CN116666638B - Water system zinc ion secondary battery - Google Patents
Water system zinc ion secondary battery Download PDFInfo
- Publication number
- CN116666638B CN116666638B CN202310904025.3A CN202310904025A CN116666638B CN 116666638 B CN116666638 B CN 116666638B CN 202310904025 A CN202310904025 A CN 202310904025A CN 116666638 B CN116666638 B CN 116666638B
- Authority
- CN
- China
- Prior art keywords
- zinc
- layer
- chitosan
- sodium alginate
- self
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 title claims abstract description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 34
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 151
- 229920001661 Chitosan Polymers 0.000 claims abstract description 97
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims abstract description 89
- 239000000661 sodium alginate Substances 0.000 claims abstract description 89
- 235000010413 sodium alginate Nutrition 0.000 claims abstract description 89
- 229940005550 sodium alginate Drugs 0.000 claims abstract description 89
- 239000011701 zinc Substances 0.000 claims abstract description 82
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 82
- 239000010408 film Substances 0.000 claims abstract description 77
- 239000010410 layer Substances 0.000 claims abstract description 75
- 229910052751 metal Inorganic materials 0.000 claims abstract description 41
- 239000002184 metal Substances 0.000 claims abstract description 41
- 239000011241 protective layer Substances 0.000 claims abstract description 23
- 239000007788 liquid Substances 0.000 claims abstract description 17
- 239000007787 solid Substances 0.000 claims abstract description 15
- 238000001338 self-assembly Methods 0.000 claims abstract description 14
- 238000001179 sorption measurement Methods 0.000 claims abstract description 12
- 239000010409 thin film Substances 0.000 claims abstract description 11
- 238000005516 engineering process Methods 0.000 claims abstract description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 28
- 238000004528 spin coating Methods 0.000 claims description 28
- 238000002360 preparation method Methods 0.000 claims description 22
- 239000001257 hydrogen Substances 0.000 claims description 17
- 229910052739 hydrogen Inorganic materials 0.000 claims description 17
- 239000008367 deionised water Substances 0.000 claims description 16
- 229910021641 deionized water Inorganic materials 0.000 claims description 16
- 239000003292 glue Substances 0.000 claims description 16
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 10
- 239000002270 dispersing agent Substances 0.000 claims description 7
- 229960000583 acetic acid Drugs 0.000 claims description 5
- 239000012362 glacial acetic acid Substances 0.000 claims description 5
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 5
- 229910001867 inorganic solvent Inorganic materials 0.000 claims description 3
- 239000003049 inorganic solvent Substances 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 2
- 239000003792 electrolyte Substances 0.000 abstract description 23
- 229920000867 polyelectrolyte Polymers 0.000 abstract description 11
- 230000008021 deposition Effects 0.000 abstract description 10
- 230000001681 protective effect Effects 0.000 abstract description 9
- 230000005684 electric field Effects 0.000 abstract description 7
- 238000000354 decomposition reaction Methods 0.000 abstract description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract description 4
- 230000008859 change Effects 0.000 abstract description 3
- 230000009878 intermolecular interaction Effects 0.000 abstract description 3
- 238000007614 solvation Methods 0.000 abstract description 3
- 230000003993 interaction Effects 0.000 abstract 1
- 230000000087 stabilizing effect Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 40
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 32
- 238000012360 testing method Methods 0.000 description 31
- 239000011889 copper foil Chemical class 0.000 description 24
- 210000001787 dendrite Anatomy 0.000 description 13
- QNDQILQPPKQROV-UHFFFAOYSA-N dizinc Chemical group [Zn]=[Zn] QNDQILQPPKQROV-UHFFFAOYSA-N 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- 230000001351 cycling effect Effects 0.000 description 9
- 238000000151 deposition Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 230000007774 longterm Effects 0.000 description 7
- 238000007086 side reaction Methods 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 239000000412 dendrimer Substances 0.000 description 6
- 229920000736 dendritic polymer Polymers 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000002105 nanoparticle Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 230000005012 migration Effects 0.000 description 5
- 238000013508 migration Methods 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 238000001291 vacuum drying Methods 0.000 description 5
- 230000004913 activation Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000003411 electrode reaction Methods 0.000 description 4
- 230000006911 nucleation Effects 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000004626 scanning electron microscopy Methods 0.000 description 4
- 241001474374 Blennius Species 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000004502 linear sweep voltammetry Methods 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229920002521 macromolecule Polymers 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 229920006237 degradable polymer Polymers 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920002717 polyvinylpyridine Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 2
- 229960001763 zinc sulfate Drugs 0.000 description 2
- 229910000368 zinc sulfate Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical group 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000004807 desolvation Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920002643 polyglutamic acid Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 239000013154 zeolitic imidazolate framework-8 Substances 0.000 description 1
- MFLKDEMTKSVIBK-UHFFFAOYSA-N zinc;2-methylimidazol-3-ide Chemical compound [Zn+2].CC1=NC=C[N-]1.CC1=NC=C[N-]1 MFLKDEMTKSVIBK-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0422—Cells or battery with cylindrical casing
- H01M10/0427—Button cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明提供一种人工固/液界面保护层,其通过层层自组装技术由不同分子通过分子间相互作用在金属表面形成的薄膜。本发明提出利用聚电解质之间的相互作用在金属表面交替吸附形成多层自组装保护膜,将带有相反电荷的天然有机聚电解质壳聚糖和海藻酸钠通过静电吸附作用在锌电极表面逐层吸附自组装成人工固/液界面保护层用于稳定锌阳极。两种聚电解质均含有丰富的羟基官能团,可以改变锌离子溶剂化结构,降低活性水分子含量减少水分解反应,拓宽电解液的稳定窗口;同时凝胶状薄膜具有优秀的机械强度,可以均匀电极表面的电场强度并且适应锌沉积剥离造成的体积变化,延长电池寿命。
The invention provides an artificial solid/liquid interface protective layer, which is a thin film formed on a metal surface by different molecules through intermolecular interactions through layer-by-layer self-assembly technology. The invention proposes to utilize the interaction between polyelectrolytes to alternately adsorb on the metal surface to form a multi-layer self-assembled protective film, and to apply the oppositely charged natural organic polyelectrolytes chitosan and sodium alginate to the surface of the zinc electrode one by one through electrostatic adsorption. Layer adsorption self-assembles into an artificial solid/liquid interface protective layer for stabilizing zinc anodes. Both polyelectrolytes contain abundant hydroxyl functional groups, which can change the solvation structure of zinc ions, reduce the content of active water molecules, reduce water decomposition reactions, and broaden the stability window of the electrolyte; at the same time, the gel-like film has excellent mechanical strength and can uniformly The electric field strength on the surface adapts to the volume changes caused by zinc deposition and peeling, extending battery life.
Description
技术领域Technical field
本发明属于水系锌离子二次电池技术领域,具体涉及一种基于层层自组装技术的人工固/液界面保护层、金属电极、电池及其制法和用途。The invention belongs to the technical field of aqueous zinc ion secondary batteries, and specifically relates to an artificial solid/liquid interface protective layer based on layer-by-layer self-assembly technology, a metal electrode, a battery and its preparation method and use.
背景技术Background technique
由于现代社会对能源需求不断增加,但是金属锂资源短缺、成本高、毒性大等问题严重阻碍了锂电池的进一步应用。为寻替代,研究者发现了蕴藏丰富的多价金属锌(Zn)。由于金属锌具有高导电性、低氧化还原电位(-0.762VvsSHE)、高理论比容量(820mAh/g,5851mAh/cm3)、低离子半径(0.075nm)、低成本和丰富的供应量,因此可以被用作阳极材料。应运而生的水系锌离子电池因其制造技术简单、高能量密度、安全性好受到极大关注,有望取代锂电池成为大规模储能装置。Due to the increasing demand for energy in modern society, problems such as shortage of metallic lithium resources, high cost, and high toxicity have seriously hindered the further application of lithium batteries. In search of alternatives, researchers discovered the abundant polyvalent metal zinc (Zn). Because metallic zinc has high conductivity, low redox potential (-0.762VvsSHE), high theoretical specific capacity (820mAh/g, 5851mAh/cm 3 ), low ionic radius (0.075nm), low cost and abundant supply, it Can be used as anode material. The aqueous zinc-ion battery that emerged has attracted great attention due to its simple manufacturing technology, high energy density, and good safety. It is expected to replace lithium batteries as large-scale energy storage devices.
然而,目前水系锌离子电池的金属锌阳极面临了严峻的枝晶和水分解挑战,锌阳极和水电解质的直接接触导致了不可控的副反应,如析氢反应和锌腐蚀,不断消耗金属锌并导致电池膨胀崩溃。此外,电解液/电极界面附近不均匀的电场分布导致严重的树枝状晶体生长,严重威胁电池的循环寿命。However, the current metallic zinc anode of aqueous zinc-ion batteries faces severe challenges of dendrites and water decomposition. The direct contact between the zinc anode and the water electrolyte leads to uncontrollable side reactions, such as hydrogen evolution reaction and zinc corrosion, which continuously consumes metallic zinc and damages the electrolyte. causing the battery to swell and collapse. In addition, the uneven electric field distribution near the electrolyte/electrode interface leads to severe dendrite growth, seriously threatening the cycle life of the battery.
为了克服这些技术问题,大量研究致力于探索锌主体结构,电解质改性,以及电极/电解质界面工程。泡沫铜等具有高导电性三维结构材料的电极表现出较低的成核过电位和较小的锌核尺寸减少枝晶生长。但是,接触点数量的增加会加剧析氢反应和腐蚀反应。另有研究发现,一定量的添加剂如硫脲、乙醚和带有羰基或氨基等极性基团的有机物可以促进锌的均匀沉积。然而,不稳定的电解液往往限制了这些材料的广泛使用。高浓度电解液虽可以均匀锌离子分布于沉积,却被高成本限制了其实际应用。在锌阳极表面构建致密的保护层可以改善电极材料表面不稳定的电解质/阳极界面,解决重大的副反应。已经被发现的CaCO3、TiO2、ZrO2、ZnS、ZIF-8和MCM41等,可以用来在金属阳极表面形成致密的保护层,从而抑制枝晶生长。但是,这些精致的涂层很容易受到与锌沉积有关的体积变化的损害。聚合物材料如聚酰胺涂层也可以用作锌阳极的保护涂层以改善界面性能,但在水性电解质中制备一个稳定的聚合物层可能是一个挑战。To overcome these technical problems, a large amount of research has been devoted to exploring zinc host structure, electrolyte modification, and electrode/electrolyte interface engineering. Electrodes with highly conductive three-dimensional structural materials such as copper foam exhibit lower nucleation overpotential and smaller zinc core size to reduce dendrite growth. However, an increase in the number of contact points will intensify hydrogen evolution reactions and corrosion reactions. Another study found that a certain amount of additives such as thiourea, ether and organic matter with polar groups such as carbonyl or amino groups can promote the uniform deposition of zinc. However, unstable electrolytes often limit the widespread use of these materials. Although high-concentration electrolyte can uniformly distribute zinc ions in the deposition, its practical application is limited by high cost. Building a dense protective layer on the surface of the zinc anode can improve the unstable electrolyte/anode interface on the surface of the electrode material and solve major side reactions. CaCO 3 , TiO 2 , ZrO 2 , ZnS, ZIF-8 and MCM41, etc. have been discovered and can be used to form a dense protective layer on the surface of the metal anode to inhibit dendrite growth. However, these delicate coatings are easily damaged by volume changes associated with zinc deposition. Polymer materials such as polyamide coatings can also be used as protective coatings on zinc anodes to improve interfacial properties, but preparing a stable polymer layer in aqueous electrolytes can be a challenge.
水系锌离子电池在应用道路上面临的最大挑战就是难以根除的副反应,其中以析氢反应和枝晶生长为首要解决目标。水的电化学稳定窗口在客观理论下固定在1.23V,过窄的稳定窗口使得水系电解质的电池无法获得更大的电动势。随着电位的变化,水分子发生分解反应生成氢气导致电池膨胀崩溃,同时局部pH变大导致副产物不可逆的生长。锌箔表面肉眼观察不到的沟壑与坑洼在电池循环中却得到了放大,凹凸不平的电极表面导致阴阳两极间不均匀的电场分布,进而在“尖端效应”的作用下导致锌离子不均匀沉积生成枝晶。The biggest challenge facing aqueous zinc-ion batteries in their application is the side reactions that are difficult to eradicate, of which hydrogen evolution reaction and dendrite growth are the primary solutions. The electrochemical stability window of water is fixed at 1.23V under objective theory. The too narrow stability window prevents batteries with aqueous electrolytes from obtaining greater electromotive force. As the potential changes, water molecules decompose and react to generate hydrogen, causing the battery to expand and collapse. At the same time, the local pH increases, causing the irreversible growth of by-products. The ravines and pits on the surface of the zinc foil that are invisible to the naked eye are amplified during battery cycles. The uneven electrode surface leads to uneven electric field distribution between the anode and cathode, which in turn leads to uneven zinc ions under the action of the "tip effect" Deposition produces dendrites.
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。The information disclosed in this Background section is merely intended to enhance an understanding of the general background of the invention and should not be construed as an admission or in any way implying that the information constitutes prior art that is already known to a person of ordinary skill in the art.
发明内容Contents of the invention
为了解决上述技术瓶颈,本发明提出了利用层间自组装技术在电极表面构建人工多层保护膜的方法,重塑金属锌表面电极/电解质界面并且优化水系锌离子电池循环性能。In order to solve the above technical bottleneck, the present invention proposes a method of constructing an artificial multi-layer protective film on the electrode surface using interlayer self-assembly technology, reshaping the metal zinc surface electrode/electrolyte interface and optimizing the cycle performance of aqueous zinc-ion batteries.
层层自组装薄膜的成膜推动力主要是聚电解质分子或带电物质在固/液界面上的静电作用力,短程的次级作用力(如亲水/疏水性、电荷转移、π-π重叠、氢键、范德华力)对于形成稳定层层自组装薄膜也起到了重要作用。依靠静电力推动形成的自组装多层膜有很多优点,主要包括:(1)天然存在或人工合成的可被选择的聚电解质不计其数;(2)自组装薄膜普遍具有较好的机械/化学稳定性;(3)自组装薄膜的结构通过组装方式和过程是容易控制的;(4)通过对组装聚电解质分子的选择和修饰,可以得到不同功能的聚合物自组装薄膜。本发明中带有磺酸基、羧基、磷酸基、羟基的聚电解质、带电聚合物、树状分子、有机小分子、纳米微粒和生物大分子,如聚吡咯、聚噻吩、聚苯胺、DNA等都可以通过静电吸附作用形成多层自组装薄膜,并且薄膜的厚度可以精准调控在纳米级单层膜。The driving force for the formation of layer-by-layer self-assembled films is mainly the electrostatic force of polyelectrolyte molecules or charged substances on the solid/liquid interface, and short-range secondary forces (such as hydrophilicity/hydrophobicity, charge transfer, and π-π overlap). , hydrogen bonding, van der Waals forces) also play an important role in the formation of stable layer-by-layer self-assembled films. Self-assembled multilayer films formed by electrostatic force have many advantages, mainly including: (1) There are countless naturally occurring or synthetic polyelectrolytes that can be selected; (2) Self-assembled films generally have good mechanical/ Chemical stability; (3) The structure of the self-assembled film is easy to control through the assembly method and process; (4) By selecting and modifying the assembled polyelectrolyte molecules, polymer self-assembled films with different functions can be obtained. In the present invention, polyelectrolytes, charged polymers, dendrimers, small organic molecules, nanoparticles and biological macromolecules with sulfonic acid groups, carboxyl groups, phosphate groups and hydroxyl groups, such as polypyrrole, polythiophene, polyaniline, DNA, etc. All can form multi-layer self-assembled films through electrostatic adsorption, and the thickness of the film can be precisely controlled at the nanoscale single layer.
为达到上述目的,本发明提供一种人工固/液界面保护层,所述人工固/液界面保护层通过层层自组装技术由不同分子通过分子间相互作用在金属表面形成的薄膜;其中,所述不同分子自组装成单层薄膜或多层薄膜,单层薄膜的厚度是30nm~40nm,多层薄膜的厚度是200nm~400nm;其中,所述单层薄膜或多层薄膜的驱动力为静电作用力和短程的次级作用力,所述不同分子包括带有相反电荷或不同极性官能团聚电解质、树状分子、有机小分子、纳米微粒、生物大分子中的一种或几种。In order to achieve the above object, the present invention provides an artificial solid/liquid interface protective layer, which is a thin film formed on a metal surface by different molecules through intermolecular interaction through layer-by-layer self-assembly technology; wherein, The different molecules self-assemble into a single-layer film or a multi-layer film, the thickness of the single-layer film is 30nm~40nm, and the thickness of the multi-layer film is 200nm~400nm; wherein, the driving force of the single-layer film or multi-layer film is Electrostatic force and short-range secondary force, the different molecules include one or more of functional agglomerated electrolytes with opposite charges or different polarities, dendrimers, small organic molecules, nanoparticles, and biological macromolecules.
在一个或多个具体实施方式中,上述单层薄膜的厚度是35nm~38nm,多层薄膜的厚度是280nm~305nm。In one or more specific embodiments, the thickness of the above-mentioned single-layer film is 35nm-38nm, and the thickness of the multi-layer film is 280nm-305nm.
在一个或多个具体实施方式中,上述静电作用力和短程的次级作用力为亲水/疏水性、电荷转移、π-π重叠、氢键或范德华力。In one or more specific embodiments, the above-mentioned electrostatic forces and short-range secondary forces are hydrophilic/hydrophobic, charge transfer, π-π overlap, hydrogen bonding or van der Waals forces.
在一个或多个具体实施方式中,选择水、无机溶剂或有机溶剂作为上述不同分子的分散剂;优选的,上述分散剂为水。In one or more specific embodiments, water, inorganic solvents or organic solvents are selected as the dispersing agent for the above different molecules; preferably, the above dispersing agent is water.
在一个或多个具体实施方式中,上述分子在分散剂中的浓度为2~10g/L;优选的,上述分子在分散剂中的浓度为2.5~7g/L;最优选的,上述分子在分散剂中的浓度为2.5~3.5g/L。In one or more specific embodiments, the concentration of the above-mentioned molecules in the dispersant is 2-10g/L; preferably, the concentration of the above-mentioned molecules in the dispersant is 2.5-7g/L; most preferably, the concentration of the above-mentioned molecules in the dispersant is 2.5-7g/L. The concentration in the dispersant is 2.5~3.5g/L.
在一个或多个具体实施方式中,上述聚电解质为聚酰胺、聚苯胺、聚吡咯、聚乙烯基吡啶、聚丙烯酰胺、聚乙烯醇、聚乳酸、葡萄糖、聚谷氨酸、壳聚糖、海藻酸钠中的任意一种或多种;优选的,上述聚电解质为壳聚糖、海藻酸钠、聚乙烯基吡啶、聚丙烯酰胺、聚乙烯醇、聚乳酸、葡萄糖中的任意一种或多种;最优选的,上述聚电解质为壳聚糖和海藻酸钠。In one or more specific embodiments, the above-mentioned polyelectrolyte is polyamide, polyaniline, polypyrrole, polyvinylpyridine, polyacrylamide, polyvinyl alcohol, polylactic acid, glucose, polyglutamic acid, chitosan, Any one or more of sodium alginate; preferably, the above-mentioned polyelectrolyte is any one or more of chitosan, sodium alginate, polyvinylpyridine, polyacrylamide, polyvinyl alcohol, polylactic acid, glucose, or Various; most preferably, the above-mentioned polyelectrolytes are chitosan and sodium alginate.
在一个或多个具体实施方式中,上述树状分子为聚醚树状分子、聚酯树状分子、两亲性树状分子中的任意一种或多种。In one or more specific embodiments, the above-mentioned dendrimers are any one or more of polyether dendrimers, polyester dendrimers, and amphiphilic dendrimers.
在一个或多个具体实施方式中,上述有机小分子为硫基化合物、吡啶、呋喃、双季铵盐、酞菁、卟啉中的任意一种或多种。In one or more specific embodiments, the above-mentioned organic small molecule is any one or more of sulfur-based compounds, pyridine, furan, biquaternary ammonium salt, phthalocyanine, and porphyrin.
在一个或多个具体实施方式中,上述纳米微粒为金属纳米微粒、金属氧化物纳米微粒、无机纳米微粒、非球形纳米微粒中的任意一种或多种。In one or more specific embodiments, the above-mentioned nanoparticles are any one or more of metal nanoparticles, metal oxide nanoparticles, inorganic nanoparticles, and non-spherical nanoparticles.
在一个或多个具体实施方式中,上述生物大分子为酶、蛋白质、DNA、细菌中的任意一种或多种。In one or more specific embodiments, the above-mentioned biological macromolecule is any one or more of enzymes, proteins, DNA, and bacteria.
在一个或多个具体实施方式中,上述人工固/液界面保护层是基于层层自组装技术由壳聚糖和海藻酸钠在金属电极表面构建而成。In one or more specific embodiments, the above-mentioned artificial solid/liquid interface protective layer is constructed from chitosan and sodium alginate on the surface of the metal electrode based on layer-by-layer self-assembly technology.
基于水系锌离子电池固有的技术问题,本发明选用两种天然有机可降解聚合物海藻酸钠(Sodiumalginate,简称:SA)和壳聚糖(Chitosan,简称CS),利用层层自组装技术得到灵活柔软的聚合物薄膜,可以有效地将金属电极与水系电解质分开,减弱水分子分解现象;而且通过筛选,两种聚合物结构中含有丰富的极性官能团——羟基,可以在锌离子通过薄膜时利用氢键作用将锌离子溶剂化层中的水分子剥离,减少到达锌电极表面的水分子进而从根本上减弱析氢反应;而且在本发明中选择的壳聚糖与海藻酸钠两种聚合物自组装形成的薄膜灵活柔软如凝胶,可以重新构建锌阳极表面,使得电极表面更加平整,在电池工作时可以均匀电场强度使锌离子均匀沉积,并且可以适应因锌的沉积/剥离造成的体积变化。此外,壳聚糖和海藻酸钠均为天然可降解聚合物,经酶促降解实验证实形成的自组装薄膜可以被降解且无毒无害。Based on the inherent technical problems of aqueous zinc-ion batteries, the present invention selects two natural organic degradable polymers, sodium alginate (SA for short) and chitosan (CS for short), and uses layer-by-layer self-assembly technology to obtain flexible The soft polymer film can effectively separate the metal electrode from the aqueous electrolyte, weakening the decomposition of water molecules; and through screening, the two polymer structures contain rich polar functional groups-hydroxyl groups, which can absorb zinc ions when they pass through the film. The hydrogen bonding effect is used to peel off the water molecules in the zinc ion solvation layer, reducing the water molecules reaching the surface of the zinc electrode and thereby fundamentally weakening the hydrogen evolution reaction; and the two polymers of chitosan and sodium alginate selected in the present invention The film formed by self-assembly is flexible and soft like a gel, which can reconstruct the surface of the zinc anode to make the electrode surface smoother. When the battery is working, the electric field intensity can be uniformed to uniformly deposit zinc ions, and it can adapt to the volume caused by the deposition/stripping of zinc. Variety. In addition, both chitosan and sodium alginate are natural degradable polymers, and enzymatic degradation experiments have confirmed that the self-assembled films formed can be degraded and are non-toxic and harmless.
本发明还提供一种金属电极,包括:金属电极片和上述人工固/液界面保护层;其中,上述人工固/液界面保护层是由不同分子通过分子间相互作用在金属电极片表面形成的薄膜。The present invention also provides a metal electrode, including: a metal electrode sheet and the above-mentioned artificial solid/liquid interface protective layer; wherein the above-mentioned artificial solid/liquid interface protective layer is formed by different molecules on the surface of the metal electrode sheet through intermolecular interactions. film.
在一个或多个具体实施方式中,上述金属电极片选自锌电极、铝电极、铜电极、锌合金电极、铝合金电极、铜合金电极中的任意一种;优选的,上述金属电极片为锌电极或铜电极;最优选的,上述金属电极片为锌电极。In one or more specific embodiments, the metal electrode sheet is selected from any one of zinc electrodes, aluminum electrodes, copper electrodes, zinc alloy electrodes, aluminum alloy electrodes, and copper alloy electrodes; preferably, the metal electrode sheet is Zinc electrode or copper electrode; most preferably, the above-mentioned metal electrode sheet is a zinc electrode.
在一个或多个具体实施方式中,金属电极为经层层自组装的人工固/液界面保护层修饰后的锌箔或铜箔。In one or more specific embodiments, the metal electrode is a zinc foil or copper foil modified with a layer-by-layer self-assembled artificial solid/liquid interface protective layer.
为了解决上述技术问题,本发明还提供一种金属电极的制备方法,上述制备方法包括:通过旋涂法、滴加法、涂抹方法、浸泡吸附法中的一种或几种在金属电极表面形成人工固/液界面保护层。In order to solve the above technical problems, the present invention also provides a method for preparing a metal electrode. The above preparation method includes: forming an artificial layer on the surface of the metal electrode through one or more of the spin coating method, the dropping method, the smearing method, and the soaking adsorption method. Solid/liquid interface protective layer.
当上述制备方法为旋涂法时,上述金属电极的制备方法包括以下步骤:When the above preparation method is a spin coating method, the preparation method of the above metal electrode includes the following steps:
(1)裁取金属电极片,浸泡于去离子水和乙醇中进行超声清洗,然后真空干燥备用;(1) Cut the metal electrode piece, soak it in deionized water and ethanol for ultrasonic cleaning, and then vacuum dry it for later use;
(2)将上述分子配置成2~10g/L的溶液;(2) Configure the above molecules into a solution of 2 to 10 g/L;
(3)在金属电极片逐层旋涂吸附步骤(2)所得溶液;旋涂后的金属电极片真空干燥后裁成不同尺寸形状的金属电极备用。(3) The solution obtained in the adsorption step (2) is spin-coated layer by layer on the metal electrode sheet; the spin-coated metal electrode sheet is vacuum-dried and cut into metal electrodes of different sizes and shapes for later use.
当上述分子为壳聚糖和海藻酸钠、上述金属电极片为锌箔和铜箔,上述壳聚糖和海藻酸钠通过旋涂吸附于锌箔和铜箔上,上述制备方法包括以下步骤:When the above molecules are chitosan and sodium alginate, the above metal electrode sheets are zinc foil and copper foil, and the above chitosan and sodium alginate are adsorbed on the zinc foil and copper foil through spin coating, the above preparation method includes the following steps:
(1)裁取锌箔和铜箔;用砂纸将锌箔表面氧化物打磨去除后浸泡于去离子水和乙醇中超声清洗后真空干燥备用,铜箔浸泡于去离子水和乙醇中超声清洗后真空干燥备用;(1) Cut out the zinc foil and copper foil; use sandpaper to remove the oxides on the surface of the zinc foil, then soak it in deionized water and ethanol for ultrasonic cleaning, then vacuum dry it for later use, and soak the copper foil in deionized water and ethanol for ultrasonic cleaning. Vacuum drying for later use;
(2)配置2~10g/L的壳聚糖溶液和海藻酸钠溶液;优选的,溶解壳聚糖时,需滴加冰乙酸直至壳聚糖全部溶解,溶解海藻酸钠时需要适当加热直至全部溶解;(2) Prepare 2 to 10g/L chitosan solution and sodium alginate solution; preferably, when dissolving chitosan, glacial acetic acid needs to be added dropwise until the chitosan is completely dissolved, and when dissolving sodium alginate, appropriate heating is required until the chitosan is completely dissolved. all dissolved;
(3)利用匀胶机在锌箔和铜箔表面逐层旋涂吸附海藻酸钠与壳聚糖,旋涂后的锌箔和铜箔真空干燥后裁成不同尺寸形状的电极片备用;其中,利用匀胶机进行旋涂吸附时,设置低转速500~1000转/分钟,旋涂20~50秒,高转速1200~2000转/分钟,旋涂7~15秒;优选的,利用匀胶机进行旋涂吸附时,设置低转速700转/分钟,旋涂30秒,高转速1500转/分钟,旋涂10秒。(3) Use a glue leveling machine to spin-coat the surface of zinc foil and copper foil layer by layer to adsorb sodium alginate and chitosan. The spin-coated zinc foil and copper foil are vacuum-dried and cut into electrode sheets of different sizes and shapes for use; , when using a glue leveling machine for spin coating and adsorption, set the low speed to 500 to 1000 rpm and spin coating for 20 to 50 seconds, and the high speed to 1200 to 2000 rpm and spin coating to 7 to 15 seconds; preferably, use a glue leveling machine When using the machine for spin coating and adsorption, set the low speed to 700 rpm and spin coating for 30 seconds, and the high speed to 1500 rpm and spin coating for 10 seconds.
本发明还提供一种上述人工固/液界面保护层用于金属电极保护的用途,所述人工固/液界面保护层通过在金属电极表面构建用于提高金属电极的稳定性。The present invention also provides the use of the above-mentioned artificial solid/liquid interface protective layer for metal electrode protection. The artificial solid/liquid interface protective layer is constructed on the surface of the metal electrode to improve the stability of the metal electrode.
为了解决上述技术问题,本发明还提供一种二次金属离子电池,包含上述金属电极或上述制备方法制成的金属电极。In order to solve the above technical problems, the present invention also provides a secondary metal ion battery, including the above metal electrode or the metal electrode made by the above preparation method.
在一个或多个具体实施方式中,上述二次金属离子电池为上述锌箔作为正负极片组装成的锌锌对称纽扣电池,或为上述铜箔作为正极片组装成锌铜纽扣电池。In one or more specific embodiments, the above-mentioned secondary metal ion battery is a zinc-zinc symmetric button battery assembled with the above-mentioned zinc foil as positive and negative electrode sheets, or a zinc-copper button battery assembled with the above-mentioned copper foil as a positive electrode sheet.
在一个或多个具体实施方式中,构建一种基于层层自组装技术在金属电极表面用于提高金属阳极稳定性的人工固/液界面保护层。利用静电吸附作用选择带有正电荷的壳聚糖溶液和带有负电荷的海藻酸钠溶液,通过简单的旋涂手段在锌箔表面交替吸附多次得到层层自组装薄膜;锌箔衬底在覆载自组装薄膜前需要进行充分的打磨清洗;所用到的海藻酸钠与壳聚糖溶液的浓度均为3g/L。In one or more specific embodiments, an artificial solid/liquid interface protective layer is constructed on the surface of a metal electrode based on layer-by-layer self-assembly technology to improve the stability of the metal anode. Use electrostatic adsorption to select a positively charged chitosan solution and a negatively charged sodium alginate solution, and use simple spin coating to alternately adsorb on the zinc foil surface multiple times to obtain a layer-by-layer self-assembled film; zinc foil substrate Sufficient polishing and cleaning are required before coating the self-assembled film; the concentrations of sodium alginate and chitosan solutions used are both 3g/L.
在一个或多个具体实施方式中,上述金属电极的制备方法具体如下:In one or more specific embodiments, the preparation method of the above-mentioned metal electrode is as follows:
(1)裁取适当大小(本方案为5×5cm)锌箔,用砂纸进行打磨去除表面氧化物,后将锌箔置于去离子水和乙醇中超声清洗2分钟,真空干燥30分钟备用;铜箔在使用前只需超声清洗备用;(1) Cut a zinc foil of appropriate size (5×5cm in this plan), polish it with sandpaper to remove surface oxides, and then ultrasonically clean the zinc foil in deionized water and ethanol for 2 minutes, vacuum dry for 30 minutes and set aside; Copper foil only needs to be ultrasonically cleaned before use;
(2)配置3g/L壳聚糖水溶液与3g/L海藻酸钠水溶液;(2) Prepare 3g/L chitosan aqueous solution and 3g/L sodium alginate aqueous solution;
(3)利用匀胶机,调整低转速700转/分钟下转30秒,高转速1500转/分钟下转10秒,在清洗后的锌箔与铜箔表面交替旋涂壳聚糖溶液与海藻酸钠溶液,得到不同层数的自组装薄膜;将所得自组装薄膜修饰的锌箔在50℃条件下真空烘干备用。(3) Use a glue leveling machine, adjust the low speed to 700 rpm for 30 seconds, and the high speed to 1500 rpm for 10 seconds. Alternately spin-coat the chitosan solution and seaweed on the cleaned zinc foil and copper foil surfaces. sodium acid solution to obtain self-assembled films with different numbers of layers; the zinc foil modified with the obtained self-assembled film was vacuum dried at 50°C for later use.
在一个或多个具体实施方式中,步骤(2)中,上述配置壳聚糖溶液和海藻酸钠溶液时,溶解壳聚糖时需逐滴加入适量冰乙酸直至壳聚糖恰好全部溶解;溶解海藻酸钠时需要适当加热直至全部溶解。In one or more specific embodiments, in step (2), when configuring the chitosan solution and the sodium alginate solution above, when dissolving the chitosan, an appropriate amount of glacial acetic acid needs to be added dropwise until the chitosan is completely dissolved; Sodium alginate needs to be heated appropriately until it is completely dissolved.
在一个或多个具体实施方式中,,用修饰上自组装薄膜的铜箔作为正极,锌箔作为负极,组装成纽扣电池进行电化学测试以及循环测试,用锌箔组装为对称纽扣电池进行长循环测试。上述组装的纽扣电池为四部分,分别为正极片、负极片、电池隔膜,电解液。纽扣电池的组成顺序为:正极壳-正极片(对称电池为锌箔,锌铜电池为铜箔)-玻纤隔膜-适当电解液(本发明为160微升2M硫酸锌溶液)-负极片(锌箔)-垫片-弹片-负极壳。In one or more specific embodiments, a copper foil modified with a self-assembled film is used as the positive electrode and a zinc foil is used as the negative electrode to assemble a button battery for electrochemical testing and cycle testing, and a zinc foil is used to assemble a symmetrical button battery for long-term testing. Loop test. The button battery assembled above has four parts, namely the positive electrode sheet, the negative electrode sheet, the battery separator, and the electrolyte. The composition sequence of the button battery is: positive electrode shell-positive electrode sheet (symmetrical battery is zinc foil, zinc-copper battery is copper foil)-glass fiber separator-appropriate electrolyte (this invention is 160 microliters of 2M zinc sulfate solution)-negative electrode sheet ( Zinc foil) - gasket - shrapnel - negative electrode case.
本发明的具有如下技术效果:The present invention has the following technical effects:
本发明层层自组装薄膜可以重塑电极/电解质界面,保护金属电极在电池循环时不遭到破坏,增强锌离子转移/沉积动力学、电池电极反应可逆性、电池循环寿命;本发明为金属电极的保护提供了一种价格低廉,简单且绿色环保的策略,有望促进水系金属离子电池尤其是水系锌离子电池的大规模应用。The layer-by-layer self-assembled film of the present invention can reshape the electrode/electrolyte interface, protect the metal electrode from damage during battery cycling, and enhance zinc ion transfer/deposition kinetics, battery electrode reaction reversibility, and battery cycle life; the invention is a metal The protection of electrodes provides a cheap, simple and green strategy, which is expected to promote the large-scale application of aqueous metal-ion batteries, especially aqueous zinc-ion batteries.
附图说明Description of the drawings
图1为层层自组装成膜示意图;其中,图1a为带相反电荷聚合物壳聚糖与海藻酸钠进行层层自组装形成保护层的示意图;图1b为未处理锌阳极在电池循环中的副反应示意图;图1c为壳聚糖与海藻酸钠在锌阳极表面形成层层自组装保护层示意图;Figure 1 is a schematic diagram of layer-by-layer self-assembly to form a film; Figure 1a is a schematic diagram of layer-by-layer self-assembly of oppositely charged polymers chitosan and sodium alginate to form a protective layer; Figure 1b is a schematic diagram of untreated zinc anode during battery cycle Schematic diagram of side reactions; Figure 1c is a schematic diagram of the self-assembled protective layer formed layer by layer by chitosan and sodium alginate on the surface of the zinc anode;
图2为3g/L壳聚糖溶液和海藻酸钠溶液的Zeta电势;Figure 2 shows the Zeta potential of 3g/L chitosan solution and sodium alginate solution;
图3为不同锌阳极在水系电解液中的线性扫描伏安测试;其中,图3a为析氢电位;图3b为析氧电位;Figure 3 shows the linear sweep voltammetry test of different zinc anodes in aqueous electrolyte; Figure 3a shows the hydrogen evolution potential; Figure 3b shows the oxygen evolution potential;
图4为有/无层层自组装薄膜修饰的锌阳极在水系电解液中的动电位扫描测试;Figure 4 shows the potentiodynamic scanning test of zinc anode modified with/without layer-by-layer self-assembled film in aqueous electrolyte;
图5为有/无层层自组装薄膜修饰的锌阳极在水系电解液中的恒电位计划测试;Figure 5 shows the potentiostatic plan test of zinc anode modified with/without layer-by-layer self-assembled film in aqueous electrolyte;
图6为分别以有/无层层自组装薄膜修饰的锌电极为正负极组装的锌锌对称电池的长循环测试,其中电流密度为1mA/cm2,容量为1mAh/cm2;Figure 6 shows the long cycle test of a zinc-zinc symmetrical battery assembled with zinc electrodes modified with/without layer-by-layer self-assembled films as positive and negative electrodes respectively, in which the current density is 1mA/cm 2 and the capacity is 1mAh/cm 2 ;
图7为分别以不同厚度自组装薄膜修饰的锌电极为正负极组装的锌锌对称电池的长循环测试,其中电流密度为1mA/cm2,容量为1mAh/cm2;Figure 7 shows the long cycle test of a zinc-zinc symmetrical battery assembled with zinc electrodes modified with self-assembled films of different thicknesses as the positive and negative electrodes. The current density is 1mA/cm 2 and the capacity is 1mAh/cm 2 ;
图8为以不同厚度自组装薄膜修饰的锌电极为负极,以不同厚度自组装薄膜修饰的铜电极为正极组装的锌铜半电池的测试;其中,图8a为长循环测试,其中电流密度为1mA/cm2,容量为1mAh/cm2;图8b为层层自组装薄膜修饰的锌铜电池的充放电曲线;图8c为裸锌铜电池的充放电曲线;Figure 8 shows the test of a zinc-copper half-cell assembled with a zinc electrode modified with self-assembled films of different thicknesses as the negative electrode and a copper electrode modified with self-assembled films of different thicknesses as the positive electrode; Figure 8a shows a long cycle test, in which the current density is 1mA/cm 2 , the capacity is 1mAh/cm 2 ; Figure 8b is the charge and discharge curve of the zinc-copper battery modified with layer-by-layer self-assembled films; Figure 8c is the charge and discharge curve of the bare zinc-copper battery;
图9为锌阳极循环前后的扫描电镜图像;其中,图9a为新制备层层自组装保护膜锌阳极;图9b为新制备层层组装保护膜锌阳极的截面图;图9c为裸锌电极循环后扫描电镜结果;图9d为层层自组装保护膜锌阳极循环后的扫描电镜图;其中,图9c和图9d的电流密度为1mA/cm2,容量为1mAh/cm2,循环500小时;Figure 9 is a scanning electron microscope image of a zinc anode before and after cycling; Figure 9a is a newly prepared layer-by-layer self-assembled protective film zinc anode; Figure 9b is a cross-sectional view of a newly prepared layer-by-layer assembled protective film zinc anode; Figure 9c is a bare zinc electrode Scanning electron microscopy results after cycling; Figure 9d is the scanning electron microscopy image of the layer-by-layer self-assembled protective film zinc anode after cycling; among them, the current density in Figure 9c and Figure 9d is 1mA/cm 2 , the capacity is 1mAh/cm 2 , and the cycle is 500 hours ;
图10为以不同厚度自组装薄膜修饰的锌电极组装的对称电池的离子迁移数;Figure 10 shows the ion migration number of symmetric batteries assembled with zinc electrodes modified with self-assembled films of different thicknesses;
图11为以不同厚度自组装薄膜修饰的锌电极组装的对称电池的反应活化能。Figure 11 shows the reaction activation energy of symmetrical cells assembled with zinc electrodes modified with self-assembled films of different thicknesses.
具体实施方式Detailed ways
下面结合附图对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。Specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings, but it should be understood that the protection scope of the present invention is not limited by the specific embodiments.
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。Unless expressly stated otherwise, throughout the specification and claims, the term "comprises" or its variations such as "comprises" or "comprising" will be understood to include the stated elements or components, and to Other elements or other components are not excluded.
实施例1Example 1
壳聚糖溶液和海藻酸钠溶液的制备:常温常压下,配置3g/L壳聚糖水溶液和海藻酸钠水溶液;分别称取0.6g海藻酸钠与壳聚糖溶解于200mL去离子水中;壳聚糖溶解时需要逐滴加入冰乙酸直至壳聚糖全部溶解;海藻酸钠溶解时需适当加热,搅拌至全部溶解降至室温。Preparation of chitosan solution and sodium alginate solution: Prepare 3g/L chitosan aqueous solution and sodium alginate aqueous solution under normal temperature and pressure; weigh 0.6g sodium alginate and chitosan respectively and dissolve them in 200mL deionized water; When chitosan is dissolved, glacial acetic acid needs to be added drop by drop until the chitosan is completely dissolved; when sodium alginate is dissolved, it needs to be heated appropriately and stirred until it is completely dissolved and dropped to room temperature.
图2为利用粒度分析仪测得3g/L壳聚糖溶液与海藻酸钠溶液的Zeta电势,从理论上证明了带有相反电荷的壳聚糖与海藻酸钠聚电解质可以通过静电作用自组装成多层薄膜。Figure 2 shows the Zeta potential of 3g/L chitosan solution and sodium alginate solution measured using a particle size analyzer, which theoretically proves that chitosan and sodium alginate polyelectrolytes with opposite charges can self-assemble through electrostatic interaction. into a multi-layer film.
实施例2Example 2
层层自组装保护层锌电极和铜电极的制备,按照如下步骤制备:The preparation of layer-by-layer self-assembled protective layer zinc electrodes and copper electrodes is prepared according to the following steps:
旋涂溶液的制备:常温常压下,配置3g/L壳聚糖水溶液和海藻酸钠水溶液;分别称取0.6g海藻酸钠与壳聚糖溶解于200mL去离子水中;壳聚糖溶解时需要逐滴加入冰乙酸直至壳聚糖全部溶解;海藻酸钠溶解时需适当加热,搅拌至全部溶解降至室温;Preparation of spin coating solution: Under normal temperature and pressure, prepare 3g/L chitosan aqueous solution and sodium alginate aqueous solution; weigh 0.6g sodium alginate and chitosan respectively and dissolve them in 200mL deionized water; chitosan needs to be dissolved Add glacial acetic acid drop by drop until chitosan is completely dissolved; when sodium alginate is dissolved, it is necessary to heat appropriately and stir until all is dissolved and brought to room temperature;
锌电极和铜电极准备:裁取适当大小(本方案为5×5cm)锌箔和铜箔,用砂纸对锌箔表面进行打磨去除表面氧化物,后将锌箔置于去离子水和乙醇中超声清洗2分钟,真空干燥30分钟后备用;铜箔在使用前只需超声清洗并真空干燥30分钟备用;Zinc electrode and copper electrode preparation: Cut zinc foil and copper foil of appropriate size (5×5cm in this plan), polish the surface of the zinc foil with sandpaper to remove surface oxides, and then place the zinc foil in deionized water and ethanol. Ultrasonically clean for 2 minutes, vacuum dry for 30 minutes and then set aside; before use, the copper foil only needs to be ultrasonically cleaned and vacuum dried for 30 minutes before use;
旋涂:利用匀胶机,调整低转速700转/分钟下转30秒,高转速1500转/分钟下转10秒;在清洗后的锌箔与铜箔表面交替旋涂壳聚糖溶液与海藻酸钠溶液,得到不同层数的自组装薄膜,其中,一层自组装薄膜为旋涂一次壳聚糖溶液加一次海藻酸钠溶液,记为:(壳聚糖/海藻酸钠)1,本方案选择2、4、6层自组装薄膜进行对比实验,实验显示4层自组装薄膜为最佳厚度,记为:(壳聚糖/海藻酸钠)4;真空干燥30分钟后将锌箔与铜箔裁成半径为6mm的圆形电极片备用;Spin coating: Use a glue leveling machine, adjust the low speed to 700 rpm for 30 seconds, and the high speed to 1500 rpm for 10 seconds; alternately spin-coat the chitosan solution and seaweed on the cleaned zinc foil and copper foil surfaces. sodium acid solution to obtain self-assembled films with different layers. Among them, one layer of self-assembled film is spin-coated once with chitosan solution and once with sodium alginate solution, recorded as: (chitosan/sodium alginate) 1 , this The plan selected 2, 4, and 6 layers of self-assembled films for comparative experiments. The experiment showed that the 4-layer self-assembled film was the optimal thickness, recorded as: (chitosan/sodium alginate) 4 ; after vacuum drying for 30 minutes, the zinc foil and Cut the copper foil into circular electrode sheets with a radius of 6 mm for later use;
电池组装:分别将裸铜箔和(壳聚糖/海藻酸钠)4-铜箔做正极,将裸锌箔和(壳聚糖/海藻酸钠)4-锌箔做负极组装成锌铜半电池,进行线性扫描伏安测试,施加不同电压测试得到电极表面水分解生成氢气和氧气时对应的电位,即为析氢电位和析氧电位。Battery assembly: Use bare copper foil and (chitosan/sodium alginate) 4 -copper foil as the positive electrode, and use bare zinc foil and (chitosan/sodium alginate) 4 -zinc foil as the negative electrode to assemble a zinc-copper half For the battery, perform a linear sweep voltammetry test and apply different voltages to test to obtain the corresponding potential when water on the electrode surface decomposes to generate hydrogen and oxygen, which are the hydrogen evolution potential and oxygen evolution potential.
图3为线性扫描伏安测试结果。由于层层组装保护膜的存在,将电极与电解液隔开,到达电极表面的水分子减少,使得水系电解液更加稳定,析氢析氧变得更加困难。Figure 3 shows the linear sweep voltammetry test results. Due to the existence of layer-by-layer assembled protective films that separate the electrode from the electrolyte, fewer water molecules reach the electrode surface, making the aqueous electrolyte more stable and making hydrogen and oxygen evolution more difficult.
实施例3Example 3
锌电极准备:裁取适当大小(本方案为5×5cm)锌箔,用砂纸对锌箔表面进行打磨去除表面氧化物,后将锌箔置于去离子水和乙醇中超声清洗2分钟,真空干燥30分钟备用;Zinc electrode preparation: Cut a zinc foil of appropriate size (5×5cm in this plan), polish the surface of the zinc foil with sandpaper to remove surface oxides, and then ultrasonically clean the zinc foil in deionized water and ethanol for 2 minutes, and vacuum Dry for 30 minutes and set aside;
旋涂:利用匀胶机,调整低转速800转/分钟下转25秒,高转速1300转/分钟下转15秒。在清洗后的锌箔表面交替旋涂壳聚糖与海藻酸钠溶液,得到4层自组装薄膜锌电极,(壳聚糖/海藻酸钠)4-锌箔;真空干燥30分钟后将其裁成1*2cm电极片备用;Spin coating: Use a glue leveling machine, adjust the low speed to 800 rpm for 25 seconds, and the high speed to 1300 rpm for 15 seconds. Alternately spin-coat chitosan and sodium alginate solutions on the cleaned zinc foil surface to obtain a 4-layer self-assembled thin film zinc electrode, (chitosan/sodium alginate) 4 -zinc foil; cut it after vacuum drying for 30 minutes Make 1*2cm electrode pieces for later use;
电池组装:采用三电极体系,有/无自组装薄膜修饰的锌箔为工作电极,铂片电极为对电极,银/氯化银电极为参比电极,2mol/L硫酸锌溶液为电解质进行动电位扫描。Battery assembly: A three-electrode system is used. Zinc foil modified with/without self-assembly film is used as the working electrode, platinum sheet electrode is used as the counter electrode, silver/silver chloride electrode is used as the reference electrode, and 2mol/L zinc sulfate solution is used as the electrolyte for operation. potential scan.
测试结果塔菲尔曲线展示在图4。相较于裸锌电极,(壳聚糖/海藻酸钠)4-锌电极的腐蚀电位变得更正,腐蚀电流密度变小,证明在多层自组装薄膜的保护下锌阳极的稳定性更高,腐蚀速率更小。The test result Tafel curve is shown in Figure 4. Compared with the bare zinc electrode, the corrosion potential of the (chitosan/sodium alginate) 4 -zinc electrode becomes more positive and the corrosion current density becomes smaller, proving that the zinc anode is more stable under the protection of the multi-layer self-assembled film. , the corrosion rate is smaller.
实施例4Example 4
锌电极准备:裁取适当大小(本方案为5×5cm)锌箔,用砂纸对锌箔表面进行打磨去除表面氧化物,后将锌箔置于去离子水和乙醇中超声清洗2分钟,真空干燥30分钟后备用;Zinc electrode preparation: Cut a zinc foil of appropriate size (5×5cm in this plan), polish the surface of the zinc foil with sandpaper to remove surface oxides, and then ultrasonically clean the zinc foil in deionized water and ethanol for 2 minutes, and vacuum Set aside after drying for 30 minutes;
旋涂:利用匀胶机,调整低转速600转/分钟下转40秒,高转速1800转/分钟下转7秒;在清洗后的锌箔表面交替旋涂壳聚糖溶液与海藻酸钠溶液,得到4层自组装薄膜锌电极和铜电极,(壳聚糖/海藻酸钠)4-锌箔。真空干燥30分钟后将其裁成半径为6mm的圆形电极片备用;Spin coating: Use a glue leveling machine, adjust the low speed to 600 rpm for 40 seconds, and the high speed to 1800 rpm for 7 seconds; alternately spin-coat the chitosan solution and sodium alginate solution on the cleaned zinc foil surface. , to obtain 4-layer self-assembled thin film zinc electrode and copper electrode, (chitosan/sodium alginate) 4 -zinc foil. After vacuum drying for 30 minutes, cut it into circular electrode sheets with a radius of 6 mm for later use;
电池组装:将有/无自组装薄膜修饰的锌箔作为正负极组装为纽扣电池,进行恒电位极化测试。Battery assembly: Zinc foil modified with/without self-assembly film is used as the positive and negative electrodes to assemble a button battery and conduct a potentiostatic polarization test.
图5中显示随极化时间的延长,裸锌电池的极化电流密度持续变大,说明枝晶在锌电极表面持续生长;(壳聚糖/海藻酸钠)4-锌电池的极化电流密度在200s后平稳不再变化,说明锌离子均匀还原沉积,没有明显枝晶生长。Figure 5 shows that as the polarization time increases, the polarization current density of the bare zinc battery continues to increase, indicating that dendrites continue to grow on the surface of the zinc electrode; (chitosan/sodium alginate) 4 - Polarization current of zinc battery The density stabilized and stopped changing after 200 s, indicating that zinc ions were uniformly reduced and deposited without obvious dendrite growth.
实施例5Example 5
锌电极准备:裁取适当大小(本方案为5×5cm)锌箔,用砂纸对锌箔表面进行打磨去除表面氧化物,后将锌箔置于去离子水和乙醇中超声清洗2分钟,真空干燥30分钟后将备用;Zinc electrode preparation: Cut a zinc foil of appropriate size (5×5cm in this plan), polish the surface of the zinc foil with sandpaper to remove surface oxides, and then ultrasonically clean the zinc foil in deionized water and ethanol for 2 minutes, and vacuum Set aside after drying for 30 minutes;
旋涂:利用匀胶机,调整低转速1000转/分钟下转15秒,高转速1800转/分钟下转7秒;在清洗后的锌箔表面交替旋涂壳聚糖溶液与海藻酸钠溶液,得到4层自组装薄膜锌电极,(壳聚糖/海藻酸钠)4-锌箔真空干燥30分钟后将其裁成半径为6mm的圆形电极片备用;Spin coating: Use a glue leveling machine, adjust the low speed to 1000 rpm for 15 seconds, and the high speed to 1800 rpm for 7 seconds; alternately spin-coat the chitosan solution and sodium alginate solution on the cleaned zinc foil surface. , obtain a 4-layer self-assembled thin film zinc electrode, (chitosan/sodium alginate) 4 - After vacuum drying the zinc foil for 30 minutes, cut it into a circular electrode sheet with a radius of 6mm for later use;
电池组装:分别将裸锌箔和(壳聚糖/海藻酸钠)4-锌箔用作电池正负极组装成锌锌对称电池,进行长时间充放电测试,其中电流密度为1mA/cm2,容量为1mAh/cm2。Battery assembly: Use bare zinc foil and (chitosan/sodium alginate) 4 -zinc foil as the positive and negative electrodes of the battery to assemble a zinc-zinc symmetrical battery, and conduct long-term charge and discharge tests, in which the current density is 1mA/cm 2 , the capacity is 1mAh/cm 2 .
图6为锌锌对称电池充放电长循环测试结果。裸锌电极对称电池在循环400小时后因枝晶等副反应发生短路导致电池崩溃。层层自组装薄膜的保护下,锌锌对称电池可以循环5000小时以上,证实了海藻酸钠和壳聚糖自组装而成的薄膜对锌电极优异的保护作用。Figure 6 shows the long-term cycle test results of charge and discharge of zinc-zinc symmetrical batteries. The bare zinc electrode symmetrical battery collapsed due to short circuit due to side reactions such as dendrites after 400 hours of cycling. Under the protection of layers of self-assembled films, the zinc-zinc symmetrical battery can cycle for more than 5,000 hours, confirming the excellent protective effect of the self-assembled film of sodium alginate and chitosan on the zinc electrode.
实施例6Example 6
锌电极准备:裁取适当大小(本方案为5×5cm)锌箔,用砂纸对锌箔表面进行打磨去除表面氧化物,后将锌箔置于去离子水和乙醇中超声清洗2分钟,真空干燥30分钟后将备用;Zinc electrode preparation: Cut a zinc foil of appropriate size (5×5cm in this plan), polish the surface of the zinc foil with sandpaper to remove surface oxides, and then ultrasonically clean the zinc foil in deionized water and ethanol for 2 minutes, and vacuum Set aside after drying for 30 minutes;
旋涂:利用匀胶机,调整低转速600转/分钟下转35秒,高转速1400转/分钟下转13秒;在清洗后的锌箔表面交替旋涂壳聚糖溶液与海藻酸钠溶液,得到2、4、6层自组装薄膜锌电极,(壳聚糖/海藻酸钠)2,4,6-锌箔,真空干燥30分钟后将其裁成半径为6mm的圆形电极片备用;Spin coating: Use a glue leveling machine, adjust the low speed to 600 rpm for 35 seconds, and the high speed to 1400 rpm for 13 seconds; alternately spin-coat the chitosan solution and sodium alginate solution on the cleaned zinc foil surface. , obtain 2, 4, and 6 layers of self-assembled thin film zinc electrodes, (chitosan/sodium alginate) 2, 4, 6 -zinc foil, vacuum dry for 30 minutes, and then cut it into circular electrode sheets with a radius of 6 mm for later use. ;
电池组装:分别将(壳聚糖/海藻酸钠)2,4,6-锌箔用作电池正负极组装成锌锌对称电池,进行长时间充放电测试,其中电流密度为1mA/cm2,容量为1mAh/cm2。Battery assembly: Use (chitosan/sodium alginate) 2,4,6 -zinc foil as the positive and negative electrodes of the battery to assemble a zinc-zinc symmetrical battery, and conduct long-term charge and discharge tests, in which the current density is 1mA/cm 2 , the capacity is 1mAh/cm 2 .
图7为锌锌对称电池充放电长循环测试结果。(壳聚糖/海藻酸钠)2-对称电池可以循环1200小时以上,(壳聚糖/海藻酸钠)6-对称电池可以循环2000小时以上,(壳聚糖/海藻酸钠)4-对称电池可以循环5000小时以上,证实了壳聚糖/海藻酸钠自组装而成的薄膜对锌电极优异的保护作用并提升了电池性能,其中4层自组装薄膜的效果最佳。Figure 7 shows the long-term cycle test results of charge and discharge of zinc-zinc symmetrical batteries. (Chitosan/Sodium Alginate) 2 - Symmetrical battery can cycle for more than 1200 hours, (Chitosan/Sodium Alginate) 6 - Symmetrical battery can cycle for more than 2000 hours, (Chitosan/Sodium Alginate) 4 - Symmetrical The battery can be cycled for more than 5,000 hours, confirming that the self-assembled film of chitosan/sodium alginate has excellent protective effects on zinc electrodes and improves battery performance. Among them, the 4-layer self-assembled film has the best effect.
实施例7Example 7
锌电极和铜电极准备:锌电极和铜电极准备:裁取适当大小(本方案为5×5cm)锌箔和铜箔,用砂纸对锌箔表面进行打磨去除表面氧化物,后将锌箔置于去离子水和乙醇中超声清洗2分钟,真空干燥30分钟后备用。铜箔在使用前只需超声清洗并真空干燥30分钟备用;Preparation of zinc electrodes and copper electrodes: Preparation of zinc electrodes and copper electrodes: Cut zinc foil and copper foil of appropriate size (5×5cm in this plan), polish the surface of the zinc foil with sandpaper to remove surface oxides, and then place the zinc foil Ultrasonically clean in deionized water and ethanol for 2 minutes, vacuum dry for 30 minutes and set aside. The copper foil only needs to be ultrasonically cleaned and vacuum dried for 30 minutes before use;
旋涂:利用匀胶机,调整低转速700转/分钟下转30秒,高转速1500转/分钟下转10秒;在清洗后的锌箔与铜箔表面交替旋涂壳聚糖溶液与海藻酸钠溶液,得到2,4,6层自组装薄膜锌电极,(壳聚糖/海藻酸钠)2,4,6-锌箔和铜箔,真空干燥30分钟后将其裁成半径为6mm的圆形电极片备用;Spin coating: Use a glue leveling machine, adjust the low speed to 700 rpm for 30 seconds, and the high speed to 1500 rpm for 10 seconds; alternately spin-coat the chitosan solution and seaweed on the cleaned zinc foil and copper foil surfaces. sodium acid solution to obtain a 2, 4, 6-layer self-assembled thin film zinc electrode, (chitosan/sodium alginate) 2, 4, 6 - zinc foil and copper foil, vacuum dry for 30 minutes and then cut into a radius of 6mm The round electrode pads are spare;
电池组装:分别将裸铜箔和(壳聚糖/海藻酸钠)2,4,6-铜箔用作电池正极,分别将裸锌箔和(壳聚糖/海藻酸钠)2,4,6-锌箔用作电池负极,组装成锌铜半电池,进行长时间充放电测试,其中电流密度为1mA/cm2,容量为1mAh/cm2。Battery assembly: bare copper foil and (chitosan/sodium alginate ) 2,4,6 copper foil were used as the positive electrode of the battery, respectively, bare zinc foil and (chitosan/sodium alginate) 2,4, 6 - Zinc foil is used as the negative electrode of the battery, assembled into a zinc-copper half-battery, and subjected to long-term charge and discharge tests, in which the current density is 1mA/cm 2 and the capacity is 1mAh/cm 2 .
图8a为锌铜半电池长循环测试结果。对照组无自组装薄膜的锌铜半电池循环300小时后失效,(壳聚糖/海藻酸钠)2-锌铜半电池和(壳聚糖/海藻酸钠)6-锌铜半电池在循环700小时后,库伦效率出现较大幅度波动,电池循环不稳定。相较而言(壳聚糖/海藻酸钠)4-锌铜半电池可以稳定循环2300小时以上,库伦效率稳定在99.6%以上,表明电池循环稳定,电极反应可逆程度高。层层自组装薄膜可以改善电池副反应程度,提升电池循环性能。Figure 8a shows the long cycle test results of zinc-copper half-cell. The zinc-copper half-battery without self-assembled film in the control group failed after cycling for 300 hours. The (chitosan/sodium alginate) 2 -zinc-copper half-battery and (chitosan/sodium alginate) 6 -zinc-copper half-battery failed after cycling. After 700 hours, the Coulomb efficiency fluctuated significantly and the battery cycle was unstable. In comparison, the (chitosan/sodium alginate) 4 -zinc-copper half-cell can cycle stably for more than 2300 hours, and the Coulombic efficiency is stable above 99.6%, indicating that the battery cycle is stable and the electrode reaction is highly reversible. Layer-by-layer self-assembled films can improve battery side reactions and enhance battery cycle performance.
图8b和图8c中可以看到锌铜电池的充放电曲线,其中(壳聚糖/海藻酸钠)4-锌铜半电池的成核过电位和极化电位低于裸锌铜半电池,证明锌离子成核所需能量更低,成核更容易,沉积更均匀。The charge-discharge curves of the zinc-copper battery can be seen in Figure 8b and Figure 8c, in which the nucleation overpotential and polarization potential of the (chitosan/sodium alginate) 4 -zinc-copper half-cell are lower than those of the bare zinc-copper half-cell, It is proved that the nucleation energy of zinc ions is lower, the nucleation is easier, and the deposition is more uniform.
实施例8Example 8
锌电极准备:裁取适当大小(本方案为5×5cm)锌箔,用砂纸对锌箔表面进行打磨去除表面氧化物,后将锌箔置于去离子水和乙醇中超声清洗2分钟,真空干燥30分钟后备用;Zinc electrode preparation: Cut a zinc foil of appropriate size (5×5cm in this plan), polish the surface of the zinc foil with sandpaper to remove surface oxides, and then ultrasonically clean the zinc foil in deionized water and ethanol for 2 minutes, and vacuum Set aside after drying for 30 minutes;
旋涂:利用匀胶机,调整低转速700转/分钟下转30秒,高转速1500转/分钟下转10秒;在清洗后的锌箔表面交替旋涂壳聚糖溶液与海藻酸钠溶液,得到4层自组装薄膜锌电极,(壳聚糖/海藻酸钠)4-锌箔;Spin coating: Use a glue leveling machine, adjust the low speed to 700 rpm for 30 seconds, and the high speed to 1500 rpm for 10 seconds; alternately spin-coat the chitosan solution and sodium alginate solution on the cleaned zinc foil surface. , obtaining a 4-layer self-assembled thin film zinc electrode, (chitosan/sodium alginate) 4 -zinc foil;
电池组装:分别将裸锌箔和(壳聚糖/海藻酸钠)4-锌箔用作电池正负极组装成锌锌对称电池,进行长时间充放电测试,其中电流密度为1mA/cm2,容量为1mAh/cm2;Battery assembly: Use bare zinc foil and (chitosan/sodium alginate) 4 -zinc foil as the positive and negative electrodes of the battery to assemble a zinc-zinc symmetrical battery, and conduct long-term charge and discharge tests, in which the current density is 1mA/cm 2 , capacity is 1mAh/cm 2 ;
扫面电子显微镜测试样品制备:将新制备的层层自组装保护层(壳聚糖/海藻酸钠)4-锌电极用液氮淬断得到截面扫描电镜测试样品。裸锌箔和(壳聚糖/海藻酸钠)4-锌箔用作电池正负极组装成的锌锌对称电池,在循环100小时后,清洗锌阳极并真空干燥得到扫描电子显微镜测试样品。Preparation of samples for scanning electron microscopy testing: The newly prepared layer-by-layer self-assembled protective layer (chitosan/sodium alginate) 4 -zinc electrode was quenched with liquid nitrogen to obtain a cross-sectional scanning electron microscopy test sample. Bare zinc foil and (chitosan/sodium alginate) 4 -zinc foil were used as the positive and negative electrodes of the battery to assemble a zinc-zinc symmetrical battery. After cycling for 100 hours, the zinc anode was cleaned and vacuum dried to obtain a scanning electron microscope test sample.
图9为扫描电子显微镜测试结果。图9a中观察到新制备的层层自组装薄膜是均匀透明的,图9b为截面电镜测试图,可以观察到层层自装薄膜是均匀附着在锌电极表面可以锌箔表面的细碎沟壑填平,厚度约为300nm。在循环100小时后,裸锌阳极表面存在大量尖锐块状枝晶,随循环时间增长,枝晶将逐渐变大最终刺透隔膜破坏电池。图9d可以证明,(壳聚糖/海藻酸钠)4薄膜可以有效保护锌阳极,均匀电场,使得锌离子均匀分布并还原,没有发现大块装的直径出现,证明其对电池性能的提升效果明显。Figure 9 shows the scanning electron microscope test results. In Figure 9a, it is observed that the newly prepared layer-by-layer self-assembled film is uniform and transparent. Figure 9b is a cross-sectional electron microscope test picture. It can be observed that the layer-by-layer self-assembled film is evenly attached to the surface of the zinc electrode and can fill up the fine ravines on the surface of the zinc foil. , the thickness is about 300nm. After 100 hours of cycling, there are a large number of sharp and massive dendrites on the surface of the bare zinc anode. As the cycle time increases, the dendrites will gradually become larger and eventually penetrate the separator and destroy the battery. Figure 9d can prove that the (chitosan/sodium alginate) 4 film can effectively protect the zinc anode, uniform electric field, so that zinc ions are evenly distributed and reduced, and no large diameters are found, proving its effect on improving battery performance. obvious.
实施例9Example 9
锌电极准备:裁取适当大小(本发明为5×5cm)锌箔,用砂纸对锌箔表面进行打磨去除表面氧化物,后将锌箔置于去离子水和乙醇中超声清洗2分钟,真空干燥30分钟后将备用。Zinc electrode preparation: Cut a zinc foil of appropriate size (5×5cm in this invention), polish the surface of the zinc foil with sandpaper to remove surface oxides, and then place the zinc foil in deionized water and ethanol for ultrasonic cleaning for 2 minutes, and vacuum Set aside after drying for 30 minutes.
旋涂:利用匀胶机,调整低转速700转/分钟下转30秒,高转速1500转/分钟下转10秒;在清洗后的锌箔表面交替旋涂壳聚糖溶液与海藻酸钠溶液,得到2,4,6层自组装薄膜锌电极,(壳聚糖/海藻酸钠)2,4,6-锌箔,真空干燥30分钟后将其裁成半径为6mm的圆形电极片备用;Spin coating: Use a glue leveling machine, adjust the low speed to 700 rpm for 30 seconds, and the high speed to 1500 rpm for 10 seconds; alternately spin-coat the chitosan solution and sodium alginate solution on the cleaned zinc foil surface. , obtain a 2, 4, 6-layer self-assembled thin film zinc electrode, (chitosan/sodium alginate) 2, 4, 6 -zinc foil, vacuum dry it for 30 minutes and then cut it into a circular electrode sheet with a radius of 6 mm for later use. ;
电池组装:分别将裸锌箔和(壳聚糖/海藻酸钠)2,4,6-锌箔用作电池正负极组装成锌锌对称电池;将对称电池进行计时电流测试,结合测试前后阻抗值根据公示计算得到不同电池的离子迁移数。Battery assembly: Use bare zinc foil and (chitosan/sodium alginate) 2,4,6 -zinc foil as the positive and negative electrodes of the battery to assemble a zinc-zinc symmetrical battery; conduct a chronocurrent test on the symmetrical battery, and combine the before and after tests The impedance value is calculated according to the published ion migration number of different batteries.
图10显示不同层数自组装薄膜修饰的锌电极测得的离子迁移数均高于裸锌电极(0.3223),其中(壳聚糖/海藻酸钠)4-锌电极的离子迁移数最大(0.7572),证明锌离子传输动力学最快,有利于锌离子均匀沉积。Figure 10 shows that the measured ion migration numbers of zinc electrodes modified with self-assembled films of different layers are all higher than those of bare zinc electrodes (0.3223), among which the (chitosan/sodium alginate) 4 -zinc electrode has the largest ion migration number (0.7572 ), proving that zinc ion transport kinetics is the fastest and is conducive to uniform deposition of zinc ions.
实施例10Example 10
锌电极准备:裁取适当大小(本方案为5×5cm)锌箔,用砂纸对锌箔表面进行打磨去除表面氧化物,后将锌箔置于去离子水和乙醇中超声清洗2分钟,真空干燥30分钟后将备用;Zinc electrode preparation: Cut a zinc foil of appropriate size (5×5cm in this plan), polish the surface of the zinc foil with sandpaper to remove surface oxides, and then ultrasonically clean the zinc foil in deionized water and ethanol for 2 minutes, and vacuum Set aside after drying for 30 minutes;
旋涂:利用匀胶机,调整低转速700转/分钟下转30秒,高转速1500转/分钟下转10秒;在清洗后的锌箔表面交替旋涂壳聚糖溶液与海藻酸钠溶液,得到2、4、6层自组装薄膜锌电极,(壳聚糖/海藻酸钠)2,4,6-锌箔,真空干燥30分钟后将其裁成半径为6mm的圆形电极片备用;Spin coating: Use a glue leveling machine, adjust the low speed to 700 rpm for 30 seconds, and the high speed to 1500 rpm for 10 seconds; alternately spin-coat the chitosan solution and sodium alginate solution on the cleaned zinc foil surface. , obtain 2, 4, and 6 layers of self-assembled thin film zinc electrodes, (chitosan/sodium alginate) 2, 4, 6 -zinc foil, vacuum dry for 30 minutes, and cut it into circular electrode sheets with a radius of 6 mm for later use. ;
电池组装:分别将裸锌箔和(壳聚糖/海藻酸钠)2,4,6-锌箔用作电池正负极组装成锌锌对称电池。Battery assembly: Use bare zinc foil and (chitosan/sodium alginate) 2,4,6 -zinc foil as the positive and negative electrodes of the battery to assemble a zinc-zinc symmetrical battery.
通过电池在不同温度下的阻抗值计算得到不同厚度自组装薄膜修饰的电池的反应活化能在图11中展示。其中不同层数自组装薄膜修饰的锌电极测得的反应活化能均高于裸锌电池(69.62kJ/mol),其中(壳聚糖/海藻酸钠)4-锌电极的离子迁移数最大(40.76kJ/mol),证明电极反应所需能量更小,有利于锌离子还原并均匀沉积。The reaction activation energies of batteries modified with self-assembled films of different thicknesses are calculated from the impedance values of the batteries at different temperatures and are shown in Figure 11. Among them, the measured reaction activation energies of zinc electrodes modified with self-assembled films of different layers are higher than those of bare zinc batteries (69.62kJ/mol), among which (chitosan/sodium alginate) 4 -zinc electrode has the largest ion migration number ( 40.76kJ/mol), which proves that the electrode reaction requires less energy, which is conducive to the reduction and uniform deposition of zinc ions.
表1实施例2、3、5、6、7、9、10的层层自组装保护层的电化学以及电池性能测试结果数据Table 1 Electrochemical and battery performance test result data of the layer-by-layer self-assembled protective layers of Examples 2, 3, 5, 6, 7, 9, and 10
通过表1对层层自组装保护层涉及的实施例2、3、5、6、7、9、10的电化学以及电池性能测试结果数据汇总,可以证明本发明自组装保护层可以有效稳定金属锌阳极,减缓阳极腐蚀速度并且诱导锌离子均匀分布沉积,减少枝晶生长。锌离子的传输动力学的到增强且电极反应活化能降低,使得锌离子可以更快传输到电极表面,并且更容易沉积。Table 1 summarizes the electrochemical and battery performance test results of Examples 2, 3, 5, 6, 7, 9, and 10 involving the layer-by-layer self-assembled protective layer. It can be proved that the self-assembled protective layer of the present invention can effectively stabilize the metal. Zinc anode slows down the anode corrosion rate and induces zinc ions to be evenly distributed and deposited, reducing dendrite growth. The transmission kinetics of zinc ions is enhanced and the activation energy of the electrode reaction is reduced, allowing zinc ions to be transported to the electrode surface faster and deposited more easily.
图1为层层自组装薄膜形成示意图。其中,图1a为壳聚糖和海藻酸钠在锌表面逐层自组装形成保护膜的示意图。壳聚糖结构中含有丰富的羟基和氨基,可以在锌箔表面牢牢吸附形成带正电的薄膜,之后带负电的海藻酸钠旋涂于表面,海藻酸钠中含有丰富的羧基,可以同壳聚糖中的氨基通过静电吸附作用进行结合组装为薄膜;后重复壳聚糖/海藻酸钠交替吸附,最终形成层层自组装薄膜(壳聚糖/海藻酸钠)4薄膜。Figure 1 is a schematic diagram of the formation of layer-by-layer self-assembled films. Among them, Figure 1a is a schematic diagram of the layer-by-layer self-assembly of chitosan and sodium alginate on the zinc surface to form a protective film. The structure of chitosan is rich in hydroxyl and amino groups, which can be firmly adsorbed on the surface of zinc foil to form a positively charged film. Then negatively charged sodium alginate is spin-coated on the surface. Sodium alginate is rich in carboxyl groups and can be used at the same time. The amino groups in chitosan are combined and assembled into a film through electrostatic adsorption; then the alternating adsorption of chitosan/sodium alginate is repeated, and finally a layer-by-layer self-assembled film (chitosan/sodium alginate) 4 film is formed.
图1b为层层自组装薄膜(壳聚糖/海藻酸钠)4对锌电极的保护功能示意图。壳聚糖和海藻酸钠中都含有丰富的极性官能团——羟基。当水合锌离子在电场作用下穿过自组装薄膜时,羟基通过氢键作用将锌离子溶剂化结构中的水分子剥离,使得锌离子周围的水分子含量降低,进而减少析氢反应的发生,同时锌离子容积化结构的改变使得锌离子脱溶剂化能降低,更容易还原并均匀沉积。Figure 1b is a schematic diagram of the protective function of 4 pairs of zinc electrodes using layer-by-layer self-assembled films (chitosan/sodium alginate). Both chitosan and sodium alginate are rich in polar functional groups - hydroxyl groups. When hydrated zinc ions pass through the self-assembled film under the action of an electric field, the hydroxyl groups peel off the water molecules in the solvation structure of the zinc ions through hydrogen bonding, reducing the content of water molecules around the zinc ions, thus reducing the occurrence of hydrogen evolution reactions. The change in the volumetric structure of zinc ions reduces the desolvation energy of zinc ions, making it easier to reduce and deposit uniformly.
图1c为裸锌电极在没有任何处理下进行电池循环测试发生副反应的示意图。因为水分子的分解,锌电极表面会生成氢气使得电池膨胀破败,同时析氢反应会导致局部pH值变大,生成不溶性副产物,逐渐导致锌钝化失活;此外不均匀的电场分布会导致锌沉积层凹凸不平,最终形成尖锐的枝晶。Figure 1c is a schematic diagram of side reactions occurring in battery cycle tests on bare zinc electrodes without any treatment. Due to the decomposition of water molecules, hydrogen will be generated on the surface of the zinc electrode, causing the battery to swell and collapse. At the same time, the hydrogen evolution reaction will increase the local pH value and generate insoluble by-products, which will gradually lead to zinc passivation and deactivation; in addition, uneven electric field distribution will cause zinc The deposited layer is uneven and eventually forms sharp dendrites.
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。The above embodiments are only for illustrating the technical concepts and characteristics of the present invention. Their purpose is to enable those familiar with this technology to understand the content of the present invention and implement it. They are not intended to limit the scope of protection of the present invention. Substantial equivalent changes or modifications shall be included in the protection scope of the present invention.
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。The foregoing descriptions of specific exemplary embodiments of the present invention have been presented for purposes of illustration and illustration. These descriptions are not intended to limit the invention to the precise form disclosed, and obviously many modifications and variations are possible in light of the above teachings. The exemplary embodiments were chosen and described in order to explain certain principles of the invention and its practical application, thereby enabling others skilled in the art to make and utilize various exemplary embodiments of the invention and various different applications. Choice and change. The scope of the invention is intended to be defined by the claims and their equivalents.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310904025.3A CN116666638B (en) | 2023-07-24 | 2023-07-24 | Water system zinc ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310904025.3A CN116666638B (en) | 2023-07-24 | 2023-07-24 | Water system zinc ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116666638A CN116666638A (en) | 2023-08-29 |
CN116666638B true CN116666638B (en) | 2024-01-23 |
Family
ID=87712091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310904025.3A Active CN116666638B (en) | 2023-07-24 | 2023-07-24 | Water system zinc ion secondary battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116666638B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108155363A (en) * | 2017-12-26 | 2018-06-12 | 深圳先进技术研究院 | Application, aluminum honeycomb, preparation method and secondary cell of the polymeric coating layer in aluminum honeycomb |
CN109346725A (en) * | 2018-10-18 | 2019-02-15 | 深圳中科瑞能实业有限公司 | Energy storage device aluminum negative electrode, energy storage device and preparation method thereof |
CN114864858A (en) * | 2022-04-21 | 2022-08-05 | 山东大学 | Zinc battery metal cathode with interface protection layer and preparation method and application thereof |
CN115224271A (en) * | 2022-05-30 | 2022-10-21 | 南通大学 | A method for in-situ construction of artificial interface layer of zinc anode by simple immersion method |
CN115472839A (en) * | 2022-09-30 | 2022-12-13 | 储天新能源科技(长春)有限公司 | Battery negative electrode material and preparation method thereof, and zinc ion battery and preparation method thereof |
CN116111068A (en) * | 2023-02-24 | 2023-05-12 | 辽宁大学 | Zinc cathode material modified by three-dimensional antimony/antimony oxide composite layer and preparation method and application thereof |
KR20230079975A (en) * | 2021-11-29 | 2023-06-07 | 한국과학기술연구원 | Negative electrode of aqueous secondary battery comprising metal oxide protective layer, method for manufacturing and of aqueous secondary battery comprising thereof |
CN116344730A (en) * | 2023-03-02 | 2023-06-27 | 复旦大学 | Aqueous zinc-ion battery negative electrode with surface covering interface protection layer and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1433217A2 (en) * | 2001-07-27 | 2004-06-30 | Massachusetts Institute Of Technology | Battery structures, self-organizing structures and related methods |
EP3837730A4 (en) * | 2018-08-14 | 2022-05-11 | Salient Energy Inc. | Protected zinc metal electrodes and methods for rechargeable zinc cells and batteries |
-
2023
- 2023-07-24 CN CN202310904025.3A patent/CN116666638B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108155363A (en) * | 2017-12-26 | 2018-06-12 | 深圳先进技术研究院 | Application, aluminum honeycomb, preparation method and secondary cell of the polymeric coating layer in aluminum honeycomb |
CN109346725A (en) * | 2018-10-18 | 2019-02-15 | 深圳中科瑞能实业有限公司 | Energy storage device aluminum negative electrode, energy storage device and preparation method thereof |
KR20230079975A (en) * | 2021-11-29 | 2023-06-07 | 한국과학기술연구원 | Negative electrode of aqueous secondary battery comprising metal oxide protective layer, method for manufacturing and of aqueous secondary battery comprising thereof |
CN114864858A (en) * | 2022-04-21 | 2022-08-05 | 山东大学 | Zinc battery metal cathode with interface protection layer and preparation method and application thereof |
CN115224271A (en) * | 2022-05-30 | 2022-10-21 | 南通大学 | A method for in-situ construction of artificial interface layer of zinc anode by simple immersion method |
CN115472839A (en) * | 2022-09-30 | 2022-12-13 | 储天新能源科技(长春)有限公司 | Battery negative electrode material and preparation method thereof, and zinc ion battery and preparation method thereof |
CN116111068A (en) * | 2023-02-24 | 2023-05-12 | 辽宁大学 | Zinc cathode material modified by three-dimensional antimony/antimony oxide composite layer and preparation method and application thereof |
CN116344730A (en) * | 2023-03-02 | 2023-06-27 | 复旦大学 | Aqueous zinc-ion battery negative electrode with surface covering interface protection layer and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN116666638A (en) | 2023-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110176591B (en) | Aqueous zinc ion secondary battery and preparation method of anode based on organic electrode material | |
CN111600025A (en) | A kind of zinc anode material with elastic protective layer and its preparation and application | |
CN104466183B (en) | A kind of polypyrrole lithium sulfur battery anode material and preparation method thereof | |
CN110364687A (en) | A kind of preparation method of flexible thin film electrode, prepared electrode and use | |
CN113937295B (en) | Self-assembled MXene/chitosan composite membrane and preparation method and application thereof | |
CN111916709A (en) | Preparation method of electrode material for water system zinc ion hybrid energy storage device | |
CN114725336A (en) | A protective layer modified zinc anode material and its preparation method and application | |
CN111276659A (en) | Organometallic framework-inorganic additive-based polyrotaxane separator and its application in batteries | |
CN112635698B (en) | A negative pole piece of a zinc secondary battery and its preparation method and use | |
CN113054263A (en) | Zinc ion battery and preparation method thereof | |
CN109244540A (en) | A kind of solid polymer electrolyte, preparation method and lithium ion battery | |
CN107482188A (en) | A hollow core-shell composite material and its preparation method and application | |
Wang et al. | Failure Mechanisms and Strategies Toward Flexible Zinc‐Air Batteries | |
CN116666638B (en) | Water system zinc ion secondary battery | |
CN114497762A (en) | A kind of "sandwich" structure gel electrolyte membrane and preparation method thereof | |
CN105655523B (en) | A kind of deprotonation dopamine cladding film and the preparation method and application thereof | |
WO2024114381A1 (en) | Intrinsic stretchable polymer electrolyte, preparation method therefor, and use thereof | |
CN112029212A (en) | Gel polymer electrolyte containing ligand-modified cluster and preparation method thereof | |
CN110085919A (en) | All-solid-state battery electrolyte interface modification method and application thereof | |
US20240291031A1 (en) | Electrolyte hydrogel and its use in an electrochemical cell | |
CN113241261B (en) | Stacked cross-linked structure supercapacitor electrode material, and preparation method and application thereof | |
TWI750909B (en) | Hydrogel, method for fabricating the same, hydrogel electrolyte, supercapacitor, and battery | |
CN115346803A (en) | A kind of W18O49/carbon paper composite electrode material and its preparation method | |
CN115911243A (en) | Zinc negative electrode protective layer, zinc metal negative electrode and preparation method thereof, and zinc metal battery | |
Xu et al. | Light-enhanced electrochemical energy storage of synthetic melanin on conductive glass substrates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |