CN116673979B - 一种自选择性和高灵敏度的类人机械感受器及其构筑方法 - Google Patents

一种自选择性和高灵敏度的类人机械感受器及其构筑方法 Download PDF

Info

Publication number
CN116673979B
CN116673979B CN202310168467.6A CN202310168467A CN116673979B CN 116673979 B CN116673979 B CN 116673979B CN 202310168467 A CN202310168467 A CN 202310168467A CN 116673979 B CN116673979 B CN 116673979B
Authority
CN
China
Prior art keywords
island
shaped microstructure
electrode
shaped
humanoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310168467.6A
Other languages
English (en)
Other versions
CN116673979A (zh
Inventor
张跃
毕舒馨
廖庆亮
赵璇
高放放
赵斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202310168467.6A priority Critical patent/CN116673979B/zh
Publication of CN116673979A publication Critical patent/CN116673979A/zh
Application granted granted Critical
Publication of CN116673979B publication Critical patent/CN116673979B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/081Touching devices, e.g. pressure-sensitive
    • B25J13/084Tactile sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00158Diaphragms, membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00166Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明提供一种自选择性和高灵敏度的类人机械感受器及其构筑方法,涉及仿生传感技术领域。本发明的类人机械感受器的结构自上而下分别为:薄膜层、上层岛状微结构电极、多级孔纤维间隔层、下层岛状微结构电极、封装层;上层岛状微结构电极和下层岛状微结构电极的边缘连接有导电线;上层岛状微结构电极和下层岛状微结构电极的岛状微结构相对设置。本发明类人机械感受器对恒定的静态刺激表现出连续响应,仅在动态刺激施加和释放的瞬间产生响应,同时具有极高的灵敏度。该类人机械感受器的制备工艺简单,成本低廉,适合大规模制备,为复杂刺激的探测提供了新的方向,在类人机器人、人工假肢等领域有良好的应用前景。

Description

一种自选择性和高灵敏度的类人机械感受器及其构筑方法
技术领域
本发明涉及仿生传感技术领域,特别是涉及一种自选择性和高灵敏度的类人机械感受器及其构筑方法。
背景技术
触觉传感器能够通过直接接触并感知周围环境的特性,在类人机器人、人工假肢和人机界面等应用领域表现出极大的潜力。这对触觉传感器探测精确复杂刺激的能力提出了要求。这就要求触觉传感器能够在灵敏度和对不同刺激的适应性响应方面表现出优异的性能。自选择性响应使其能够对复杂的刺激产生更多类型的特征峰信号,高灵敏度使其能够对细微的刺激产生易于分辨的特征信号。
人类具有高度灵敏和自选择性响应的触觉,在复杂刺激的探测方面具有巨大的优势。当皮肤受到外部刺激时,人类皮肤中独特的表皮真皮微结构首先聚焦并放大刺激。然后,分布在表皮和真皮中的机械感受器将这些刺激转换为电信号(Chortos A,Liu,J,BaoZ,et al.Nat.Mater.2016,15:937.)。SA机械感受器(Merkel圆盘和Ruffini圆柱体)主要对恒定的静态刺激表现出连续响应,而FA机械感受器在施加和移除动态刺激时表现出瞬间的响应(Abraira V,Ginty,D.Neuron 2013,79:618.)。因此,模拟皮肤的结构和功能是开发能够探测复杂刺激的触觉传感器的理想手段。
受表皮真皮互锁微脊结构的启发,目前已经提出了基于互锁微结构(如金字塔阵列、微半球阵列)的触觉传感器(Ma C,Xu D,Huang Y,et al.ACS Nano 2020,14:12866.[5]Ma C,Xu D,Huang Y,et al.ACS Nano 2014,8:12020.)。然而,由于这些微结构的尺寸均匀和封装过程引起的预加载应力大,使其灵敏度依然较低。受SA和FA机械感受器功能的启发,许多关于触觉传感器的研究被报道用于检测刺激。其中,压阻式和电容式传感器适合模拟SA机械感受器,因为它们可以对静态刺激产生持续的信号,而摩擦电式和压电式传感器适合模拟FA机械感受器,因为它们可以对动态刺激产生瞬时信号输出(Pyo S,Lee J,Bae K,et al.Adv.Mater.2021,33:2005902.)。它们通常检测静态或动态刺激,难以满足探测复杂刺激的要求。
发明内容
本发明的目的是提供一种自选择性和高灵敏度的类人机械感受器及其构筑方法,以解决上述现有技术存在的问题,本发明通过压阻和摩擦电效应复合和分级互锁岛状微结构及多级孔纤维间隔层的设计,赋予了类人机械感受器对不同刺激的自选择性响应,并大大提升了对刺激的响应灵敏度,该类人机械感受器的制备工艺简单,成本低廉,适合大规模制备,为复杂刺激的探测提供了新的方向,在类人机器人、人工假肢等领域有良好的应用前景。
为实现上述目的,本发明提供了如下方案:
本发明提供一种类人机械感受器,所述类人机械感受器的结构自上而下分别为:
薄膜层、上层岛状微结构电极、多级孔纤维间隔层、下层岛状微结构电极、封装层;
其中,所述上层岛状微结构电极和下层岛状微结构电极的边缘连接有导电线;
所述上层岛状微结构电极和下层岛状微结构电极的岛状微结构相对设置。
本发明还提供上述类人机械感受器的制备方法,包括以下步骤:
(1)岛状微结构电极的制备:
a.将PDMS预聚物和固化剂的混合物涂布于疏水处理后的砂纸模板上,干燥,得到具有岛状微结构的PDMS薄膜;
b.将导电低维材料和表面活性剂于壳聚糖溶液中分散,得到导电溶液;
所述壳聚糖溶液为壳聚糖乙酸溶液,质量浓度为1wt%。
所述导电溶液中,表面活性剂的量为0.5-1.0mg/mL,导电低维材料的量为5-20mg/mL,壳聚糖的质量浓度为1wt%。
c.将所述导电溶液涂布于所述具有岛状微结构的PDMS薄膜表面,干燥,得到岛状微结构电极;
(2)连接导电线:利用粘合剂将导电线连接在岛状微结构电极的边缘;
(3)多级孔纤维间隔层的制备:将聚氨酯溶液于步骤(2)中连接有导电线的岛状微结构电极表面进行静电纺丝处理,获得多级孔纤维间隔层并进行干燥;
所述静电纺丝处理的优选参数为:所述连接有导电线的岛状微结构电极表面与针头的距离为10cm,针头内径为0.21mm,泵送速率为0.2mL·h-1,针的移动速度为80mm·s-1,输出电压设置为20kV,静电纺丝时间为0.5-1.5min,优选1min。
(4)类人机械感受器的构建:将两个步骤(3)得到的表面具有多级孔纤维间隔层的岛状微结构电极相对放置,分别作为所述上层岛状微结构电极和下层岛状微结构电极,之后利用所述薄膜层和封装层进行封装,得到所述类人机械感受器。
岛状微结构是以砂纸为模板制备的。砂纸模板的目数范围为80到1000目,优选240目。
进一步地,步骤a中所述干燥条件为:90~100℃下真空干燥4h以上;步骤c中所述干燥条件为:60~80℃下真空干燥12h以上;步骤(3)中所述干燥温度为60-80℃,时间为2h以上。
进一步地,所述PDMS预聚物和固化剂的质量比为5~10:1。
进一步地,所述聚氨酯溶液的质量浓度为15~20%。
所述聚氨酯溶液为聚氨酯溶解于四氢呋喃和N,N-二甲基甲酰胺的混合溶液,其中四氢呋喃和N,N-二甲基甲酰胺的质量比为3:2。
进一步地,所述疏水处理包括等离子体疏水镀膜处理或利用疏水剂进行表面修饰疏水涂层。
进一步地,所述具有岛状微结构的PDMS薄膜厚度为100-500μm。
进一步地,所述薄膜层为柔性聚合物薄膜。
本发明岛状微结构具有密集的各种尺寸的表面突起和凹槽,可以提高结构的可压缩性。当施加较小的刺激时,大尺寸的突起就会克服PUNWs间隔层的隔离,透过间隔层的大孔形成接触点。由于较小的刺激形成的接触面积较小,类人机械感受器显示出较低的电流。随着刺激的增加,小突起之间可以通过较小的孔隙增加接触面积,并且突起和凹槽之间可以通过孔隙接触,导致电流进一步增加。当刺激的进一步增大,突起开始逐渐填充凹槽。突起和凹槽之间的接触面显著增加,导致电流急剧增加。
本发明公开了以下技术效果:
本发明提供了一种自选择性和高灵敏度的类人机械感受器,包含同时作为摩擦电模式摩擦层和压阻模式封装层的薄膜层、摩擦电模式和压阻模式的岛状微结构共电极(上层岛状微结构电极)、多级孔纤维间隔层、压阻模式下层岛状微结构电极,以及封装层;通过压阻和摩擦电响应机制的转换,类人机械感受器能够对静态和动态刺激进行自选择性响应;通过互锁分级岛状微结构和多级孔纤维间隔层的协同作用,类人机械感受器表现出3790.8kPa-1的超高灵敏度;本发明制备工艺简单,成本低廉,易规模化生产。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明类人机械感受器的结构示意图;
其中,1-薄膜层,2-上层岛状微结构电极,3-多级孔纤维间隔层,4-下层岛状微结构电极,5-封装层,6-导电线;
图2为本发明实施例1制备的PDMS/CS@CNTs岛状微结构复合膜的扫描电镜图;
图3为本发明实施例1制备的多级孔纤维间隔层的扫描电镜图;
图4为本发明实施例1制备的类人机械感受器在压阻模式下,于1.0kPa刺激下的电流响应示意图;
图5为本发明实施例1制备的类人机械感受器在摩擦电模式下,于1.0kPa刺激下的电流响应示意图;
图6为本发明实施例1制备的类人机械感受器在压阻-摩擦电复合模式下,于1.0kPa刺激下的电流响应示意图;
图7为本发明实施例1制备的类人机械感受器对不同大小静态刺激的电流变化;
图8为本发明实施例1以不同目数砂纸为模板构建的PDMS/CS@CNTs复合膜的电镜图;
图9为本发明实施例1不同静电纺丝时间制备得到的PUNWs间隔层电镜图;
图10为本发明实施例1不同静电纺丝时间制备得到的类人机械感受器对不同静态刺激的电流变化;
图11为本发明对比例1以不同目数砂纸为模板构建的无间隔层类人机械感受器对不同静态刺激的电流变化。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值,以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见得的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
本发明提供一种自选择性和高灵敏度的类人机械感受器,该类人机械感受器的结构自上到下分别为:薄膜层、上层岛状微结构电极、多级孔纤维间隔层、下层岛状微结构电极、封装层;上层岛状微结构电极和下层岛状微结构电极的边缘连接有导电线。
图1为本发明类人机械感受器的结构示意图。
其中,薄膜层同时作为摩擦电模式摩擦层和压阻模式封装层;上层岛状微结构电极为摩擦电模式和压阻模式的岛状微结构共电极;下层岛状微结构电极为压阻模式的岛状微结构电极。通过压阻和摩擦电响应机制的转换,该类人机械感受器能够对静态和动态刺激进行自选择性响应。
本发明自选择性和高灵敏度的类人机械感受器制备方法包括以下步骤:
(1)薄膜层的清洗:依次使用清洁剂、去离子水和乙醇溶剂对薄膜表面进行清洗,使用氮气吹干,备用。
(2)岛状微结构电极的制备:
A.对砂纸模板进行疏水处理后,将聚二甲基硅氧烷(PDMS)的预聚物和固化剂混合均匀,然后将PDMS用刮涂法均匀涂布在砂纸上,并进行真空干燥,从而获得具有分级岛状微结构的PDMS薄膜;
B.将壳聚糖粉末溶解于乙酸水溶液中,获得壳聚糖溶液,然后加入导电低维材料和表面活性剂,超声分散使其均匀分散于壳聚糖溶液中,从而获得导电溶液;
C.将得到的导电溶液旋涂于步骤A制备的PDMS薄膜上,然后进行真空干燥,从而获得岛状微结构电极;
(3)连接导电线:使用导电银浆粘合剂将导电线连接在岛状微结构电极的边缘;
(4)多级孔纤维间隔层的制备:称量聚氨酯(PU)颗粒,并溶解在四氢呋喃和N,N-二甲基甲酰胺混合溶液中,并用磁子搅拌以混合均匀,得到PU溶液(静电纺丝溶液);之后以岛状微结构电极为基底,将得到的静电纺丝溶液经过静电纺丝得到多级孔纤维间隔层,然后进行干燥处理;
(5)类人机械感受器的制备:将具有多级孔纤维间隔层的岛状微结构电极彼此相对放置,采用绝缘薄膜对其进行封装构筑。
其中,绝缘薄膜可采用柔性聚合物薄膜,如聚酰亚胺胶带、柔性聚对苯二甲酸乙二醇酯胶带、PDMS等。图1结构示意图中的薄膜层和封装层均采用绝缘薄膜。
步骤a中的疏水处理可以是等离子体疏水镀膜处理,或用氟代烷基类硅烷等疏水剂进行表面修饰疏水涂层。
步骤a中PDMS的预聚物和固化剂的质量比为5~10:1。
步骤a中真空干燥条件为:90~100℃干燥4h以上。
步骤b中乙酸水溶液的体积浓度为0.5~2%。
步骤c中真空干燥条件为:60~80℃干燥12h以上。
步骤b中表面活性剂为烷基苯磺酸盐、烷基磺酸盐、烷基磺酸酯盐、季铵化物等。
步骤b中导电低维材料为金属或合金的纳米线、纳米棒、纳米片、纳米颗粒和纳米管,碳纳米管、纳米线、纳米棒、纳米片、纳米颗粒或石墨烯,MXene等二维材料。
步骤(4)中四氢呋喃和N,N-二甲基甲酰胺的质量比为3:2。
步骤(4)中PU溶液的质量浓度为15~20%。
步骤(4)中干燥处理的条件为:60-80℃干燥2h以上。
下面结合具体实施例对本发明的技术方案进行进一步详细的说明:
实施例1自选择性和高灵敏度的类人机械感受器的制备
(1)薄膜层(聚酰亚胺薄膜)的清洗:依次使用清洁剂、去离子水和乙醇溶剂对薄膜表面进行清洗,使用氮气吹干,备用。
(2)制备具有岛状微结构的PDMS膜
a.用1H,1H,2H,2H-全氟辛基三乙氧基硅烷对240目的砂纸进行真空疏水处理24h;
b.将聚二甲基硅氧烷(PDMS)预聚物与固化剂按质量比为10:1完全混合,并放置在真空箱中以去除气泡;
c.将步骤b得到的PDMS混合液倒在步骤a得到的砂纸上,用刮刀进行刮涂使其均匀涂布,设置厚度为500μm,之后放置于90℃的真空干燥箱中干燥2小时,将干燥后的PDMS膜从砂纸上剥离;
(3)制备岛状微结构电极
d.将壳聚糖(CS)粉末加入到乙酸溶液(1vol%)中,搅拌12h,得到1wt%的壳聚糖溶液;
e.将100mg的多壁碳纳米管(CNTs)和5mg的CTAB加入到步骤d中的10ml壳聚糖溶液中,然后在功率为90W的超声清洗机中超声处理1h后,获得了分散均匀的CS@CNTs导电溶液;
f.使用移液枪滴加100μL的CS@CNTs溶液至步骤c中得到的PDMS岛状微结构膜上,先以500rpm的转速旋涂20s,然后以700rpm的转速旋涂5s;之后在70℃的真空干燥箱中干燥12h,获得PDMS/CS@CNTs岛状微结构复合膜,如图2所示;
g.使用导电银浆粘合剂将导电线连接在步骤f得到的PDMS/CS@CNTs导电复合膜的边缘。
(4)多级孔纤维间隔层的制备:
h.将2g的聚氨酯(PU)颗粒溶解在4.8g的四氢呋喃和3.2g的N,N-二甲基甲酰胺的混合物中,并用磁子搅拌6h混合均匀;
i:将步骤h得到的PU溶液通过静电纺丝技术将得到的PU纳米纤维均匀沉积在带有导线的PDMS/CS@CNTs岛状微结构复合膜上,置于60℃的鼓风干燥箱中干燥处理1h,得到多级孔纤维间隔层,如图3所示。其中,静电纺丝的参数条件为:将带有导线的PDMS/CS@CNTs岛状微结构复合膜放置于平板接收器上,与针头的距离为10cm,选择内径为0.21mm的针头,泵送速率为0.2mL·h-1,针的移动速度为80mm·s-1,输出电压设置为20kV,静电纺丝时间为60s。
(5)类人机械感受器的构建:
将步骤i得到的两个具有多级孔纤维间隔层的PDMS/CS@CNTs岛状微结构复合膜彼此相对放置,用聚酰亚胺(PI)胶带对其封装构筑,得到如图1所示的类人机械感受器。
实施例1制备得到的类人机械感受器在1.0kPa刺激下的压阻、摩擦电和压阻-摩擦电复合工作模式下的电流响应示意图分别如图4、图5和图6所示,灵敏度曲线如图7所示,可以看出其最高灵敏度可达3790.8kPa-1
本发明还基于砂纸目数及静电纺丝时间进行了实验探究,具体的:
本发明实施例1以不同目数砂纸为模板构建的PDMS/CS@CNTs复合膜的电镜图如图8所示。
本发明实施例1不同静电纺丝时间制备得到的PUNWs间隔层电镜图如图9所示。
本发明实施例1不同静电纺丝时间制备得到的类人机械感受器对不同静态刺激的电流变化如图10所示。
对比例1
无间隔层类人机械感受器的制备:
步骤a-g同实施例1;
步骤h:将步骤g制得的连接有导电线的PDMS/CS@CNTs导电复合膜彼此相对放置,用聚酰亚胺(PI)胶带对其封装构筑,得到无间隔层的类人机械感受器。
对比例1以不同目数砂纸为模板构建的无间隔层类人机械感受器对不同静态刺激的电流变化如图11所示。
本发明模拟了人体皮肤功能,构筑了能够很好的探测复杂刺激的类人机械感受器,基于共电极结构设计,构建了压阻和摩擦电复合效应的类人机械感受器,它可以通过压阻和摩擦电响应机制的转换实现对静态和动态刺激进行自选择性响应,对恒定的静态刺激表现出连续响应,仅在动态刺激施加和释放的瞬间产生响应。
本发明通过砂纸模板法构筑了具有分级岛状微结构的导电复合膜,并且通过静电纺丝技术构筑了多级孔纤维间隔层,基于它们的协同作用,有效提高了类人机械感受器对于静态刺激的响应灵敏度。通过调控复合膜微结构的尺寸和间隔层的孔隙密度和孔径,表现出了3790.8kPa-1的超高灵敏度。
该种类人机械感受器的制备工艺简单,成本低廉,适合大规模制备,为复杂刺激的探测提供了新的方向,在类人机器人、人工假肢等领域有良好的应用前景。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (7)

1.一种类人机械感受器的制备方法,其特征在于,所述类人机械感受器的结构自上而下分别为:
薄膜层、上层岛状微结构电极、多级孔纤维间隔层、下层岛状微结构电极、封装层;
其中,所述上层岛状微结构电极和下层岛状微结构电极的边缘连接有导电线;
所述上层岛状微结构电极和下层岛状微结构电极的岛状微结构相对设置;
所述制备方法包括以下步骤:
(1)岛状微结构电极的制备:
a.将PDMS预聚物和固化剂的混合物涂布于疏水处理后的砂纸模板上,干燥,得到具有岛状微结构的PDMS薄膜;
b.将导电低维材料和表面活性剂于壳聚糖溶液中分散,得到导电溶液;
c.将所述导电溶液涂布于所述具有岛状微结构的PDMS薄膜表面,干燥,得到岛状微结构电极;
(2)连接导电线:利用粘合剂将导电线连接在岛状微结构电极的边缘;
(3)多级孔纤维间隔层的制备:将聚氨酯溶液于步骤(2)中连接有导电线的岛状微结构电极表面进行静电纺丝处理,获得多级孔纤维间隔层并进行干燥;
(4)类人机械感受器的构建:将两个步骤(3)得到的表面具有多级孔纤维间隔层的岛状微结构电极相对放置,分别作为所述上层岛状微结构电极和下层岛状微结构电极,之后利用所述薄膜层和封装层进行封装,得到所述类人机械感受器。
2.根据权利要求1所述的制备方法,其特征在于,步骤a中所述干燥条件为:90~100℃下真空干燥4h以上;步骤c中所述干燥条件为:60~80℃下真空干燥12h以上;步骤(3)中所述干燥温度为60-80℃,时间为2h以上。
3.根据权利要求1所述的制备方法,其特征在于,所述PDMS预聚物和固化剂的质量比为5~10∶1。
4.根据权利要求1所述的制备方法,其特征在于,所述聚氨酯溶液的质量浓度为15~20%;所述聚氨酯溶液为聚氨酯溶解于四氢呋喃和N,N-二甲基甲酰胺的混合溶液,其中四氢呋喃和N,N-二甲基甲酰胺的质量比为3∶2。
5.根据权利要求1所述的制备方法,其特征在于,所述疏水处理包括等离子体疏水镀膜处理或利用疏水剂进行表面修饰疏水涂层。
6.根据权利要求1所述的制备方法,其特征在于,所述具有岛状微结构的PDMS薄膜厚度为100-500μm。
7.根据权利要求1所述的制备方法,其特征在于,所述薄膜层为柔性聚合物薄膜。
CN202310168467.6A 2023-02-27 2023-02-27 一种自选择性和高灵敏度的类人机械感受器及其构筑方法 Active CN116673979B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310168467.6A CN116673979B (zh) 2023-02-27 2023-02-27 一种自选择性和高灵敏度的类人机械感受器及其构筑方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310168467.6A CN116673979B (zh) 2023-02-27 2023-02-27 一种自选择性和高灵敏度的类人机械感受器及其构筑方法

Publications (2)

Publication Number Publication Date
CN116673979A CN116673979A (zh) 2023-09-01
CN116673979B true CN116673979B (zh) 2024-05-10

Family

ID=87789648

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310168467.6A Active CN116673979B (zh) 2023-02-27 2023-02-27 一种自选择性和高灵敏度的类人机械感受器及其构筑方法

Country Status (1)

Country Link
CN (1) CN116673979B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201536A (zh) * 2011-05-20 2011-09-28 电子科技大学 一种有机薄膜太阳能电池及其制备方法
CN110136968A (zh) * 2018-02-08 2019-08-16 中国科学技术大学 导电聚吡咯水凝胶电极材料、其制备方法及可拉伸超级电容器
CN110740867A (zh) * 2017-04-13 2020-01-31 马克思-普朗克科学促进协会 载体、载体的用途、活化载体的方法和制造载体的方法
CN111095182A (zh) * 2017-09-29 2020-05-01 富士胶片株式会社 触摸传感器及触摸传感器的制造方法以及图像显示装置
CN112787538A (zh) * 2020-12-28 2021-05-11 北京航空航天大学杭州创新研究院 偶极子驱动摩擦电传感元件、制备方法及相应装置
CN113310607A (zh) * 2021-06-24 2021-08-27 华中科技大学 一种柔性触觉传感阵列、制备方法及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11784587B2 (en) * 2021-01-07 2023-10-10 City University Of Hong Kong Electronic sensing apparatus and a method of producing the electronic sensing apparatus
US11731284B2 (en) * 2021-01-12 2023-08-22 Honda Motor Co., Ltd. System and method for fabricating soft sensors that conform to arbitrary smooth geometries

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201536A (zh) * 2011-05-20 2011-09-28 电子科技大学 一种有机薄膜太阳能电池及其制备方法
CN110740867A (zh) * 2017-04-13 2020-01-31 马克思-普朗克科学促进协会 载体、载体的用途、活化载体的方法和制造载体的方法
CN111095182A (zh) * 2017-09-29 2020-05-01 富士胶片株式会社 触摸传感器及触摸传感器的制造方法以及图像显示装置
CN110136968A (zh) * 2018-02-08 2019-08-16 中国科学技术大学 导电聚吡咯水凝胶电极材料、其制备方法及可拉伸超级电容器
CN112787538A (zh) * 2020-12-28 2021-05-11 北京航空航天大学杭州创新研究院 偶极子驱动摩擦电传感元件、制备方法及相应装置
CN113310607A (zh) * 2021-06-24 2021-08-27 华中科技大学 一种柔性触觉传感阵列、制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
柔性可穿戴电子应变传感器的研究现状与应用;彭军;李津;李伟;常胜男;刘皓;;化工新型材料;20200115(第01期);全文 *

Also Published As

Publication number Publication date
CN116673979A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
Yue et al. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor
Yan et al. Flexible and high-sensitivity piezoresistive sensor based on MXene composite with wrinkle structure
CN109535476B (zh) 一种Mxene@壳聚糖@聚氨酯泡沫三维复合材料及其制备方法和应用
Yan et al. Bionic MXene based hybrid film design for an ultrasensitive piezoresistive pressure sensor
Ma et al. Flexible and highly‐sensitive pressure sensor based on controllably oxidized MXene
Song et al. Hollow-structured MXene-PDMS composites as flexible, wearable and highly bendable sensors with wide working range
CN206740283U (zh) 压力敏感层、压阻式压力传感器及压阻式压力传感阵列
Luo et al. Flexible piezoelectric pressure sensor with high sensitivity for electronic skin using near-field electrohydrodynamic direct-writing method
Gao et al. Highly sensitive strain sensors based on fragmentized carbon nanotube/polydimethylsiloxane composites
Li et al. A flexible strain sensor based on CNTs/PDMS microspheres for human motion detection
Ding et al. Three-dimensional structured dual-mode flexible sensors for highly sensitive tactile perception and noncontact sensing
Zhou et al. Multiscale and hierarchical wrinkle enhanced graphene/Ecoflex sensors integrated with human-machine interfaces and cloud-platform
Sun et al. Recent applications of different microstructure designs in high performance tactile sensors: A review
Lu et al. Highly sensitive interlocked piezoresistive sensors based on ultrathin ordered nanocone array films and their sensitivity simulation
Liang et al. Direct stamping multifunctional tactile sensor for pressure and temperature sensing
Peng et al. Hydrophobic and stable MXene/reduced graphene oxide/polymer hybrid materials pressure sensors with an ultrahigh sensitive and rapid response speed pressure sensor for health monitoring
Sadiq et al. A flexible pressure sensor based on PDMS-CNTs film for multiple applications
Zhao et al. Constructing a continuous reduced graphene oxide network in porous plant fiber sponge for highly compressible and sensitive piezoresistive sensors
Chen et al. Unsymmetrical alveolate PMMA/MWCNT film as a piezoresistive E-skin with four-dimensional resolution and application for detecting motion direction and airflow rate
Yang et al. Electrospun ionic nanofiber membrane-based fast and highly sensitive capacitive pressure sensor
Yilmazoglu et al. A nano-microstructured artificial-hair-cell-type sensor based on topologically graded 3D carbon nanotube bundles
Xia et al. High sensitivity, wide range pressure sensor based on layer-by-layer self-assembled MXene/Carbon black@ Polyurethane sponge for human motion monitoring and intelligent vehicle control
Cheng et al. A triboelectric nanogenerator coupled with internal and external friction for gesture recognition based on EHD printing technology
CN116673979B (zh) 一种自选择性和高灵敏度的类人机械感受器及其构筑方法
Zou et al. Flexible pressure and temperature dual-modality sensor based on stretchable electrode for human–machine interaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant