CN116661211A - 一种面向氮化铝集成光学微腔的低重频孤子微梳产生方法 - Google Patents

一种面向氮化铝集成光学微腔的低重频孤子微梳产生方法 Download PDF

Info

Publication number
CN116661211A
CN116661211A CN202310726441.9A CN202310726441A CN116661211A CN 116661211 A CN116661211 A CN 116661211A CN 202310726441 A CN202310726441 A CN 202310726441A CN 116661211 A CN116661211 A CN 116661211A
Authority
CN
China
Prior art keywords
aluminum nitride
micro
frequency
soliton
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310726441.9A
Other languages
English (en)
Inventor
康哲
林宗兴
田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202310726441.9A priority Critical patent/CN116661211A/zh
Publication of CN116661211A publication Critical patent/CN116661211A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3511Self-focusing or self-trapping of light; Light-induced birefringence; Induced optical Kerr-effect
    • G02F1/3513Soliton propagation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3551Crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/083Ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/1086Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering using scattering effects, e.g. Raman or Brillouin effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种面向氮化铝集成光学微腔的低重频孤子微梳产生方法。本发明通过采用光子晶体结构的氮化铝集成光学微环谐振腔,将氮化铝受激拉曼增益峰附近的微腔谐振峰进行平移从而降低受激拉曼效应的作用,使得拉曼增益对于克尔非线性增益的竞争失效,可以在重频小于100GHz的氮化铝光学微腔中产生孤子光频梳。本发明是一种新颖的、有效的方法,它可以使氮化铝微腔在小于100GHz的低重频情况下依然可以产生孤子态光学微梳,有效解决了采用氮化铝光学微腔产生孤子微梳时波导设计、制备等方面的限制。较低的重频可与现有成熟的电子器件、设备兼容适配,可以用于天文光谱学、微波光子学、密集集成光通信等领域。

Description

一种面向氮化铝集成光学微腔的低重频孤子微梳产生方法
技术领域
本发明涉及非线性光学、非线性频率转换、光孤子、集成光学微腔及集成光学频率梳产生,具体涉及一种面向氮化铝集成光学微腔的低重频孤子微梳产生方法。该方法通过采用光子晶体结构的氮化铝集成光学微环谐振腔,使得氮化铝材料的拉曼增益对于克尔非线性增益的竞争失效,可以在重频(自由光谱范围)小于100GHz的氮化铝光学微腔中产生孤子光频梳。本方法主要应用于集成光孤子微梳产生及其应用领域。
背景技术
在目前的集成光学和非线性光学领域中,基于可调谐激光源外部相干注入的集成光学微谐振腔产生孤子态光学微梳的研究一直是一个研究热点。孤子微梳可在诸多集成光波导平台产生,需要的泵浦能量极低,其光谱由频率等间隔且相位锁定的频率梳齿组成,其带宽可超过一个倍频程,由于色散与非线性、损耗与增益的双重平衡,其具有非常稳定的结构,且噪声极低,是非常优质的集成芯片上超宽带相干光源,可用于光谱学、计量学、天文学、光通信等诸多领域。
在已报道的用于孤子微梳产生的集成光波导平台中,氮化铝光学微腔具有很强的竞争力。氮化铝材料易于集成,透明窗口极宽,可覆盖深紫外至中红外波段,其折射率较高,同时兼顾较高的二阶和三阶非线性效应,且带隙极大,几乎没有多光子吸收效应的影响,使其成为非线性光学相互作用的理想选择。此外,氮化铝的二阶非线性效应对于基于芯片的f-2f自参考锁定载波包络相位至关重要,从而使完全集成化的自参考孤子微梳产生变得可行。然而氮化铝材料天然具有较强的受激拉曼散射,其拉曼增益会对孤子产生所需的克尔非线性增益产生竞争,从而抑制孤子微梳的激发。现有报道的孤子微梳产生均需要较高重频的氮化铝微腔,从而使得拉曼增益峰落在微腔谐振峰的中间,频率重叠部分极少。这要求其重频大于100GHz甚至达到数百GHz,如此高的重频使得其探测以及与现有电子器件的兼容非常困难,需要一种新方法解决低重频(小于100GHz)氮化铝微腔中孤子微梳的产生。因此如何降低氮化铝微腔中拉曼增益与克尔增益的竞争,是我们设计集成氮化铝波导的目标。
光子晶体结构集成微腔在近期被研究报道,通过周期调制沿微腔光传输方向的氮化铝波导的宽度(或者厚度),可产生布拉格带隙效应激发反向传输光场,对微腔的有效折射率进行调控,进而调整微腔的谐振峰频率。根据调制周期数为奇数或偶数,可以选择性的平移或劈裂微腔的谐振峰,实现对谐振峰附近色散的灵活控制。重要的是,经过平移或劈裂的微腔谐振峰,其光学品质因子并不会受到影响,可保持与原微腔品质因子基本一致,从而不影响孤子微梳的激发条件。通过光子晶体微腔结构,可以灵活地反向平移氮化铝微腔的受激拉曼峰附近的两个谐振峰,使得拉曼增益峰与谐振峰的频率重合部分极小,从而削弱拉曼增益的作用,消除拉曼增益对克尔增益的竞争影响,使得孤子微梳产生所必须的克尔增益占据主导作用。
发明内容
本发明的目的是针对现有技术的不足,提供一种面向氮化铝集成光学微腔的低重频孤子微梳产生方法。该方法通过采用光子晶体结构的氮化铝集成光学微环谐振腔,将氮化铝受激拉曼增益峰附近的微腔谐振峰进行平移从而降低受激拉曼效应的作用,使得拉曼增益对于克尔非线性增益的竞争失效,可以在重频(自由光谱范围)小于100GHz的低重频氮化铝光学微腔中产生孤子光频梳。
本发明所提供的低重频孤子微梳产生方法采用了可调谐、连续激光作为泵浦光源。可调谐连续激光在通信波段可实时、连续调谐波长。相比于脉冲激光源,连续光源价格较低,制备技术更为成熟,激光器的体积更为轻便,维护成本很低。通过将可调谐连续激光源从外部注入光学微腔,由高频至低频方向扫描激光器的频率,使其扫过微腔的谐振峰,激发级联四波混频效应,产生孤子微梳。
本发明所述的氮化铝集成光波导,使用单晶氮化铝作为波导芯层材料,氮化铝薄膜沿c-plane(0001)方向生长于蓝宝石材料衬底上,通过光刻实现氮化铝脊型波导芯层结构,该脊型结构由一个较薄的矩形平板层和一个梯形条状层构成,氮化铝波导芯层的上面覆盖二氧化硅包层。
本发明所述的氮化铝集成光学微腔,采用了微环谐振腔结构,该氮化铝波导芯层的微环谐振腔结构,通过一根直波导与氮化铝环形腔波导耦合,通过控制直波导与氮化铝环形腔之间的空隙距离,调节耦合进入氮化铝环形腔的光场的百分比;通过控制氮化铝环形腔的半径使得氮化铝光学微腔的重频小于100GHz。
本发明所提供的低重频孤子微梳产生方法采用了新颖的光子晶体结构微环谐振腔,通过周期调制沿微腔光传输方向的氮化铝波导的宽度(或者厚度),可产生布拉格带隙效应激发反向传输光场,对微腔的有效折射率进行灵活调控,进而调整微腔的谐振峰频率。根据调制周期数为奇数或偶数,可以选择性的平移或劈裂微腔的谐振峰,实现对谐振峰附近色散的灵活控制。通过光子晶体微腔结构,反向平移氮化铝微腔的受激拉曼峰附近的两个谐振峰,使得拉曼增益峰与谐振峰的频率重合部分极小,从而削弱拉曼增益的作用,消除拉曼增益对克尔增益的竞争影响。
本发明提出,利用光子晶体结构的氮化铝集成光学微腔,可以消除氮化铝材料自身的强受激拉曼增益对于克尔非线性增益的竞争影响,通过可调谐连续激光源外部注入微环谐振腔,通过频率扫描产生孤子微梳。此方法可以在重频低于100GHz的氮化铝微腔中产生孤子微梳,并且尺寸小,便于集成,可以使用单一光子晶体结构氮化铝微腔实现。本方法具有普适性,可拓展至其他具有强受激拉曼效应的高非线性集成光学微腔。
本发明的有益效果:
(1)本发明采用了氮化铝作为集成光波导材料。氮化铝材料价格低廉易于获取,易于集成及异质集成,透明窗口极宽,可覆盖深紫外至中红外波段,其折射率较高,同时兼顾较高的二阶和三阶非线性效应,且带隙极大,几乎没有多光子吸收效应的影响。此外,氮化铝的二阶非线性效应对于基于芯片的f-2f自参考锁定载波包络相位至关重要,可使完全集成化的自参考孤子微梳产生变得可行;
(2)本发明采用了直波导耦合环形腔结构作为谐振微腔,微环谐振腔体积紧凑、易于制备,归属为二维微腔结构,其支持的模式较为简单,容易保持基模传输,不受多模非线性互耦合的影响,可通过控制注入泵浦光的耦合方向角度来获取基模传输。可通过控制直波导与环形腔之间的空隙距离,调节耦合进入环形腔的光场的百分比。通过控制环形腔的半径使得光学微腔的重频小于100GHz;
(3)本发明采用了新颖的光子晶体结构优化微环谐振腔,通过反向平移氮化铝微腔的受激拉曼峰附近的两个谐振峰,使得拉曼增益峰与谐振峰的频率重合部分极小,从而削弱拉曼增益的作用,消除拉曼增益对克尔增益的竞争影响。平移后的谐振峰的光学品质因子不会受到影响,依然满足孤子微梳激发的条件。光子晶体结构的制备工艺较成熟,不会引入复杂度;
(4)本发明利用可调谐连续激光源外部注入微环谐振腔,通过频率扫描产生孤子微梳。此方法可以在重频低于100GHz的氮化铝微腔中产生孤子微梳,低重频可与现有成熟电子器件和测试设备兼容。并且整体尺寸小,易于集成,可以使用单一光子晶体结构氮化铝微腔实现。本方法具有普适性,可拓展至其他具有强受激拉曼效应的高非线性集成光学微腔。
附图说明
图1是氮化铝光波导横截面示意图。
图2是光子晶体结构氮化铝集成光学微腔的俯视示意图。
图3是孤子微梳产生的实验装置系统示意图。
图4是所产生孤子微梳的瞬时频域仿真图。
图5是所产生孤子微梳的瞬时时域仿真图。
具体实施方式
下面结合附图和面向氮化铝集成光学微腔的低重频孤子微梳产生方法的具体实施实例对本发明做进一步的说明。
本发明公开了一种面向氮化铝集成光学微腔的低重频孤子微梳产生方法。本发明通过采用光子晶体结构的氮化铝集成光学微环谐振腔,将氮化铝受激拉曼增益峰附近的微腔谐振峰进行平移从而降低受激拉曼效应的作用,使得拉曼增益对于克尔非线性增益的竞争失效,可以在重频小于100GHz的氮化铝光学微腔中产生孤子光频梳。本发明是一种新颖的、有效的方法,它可以使氮化铝微腔在小于100GHz的低重频情况下依然可以产生孤子态光学微梳,有效解决了采用氮化铝光学微腔产生孤子微梳时波导设计、制备等方面的限制。较低的重频可与现有成熟的电子器件、设备兼容适配,可以用于天文光谱学、微波光子学、密集集成光通信等领域。
图1是氮化铝光波导横截面示意图。衬底4为蓝宝石,波导芯层3为单晶氮化铝,第一覆盖层2为二氧化硅,第二覆盖层1为空气。
图2是光子晶体结构氮化铝集成光学微腔的俯视示意图。5为氮化铝条形直波导,6为氮化铝环形腔。可以看出沿环形腔的传输方向上,氮化铝波导的宽度被周期调制,其调制周期数为所需平移的两个微腔谐振峰模式数中较小的那个模式数m的奇数倍2m-1。
在仿真计算中,氮化铝光波导芯层的宽度为1500nm,芯层高度830nm,芯层的平板波导高度为400nm,第一覆盖层的厚度为4μm,衬底层厚度为1000μm,这在实际工艺中易于实现;氮化铝的非线性折射率为2.3×10-19m2/w,受激拉曼增益峰值为0.45cm/GW,拉曼频移量为18.3THz,拉曼增益线宽为138GHz,氮化铝微腔的线性传输损耗为0.1dB/cm,光学品质因子>1×106,微腔的重频为80.8GHz,需要被平移的谐振峰的模式数为226和227,谐振峰平移量为10GHz,这种氮化铝微环谐振腔在实际工艺中易于加工;仿真基于归一化的耦合Ikedamap外部驱动阻尼传输方程,连续光泵浦源的功率为600mW,频率扫描时间为0.4μs。
图3是孤子微梳产生的实验装置系统示意图。可调谐连续激光源7输出泵浦激光,经掺饵光纤放大器8放大后进入带通滤波器9滤除放大器引入的ASE噪声,然后进入偏振控制器10调节为TM传输模式,随后经透镜光纤11,端面入射至光子晶体氮化铝微腔12中,微腔的出射光经透镜光纤13引出,经分束器14分成三路,分别进入光谱仪17观测频域图形,进入连接有示波器18的探测器15监测微腔输出功率变化,进入连接有射频电谱仪19的探测器16观测低频噪声特性。
图4是所产生孤子微梳的瞬时频域仿真图。可以看出经过光子晶体氮化铝集成光学微腔,成功激发了孤子态光学频率梳,该频率梳在频域上呈现等间隔、离散的梳齿结构,其频率间隔严格等于80.8GHz,能够同时激发数十根梳齿。从频域图形的包络来看,所产生的是双孤子态光频率梳,其频域包络为被周期调制的双曲正割形状,调制周期严格等于时域所产生的两个光孤子在时间上差值的倒数。所产生频率梳中心频率处较强的单频成分为残留的连续光泵浦,在后续应用时可以通过带阻滤波器将其滤除。
图5是所产生孤子微梳的瞬时时域仿真图。可以看出时域光场慢变包络呈现两个光孤子形态,其具体形状为两个双曲正割型光孤子坐于一个强的连续光底部背景光上,该背景光为残留的连续光泵浦,光孤子与残留连续光干涉导致脉冲底座呈现不平整的凹陷,但所产生的光孤子依然可以保持长时间稳定。所产生的双孤子具有相同的峰值功率和脉冲宽度,且锁定在一起以相同的速度传输。通过控制泵浦光频率扫描时间可以进一步激发单孤子态微梳,但是其激发受噪声的影响是概率性的,如果需要确定性激发单孤子微梳,后续可以考虑采用泵浦光相位调制、诱导模式杂化激发色散波等方法引入时域势阱,确保低重频孤子微梳的确定性产生。
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (7)

1.一种面向氮化铝集成光学微腔的低重频孤子微梳产生方法,其特征在于:该方法通过光子晶体结构的氮化铝集成光子晶体氮化铝微环谐振腔实现对微腔谐振峰的选择性平移,从而消除受激拉曼增益对于克尔非线性增益的竞争作用,并基于该光子晶体氮化铝微环谐振腔,在重频低于100GHz时产生孤子微梳。
2.根据权利要求1所述的面向氮化铝集成光学微腔的低重频孤子微梳产生方法,其特征在于光子晶体氮化铝微环谐振腔具体加结构如下:使用光子晶体氮化铝作为波导芯层(3)的材料,氮化铝薄膜生长于蓝宝石衬底(4)上,通过光刻实现氮化铝脊型波导结构,该脊型波导结构由一个薄的矩形平板层和一个梯形条状层构成,氮化铝波导芯层(3)上面有第一覆盖层(2),第一覆盖层(2)是二氧化硅包层。
3.根据权利要求2所述的面向氮化铝集成光学微腔的低重频孤子微梳产生方法,其特征在于氮化铝波导芯层(3)包括氮化铝条形直波导(5)和氮化铝环形腔(6),沿氮化铝环形腔(6)的光传输方向对氮化铝波导的宽度或厚度进行周期调制,从而产生布拉格带隙效应激发反向传输光场,实现对氮化铝波导受激拉曼峰附近的微腔谐振峰的选择性平移,使得拉曼增益峰与微腔谐振峰的重叠部分较小,从而削弱拉曼增益的作用,使其无法通过与克尔非线性增益的竞争来限制孤子微梳的产生。
4.根据权利要求2所述的面向氮化铝集成光学微腔的低重频孤子微梳产生方法,其特征在于基于该氮化铝波导芯层(3)的微环谐振腔结构,通过一根直波导与氮化铝环形腔(6)波导耦合,通过控制直波导与氮化铝环形腔(6)之间的空隙距离,调节耦合进入氮化铝环形腔(6)的光场的百分比;通过控制氮化铝环形腔(6)的半径使得氮化铝光学微腔的重频小于100GHz。
5.根据权利要求3或4所述的面向氮化铝集成光学微腔的低重频孤子微梳产生方法,其特征在于调制周期数为所需平移的两个微腔谐振峰模式数中较小的那个模式数m的奇数倍2m-1。
6.根据权利要求3或4所述的面向氮化铝集成光学微腔的低重频孤子微梳产生方法,其特征在于利用光子晶体氮化铝微环谐振腔,通过可调谐激光源泵浦该微环谐振腔实现孤子态光学微梳的产生。
7.根据权利要求3或4所述的面向氮化铝集成光学微腔的低重频孤子微梳产生方法,其特征在于该方法使用的装置如下:可调谐连续激光源(7)输出泵浦激光,经掺饵光纤放大器(8)放大后进入带通滤波器(9)滤除放大器引入的ASE噪声,然后进入偏振控制器(10)调节为TM传输模式,随后经透镜光纤(11),端面入射至光子晶体氮化铝微环谐振腔(12)中,微环谐振腔的出射光经透镜光纤(13)引出,经分束器(14)分成三路,分别进入光谱仪(17)观测频域图形,进入连接有示波器(18)的探测器(15)监测微腔输出功率变化,进入连接有射频电谱仪(19)的探测器(16)观测低频噪声特性;利用光子晶体结构的氮化铝集成光学微腔,消除氮化铝材料自身的强受激拉曼增益对于克尔非线性增益的竞争影响,通过可调谐连续激光源外部注入微环谐振腔,通过频率扫描产生孤子微梳;在重频低于100GHz的氮化铝微腔中产生孤子微梳,并且尺寸小,便于集成。
CN202310726441.9A 2023-06-19 2023-06-19 一种面向氮化铝集成光学微腔的低重频孤子微梳产生方法 Pending CN116661211A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310726441.9A CN116661211A (zh) 2023-06-19 2023-06-19 一种面向氮化铝集成光学微腔的低重频孤子微梳产生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310726441.9A CN116661211A (zh) 2023-06-19 2023-06-19 一种面向氮化铝集成光学微腔的低重频孤子微梳产生方法

Publications (1)

Publication Number Publication Date
CN116661211A true CN116661211A (zh) 2023-08-29

Family

ID=87709598

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310726441.9A Pending CN116661211A (zh) 2023-06-19 2023-06-19 一种面向氮化铝集成光学微腔的低重频孤子微梳产生方法

Country Status (1)

Country Link
CN (1) CN116661211A (zh)

Similar Documents

Publication Publication Date Title
CN109462132B (zh) 基于正常色散平坦氮化硅光波导的平坦光频率梳产生系统
US11909165B2 (en) Driven-cavity femtosecond sources
CN111711062A (zh) 一种中红外光学频率梳产生的方法及装置
CN115173215A (zh) 基于片上克尔光学微腔的高重复频率宽光谱飞秒脉冲产生装置
Sohler et al. Frequency Conversion In Ti: LiNbO [sub] 3 [/sub] Optical Waveguides
CN114336227B (zh) 一种基于低畸变耗散克尔孤子的微波信号产生装置
CN116661211A (zh) 一种面向氮化铝集成光学微腔的低重频孤子微梳产生方法
Ji et al. Design of partially etched GaP-OI microresonators for two-color Kerr soliton generation at NIR and MIR
CN115425512A (zh) 一种基于单片集成正交双孤子光梳的微波产生方法
CN115016190A (zh) 基于薄膜铌酸锂的自参考锁定光频梳产生系统
WO2004107033A1 (en) Frequency comb generator
Xiao et al. Modeling the Kerr comb of a pulse pumped FP microresonator with normal dispersion
Ledezma et al. Widely-tunable optical parametric oscillator in lithium niobate nanophotonics
Cheng et al. On-chip synchronous pumped $\chi^{(3)} $ optical parametric oscillator on thin-film lithium niobate
Song et al. Octave-spanning Kerr soliton microcombs on thin-film lithium niobate
Helgason et al. Power-efficient soliton microcombs in anomalous-dispersion photonic molecules
Ding et al. Kerr frequency comb with varying FSR spacing based on Si 3 N 4 micro-resonator
Ding et al. Optical O-band soliton comb generation in photonic integrated silicon nitride microresonator chips
Maleki et al. Whispering gallery mode lithium niobate microresonators for photonics applications
Cheng et al. On-chip Kerr broadening of an electro-optic pulse source on thin-film lithium niobate
Kashiwagi et al. High repetition rate visible frequency comb generation from electro-optic modulation in the 1550 nm region
Anderson et al. Broadband efficient soliton microcombs in pulse-driven photonic microresonators
Li et al. Experimental observation of Kerr-Raman solitons in a normal-dispersion FP resonator
Lu et al. Efficient widely-separated optical parametric oscillation
Cheng et al. Nonlinear Broadening of an Electro-Optic Pulse Source on Thin-Film Lithium Niobate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination