effect of rubberwood content on biodegradability of poly (butylene succinate) biocomposites
Anjum et al. Polyhydroxyalkanoates-based bionanocomposites
Stoleru et al. Bio-Based bioplastics in active food packaging
TWI788218B (zh) 生質基全分解/抗菌塑膠母粒組成物
Muthulakshmi et al. Recent Advances in the Development of PHB (Polyhydroxybutyrate)-Based Packaging Materials
Jeffri et al. Potential of polyhydroxyalkanoate and nanocellulose from oil palm trunk as raw materials for additive manufacturing: A review
Nasrollahzadeh et al. Application of biopolymers in bioplastics
KR102087007B1 (ko) 생분해성 수지 조성물 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination