CN116681873B - 基于数字高程模型快速更新的影像正射纠正方法及系统 - Google Patents

基于数字高程模型快速更新的影像正射纠正方法及系统 Download PDF

Info

Publication number
CN116681873B
CN116681873B CN202310943801.0A CN202310943801A CN116681873B CN 116681873 B CN116681873 B CN 116681873B CN 202310943801 A CN202310943801 A CN 202310943801A CN 116681873 B CN116681873 B CN 116681873B
Authority
CN
China
Prior art keywords
model
point cloud
image
updating
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310943801.0A
Other languages
English (en)
Other versions
CN116681873A (zh
Inventor
徐花芝
魏国忠
张广庆
王新田
杜彬
丁庆福
蒋文婷
张艳峰
乔燕英
李天鹤
朱丰琪
鲁一慧
朱伟
于倩
宋禄楷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Provincial Institute of Land Surveying and Mapping
Original Assignee
Shandong Provincial Institute of Land Surveying and Mapping
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Provincial Institute of Land Surveying and Mapping filed Critical Shandong Provincial Institute of Land Surveying and Mapping
Priority to CN202310943801.0A priority Critical patent/CN116681873B/zh
Publication of CN116681873A publication Critical patent/CN116681873A/zh
Application granted granted Critical
Publication of CN116681873B publication Critical patent/CN116681873B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/20Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/04Texture mapping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/10Constructive solid geometry [CSG] using solid primitives, e.g. cylinders, cubes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/04Architectural design, interior design

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Architecture (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Image Processing (AREA)

Abstract

本发明提供了一种基于数字高程模型快速更新的影像正射纠正方法及系统,属于地理测绘技术领域。所述方法,包括:根据当前数字表面模型以及历史数字表面模型,得到地表高差变化范围;根据与历史数字高程模型同时间获取的遥感影像以及当前遥感影像,得到影像特征变化范围;根据地表高差变化范围以及影像特征变化范围,将地面高程差大于第一高差阈值的范围确定为最终的更新区域,结合地面点云数据,得到更新区域的地面点云数据;根据更新区域的地面点云数据,得到待评估区域的数字高程模型的更新结果,根据更新结果进行未来某时刻的航空或卫星影像正射纠正;本发明提高了数字高程模型更新及影像正射纠正的效率。

Description

基于数字高程模型快速更新的影像正射纠正方法及系统
技术领域
本发明涉及地理测绘技术领域,特别涉及一种基于数字高程模型快速更新的影像正射纠正方法及系统。
背景技术
本部分的陈述仅仅是提供了与本发明相关的背景技术,并不必然构成现有技术。
利用已有DEM(Digital Elevation Model,数字高程模型)成果进行DOM(DigitalOrthophoto Map,数字正射影像图)制作、地形测量以及相关行业应用等,可大大提高效率,节省成本,但是由于DEM时效性不够,会导致DOM、地形以及相关成果精度不能满足要求,无法实现快速的影像正射纠正处理。
目前主要的DEM数据生成及更新方法有:传统摄影测量方法、机载激光LiDAR点云生产DEM以及外业实地补测等。传统摄影测量方法成本高、作业效率低,生产周期长;利用机载激光LiDAR点云生成DEM,存在航飞成本高、受空域、天气等影响大、点云分类工作量大等问题;而外业补测存在工作量大和经费高的问题。
发明内容
为了解决现有技术的不足,本发明提供了一种基于数字高程模型快速更新的影像正射纠正方法及系统,解决了利用现有方法更新小面积区域数字高程模型时重新航飞成本高、生产周期长和外业实地测量工作量大的问题,实现了地理环境数字高程模型的快速更新,提高了航空或卫星影像正射纠正的效率。
为了实现上述目的,本发明采用如下技术方案:
本发明第一方面提供了一种基于数字高程模型快速更新的影像正射纠正方法。
一种基于数字高程模型快速更新的影像正射纠正方法,包括以下过程:
根据待评估区域的当前倾斜航空影像,得到密集匹配点云数据以及当前数字表面模型;
根据获取的密集匹配点云数据,得到待评估区域的地面点云数据;
根据当前数字表面模型以及历史数字表面模型,得到地表高差变化范围;
根据与历史数字高程模型同时间获取的遥感影像以及当前遥感影像,得到影像特征变化范围;
根据地表高差变化范围以及影像特征变化范围,将地面高程差大于第一高差阈值的范围确定为最终的更新区域,结合地面点云数据,得到更新区域的地面点云数据;
根据更新区域的地面点云数据,得到待评估区域的数字高程模型的更新结果,根据更新结果进行未来某时刻的航空或卫星影像正射纠正。
作为本发明第一方面进一步的限定,根据待评估区域的当前倾斜航空影像,得到密集匹配点云数据以及当前数字表面模型,包括:
根据当前倾斜航空影像,进行倾斜影像空三加密后生成三维白模;
从多角度影像中筛选出最优角度影像,对三维白模进行纹理贴图,并对模型进行修饰,得到倾斜摄影三维模型;
根据倾斜摄影三维模型,得到密集匹配点云数据以及当前数字表面模型。
作为本发明第一方面更进一步的限定,对模型进行修饰,包括:
不完整建筑物的修补,悬浮、破面和结构性下沉的删除,水面异常凸起或下沉的压平,以及水域纹理痕迹的修改。
作为本发明第一方面进一步的限定,根据当前数字表面模型以及历史数字表面模型,得到地表高差变化范围,包括:
根据当前数字表面模型以及历史数字表面模型的对比,得到高差大于第二高差阈值的所有区域,判断各个高差大于第二高差阈值的区域是否小于设定面积阈值;
如是,则判定为噪声;否则,合并相邻的大于面积阈值的区域,以所有大于设定面积阈值的区域为地表高差变化范围。
作为本发明第一方面进一步的限定,得到更新区域的地面点云数据,还包括如下过程:
将更新区域内旧的已有点云删除,替换为新的更新区域的地面点云数据,利用更新后点云数据的地面点,内插后得到规定格网间距的更新后的数字高程模型。
本发明第二方面提供了一种基于数字高程模型快速更新的影像正射纠正系统。
一种基于数字高程模型快速更新的影像正射纠正系统,包括:
倾斜摄影三维模型生成模块,被配置为:根据待评估区域的当前倾斜航空影像,得到密集匹配点云数据以及当前数字表面模型;
地面点云提取模块,被配置为:根据获取的密集匹配点云数据,得到待评估区域的地面点云数据;
地表高差变化范围生成模块,被配置为:根据当前数字表面模型以及历史数字表面模型,得到地表高差变化范围;
影像特征变化范围生成模块,被配置为:根据与历史数字高程模型同时间获取的遥感影像以及当前遥感影像,得到影像特征变化范围;
更新区域点云更新模块,被配置为:根据地表高差变化范围以及影像特征变化范围,将地面高程差大于第一高差阈值的范围确定为最终的更新区域,结合地面点云数据,得到更新区域的地面点云数据;
影像正射纠正模块,被配置为:根据更新区域的地面点云数据,得到待评估区域的数字高程模型的更新结果,根据更新结果进行未来某时刻的航空或卫星影像正射纠正。
作为本发明第二方面进一步的限定,倾斜摄影三维模型生成模块中,包括:
根据当前倾斜航空影像,进行倾斜影像空三加密后生成三维白模;
从多角度影像中筛选出最优角度影像,对三维白模进行纹理贴图,并对模型进行修饰,得到倾斜摄影三维模型;
根据倾斜摄影三维模型,得到密集匹配点云数据以及当前数字表面模型。
作为本发明第二方面更进一步的限定,对模型进行修饰,包括:
不完整建筑物的修补,悬浮、破面和结构性下沉的删除,水面异常凸起或下沉的压平,以及水域纹理痕迹的修改。
作为本发明第二方面进一步的限定,根据当前数字表面模型以及历史数字表面模型,得到地表高差变化范围,包括:
根据当前数字表面模型以及历史数字表面模型的对比,得到高差大于第二高差阈值的所有区域,判断各个高差大于第二高差阈值的区域是否小于设定面积阈值;
如是,则判定为噪声;否则,合并相邻的大于面积阈值的区域,以所有大于设定面积阈值的区域为地表高差变化范围。
作为本发明第二方面进一步的限定,更新区域点云更新模块中,得到更新区域的地面点云数据,还包括如下过程:
将更新区域内旧的已有点云删除,替换为新的更新区域的地面点云数据,利用更新后点云数据的地面点,插值构建规定格网间距的更新后的数字高程模型。
与现有技术相比,本发明的有益效果是:
1、本发明创新性的提出了一种基于数字高程模型快速更新的影像正射纠正方法及系统,解决了利用现有方法更新小面积区域数字高程模型时重新航飞成本高、生产周期长和外业实地测量工作量大的问题,实现了地理环境数字高程模型的快速更新,提高了影像正射纠正的效率。
2、本发明创新性的提出了一种基于数字高程模型快速更新的影像正射纠正方法及系统,利用倾斜摄影三维模型和遥感影像进行数字高程模型的更新,是最新三维成果的再利用,极大的节省了外业航飞或者人工采集原始数据的时间、人力和经费等一些列生产成本。
3、本发明创新性的提出了一种基于数字高程模型快速更新的影像正射纠正方法及系统,结合两期数字表面模型与遥感影像进行人机交互变化检测,能快速准确地发现更新区域,极大地提高了生产效率,缩短了生产工期。
本发明附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1提供的基于数字高程模型快速更新的影像正射纠正方法的流程示意图;
图2为本发明实施例1提供的历史遥感影像示意图;
图3为本发明实施例1提供的当前遥感影像示意图。
具体实施方式
下面结合附图与实施例对本发明作进一步说明。
在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
实施例1:
如图1所示,本发明实施例1提供了一种基于数字高程模型快速更新的影像正射纠正方法,包括以下过程:
S1:倾斜摄影三维模型成果制作。
采用倾斜摄影自动化建模技术,使用三维建模软件(例如Mirauge3D、Smart3D、Context Capture Center、Photoscan等,本领域技术人员可选用获得使用授权的三维建模软件进行作业);
利用最新获取的倾斜航空影像,完成倾斜影像空三加密,通过三维建模软件(例如Mirauge3D、Smart3D、Context Capture Center、Photoscan等,本领域技术人员可选用获得使用授权的三维建模软件进行作业)自动生产三维白模,并从多角度影像中筛选出最优角度影像,对三维白模进行纹理贴图,并对模型进行修饰;
本实施例所述的修饰,包括:不完整建筑物的修补,悬浮、破面、结构性下沉的删除,水面异常凸起或下沉的压平,以及水域纹理痕迹的修改等等,从而获得三维模型成果。
S2:输出密集匹配点云和数字表面模型(DSM)成果。
基于最新高分辨率(优于0.15米)倾斜摄影三维模型成果,使用三维建模软件(例如模方、LiDARPro等,本领域技术人员可选用获得使用授权的三维建模软件进行作业),输出测区内1米间距(可根据需要设置)的密集匹配点云数据以及1米格网数字表面模型(DSM)成果。
S3:密集匹配点云处理。
对测区内的密集匹配点云,利用点云数据处理软件(例如TerraSolid、LiDAR DP、LiDARPro等,本领域技术人员可选用获得使用授权的点云数据处理软件进行作业),根据机器性能等实际情况设置分块大小(例如1:10000比例尺标准分幅)进行自动分块,使用自动分类宏命令,试验合适的分类参数,对密集匹配点云进行自动分类,提取地面点云。
S4:更新区域确定。
S4.1:对比DSM发现地表高差变化处。
城市的变化发展,大量建(构)筑物的建造,使得地形地表发生变化,根据一般建筑物变化的高度与面积大小,设置高差和面积阈值,对比最新三维DSM成果与旧的已有点云DSM成果,先设置地表高差阈值(即第一高差阈值,例如2.5米),认为新旧两期DSM的高度差大于地表高差阈值的地方地形发生了变化;再设置面积阈值(例如200平方米),小于面积阈值的认为是噪声,予以舍弃,然后合并相邻的大于面积阈值的变化范围,得到地表高差变化范围。
S4.2:遥感影像变化检测。
如图2和图3所示,将旧的点云同期遥感影像(即历史点云同期遥感影像)和最新遥感影像(即当前遥感影像)导入遥感影像处理和分析软件(例如ENVI、Erdas等),使用多尺度分割算法,试验合适的分割参数,进行影像分割,再采用合适的分类方法(例如可以采用现有的监督分类或非监督分类算法)进行自动分类,然后检查分类结果,剔除噪声改正错误,根据分类结果进行变化检测,得到的变化检测结果为影像特征变化范围。
S4.3:结果对比分析检查。
综合DSM上获取的地表高差变化范围和遥感影像上获取的特征变化范围,对所有变化范围内的新旧两期地面高程进行比较,分析检查、修正变化范围,将地面高差大于设定值(即第二高差阈值,例如0.5米,根据1:2000比例尺的DEM精度要求确定,这里的DEM为Digital Elevation Model的简写,即为数字高程模型)的范围确定为最终的更新区域。
S5:更新区域点云分类编辑。
利用点云处理软件(例如TerraSolid、LiDAR DP、LiDARPro等,本领域技术人员可选用获得使用授权的点云数据处理软件进行作业),自动批处理裁出更新区域内自动分类后的密集匹配点云,目视检查分类效果,编辑修改错误分类点,得到更新区域内准确的地面点云。
S6:点云镶嵌。
将更新区域内旧的已有点云成果删除,替换为分类编辑后的密集匹配点云,保证两套点云无缝拼接,更新为最新点云数据。
S7:精度质量检查。
对更新后点云数据,采用人机交互方式进行分类精度和质量检查,具体的,通过将点云按类别、高程显示等方法,目视检查更新后点云;对有疑问处用断面图进行查询、分析。
S8:更新后DEM成果输出。
利用更新后点云数据的地面点,内插输出规定格网间距的DEM成果,更具体的,将更新后点云中的所有地面点作为权值相同的特征点,导入点云处理软件(例如TerraSolid、LIDAR DP等获得使用授权的点云处理软件)中,采用不规则三角网内插方法,根据数据实际情况设置最大构网距离,进行DEM构建,制作规定格网间距的DEM成果。
S9:根据更新后的DEM进行新的航空或卫星影像的正射纠正。
这里的根据DEM数据进行航空或卫星影像的正射纠正策略为现有方案的技术,例如可以采用现有的INPHO、PhotoScan、CIPS集群、GXL等获得使用授权的处理软件,直接的将影像和DEM数据导入,即可得到正射纠正后的影像。
实施例2:
本发明实施例2提供了一种基于数字高程模型快速更新的影像正射纠正系统,包括:
倾斜摄影三维模型生成模块,被配置为:根据待评估区域的当前倾斜航空影像,得到密集匹配点云数据以及当前数字表面模型;
地面点云提取模块,被配置为:根据获取的密集匹配点云数据,得到待评估区域的地面点云数据;
地表高差变化范围生成模块,被配置为:根据当前数字表面模型以及历史数字表面模型,得到地表高差变化范围;
影像特征变化范围生成模块,被配置为:根据与历史数字高程模型同时间获取的遥感影像以及当前遥感影像,得到影像特征变化范围;
更新区域点云更新模块,被配置为:根据地表高差变化范围以及影像特征变化范围,将地面高程差大于第一高差阈值的范围确定为最终的更新区域,结合地面点云数据,得到更新区域的地面点云数据;
影像正射纠正模块,被配置为:根据更新区域的地面点云数据,得到待评估区域的数字高程模型的更新结果,根据更新结果进行未来某时刻的影像正射纠正。
(1)倾斜摄影三维模型生成模块,具体的,包括:
采用倾斜摄影自动化建模技术,使用三维建模软件;
利用最新获取的倾斜航空影像,完成倾斜影像空三加密,通过软件自动生产三维白模,并从多角度影像中筛选出最优角度影像,对三维白模进行纹理贴图,并对模型进行修饰;
本实施例所述的修饰,包括:不完整建筑物的修补,悬浮、破面、结构性下沉的删除,水面异常凸起或下沉的压平,以及水域纹理痕迹的修改等等,从而获得三维模型成果;
基于最新高分辨率(优于0.15米)倾斜摄影三维模型成果,使用三维建模软件,输出测区内1米间距(可根据需要设置)的密集点云数据以及1米格网数字表面模型(DSM)成果。
(2)地面点云提取模块,具体的,包括:
对测区内的密集匹配点云,利用点云数据处理软件,根据机器性能等实际情况设置分块大小(例如1:10000比例尺标准分幅)进行自动分块,使用自动分类宏命令,试验合适的分类参数,对密集匹配点云进行自动分类,提取地面点云。
(3)地表高差变化范围生成模块,具体的,包括:
城市的变化发展,大量建(构)筑物的建造,使得地形地表发生变化,根据一般建筑物变化的高度与面积大小,设置高差和面积阈值,对比最新三维DSM成果与旧的已有点云DSM成果,先设置地表高差阈值(即第一高差阈值,例如2.5米),认为新旧两期DSM的高度差大于地表高差阈值的地方地形发生了变化;再设置面积阈值(例如200平方米),小于面积阈值的认为是噪声,予以舍弃,然后合并相邻的大于面积阈值的变化范围,得到地表高差变化范围。
(4)影像特征变化范围生成模块,具体的,包括:
将旧的点云同期遥感影像(即历史点云同期遥感影像)和最新遥感影像(即当前遥感影像)导入遥感影像处理和分析软件,使用多尺度分割算法,试验合适的分割参数,进行影像分割,再采用合适的分类方法(例如可以采用现有的监督分类或非监督分类算法)进行自动分类,然后检查分类结果,剔除噪声改正错误,根据分类结果进行变化检测,得到的变化检测结果为影像特征变化范围。
所述系统的其他工作方法与实施例1所述的基于数字高程模型快速更新的影像正射纠正方法相同,这里不再赘述。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种基于数字高程模型快速更新的影像正射纠正方法,其特征在于,包括以下过程:
根据待评估区域的当前倾斜航空影像,得到密集匹配点云数据以及当前数字表面模型;
根据获取的密集匹配点云数据,得到待评估区域的地面点云数据;
根据当前数字表面模型以及历史数字表面模型,得到地表高差变化范围;
根据与历史数字高程模型同时间获取的遥感影像以及当前遥感影像,得到影像特征变化范围;
根据地表高差变化范围以及影像特征变化范围,将地面高程差大于第一高差阈值的范围确定为最终的更新区域,结合地面点云数据,得到更新区域的地面点云数据;
根据更新区域的地面点云数据,得到待评估区域的数字高程模型的更新结果,根据更新结果进行未来某时刻的航空或卫星影像正射纠正;
根据待评估区域的当前倾斜航空影像,得到密集匹配点云数据以及当前数字表面模型,包括:
根据当前倾斜航空影像,进行倾斜影像空三加密后生成三维白模;
从多角度影像中筛选出最优角度影像,对三维白模进行纹理贴图,并对模型进行修饰,得到倾斜摄影三维模型;
根据倾斜摄影三维模型,得到密集匹配点云数据以及当前数字表面模型。
2.如权利要求1所述的基于数字高程模型快速更新的影像正射纠正方法,其特征在于,
对模型进行修饰,包括:
不完整建筑物的修补,悬浮、破面和结构性下沉的删除,水面异常凸起或下沉的压平,以及水域纹理痕迹的修改。
3.如权利要求1-2任一项所述的基于数字高程模型快速更新的影像正射纠正方法,其特征在于,
根据当前数字表面模型以及历史数字表面模型,得到地表高差变化范围,包括:
根据当前数字表面模型以及历史数字表面模型的对比,得到高差大于第二高差阈值的所有区域,判断各个高差大于第二高差阈值的区域是否小于设定面积阈值;
如是,则判定为噪声;否则,合并相邻的大于面积阈值的区域,以所有大于设定面积阈值的区域为地表高差变化范围。
4.如权利要求1-2任一项所述的基于数字高程模型快速更新的影像正射纠正方法,其特征在于,
得到更新区域的地面点云数据,还包括如下过程:
将更新区域内旧的已有点云删除,替换为新的更新区域的地面点云数据,利用更新后点云数据的地面点,内插后得到规定格网间距的更新后的数字高程模型。
5.一种基于数字高程模型快速更新的影像正射纠正系统,其特征在于,包括:
倾斜摄影三维模型生成模块,被配置为:根据待评估区域的当前倾斜航空影像,得到密集匹配点云数据以及当前数字表面模型;
地面点云提取模块,被配置为:根据获取的密集匹配点云数据,得到待评估区域的地面点云数据;
地表高差变化范围生成模块,被配置为:根据当前数字表面模型以及历史数字表面模型,得到地表高差变化范围;
影像特征变化范围生成模块,被配置为:根据与历史数字高程模型同时间获取的遥感影像以及当前遥感影像,得到影像特征变化范围;
更新区域点云更新模块,被配置为:根据地表高差变化范围以及影像特征变化范围,将地面高程差大于第一高差阈值的范围确定为最终的更新区域,结合地面点云数据,得到更新区域的地面点云数据;
影像正射纠正模块,被配置为:根据更新区域的地面点云数据,得到待评估区域的数字高程模型的更新结果,根据更新结果进行未来某时刻的航空或卫星影像正射纠正;
倾斜摄影三维模型生成模块中,包括:
根据当前倾斜航空影像,进行倾斜影像空三加密后生成三维白模;
从多角度影像中筛选出最优角度影像,对三维白模进行纹理贴图,并对模型进行修饰,得到倾斜摄影三维模型;
根据倾斜摄影三维模型,得到密集匹配点云数据以及当前数字表面模型。
6.如权利要求5所述的基于数字高程模型快速更新的影像正射纠正系统,其特征在于,
对模型进行修饰,包括:
不完整建筑物的修补,悬浮、破面和结构性下沉的删除,水面异常凸起或下沉的压平,以及水域纹理痕迹的修改。
7.如权利要求5-6任一项所述的基于数字高程模型快速更新的影像正射纠正系统,其特征在于,
根据当前数字表面模型以及历史数字表面模型,得到地表高差变化范围,包括:
根据当前数字表面模型以及历史数字表面模型的对比,得到高差大于第二高差阈值的所有区域,判断各个高差大于第二高差阈值的区域是否小于设定面积阈值;
如是,则判定为噪声;否则,合并相邻的大于面积阈值的区域,以所有大于设定面积阈值的区域为地表高差变化范围。
8.如权利要求5-6任一项所述的基于数字高程模型快速更新的影像正射纠正系统,其特征在于,
更新区域点云更新模块中,得到更新区域的地面点云数据,还包括如下过程:
将更新区域内旧的已有点云删除,替换为新的更新区域的地面点云数据,利用更新后点云数据的地面点,插值构建规定格网间距的更新后的数字高程模型。
CN202310943801.0A 2023-07-31 2023-07-31 基于数字高程模型快速更新的影像正射纠正方法及系统 Active CN116681873B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310943801.0A CN116681873B (zh) 2023-07-31 2023-07-31 基于数字高程模型快速更新的影像正射纠正方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310943801.0A CN116681873B (zh) 2023-07-31 2023-07-31 基于数字高程模型快速更新的影像正射纠正方法及系统

Publications (2)

Publication Number Publication Date
CN116681873A CN116681873A (zh) 2023-09-01
CN116681873B true CN116681873B (zh) 2023-10-27

Family

ID=87787644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310943801.0A Active CN116681873B (zh) 2023-07-31 2023-07-31 基于数字高程模型快速更新的影像正射纠正方法及系统

Country Status (1)

Country Link
CN (1) CN116681873B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117372246B (zh) * 2023-10-08 2024-03-22 北京市测绘设计研究院 一种基于滤波算法的倾斜摄影三维模型局部压平方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6757445B1 (en) * 2000-10-04 2004-06-29 Pixxures, Inc. Method and apparatus for producing digital orthophotos using sparse stereo configurations and external models
CN103093466A (zh) * 2013-01-21 2013-05-08 武汉大学 基于LiDAR点云和影像的建筑物三维变化检测方法
CN108921025A (zh) * 2018-06-01 2018-11-30 苏州中科天启遥感科技有限公司 一种协同变化检测的对象级分类样本自动选择方法
KR101935824B1 (ko) * 2018-11-29 2019-03-06 네이버시스템(주) 항공 이미지 및 지상이미지를 합성하는 영상처리시스템
CN110426021A (zh) * 2019-08-14 2019-11-08 苏州博雅达勘测规划设计集团有限公司 利用摄影测量三维模型的地形图测量方法及系统
CN113838059A (zh) * 2020-06-24 2021-12-24 浙江省测绘科学技术研究院 一种基于要素级别的数字正射影像图生成方法
CN114998395A (zh) * 2022-06-17 2022-09-02 湖南理工学院 一种有效的堤岸三维数据变化检测方法及系统
CN114998536A (zh) * 2022-05-31 2022-09-02 广州市城市规划勘测设计研究院 基于新型基础测绘的模型生成方法、装置及存储介质
CN115761303A (zh) * 2022-10-19 2023-03-07 国网电力空间技术有限公司 基于机载激光雷达点云和遥感影像数据的地物分类方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102610989B1 (ko) * 2019-12-26 2023-12-08 한국전자통신연구원 위성영상을 이용한 수치표면모델 생성 방법 및 장치
CN113592882B (zh) * 2021-08-09 2022-06-03 中国林业科学研究院资源信息研究所 一种基于无人机多源遥感的树冠提取方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6757445B1 (en) * 2000-10-04 2004-06-29 Pixxures, Inc. Method and apparatus for producing digital orthophotos using sparse stereo configurations and external models
CN103093466A (zh) * 2013-01-21 2013-05-08 武汉大学 基于LiDAR点云和影像的建筑物三维变化检测方法
CN108921025A (zh) * 2018-06-01 2018-11-30 苏州中科天启遥感科技有限公司 一种协同变化检测的对象级分类样本自动选择方法
KR101935824B1 (ko) * 2018-11-29 2019-03-06 네이버시스템(주) 항공 이미지 및 지상이미지를 합성하는 영상처리시스템
CN110426021A (zh) * 2019-08-14 2019-11-08 苏州博雅达勘测规划设计集团有限公司 利用摄影测量三维模型的地形图测量方法及系统
CN113838059A (zh) * 2020-06-24 2021-12-24 浙江省测绘科学技术研究院 一种基于要素级别的数字正射影像图生成方法
CN114998536A (zh) * 2022-05-31 2022-09-02 广州市城市规划勘测设计研究院 基于新型基础测绘的模型生成方法、装置及存储介质
CN114998395A (zh) * 2022-06-17 2022-09-02 湖南理工学院 一种有效的堤岸三维数据变化检测方法及系统
CN115761303A (zh) * 2022-10-19 2023-03-07 国网电力空间技术有限公司 基于机载激光雷达点云和遥感影像数据的地物分类方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Virtual and digital outcrops in the petroleum industry: A systematic review;Ademir Marques Jr等;Earth-Science Reviews;第28卷;全文 *
基于LiDAR数据与数字相机快速生成正射影像技术研究;范亚兵;王明海;潘静原;任政圭;;测绘工程(第06期);全文 *
基于数字正射影像的影像匹配更新及精度探讨;陈卫平;周晓敏;闵晓凤;张敏;;测绘与空间地理信息(第06期);全文 *

Also Published As

Publication number Publication date
CN116681873A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
CN110570428B (zh) 一种从大规模影像密集匹配点云分割建筑物屋顶面片的方法及系统
CN116681873B (zh) 基于数字高程模型快速更新的影像正射纠正方法及系统
CN105045950A (zh) 一种基于三维激光扫描的桥梁安全评估系统
CN104376595A (zh) 一种基于机载LiDAR和GIS协同的三维道路生成方法
CN116310192A (zh) 一种基于点云的城市级建筑物三维模型单体重建方法
CN111738945B (zh) 一种基于矿山的点云数据预处理方法
CN105550428A (zh) 一种基于tls技术的桥梁安全评估方法
CN114998338A (zh) 一种基于激光雷达点云的矿山开采量计算方法
CN115482355A (zh) 一种众源数据驱动的lod2级城市建筑物模型增强建模算法
CN112762899A (zh) 一种激光点云加bim模型在可视化变电站中与视频信息的融合方法
Sun et al. Building displacement measurement and analysis based on UAV images
CN111256730A (zh) 一种用于低空倾斜摄影测量技术的土方平衡修正计算方法
CN109242786B (zh) 一种适用于城市区域的自动化形态学滤波方法
Milde et al. Building reconstruction using a structural description based on a formal grammar
CN114494385A (zh) 一种输水隧洞病害可视化预警方法
CN116012737A (zh) 基于无人机激光和视觉融合的高速施工监测方法和系统
KR100715460B1 (ko) 레이저 스캐닝 데이터를 이용한 정밀 수치표고모델 제작장치 및 그 제작 방법
Gonçalves et al. Planar projection of mobile laser scanning data in tunnels
Yastikli et al. Automatic 3D building model generations with airborne LiDAR data
Al-Adhamia et al. An automated approach to digitise railway bridges
Truong-Hong et al. Tunneling appropriate computational models from laser scanning data
CN116935231B (zh) 一种隧道围岩结构面信息提取及关键块体识别方法
Crosilla et al. Likelihood and accuracy analysis of 3D building models from airborne laser data
CN116977578A (zh) 一种城市实景三维模型构建方法和电子设备
Alkhawaldeh THE USE OF 3D LASER SCANNING FOR BUILDING HEIGHT SURVEYS IN MUNICIPALITIES

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant