CN116654326A - 一种尺寸兼容、功率可扩展的无人机无线充电系统 - Google Patents

一种尺寸兼容、功率可扩展的无人机无线充电系统 Download PDF

Info

Publication number
CN116654326A
CN116654326A CN202310562469.3A CN202310562469A CN116654326A CN 116654326 A CN116654326 A CN 116654326A CN 202310562469 A CN202310562469 A CN 202310562469A CN 116654326 A CN116654326 A CN 116654326A
Authority
CN
China
Prior art keywords
coil
unmanned aerial
aerial vehicle
phi
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310562469.3A
Other languages
English (en)
Inventor
宋凯
杨丰硕
姜金海
孙传禹
兰宇
陈宛奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202310562469.3A priority Critical patent/CN116654326A/zh
Publication of CN116654326A publication Critical patent/CN116654326A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/37Charging when not in flight
    • B64U50/38Charging when not in flight by wireless transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提出一种尺寸兼容、功率可扩展的无人机无线充电系统。其中提出了原副边磁集成解耦耦合机构的设计方法,有效解决耦合机构与复合谐振拓扑磁集成问题,提高了空间利用率,构建结构尺寸、功率等级、电池电压可扩展的磁集成模块化接收端,满足了不同尺寸、不同功率等级的无人机充电的需求,对无人机无线充电技术的发展和完善具有重要的推动作用。

Description

一种尺寸兼容、功率可扩展的无人机无线充电系统
技术领域
本发明属于无人机无线充电技术领域,特别是涉及一种尺寸兼容、功率可扩展的无人机无线充电系统。
背景技术
无人机作为高新技术装备具有无人员伤亡、效费比高和隐蔽性强等核心优势,在侦察预警、跟踪定位、精确制导打击目标等各类战略和战术任务中发挥着至关重要的作用。然而单无人机系统的运载能力、覆盖半径等极其有限,采用多架无人机协同工作的无人机集群,可显著提高无人机系统工作效能,随着无人机逐渐向三大产业、军用等各个方面渗透,其工作模式必将向集群式、智能化方向发展。但是,在动力电池能量密度无法取得突破性研究进展的前提下,无人机续航能力极为有限,中小型多旋翼无人机续航时间一般小于40分钟,需频繁对其进行电能补给,成百上千架无人机集群复杂繁琐的有线充电流程已严重限制其发展和应用。
无人机集群无线充电技术能够实现全过程无人化和自动化的电能补给,具有物理隔离、安全可靠、灵活方便和环境适应性强等核心优势,是解决无人机集群电能补给问题的有效途径。但无人机集群中使用的无人机数量及型号差异大,采用一对一无线充电模式需要大量冗余电力电子设备,占用过多的地面资源,不利于无人机批量充电。如何设计无线充电系统以满足不同尺寸、不同功率等级的无人机充电的需求是目前的难题。
发明内容
为了克服现有技术的不足,本发明提出一种基于匀强磁场发射端磁集成模块化接收端的尺寸兼容、功率可扩展的无人机无线充电系统,其中提出了原副边磁集成解耦耦合机构的设计方法,有效解决耦合机构与复合谐振拓扑磁集成问题,提高了空间利用率,构建结构尺寸、功率等级、电池电压可扩展的磁集成模块化接收端,满足了不同尺寸、不同功率等级的无人机充电的需求,对无人机无线充电技术的发展和完善具有重要的推动作用。
本发明是通过以下技术方案实现的,本发明提出一种尺寸兼容、功率可扩展的无人机无线充电系统,所述系统包括高频逆变电源、磁集成的匀强磁场发射端和磁集成的模块化接收端;所述高频逆变电源包括直流输入、高频逆变电路、驱动及控制电路、稳压供电电路、无线通信模块和谐振补偿电容矩阵,所述磁集成的匀强磁场发射端包括多个串联的平面圆形发射线圈和半圆形双D补偿电感线圈,所述磁集成的模块化接收端包括螺线管接收线圈、反极性双螺线管补偿电感线圈、谐振补偿电容、高频整流滤波电路、控制保护电路、稳压供电电路和无线通信模块。
进一步地,所述系统采用LCC-LCC补偿拓扑结构,故磁耦合机构包含原副边的补偿电感线圈,不同半径的圆形发射线圈Lp1、Lp2、Lp3、Lp4串联在一起,获得强度均匀的近场横向磁场,两个半圆形原边补偿电感线圈Lfp1、Lfp2以双D线圈形式串联在一起位于发射端中间,其半径小于最小的发射线圈Lp4;发射线圈的最大尺寸要大于大型无人机尺寸,以保证发射端能够兼容多种型号的无人机。
进一步地,针对起落架具有横轴的无人机,螺线管形接收线圈Ls缠绕在多旋翼无人机机架横轴上,螺线管形副边补偿电感线圈Lfs1顺/逆时针缠绕在多旋翼无人机机架横轴接收线圈的上方,螺线管形副边补偿电感线圈Lfs2逆/顺时针缠绕在多旋翼无人机机架横轴接收线圈的下方,两个副边补偿电感线圈串联,绕制方向相反;接收线圈和补偿电感线圈都与起落架共型化,线圈外径略大于大型无人机横轴直径,通过在线圈中间填充弹性材料以兼容适配起落架横轴不同粗细的大、中、小型无人机。
进一步地,定义Φp为发射线圈产生的垂直向上的磁通,Φfp1为原边补偿电感线圈产生的垂直向上的磁通,Φfp2为原边补偿电感线圈产生的垂直向下的磁通,由于串联的原边补偿电感线圈内部的电流大小一致,因此Φfp1与Φfp2的绝对值一样,方向相反,原边补偿电感线圈的总磁通为0,与发射线圈、接收线圈解耦;定义Φs为接收线圈产生的水平向上的磁通,Φfs1为副边补偿电感线圈产生的水平向上的磁通,Φfs2为副边补偿电感线圈产生的水平向下的磁通,由于串联的副边补偿电感线圈内部的电流大小一致,因此Φfs1与Φfs2的绝对值一样,方向相反,副边补偿电感线圈的总磁通为0,与发射线圈、接收线圈解耦。
进一步地,为实现系统接收端的模块化,补偿拓扑网络采用恒压输入恒流输出的双边LCC结构。
进一步地,模块化接收端的数量由无人机需求的功率决定,1~n个;模块化接收端在滤波电容后级并联以实现功率扩展。
进一步地,双边LCC结构中,为实现发射端与接收端之间的调谐匹配,补偿电容的大小应满足:
n为模块化接收端个数,互感与输入输出功率的关系式分别为:
本发明的有益效果为:
本发明提出一种基于匀强磁场发射端磁集成模块化接收端的尺寸兼容、功率可扩展的无人机无线充电系统,其中提出了原副边磁集成解耦耦合机构的设计方法,有效解决耦合机构与复合谐振拓扑磁集成问题,提高了空间利用率,构建结构尺寸、功率等级、电池电压可扩展的磁集成模块化接收端,满足了不同尺寸、不同功率等级的无人机充电的需求,对无人机无线充电技术的发展和完善具有重要的推动作用。
附图说明
图1是本发明提出的无人机无线充电系统总览图;
图2是磁耦合机构示意图;
图3是磁集成正交解耦磁耦合机构和补偿电感线圈示意图;
图4是系统模块化电路拓扑示意图;
图5是无人机无线充电系统控制方法流程图;
图6是不同尺寸、功率等级无人机的无线充电示意图。
具体实施方式
下面将结合本发明实施例中的附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明基于匀强磁场发射端、磁集成模块化接收端的磁耦合机构,提出了一种尺寸兼容、功率可扩展的无人机无线充电系统,系统总览图如图1所示。系统包括高频逆变电源、磁集成的匀强磁场发射端、磁集成的模块化接收端。高频逆变电源包括直流输入、高频逆变电路、驱动及控制电路、稳压供电电路、无线通信模块和谐振补偿电容矩阵,匀强磁场发射端包括多个串联的平面圆形线圈、半圆形双D补偿电感线圈,模块化接收端包括螺线管接收线圈、反极性双螺线管补偿电感线圈、谐振补偿电容、高频整流滤波电路、控制保护电路、稳压供电电路、无线通信模块。
所述系统采用LCC-LCC补偿拓扑结构,故磁耦合机构包含原副边的补偿电感线圈,系统磁耦合机构的示意图如图2所示。不同半径的圆形发射线圈Lp1、Lp2、Lp3、Lp4串联在一起,获得强度均匀的近场横向磁场(发射线圈数量可以增多以扩大匀强磁场面积)。两个半圆形原边补偿电感线圈Lfp1、Lfp2以双D线圈形式串联在一起位于发射端中间,其半径小于最小的发射线圈Lp4。发射线圈的最大尺寸要大于大型无人机尺寸,以保证发射端能够兼容多种型号的无人机。针对起落架具有横轴的无人机,螺线管形接收线圈Ls缠绕在多旋翼无人机机架横轴上,螺线管形副边补偿电感线圈Lfs1顺(逆)时针缠绕在多旋翼无人机机架横轴接收线圈的上方,螺线管形副边补偿电感线圈Lfs2逆(顺)时针缠绕在多旋翼无人机机架横轴接收线圈的下方,两个副边补偿电感线圈串联,绕制方向相反。接收线圈和补偿电感线圈都与起落架共型化,线圈外径略大于大型无人机横轴直径,通过在线圈中间填充弹性材料以兼容适配起落架横轴不同粗细的大、中、小型无人机。接收线圈、副边补偿电感线圈内侧有柔性铁基纳米晶带材与机架横轴贴附,以增强耦合、提高自互感。
本发明提出的磁耦合机构原副边磁集成原理示意图如图3所示。为便于说明,发射线圈、接收线圈都只显示一个。黑色实线箭头表示线圈电流方向,浅色叉号和点号表示发射端磁通方向,浅色虚线箭头表示接收端磁通方向。Φp为发射线圈产生的垂直向上的磁通,Φfp1为原边补偿电感线圈产生的垂直向上的磁通,Φfp2为原边补偿电感线圈产生的垂直向下的磁通,由于串联的原边补偿电感线圈内部的电流大小一致,因此Φfp1与Φfp2的绝对值一样,方向相反,原边补偿电感线圈的总磁通为0,与发射线圈、接收线圈解耦。Φs为接收线圈产生的水平向上的磁通,Φfs1为副边补偿电感线圈产生的水平向上的磁通,Φfs2为副边补偿电感线圈产生的水平向下的磁通,由于串联的副边补偿电感线圈内部的电流大小一致,因此Φfs1与Φfs2的绝对值一样,方向相反,副边补偿电感线圈的总磁通为0,与发射线圈、接收线圈解耦。
为实现系统接收端的模块化,补偿拓扑网络采用恒压输入恒流输出的双边LCC结构。系统谐振拓扑结构图如图4所示,Uin为系统激励端输出的高频交流电压,Lp为串联的发射线圈总自感,Ls为接收线圈自感,Rp为发射线圈内阻,Rs为接收线圈内阻,M表示的是原边侧与副边侧之间的互感,Lfp为原边补偿电感线圈自感,Lfs为副边补偿电感线圈自感,Ro为无人机电池的等效负载,Uo为负载输出的电压。模块化接收端由磁集成的接收线圈、副边补偿电感线圈、谐振补偿电容、全桥不控整流、滤波电容等组成,模块化接收端的数量由无人机需求的功率决定,1~n个。模块化接收端在滤波电容后级并联以实现功率扩展。
LCC补偿结构中,为实现发射端与接收端之间的调谐匹配,补偿电容的大小应满足:
n为模块化接收端个数,互感与输入输出功率的关系式分别为:
无线充电控制方法如图5所示,所述控制方法具体为:无人机完成任务或电路不足降落到充电平台上,无人机与高频逆变电源通信发送当前无人机电池电压,逆变电源根据电压判断无人机的功率等级,逆变电源根据功率等级移相调节逆变输出电压以匹配功率,无人机判断是否充电完成,如果未完成则重新判断,如果完成了则逆变电源停止充电,无人机从充电平台起飞。
图6是不同尺寸、功率等级无人机的无线充电示意图,为便于直观示意,已隐藏无人机和其他部分,只显示耦合机构,三种无人机的起落架尺寸各不相同。线圈选用的利兹线的线径为3mm,发射线圈Lp1的外径为480mm,匝数为13匝,发射线圈Lp2的外径为352mm,匝数为10匝,发射线圈Lp3的外径为242mm,匝数为7匝,发射线圈Lp4的外径为150mm,匝数为5匝;原边补偿电感线圈Lfp的外径为80mm,匝数为10匝;接收线圈Ls的外径为18mm,匝数为16匝;副边补偿电感线圈Lfs的外径为18mm,匝数为8匝;接收端纳米晶的厚度为0.6mm,外径为14.8mm,长度为80mm,磁导率为1000。100W小型无人机具有1个接收端模块,降落位置位于发射线圈Lp3和Lp4之间,调节逆变输出电压为100V使接收端输出功率100W、输出电压24V。200W小型无人机具有2个接收端模块,降落位置位于发射线圈Lp2和Lp3之间,调节逆变输出电压为150V使接收端输出功率200W、输出电压36V。400W小型无人机具有4个接收端模块,降落位置位于发射线圈Lp1和Lp2之间,调节逆变输出电压为180V使接收端输出功率400W、输出电压48V。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

Claims (7)

1.一种尺寸兼容、功率可扩展的无人机无线充电系统,其特征在于:所述系统包括高频逆变电源、磁集成的匀强磁场发射端和磁集成的模块化接收端;所述高频逆变电源包括直流输入、高频逆变电路、驱动及控制电路、稳压供电电路、无线通信模块和谐振补偿电容矩阵,所述磁集成的匀强磁场发射端包括多个串联的平面圆形发射线圈和半圆形双D补偿电感线圈,所述磁集成的模块化接收端包括螺线管接收线圈、反极性双螺线管补偿电感线圈、谐振补偿电容、高频整流滤波电路、控制保护电路、稳压供电电路和无线通信模块。
2.根据权利要求1所述的系统,其特征在于,所述系统采用LCC-LCC补偿拓扑结构,故磁耦合机构包含原副边的补偿电感线圈,不同半径的圆形发射线圈Lp1、Lp2、Lp3、Lp4串联在一起,获得强度均匀的近场横向磁场,两个半圆形原边补偿电感线圈Lfp1、Lfp2以双D线圈形式串联在一起位于发射端中间,其半径小于最小的发射线圈Lp4;发射线圈的最大尺寸要大于大型无人机尺寸,以保证发射端能够兼容多种型号的无人机。
3.根据权利要求2所述的系统,其特征在于,螺线管形接收线圈Ls缠绕在多旋翼无人机机架横轴上,螺线管形副边补偿电感线圈Lfs1顺/逆时针缠绕在多旋翼无人机机架横轴接收线圈的上方,螺线管形副边补偿电感线圈Lfs2逆/顺时针缠绕在多旋翼无人机机架横轴接收线圈的下方,两个副边补偿电感线圈串联,绕制方向相反;接收线圈和补偿电感线圈都与起落架共型化,线圈外径略大于大型无人机横轴直径,通过在线圈中间填充弹性材料以兼容适配起落架横轴不同粗细的大、中、小型无人机。
4.根据权利要求3所述的系统,其特征在于,定义Φp为发射线圈产生的垂直向上的磁通,Φfp1为原边补偿电感线圈产生的垂直向上的磁通,Φfp2为原边补偿电感线圈产生的垂直向下的磁通,由于串联的原边补偿电感线圈内部的电流大小一致,因此Φfp1与Φfp2的绝对值一样,方向相反,原边补偿电感线圈的总磁通为0,与发射线圈、接收线圈解耦;定义Φs为接收线圈产生的水平向上的磁通,Φfs1为副边补偿电感线圈产生的水平向上的磁通,Φfs2为副边补偿电感线圈产生的水平向下的磁通,由于串联的副边补偿电感线圈内部的电流大小一致,因此Φfs1与Φfs2的绝对值一样,方向相反,副边补偿电感线圈的总磁通为0,与发射线圈、接收线圈解耦。
5.根据权利要求4所述的系统,其特征在于,为实现系统接收端的模块化,补偿拓扑网络采用恒压输入恒流输出的双边LCC结构。
6.根据权利要求5所述的系统,其特征在于,模块化接收端的数量由无人机需求的功率决定,1~n个;模块化接收端在滤波电容后级并联以实现功率扩展。
7.根据权利要求6所述的系统,其特征在于,双边LCC结构中,为实现发射端与接收端之间的调谐匹配,补偿电容的大小应满足:
n为模块化接收端个数,互感与输入输出功率的关系式分别为:
CN202310562469.3A 2023-05-18 2023-05-18 一种尺寸兼容、功率可扩展的无人机无线充电系统 Pending CN116654326A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310562469.3A CN116654326A (zh) 2023-05-18 2023-05-18 一种尺寸兼容、功率可扩展的无人机无线充电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310562469.3A CN116654326A (zh) 2023-05-18 2023-05-18 一种尺寸兼容、功率可扩展的无人机无线充电系统

Publications (1)

Publication Number Publication Date
CN116654326A true CN116654326A (zh) 2023-08-29

Family

ID=87711073

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310562469.3A Pending CN116654326A (zh) 2023-05-18 2023-05-18 一种尺寸兼容、功率可扩展的无人机无线充电系统

Country Status (1)

Country Link
CN (1) CN116654326A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117068419A (zh) * 2023-10-16 2023-11-17 中国人民解放军海军工程大学 一种适用于无人机群的无线充电系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117068419A (zh) * 2023-10-16 2023-11-17 中国人民解放军海军工程大学 一种适用于无人机群的无线充电系统
CN117068419B (zh) * 2023-10-16 2024-02-13 中国人民解放军海军工程大学 一种适用于无人机群的无线充电系统

Similar Documents

Publication Publication Date Title
CN111756121B (zh) 大功率无线供电耦合机构及其参数设计方法
CN116654326A (zh) 一种尺寸兼容、功率可扩展的无人机无线充电系统
Wang et al. Analysis and design of cubic magnetic coupler for high distance-to-diameter ratio IPT systems
Cai et al. A misalignment tolerance and lightweight wireless charging system via reconfigurable capacitive coupling for unmanned aerial vehicle applications
CN112510848B (zh) 一种用于无人机无线充电的轻量化正交型螺线管磁耦合机构
Cai et al. Development of a cross-type magnetic coupler for unmanned aerial vehicle IPT charging systems
CN111884358A (zh) 基于高压线取能的巡检无人机无线充电系统、装置及方法
Mou et al. Near-field wireless power transfer technology for unmanned aerial vehicles: A systematical review
Song et al. A high-efficiency wireless power transfer system for unmanned aerial vehicle considering carbon fiber body
CN112421795A (zh) 一种多线圈多负载远距离无线电能传输系统
Chai et al. Design of two orthogonal transmitters with double l-type ferrite for the wireless charging system in unmanned aerial vehicles
Obayashi et al. 400-W UAV/drone inductive charging system prototyped for overhead power transmission line patrol
Shaonan et al. Research on magnetic integration coupling mechanism of UAV wireless power transfer system
CN111775738A (zh) 一种提升无人机无线充电系统抗偏移能力的耦合机构
CN108512273B (zh) 基于变频移相控制的ss谐振无线电能传输系统参数设计方法
CN114407689B (zh) 一种无人潜航器无线充电抗横滚均匀磁场磁耦合机构
CN115693981A (zh) 一种具有紧凑接收端的无线电能传输补偿拓扑结构及系统
CN114884228A (zh) 一种双端磁集成的无线充电系统磁耦合机构
CN111439142B (zh) 适用于无人机的电磁谐振耦合式无线充电效率优化方法
Feng et al. A Solenoid Magnetic Coupler With a Rotating Magnetic Field for UAVs Wireless Charging
CN118199280B (zh) 一种水下无人航行器的无线充电系统及应用方法
Cao et al. Light-weight unmanned aerial vehicle wireless power transfer system based on hollow copper coated aluminum tubes
Zhang et al. Research on constant current and constant voltage control method for UAV based on switching of coupling structure
CN118254987A (zh) 一种强互操作性无人机充电磁耦合机构及无线充电系统
Guo et al. The development of wireless charging technology in the electric vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination