CN116651410A - 一种淀粉基光响应大气集水材料的制备方法 - Google Patents

一种淀粉基光响应大气集水材料的制备方法 Download PDF

Info

Publication number
CN116651410A
CN116651410A CN202310477884.9A CN202310477884A CN116651410A CN 116651410 A CN116651410 A CN 116651410A CN 202310477884 A CN202310477884 A CN 202310477884A CN 116651410 A CN116651410 A CN 116651410A
Authority
CN
China
Prior art keywords
starch
collecting material
atmospheric water
cfa
based light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310477884.9A
Other languages
English (en)
Inventor
裴向军
周立宏
张宏丽
茹旭
杜杰
张卫彪
杜鹏
辜鑫莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China State Railway Group Co Ltd
Chengdu Univeristy of Technology
China Railway Economic and Planning Research Institute
Original Assignee
China State Railway Group Co Ltd
Chengdu Univeristy of Technology
China Railway Economic and Planning Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China State Railway Group Co Ltd, Chengdu Univeristy of Technology, China Railway Economic and Planning Research Institute filed Critical China State Railway Group Co Ltd
Priority to CN202310477884.9A priority Critical patent/CN116651410A/zh
Publication of CN116651410A publication Critical patent/CN116651410A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/046Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种淀粉基光响应大气集水材料的制备方法,包括如下步骤:将淀粉、丙烯酸、丙烯酰胺、N′,N′‑亚甲基双丙烯酰胺分散在羧基化碳纳米管悬浮液中,在常温下磁力搅拌使其充分分散,通入氮气去除溶解氧,加热的条件下淀粉完全糊化后加入过硫酸铵进行反应,得到CFA水凝胶;CFA水凝胶在去离子水中浸泡,将其冻干后浸入LiCl溶液,烘干得到羧基碳纳米管诱导淀粉基光响应大气集水材料,解决了现有技术存在的吸湿率低、不能有效释放水分的问题。

Description

一种淀粉基光响应大气集水材料的制备方法
技术领域
本发明涉及大气集水材料领域,具体涉及一种淀粉基光响应大气集水材料的制备方法。
背景技术
大气集水是从环境中捕获水来产生清洁水进而解决全球缺水问题的一项很有潜力的技术。寻找理想的吸附剂是具有挑战的,其应该具有高吸水性、低成本、生态型以及简单的合成程序等特性。近些年用于大气集水的吸附剂仍具有一些障碍:1)物理吸附剂:硅胶、沸石等的吸附能力较低,且水分回收困难。2)聚合物吸附剂:金属有机框架(MOF)是金属离子与有机配位体组合成的三维结构,具有高吸附能力,但价格昂贵无法实现大规模应用。
水凝胶由于聚合物网络产生的优异性能使其被广泛关注。最新的研究将水凝胶和吸湿盐组装在一起,使其成为具有高吸附量、高保水性的大气集水材料。被广泛使用的聚(N-异丙基丙烯酰胺)的由于高成本及环境危害性仍需探究。目前生物聚合物被用于大气集水的有海藻酸钠和卡拉胶,但其使用较高的吸湿盐浓度应用时仍旧存在障碍,且不能有效释放水分。
发明内容
本发明提供了一种淀粉基光响应大气集水材料的制备方法,解决了现有技术存在的吸湿率低、不能有效释放水分的问题。
为了解决该技术问题,本发明提供了如下技术方案:
一种淀粉基光响应大气集水材料的制备方法,包括如下步骤:
将淀粉、丙烯酸、丙烯酰胺、N′,N′-亚甲基双丙烯酰胺分散在羧基化碳纳米管悬浮液中,在常温下磁力搅拌使其充分分散,通入氮气去除溶解氧,加热的条件下淀粉完全糊化后加入过硫酸铵进行反应,得到CFA水凝胶;
CFA水凝胶在去离子水中浸泡,将其冻干后浸入LiCl溶液,烘干得到羧基碳纳米管诱导淀粉基光响应大气集水材料。
将单体接枝在淀粉骨架得到具有三维网络状的超级吸水凝胶,单体分子链上的-COOH、-CONH2、-OH强亲水基团可以增强网络结构的吸水性能,提高其吸水能力。将AA/AM/淀粉双网络水凝胶与羧基化多壁碳纳米管(FCNT)、吸湿盐(LiCl)结合在一起,可以在较宽的相对湿度(RH)范围内具有良好的吸附水蒸汽的能力。由于羧基碳纳米管(FCNT)的存在使CFA-LiCl水凝胶在整个太阳光谱上具有较高的宽谱带吸收,使得CFA-LiCl利用太阳能进行水分释放。
优选的,淀粉、丙烯酸、丙烯酰胺的质量比为1:0.5-1:1。
通过调整淀粉、丙烯酸、丙烯酰胺的比例,使得单体在淀粉上进行接枝聚合,生成的网络状凝胶具有比表面积大,结构稳定的特点。
优选的,N′,N′-亚甲基双丙烯酰胺的加入量为丙烯酸和丙烯酰胺单体质量的0.6%,过硫酸铵的加入量为丙烯酸和丙烯酰胺单体质量的0.16%。
优选的,羧基化碳纳米管悬浮液的浓度为0.1wt%,羧基化碳纳米管悬浮液的用量与淀粉的用量的体积质量之比为20:1。
优选的,加热的温度为75-85℃。
优选的,烘干的温度为75-85℃。
优选的,LiCl 溶液的重量百分比为10wt%。
优选的,在去离子水中浸泡时间为48小时,浸入LiCl溶液的时间为24小时。
本方案还提供了上述的一种淀粉基光响应大气集水材料的制备方法得到的大气集水材料。
本发明和现有技术相比,具有以下优点:超吸水凝胶CFA-LiCl将AA/AM/淀粉双网络水凝胶与羧基化多壁碳纳米管(FCNT)、吸湿盐(LiCl)结合在一起,可以在较宽的相对湿度(RH)范围内具有良好的吸附水蒸汽的能力。CFA-LiCl在相对湿度90%的条件下实现最大吸附容量-8.2gg-1,吸水效率明显高于其他大部分大气集水材料。值得注意的是,这种材料非常便宜且制作工艺简单,突出了生物聚合物应用于高效吸附水蒸气方向,实现生态节能和可持续应用。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1(a)为在相对湿度25%、60%和90%下,CFA-LiCl的水蒸气吸附行为;图1 (b) 为CFA水凝胶的水中和水蒸汽的吸收;图1 (c)为本发明和其他报道中的AWH的吸水能力总结;图1 (d) 为CFA-LiCl水凝胶的吸湿-释放循环;
图2 (a)为CFA-LiCl水凝胶在不同光强下的时间依赖性表面温度变化和红外热成像图像;图2 (b) 为CFA-LiCl水凝胶在不同光照强度的水解析速率曲线;
图3 (a)为基于CFA-LiCl水凝胶的大气集水和太阳能清洁水产生的示意图和照片;图3 (b)为在太阳辐射下释放水照片;图3 (c)为CFA-LiCl室外条件下的大气集水;图3(d)为在室外条件下进行太阳能清洁水生产;图3 (e)为太阳蒸发后冷凝水中的初级离子浓度。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例一
将0.15g淀粉、0.075g 丙烯酸(中和度80%)、0.15g丙烯酰胺、N′,N′-亚甲基双丙烯酰胺(单体重量的0.6%)分散在3ml浓度为0.1wt%的羧基化碳纳米管悬浮液中,在常温下磁力搅拌10分钟使其充分分散,通入氮气10分钟去除溶解氧,80℃的条件下淀粉完全糊化后加入过硫酸铵(单体重量的1.6%)并保持30分钟。得到CFA水凝胶。
CFA水凝胶在去离子水中浸泡48小时,将其冻干后浸入LiCl(10wt%)24小时,在80℃烘干得到CFA-LiCl水凝胶。
实施例二
将0.15g 淀粉、0.1g丙烯酸(中和度80%)、0.15g丙烯酰胺、N′,N′-亚甲基双丙烯酰胺(单体重量的0.6%)分散在3ml浓度为0.1wt%的羧基化碳纳米管悬浮液中,在常温下磁力搅拌10分钟使其充分分散,通入氮气10分钟去除溶解氧,80℃的条件下淀粉完全糊化后加入过硫酸铵(单体重量的1.6%)并保持30分钟。得到CFA水凝胶。
CFA水凝胶在去离子水中浸泡48小时,将其冻干后浸入LiCl(10wt%)24小时,在80℃烘干得到CFA-LiCl水凝胶。
实施例三
将0.15g 淀粉、0.15g丙烯酸(中和度80%)、0.15g丙烯酰胺、N′,N′-亚甲基双丙烯酰胺(单体重量的0.6%)分散在3ml浓度为0.1wt%的羧基化碳纳米管悬浮液中,在常温下磁力搅拌10分钟使其充分分散,通入氮气10分钟去除溶解氧,80℃的条件下淀粉完全糊化后加入过硫酸铵(单体重量的1.6%)并保持30分钟。得到CFA水凝胶。
CFA水凝胶在去离子水中浸泡48小时,将其冻干后浸入LiCl(10wt%)24小时,在80℃烘干得到CFA-LiCl水凝胶。
实施例1制得的水凝胶的室内实验在恒温恒湿箱中进行,研究了不同相对湿度下的吸湿率,以系统的评估CFA-LiCl的AWH。如动力学曲线(图1a)所示,在25℃时相对湿度25%时,饱和含水量(1.3gg-1)。表明在低湿度条件下的有效水蒸气吸附。对于较高的湿度下观察到较高的水蒸气吸附,因为单位时间内CFA-LiCl可以捕获更多的水蒸气。在相对湿度为60%、 90%时达到水蒸气吸附量2.3、8.2g g-1。CFA-LiCl充分水和后体积明显变化,体积膨胀并将捕获的水分储存在聚合物网络中并防止其泄露。
氯化锂具有很高的吸湿性,但在吸附量为2.3g g-1时便全部溶解,其水容量很低,无法满足大气集水要求。而CFA其超吸水性可以克服这种困难。如图1b所示CFA 在水中的饱和含水量511g g-1,但其对于水蒸气的吸附能力不足-只有0.8g g-1。因此,将氯化锂与CFA水凝胶整合在一起以实现高效AWH。
通过交替进行吸湿-解析循环,以评估CFA-LiCl的用于AWH的耐久性,在相对湿度90%和室温25℃的环境下进行水蒸气吸附,解析在80℃的烘箱中完成。在5个周期内未观察到结构变形,表明CFA-LiCl具有良好的结构稳定性。吸水率无明显衰减,水凝胶具有良好的性能稳定性(图1d)。锂离子仍均匀分布在CFA-LiCl中。在30-90%的相对湿度范围内达到了最高的饱和含水量。相应的吸湿量超过了大多数大气集水材料(图1c)。
利用模拟太阳光在不同光强下研究了CFA-LiCl的光热转化性质,对与不同光照强度下CFA-LiCl的太阳能驱动水分释放进行研究,将吸附量为2.3gg-1的CFA-LiCl在氙灯模拟太阳光照。在最初90分钟水分快速释放,随着水凝胶含水率降低,释放速度变慢。 CFA-LiCl水凝胶在光强为0.5、1、1.5、2kWm-2时,10分钟内可以达到37、46、50、55℃(图2a)。通过FCNT将光能转化为热能实现水分的快速释放,三小时后含水量降至41%、15%、10%和6%(图2b)。由于FCNT的存在使CFA-LiCl水凝胶在整个太阳光谱上具有较高的宽谱带吸收。这使得CFA-LiCl利用太阳能进行水分释放成为可能。
在干旱和半干旱地区通常在白天表现为较低的湿度和较高的温度,而在夜晚表现为中等湿度和低环境温度。因此,在本研究中,CFA-LiCl在夜间吸收空气中的水蒸气,而在白天通过太阳能加热以释放清洁水(图3a)。将干燥的CFA-LiCl放置在镂空网支架上,并暴露于大气中以收集水分,说明CFA是具有潜力的AWH的低成本材料。随后,CFA-LiCl中的水分通过太阳能光热转化生成汽化水,冷凝流向底部后进行收集。随着CFA-LiCl表面温度的不断升高,CFA-LiCl能够在太阳的加热下有效的进行大气水分收集以及持续释放(图3b)。
AWH实验在整个白天夜间为一个周期,在室外进行了大气集水和太阳能清洁水生产实验。大气集水利用传统蒸发/冷凝收集系统,将干燥的CFA-LiCl放置与室外环境中过夜。从18:00到次日6:00 。跟踪户外环境-湿度、温度的变化(图3c)。暴露于户外空气中后,CFA-LiCl的吸水量在12h可增加至3.1gg-1。吸水率平均0.26gg-1h-1。然后将夜间饱和的CFA-LiCl转移至阳光下,CFA-LiCl中的水被太阳照射后加热蒸发,冷凝后进行收集。时间以及环境湿度、环境温度、太阳光强一起监测(图3d)。当CFA-LiCl表面温度上升至 46℃时由于水分快速蒸发吸热导致表面温度变化缓慢。CFA-LiCl质量持续下降,表明CFA-LiCl在持续产生水蒸气。收集到的水使用电感耦合等离子体质谱(ICP-MS)进行测试,世界卫生组织(WHO)饮用水质量标准(图3e)。结果进一步证实了CFA-LiCl具有可靠供水的潜力。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种淀粉基光响应大气集水材料的制备方法,其特征在于,包括如下步骤:
将淀粉、丙烯酸、丙烯酰胺、N′,N′-亚甲基双丙烯酰胺分散在羧基化碳纳米管悬浮液中,在常温下磁力搅拌使其充分分散,通入氮气去除溶解氧,加热的条件下淀粉完全糊化后加入过硫酸铵进行反应,得到CFA水凝胶;
CFA水凝胶在去离子水中浸泡,将其冻干后浸入LiCl溶液,烘干得到羧基碳纳米管诱导淀粉基光响应大气集水材料。
2.根据权利要求1所述的淀粉基光响应大气集水材料的制备方法,其特征在于,淀粉、丙烯酸、丙烯酰胺的质量比为1:0.5-1:1。
3.根据权利要求1所述的淀粉基光响应大气集水材料的制备方法,其特征在于,N′,N′-亚甲基双丙烯酰胺的加入量为丙烯酸和丙烯酰胺单体质量的0.6%,过硫酸铵的加入量为丙烯酸和丙烯酰胺单体质量的0.16%。
4.根据权利要求1所述的淀粉基光响应大气集水材料的制备方法,其特征在于,羧基化碳纳米管悬浮液的浓度为 0.1wt%,羧基化碳纳米管悬浮液的用量与淀粉的用量的体积质量之比为20:1。
5.根据权利要求1所述的淀粉基光响应大气集水材料的制备方法,其特征在于,加热的温度为75-85℃。
6.根据权利要求1所述的淀粉基光响应大气集水材料的制备方法,其特征在于,烘干的温度为75-85℃。
7.根据权利要求1所述的淀粉基光响应大气集水材料的制备方法,LiCl 溶液的重量百分比为10wt%。
8.根据权利要求1所述的淀粉基光响应大气集水材料的制备方法,在去离子水中浸泡时间为48小时,浸入LiCl溶液的时间为24小时。
9.权利要求1-8任一项所述的淀粉基光响应大气集水材料的制备方法得到的大气集水材料。
CN202310477884.9A 2023-04-28 2023-04-28 一种淀粉基光响应大气集水材料的制备方法 Pending CN116651410A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310477884.9A CN116651410A (zh) 2023-04-28 2023-04-28 一种淀粉基光响应大气集水材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310477884.9A CN116651410A (zh) 2023-04-28 2023-04-28 一种淀粉基光响应大气集水材料的制备方法

Publications (1)

Publication Number Publication Date
CN116651410A true CN116651410A (zh) 2023-08-29

Family

ID=87710845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310477884.9A Pending CN116651410A (zh) 2023-04-28 2023-04-28 一种淀粉基光响应大气集水材料的制备方法

Country Status (1)

Country Link
CN (1) CN116651410A (zh)

Similar Documents

Publication Publication Date Title
US10960347B1 (en) Water vapor harvesting materials and devices
CN109206553B (zh) 一种太阳能光热转换材料及其制备方法
Zhang et al. Starch-derived photoresponsive high-efficientcy hygroscopic hydrogel for all-weather atmospheric water harvesting
CN104130540A (zh) 一种纤维素基导电水凝胶及其制备方法与应用
Wang et al. Fe3+, NIR light and thermal responsive triple network composite hydrogel with multi-shape memory effect
He et al. Hygroscopic photothermal beads from marine polysaccharides: demonstration of efficient atmospheric water production, indoor humidity control and photovoltaic panel cooling
Zheng et al. Humidity capture and solar-driven water collection behaviors of alginate-g-PNIPAm-based hydrogel
CN113860413B (zh) 一种基于生物质水凝胶/纳米碳材的太阳能蒸发器及其应用
Wang et al. Efficient air water harvesting of TpPa-1 COFs@ LiCl composite driven by solar energy
Zhou et al. Solar-driven MXene aerogels with high water vapor harvesting capacity for atmospheric water harvesting
Qi et al. Honeycomb-like hydrogel adsorbents derived from salecan polysaccharide for wastewater treatment
CN105504315A (zh) 一种秸秆全组分水凝胶的制备方法及其应用
Wang et al. Preparation of carbon nanotube/cellulose hydrogel composites and their uses in interfacial solar-powered water evaporation
Lin et al. Hygroscopic and photothermal all-polymer foams for efficient atmospheric water harvesting, passive humidity management, and protective packaging
Li et al. Ultrahigh solar vapor evaporation rate of super-hydrophilic aerogel by introducing environmental energy and convective flow
Maity et al. Hydratable Core–Shell Polymer Networks for Atmospheric Water Harvesting Powered by Sunlight
Zhou et al. Solar-powered MXene biopolymer aerogels for sorption-based atmospheric water harvesting
Li et al. Biopolymers for hygroscopic material development
Li et al. Guar Gum-Based Macroporous Hygroscopic Polymer for Efficient Atmospheric Water Harvesting
CN116651410A (zh) 一种淀粉基光响应大气集水材料的制备方法
Chen et al. A Janus-type hygroscopic hydrogel for reusable robust dehumidification and efficient solar thermal desorption
Zhou et al. Solar‐Driven Drum‐Type Atmospheric Water Harvester Based on Bio‐Based Gels with Fast Adsorption/Desorption Kinetics
CN113501995B (zh) 一种天然高分子基大气水收集材料及其制备方法
Lin et al. Potential scalable fabrication of high-performance photothermal fabric via chemical dyeing for solar-powered brine distillation
Sun et al. Sustainable β-cyclodextrin modified polyacrylamide hydrogel for highly efficient solar-driven water purification

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination