CN116648284B - 植入式神经生理学装置 - Google Patents

植入式神经生理学装置 Download PDF

Info

Publication number
CN116648284B
CN116648284B CN202180085138.4A CN202180085138A CN116648284B CN 116648284 B CN116648284 B CN 116648284B CN 202180085138 A CN202180085138 A CN 202180085138A CN 116648284 B CN116648284 B CN 116648284B
Authority
CN
China
Prior art keywords
electrode
signal
electrodes
bulk potential
implantable device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202180085138.4A
Other languages
English (en)
Other versions
CN116648284A (zh
Inventor
O·卡韦黑
A·阿赫诺德
N·D·张
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brain Connection Co ltd
Original Assignee
Brain Connection Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brain Connection Co ltd filed Critical Brain Connection Co ltd
Publication of CN116648284A publication Critical patent/CN116648284A/zh
Application granted granted Critical
Publication of CN116648284B publication Critical patent/CN116648284B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • A61N1/3787Electrical supply from an external energy source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • A61B5/293Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0529Electrodes for brain stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37235Aspects of the external programmer
    • A61N1/37247User interfaces, e.g. input or presentation means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/37Intracranial electroencephalography [IC-EEG], e.g. electrocorticography [ECoG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4094Diagnosing or monitoring seizure diseases, e.g. epilepsy

Abstract

一种植入式装置具有纤细载体,纤细载体具有第一侧和第二侧。两侧各自具有信号电极和体电位电极。体电位电极是内部连接的。相对侧上的电极对准。绝缘材料的绝缘延伸部延伸超过载体的周边以增加装置灵敏度。如果载体是中空的,则内部可以存在IC来提供有源功能,包含电源管理、通信、装置控制和信号存储。IC可以包含放大器和ADC以感测信号,IC可以将信号存储在存储器中和/或传达到外部接口单元(EIU)。IC可以包含DAC和功率放大器以利用从EIU接收的信号来对组织进行电刺激。

Description

植入式神经生理学装置
本申请要求于2020年12月18日提交的名称为“Implantable NeurophysiologyDevices(植入式神经生理学装置)”的美国临时专利申请序列号63/127,455的优先权,该申请通过引用并入本文,如同出于所有目的在本申请中全文阐述一样。
技术领域
所公开的技术整体涉及植入式医疗装置,并且具体地涉及那些用于长期监测或刺激大脑活动的装置。实施方式可以进一步用于测量和/或刺激身体任何其他部位的电活动。
背景技术
除非本文另有说明,否则本章节中描述的要素并非权利要求的现有技术,也不应通过包含在本章节中而被认为是现有技术。
大脑活动出于各种原因而受到监测,尤其是为了诊断医疗状况。然而,它通常只进行很短的时间,因为它可能需要将患者连接到巨大的设备上、将电极临时连接到头皮上,以及其他不方便的措施。长期监测和/或刺激可能需要侵入性手术,并且电极可能被放置于头皮下或大脑内。情况是例如,耳蜗植入物可以帮助某些类别的聋人听力,或者用于大脑深层刺激,诸如可能用于患有帕金森氏症或阿尔茨海默氏症的患者。由于其侵入性,这些方法尚未广泛用于例如癫痫患者。到目前为止,只有少数几种方法可以提供侵入性较小的长期监测或刺激。然而,此类方法也有缺点,包含植入式装置的尺寸,以及布线通过组织的问题。
动态和长期神经生理学可以更好地了解神经系统疾病、大脑发育和认知心理学。当涉及到癫痫等疾病时,长期的大脑活动监测可能是诸如癫痫发作预测和自动癫痫发作记录系统等突破性发展的关键。一项针对1056名癫痫患者、护理人员和家庭成员的调查将癫痫发作的可预测性列为改善他们生活的最高优先目标。研究界几乎一致认为,长期脑电图(EEG)可能是识别癫痫发作预测患者特异性生物标志物的关键。终身、连续、可靠、微创且准确的EEG监测也可能是预测和停止癫痫发作的最佳方法,因此,癫痫中的受伤或突然意外死亡(SUDEP)对所有癫痫患者来说都是一种风险。今天,这种监测并不可用。相反,监测是基于纸面的,或者依赖于智能手机应用程序。
然而,该行业总体上取得了进展。例如,Prawer等人的美国专利第10,543,372号描述了一种形成使用生物相容性材料并适于形成气密密封件的用于医疗装置的外壳的方法。该方法采用金刚石材料来提供两个半外壳部件,电子电路可以驻留在该半外壳部件内部。Pigeon等人的美国专利第10,601,255号描述了如何使用准直波束将能量和数据传输到远程装置。这样的装置可以是植入式医疗装置,从而避免了在电池耗尽或接近寿命时更换装置的需要。还开发了其他方法,诸如基于患者运动的能量采集,以及通过电磁场反向散射的能量提供和数据通信,诸如在射频识别(RFID)系统中。这些方法已经在本领域中进行了充分记录。
然而,目前的技术状况并不能充分解决若干医疗问题。癫痫的诊断和预后就是这样两个问题。目前,患者自我申报或自我报告系统已经到位,其无法提供可靠的癫痫发作次数报告方式。从未正确处理疾病的角度来看,误诊造成了经济、身体和精神上的打击。出现癫痫的误诊是因为在许多情况下,癫痫发作并不频繁,且在患者接受短期监测时可能不会发生。当前用于长期诊断的装置使用具有长引线的电极。当引线断裂或移位时,这会产生可靠性问题。植入生长中的儿童头部的引线带来了额外的挑战。
对大脑接口的需求尚未得到满足,这种接口可以轻松、微创地植入,并且可以在不打扰患者的情况下运行多年。大脑接口应该能够感测来自身体的信号和/或向身体提供信号。它可以实现自动癫痫发作检测、自动癫痫发作记录和可靠的癫痫发作预测。
发明内容
通过长期的、可能是终身的神经技术与大脑的电活动进行交互一直是许多人的梦想和渴望。由于诸如癫痫等严重神经系统疾病患者的治愈遥遥无期,并且诸如成瘾和严重抑郁症等其他疾病的严重程度和流行率也在增加,因此实现长期监测的重要性比以往任何时候都更大。所公开技术的实施方式提供了一种微创帽状腱膜下装置,该装置能够使用几个无引线电极进行潜在的终身监测。这种监测可以包含长时间的脑电图(EEG)记录,这是癫痫诊断的黄金标准。实施方式可以以多种方式供电,包含通过无线功率传送,诸如电容耦合、(与磁场或射频(RF)波)电感或电磁耦合、光学、超声,以及通过能量采集方法,诸如基于运动或生物力学的能量采集。
在第一方面,一种实施方式供了一种植入式装置。其包含具有第一侧和第二侧的载体。第一侧和第二侧至少部分地处于相对的平行平面中。植入式装置是纤细的:平行平面相距可以小于5mm。该装置具有嵌入在第一侧上的具有第一面积、形状和取向的第一信号电极,以及嵌入在第二侧上的具有第二面积、形状、取向的第二信号电极。其具有嵌入在第一侧上的具有第三面积、形状和取向的第一体电位电极;以及嵌入在第二侧上的具有第四面积、形状和取向的第二体电位电极。第二体电位电极电耦合到第一体电位电极。第一信号电极可以与第二信号电极对准,并且第一体电位电极可以与第二体电位电极对准。一种实施方式可以包括位于以第二信号电极为中心的圆上的第二侧上的两对或更多对侧向信号电极。生物相容性电绝缘材料的绝缘延伸部可以延伸超过载体的周边,以增加穿过第一信号电极与第二信号电极之间的组织的路径的电阻。绝缘延伸部有助于提高装置对径向信号的灵敏度,或在刺激情况下增大其递送的功率。在第二侧上,可以存在位于第二信号电极周围的三个或更多个侧向信号电极。载体可以包括金刚石、陶瓷、金属和/或有机材料。
载体可以是中空的,并且集成电路(IC)可以安装在内部以提供有源功能。IC与四个(或更多个)电极连接,并且包含从外部接口单元(EIU)接收功率或接收采集的功率的功率管理系统。功率管理系统与体电位电极和功率换能器或采集器耦合。功率换能器可以使用电极进行电容式工作、使用电感器进行电磁式工作,或者例如使用光伏电池或其他光学功率装置光学式地工作。IC还可以包含用于与EIU通信的通信接口。通信接口可以电容式、电磁式或光学式地工作。功率换能器和通信接口可以是组合的,也可以是分开的。一些实施方式包含体参考电路(BRC)以向体电位电极提供电压。进一步的实施方式包含放大器和模数转换器(ADC)以感测身体中的信号。一种实施方式可以进一步包含传感器,该传感器与放大传感器信号并将其提供给ADC的放大器耦合。传感器可以是加速度计。进一步的实施方式可以包含数模转换器(DAC)和功率放大器,以通过向身体施加电信号来刺激身体。
在第二方面,一种实施方式提供了一种植入式装置。其包含具有第一侧和第二侧的载体。第一侧和第二侧至少部分地处于平行平面中。该装置包含分别位于第一侧和第二侧上的两个电极。该装置是可配置的,允许将其中两个电极彼此短路以形成一对体电位电极。
在第三方面,实施方式提供了一种制造如上所述的植入式装置的方法。电极包含第一信号电极、第二信号电极、第一体电位电极和第二体电位电极。第一体电位电极和第二体电位电极彼此短路。一些实施方式通过将生物相容性电绝缘材料放置成超过载体的周边来增加第一侧上的电极与第二侧上的电极之间的绝缘。
通过参考说明书的其余部分和附图,可以进一步理解本文公开的特定实施方式的性质和优点。
附图说明
将参考附图描述所公开的技术,其中:
图1
[图1]示出了在所公开技术的实施方式中的无源植入式装置的截面图;
图2
[图2]示出了在所公开技术的实施方式中的无源植入式装置的顶视图;
图3
[图3]示出了在所公开技术的实施方式中的无源植入式装置的替代顶视图;
图4
[图4]示出了在所公开技术的实施方式中的无源植入式装置的另一替代顶视图;
图5
图5(a)和(b)示出了被配置用于测量和/或补偿切向信号的所公开技术的实施方式的顶视图/底视图;
图6
图6(a)和(b)示出了被配置用于测量和/或补偿切向信号的所公开技术的替代实施方式的顶视图/底视图;
图7
[图7]示出了在所公开技术的实施方式中的绝缘延伸部的不同半径的体外测量结果;
图8
[图8]示出了在所公开技术的实施方式中的具有电容功率传送和通信的示例性有源植入式装置的截面图;
图9
[图9]示出了如[图3]所示的具有电极的示例性有源植入式装置的截面图;
图10
[图10]示出了在所公开技术的实施方式中的具有感应或电磁功率传送和通信的示例性有源植入式装置的截面图;
图11
[图11]示出了在所公开技术的实施方式中的具有光功率传送和感应或电磁通信的示例性有源植入式装置的截面图;
图12
[图12]示出了在所公开技术的实施方式中的具有可配置体电位电极的植入式装置;
图13
[图13]示出了在所公开技术的实施方式中的有源感测装置的示例性功能架构;
图14
[图14]示出了在所公开技术的实施方式中的具有额外传感器的有源感测装置的示例性功能架构;
图15
[图15]示出了在所公开技术的实施方式中的有源刺激装置的示例性功能架构;
图16
[图16]示出了在所公开技术的实施方式中的具有额外传感器以及径向和切向感测的有源感测装置的示例性功能架构;
图17
[图17]示出了在所公开技术的实施方式中的示例性外部系统;并且
图18
[图18]示出了在所公开技术的实施方式中的制造植入式装置的方法。
在附图中,类似附图标记可以指示功能类似的元件。在附图中示出并且在下面的具体实施方式中描述的系统和方法可以以多种不同的实施方式来布置和设计。附图和具体实施方式都不旨在限制所要求保护的范围。相反,它们仅仅表示所公开技术的不同实施方式的示例。
具体实施方式
基本信息
通过长期的、可能是终身的神经技术与大脑的电活动进行交互一直是许多人的梦想和渴望。由于诸如癫痫等严重神经系统疾病患者的治愈遥遥无期,并且诸如成瘾和严重抑郁症等其他疾病的严重程度和流行率也在增加,因此实现长期监测的重要性比以往任何时候都更大。所公开技术的实施方式提供了一种微创帽状腱膜下装置,该装置能够使用几个无引线电极进行潜在的终身监测。这种监测可以包含长时间的脑电图(EEG)记录,这是癫痫诊断的黄金标准。进一步的实施方式提供了可植入身体或大脑中的任何地方的植入式装置和/或向身体或大脑提供电刺激的装置。实施方式可以以多种方式供电,包含通过无线功率传送,诸如电容耦合、(与磁场或射频(RF)波)电感或电磁耦合、光学、超声,以及通过能量采集方法,诸如基于运动或生物力学的能量采集。
所公开技术的实施方式为大脑或身体的任何其他部位提供了无源和有源接口。无源接口(“无源装置”)可能需要引线在装置与数据源或目的地之间载送信号。例如,无源装置可能已经被皮下植入,但需要穿出皮肤的细电缆将测量数据从装置载送到外部放大器和记录器。有源接口(“有源装置”)可以是无引线的。它们可以从身体外部或内部的来源采集或接收能量,并使用该能量来测量、记录数据并将其传输到外部接口单元(EIU),或者从EIU接收数据、处理数据并根据所接收到数据对身体进行电刺激。EIU传输和/或接收并处理数据。EIU还可以向装置递送功率。在大脑接口的情况下,可以帽状腱膜下位于头皮和头骨之间植入装置。EIU可以位于头皮上,并通过皮肤进行无线交互。
无源装置
[图1]示出了在所公开技术的实施方式中的无源植入式装置的截面图。无源装置100包含载体110、第一信号电极120、第二信号电极122、第一体电位电极124、第二体电位电极126,并且可以包含超过载体的周边的绝缘材料的绝缘延伸部130。
[图1](a)示出了垂直穿过无源装置100截取的截面图。载体110可以是实心的或中空的,并且其可以由单件材料或由密封在一起的两个或更多个部件制成。由第一生物相容性电绝缘材料制成的载体110具有第一侧和第二侧,此处绘制为其顶部和其底部,它们可以处于平行平面中。在一些实施方式中,第一侧和第二侧可以不是平坦的,而是弯曲的,或者各自可以占据多个平行平面,其中第一侧的部分和第二侧的部分是平行的。第一侧包括第一信号电极120和第一体电位电极124,而第二侧包括第二信号电极122和第二体电位电极126。尽管在[图1]中未示出,但是第一体电位电极124电耦合(短路)到第二体电位电极126。第一信号电极120在第一取向上具有第一面积和第一形状。第二信号电极122在第二取向上具有第二面积和第二形状。第一体电位电极124在第三取向上具有第三面积和第三形状。第二体电位电极126在第四取向上具有第四面积和第四形状。绝缘延伸部130由第二生物相容性电绝缘材料制成。其暴露第一信号电极120、第二信号电极122、第一体电位电极124和第二体电位电极126。
在一些实施方式中,第一侧和第二侧相距小于5毫米(5mm),或者如图所示,无源装置100的厚度不超过5mm。在进一步的实施方式中,第一信号电极120被放置成与第二信号电极122平行并对准,并且第一体电位电极124被放置成与第二体电位电极126平行并对准。在这些实施方式中,第一面积和第一形状等于第二面积和第二形状,并且第三面积和第三形状等于第四面积和第四形状。第一取向与第二取向匹配,并且第三取向与第四取向匹配。如图所示,第二信号电极122被放置成直接面对第一信号电极120,并且第二体电位电极126被放置成直接面对第一体电位电极124。对于要对准的电极,它们的形状、大小和取向必须相同,并且必须被放置于平行平面或平行表面中。在弯曲装置中,曲线外侧上的电极可以略大于曲线内侧上的电极。
在实施方式中,载体110和绝缘延伸部130可由适合植入身体内的任何电绝缘材料制成,包含但不限于碳、金刚石(单晶、多晶、微晶和纳米晶)、有机物和聚合物(诸如SU8或其他类型的环氧树脂、聚酰亚胺、不同类型的弹性体、不同形式的聚对二甲苯),以及陶瓷(氧化铝、氮化铝、玻璃、氧化锆等)。电极(第一信号电极120、第二信号电极122、第一体电位电极124和第二体电位电极126)可以由金属制成,诸如铂(以其任何形式)、钨、钛、金或适合植入的任何其他金属,或者它们可以是碳基的,诸如金刚石(例如硼掺杂、氮掺杂或以其他方式掺杂,针对任何形式的金刚石,包含单晶、多晶、微晶和纳米晶)、石墨、石墨烯或金刚石、石墨和石墨烯的任何组合,或者它们可包括金属氧化物和/或金属亚硝酸盐/氮化物(诸如氮化钛、氧化铟锡、氧化铱),或适于植入的任何其他导电材料。
在一个示例性实施方式中,无源装置100包含多晶金刚石(PCD)载体110,电极已通过化学气相沉积(CVD)在其上生长。电极可以被掺杂,例如用氮掺杂,使得电极包括n型超纳米晶金刚石(N-UNCD)。替代地,电极可能已经用硼掺杂,使得电极包括p型超纳米晶金刚石(P-UNCD)。又替代地,电极可以具有嵌入在任何合适的制造工艺中的任何类型的掺杂。绝缘延伸部130可以由聚二甲基硅氧烷(PDMS)制成或包含聚二甲基硅氧烷。
[图2]示出了顶视图200。尽管绝缘延伸部130被示出为具有椭圆形,但是实施方式可以使用圆形,或者增加穿过顶部电极与底部电极之间的身体组织的导电路径的长度的任何其他形状。[图2]中的实施方式示出了(任选的)绝缘延伸部130,该绝缘延伸部围绕载体110的周边但不覆盖其顶部。类似地,该绝缘延伸部可以不覆盖其底部。[图3]中的替代实施方式300示出了绝缘延伸部130,该绝缘延伸部围绕载体110的周边并且还覆盖其顶部。然而,该绝缘延伸部暴露第一信号电极120和第一体电位电极124。类似地,绝缘延伸部130可以覆盖载体110的底部,暴露第二信号电极122和第二体电位电极126。在进一步的实施方式中,绝缘延伸部130可以部分地覆盖载体110的顶部和/或底部,暴露电极和其他部分。[图4]示出了在没有任选的绝缘延伸部130情况下的实施方式的顶视图400。
由于载体110薄,第一信号电极120和第二信号电极122被定位成彼此非常接近。因此,在两个电极之间存在穿过身体组织的导电路径。绝缘延伸部130增加了导电路径的长度,并且因此增加了穿过两个电极之间的身体组织测量的电阻。电极之间更高的电阻使得能够产生更大的差分电压,这对于测量相邻组织中的电信号或替代地对于电刺激相邻组织是有利的。类似地,绝缘延伸部130增加了穿过位于非常紧密的第一体电位电极124和第二体电位电极126之间的活组织的路径的电阻。然而,因为第一体电位电极124电耦合到第二体电位电极126,所以在这两个电极上测量的电位可能接近在第一信号电极120与第二信号电极122之间测量的平均电位。为了测量或刺激的目的,该电位可以用作体电位,或者至少用作任何测量的电活动的共模电位。
[图1]未示出无源装置100如何与任何测量设备或刺激装置耦合。这样的设备或装置可以位于身体外部,或者可以位于身体内部的其他地方。实施方式经由包含至少三个不同导体(每个信号电极一个,两个体电位电极一个)的电缆连接。电缆可以例如经由绝缘延伸部130中的孔进入无源装置100,并连接到电极。
尽管[图1]示出了具有两个信号电极和两个体电位电极的无源装置100,但是一些实施方式可以具有两个以上的信号电极和/或两个以上体电位电极。所有此类变型都在本公开技术的范围和范畴内。
图5(a)和(b)各自示出了被配置用于测量和/或补偿切向信号的所公开技术的实施方式的顶视图/底视图500。切向信号可能是由例如肌肉活动引起的。在帽状腱膜下位置,与肌肉活动相关的信号具有较强的侧向分量,而与大脑活动相关的信号具有较强的径向分量。通过单独地测量侧向电压和径向电压,一种实施方式可以在两种电压中的一种是不需要的情况下减少干扰,或者可以在两者都是感兴趣的信号的情况下测量两者。[图5](a)示出了该装置的第一侧的视图,该装置可以是无源的或有源的。顶视图/底视图500包含载体510、第一信号电极520(El)、第一体电位电极524(BP1)和任选的绝缘延伸部530。尽管第一信号电极520被示出在载体510的中心,并且第一体电位电极524偏离中心,但是在不同的实施方式中,它们的位置可以变化并且在载体510上的其他任何地方。
[图5](b)示出了该装置的第二侧的视图。其示出了与第一信号电极520相对并对准的第二信号电极522(E2),以及与第一体电位电极524相对并对准的第二体电位电极526(BP2)。在第二信号电极522周围是用于测量侧向信号的两对或更多对侧向信号电极528。两对足以测量任何侧向信号的幅度和方向。如果两对正交地位于以第二信号电极522E2为中心的圆上,则便于处理。然而,在一些实施方式中,可以存在多于两对,并且侧向信号电极不需要相对于彼此具有规则的位置。在进一步的实施方式中,它们可以不成对,但它们可以构成电极阵列。在另一些实施方式中,可以仅存在三个侧向信号电极,其中E2被放置于在其间的三角形中的某个地方。
然而,如前所述,具有两对便于信号处理,并且[图5](b)示出了由电极A1-A2组成的第一对和由电极A3-A4组成的第二对。这些对是等距的并且彼此垂直地定位,其中第二信号电极222E2在中心。
在植入时,帽状腱膜下取向很重要。获得最佳测量取决于附近肌肉的位置。例如,如果该装置被植入颞肌与头骨之间,那么侧向信号将在肌肉侧普遍存在。最佳测量将在第一侧朝向大脑取向且第二侧朝向肌肉取向的情况下获得。在其他情况下,最佳取向可能是其他取向。
为了对人为误差具有鲁棒性,一种实施方式可以具有侧向信号电极228,以用于测量装置两侧上的切向信号。尽管这多少需要更多的电子器件,并且可能略微昂贵,但这样的装置可能更容易使用,并且可以防止不便。
图6(a)和图(b)示出了被配置用于测量和/或补偿切向信号的所公开技术的替代实施方式的顶视图/底视图600。视图600包含与顶视图/底视图500相同的元件,具有类似的编号。该替代实施方式与图5(a)和(b)所示的实施方式完全类似,但是绝缘延伸部630的绝缘材料还在除电极位置以外的位置处覆盖载体。
[图7]示出了在所公开技术的实施方式中的绝缘延伸部的不同半径的体外测量结果。在该测量中,用绝缘延伸部为圆形的五个无源装置测量施加在肉组织上的刺激电压。这些装置只是在绝缘延伸部的半径上有所不同。测量结果表明,该装置的灵敏度与半径近似成比例,这提供了所公开技术的实施方式比传统装置有很大改进的证据。
有源装置
有源装置不仅仅能够拾取测量信号或递送刺激信号。例如,测量信号的有源装置可以提供对测量信号的本地放大、数字化和存储,并且其可以提供与EIU的无线(无引线)通信。有源装置可以测量表示例如脑电图(EEG)、心电图(ECG)或肌电图(EMG)的通道的差分信号。有源装置功能需要可以组合在集成电路(IC)中的一个或多个电子电路。就本文件而言,使用术语IC是指单片半导体装置、安装在基板或印刷电路板上的半导体装置和/或其他电子部件的组合,以及任何薄膜、厚膜或其他印刷电子器件,以及通常提供所需功能的电子部件的任何组合。
一种有源装置被配置为向EIU传输数据和/或从EIU接收数据。在此上下文中的数据可以包含用于控制有源装置或传达其状态的信息;测量信号和/或关于测量信号的信息;刺激信号和/或关于刺激信号的信息;用于在有源装置内部操作的固件;以及通常支持其功能所需的任何信息。
电子功能消耗能量,该能量可以从电池和/或其他储能器(诸如电容器)中获取。为了实现真正的长期运行,储能器必须是可充电的。实施方式使用采集的能量或由EIU传送的能量来对储能器充电。本领域已知许多能量采集方法,以及对电池或其他储能器进行无线充电的方法。对于微创的帽状腱膜下手术,装置必须非常薄。即使是一个很小的薄电池也可以存储许多天的能量,这可能会允许患者从佩戴EIU中恢复。将能量从EIU传输到装置的方便方式包含使用电场、使用电磁场和使用光。
为了从电场中接收能量,装置必须包含电容器板。该装置已经具有信号电极和体电位电极形式的潜在合适的电容器板。使用电容能量传送的实施方式在时间和/或频率上将能量传送与测量或递送信息的信号分开。例如,脑电图(EEG)信号的频率范围从低于一赫兹到高于100Hz。该实施方式可以例如以10MHz的频率从EIU接收电容能量,为非常有效的频率分离留下五个数量级。替代地,或者除此之外,一种实施方式可以以小于一毫秒的突发接收能量,从而为即使是最快的EEG信号的不受干扰的测量留下充足的时间。一些实施方式可以将信号电极和体电位电极与功率传送电极分离,而不将功率传送电极暴露于身体组织。这些实施方式可以用绝缘材料覆盖功率传送电极,例如来自绝缘延伸部的材料。一种实施方式还可以使用电容耦合来进行装置与EIU之间的通信。同样,用于通信的电容板可以与功率传送电极和/或信号电极和体电位电极分离或组合。一种简单的实施方式可以仅具有四个电极,其中两个彼此短路以用作体电位电极,并且其中两个用作信号电极。当植入头皮与头骨之间时,一个信号电极和一个体电位电极面向头皮。这两个电极还可以用作功率传送电极和通信电极。感测或刺激、功率传送和通信在频率和时间上都可以彼此分离。此外,通过使用频分复用和/或时分复用,通信本身可以是双向的。
要从电磁场中接收能量,装置必须包含电感器。这样的电感器也可以用于EIU与装置之间的通信。使用电感器进行功率传送和/或通信的实施方式可以将电感器定位在载体的周边周围,例如在绝缘延伸部内部,使得电感器不会增加装置的厚度。能量传送和数据传送的组合可以通过诸如在射频识别(RFID)系统中使用的反向散射技术来实现。替代地,一种实施方式可以在时间上简单地分离这两种功能,例如通过每秒钟的一部分传输能量,并在该秒钟的剩余时间传输数据,和/或在频率上分离这两种功能,从而允许连续的功率传送和连续的通信。同样,通过使用频分复用和/或时分复用,通信本身可以是双向的。一种形式的电磁耦合-谐振电感耦合使用调谐到特定频率的电感器-电容器对。一些实施方式可以使用谐振电感耦合,而其他实施方式例可以使用简单的电感耦合来电磁地传送能量和/或数据。就本文件而言,电感耦合或传送与电磁耦合或传送被视为相同。谐振电感耦合形成通过使用调谐电感器来定义的子集,以在用于耦合的频率下在传送函数中形成极点或零点。
为了接收光能,装置必须包含光伏电池或其他光功率换能器。如果载体由诸如金刚石的透明材料制成,则光功率换能器可以方便地位于载体内部。EIU可以将光通过皮肤传输到载体中的腔体中,从而为装置提供功率。一种实施方式还可以使用光将数据从EIU传输到装置。数据可以在功率上叠加。这种方法最适合于刺激并且只需要单向数据传送的实施方式。对于双向光通信,该装置需要包含光源,诸如发光二极管(LED)。替代地,装置可以在一个方向上进行光学式通信,而在另一方向上进行电感式或电容式通信。
通常,为了实现功率和数据的高效传送,植入式有源装置必须与EIU对准。如本领域中已知的,这可以通过磁体容易地实现。放置于有源装置中的一个或多个磁体,例如放置于绝缘延伸部中的磁体,可以与放置于EIU中的一个或多个磁体磁性匹配(并吸引),从而确保EIU相对于有源装置的正确定位。
[图8]示出了在所公开技术的实施方式中的具有电容功率传送和通信的示例性有源植入式装置800的截面图。有源植入式装置800包含载体810、第一信号电极820、第二信号电极822、第一体电位电极824、第二体电位电极826和任选的绝缘延伸部830。载体810具有腔体840,IC 850位于该腔体中。附图未示出载体中用于将电极和/或载体外部的其他部件与IC 850电耦合的任何过孔(通孔)。在所示的实施方式中,电极(第一信号电极820、第二信号电极822、第一体电位电极824和第二体电位电极826)沉积在载体上,例如通过在金刚石载体材料上使用CVD,并沉积掺杂电极材料的膜。例如,如果电极材料用氮化物掺杂,则其可以是n型掺杂的半导体材料;或者如果用硼掺杂,则其可以是p型半导体材料。在替代的实施方式中,载体810可以包括有机材料,诸如环氧树脂,铂电极已经溅射或以其他方式沉积在该有机材料上。第一体电位电极824电耦合(短路)到第二体电位电极826。所有电极都与IC850电耦合。腔体840可以进一步包含电池或其他储能器(未示出)。EIU可以位于有源植入式装置800附近,其中大部分皮肤组织位于其间。EIU可以包含电容板,其尺寸和定位与第一信号电极820和第一体电位电极824的尺寸和定位相匹配。EIU通过向有源植入式装置800的电容板施加高频电压来为其提供功率。该电压在第一EIU板与第一信号电极820之间产生第一电场,并且在第一体电位电极824与第二EIU板之间产生相同强度的第二电场,前提是IC850在第一信号电极820与第一体电位电极824之间的场频率下显示出低阻抗。电场和IC的低阻抗路径导致交流电流流过有源植入式装置800,其使用该电流来采集其可以存储在储能器中的能量。该实施方式可以中断用于与EIU通信的能量流,或者它可以以与能量传送频率显著不同的频率与EIU进行通信,以允许通信和能量传送同时发生。
[图9]示出了如[图3]所示的具有电极的示例性有源植入式装置900的截面图。有源植入式装置900包含载体910、第一信号电极920、第二信号电极922、两个或更多个侧向信号电极928示例以及绝缘延伸部930。载体910具有腔体940,IC 950安装在该腔体中。该截面图没有示出第一体电位电极和第二体电位电极。附图也未示出载体中用于将电极和/或载体外部的其他部件与IC 950电耦合的任何过孔(通孔)。有源植入式装置900可以在第二侧,即具有第二信号电极922和侧向信号电极928示例的一侧上接收能量并进行电容式通信。替代地,该装置可以在任一侧具有通信电极和能量传送电极。又替代地,该装置可以使用绝缘延伸部930内部的电感器感应式地或电磁式地通信和/或接收能量。
[图10]示出了在所公开技术的实施方式中的具有感应或电磁功率传送和通信的示例性有源植入式装置1000的截面图。有源植入式装置1000包含具有第一信号电极1020、第二信号电极1022、第一体电位电极1024、第二体电位电极1026、绝缘延伸部1030(任选的)和电感器1060的载体1010。附图未示出载体中用于将电极、电感器和/或载体外部的其他部件与IC 1050电耦合的任何过孔(通孔)。载体110具有腔体1040,IC 1050位于该腔体中。第一体电位电极1024电耦合(短路)到第二体电位电极1026。第一信号电极1020、第二信号电极1022、第一体电位电极1024、第二体电位电极1026和电感器1060都与IC 1050电耦合。电感器1060被配置为从EIU(未示出)接收电磁功率和数据。在一些实施方式中,它还被配置为向EIU传输数据。电感器1060可以被调谐到用于谐振电感耦合的特定频率,例如通过并联或串联电容器,在这种情况下,能量传送和通信都必须在该特定频率下发生。在一些实施方式中,电感器1060不被调谐到任何特定频率,并且能量传送和通信可以在单独的频率下发生。
[图11]示出了在所公开技术的实施方式中的具有光功率传送和感应或电磁通信的示例性有源植入式装置1100的截面图。有源植入式装置1100包含载体1110,其具有第一信号电极1120、第二信号电极1122、第一体电位电极1124、第二体电位电极1126和具有电感器1160的绝缘延伸部1130(任选的)。载体1110具有腔体1140,IC 1150和功率换能器1170位于该腔体中。附图未示出载体中用于将电极、电感器和/或载体外部的其他部件与IC 1150电耦合的任何过孔(通孔)。功率换能器1170可以是或包含将光能转换为电能的光伏电池或其他转换器。如图所示,功率换能器1170可以放置于IC 1150的顶部上,或者可以放置于不同的布置中。EIU或其他来源可以通过载体1110的透明侧发出光(可见或不可见)以照射功率换能器1170。例如,如果载体1110包括多晶金刚石,则其可以是透明的,并且光能可以不受阻碍地到达功率换能器1170。如前所述,功率换能器1170还可以用于从EIU接收数据。如果有源植入式装置1100还包括诸如LED的光源,则其还可以向EIU传输数据。在许多实际实施方式中,电感器1160将同时处理从EIU到有源植入式装置1100以及从有源植入式装置返回的通信。
可配置装置
[图12]示出了在所公开技术的实施方式中的具有可配置体电位电极的植入式装置1200。植入式装置1200包含载体1210,该载体可以是实心的或中空的,并且其可以由单件材料或由密封在一起的两个或更多个部件制成。由第一生物相容性电绝缘材料制成的载体1210具有第一侧和第二侧,此处绘制为其顶部和底部,它们处于平行平面中。在一些实施方式中,第一侧和第二侧可以不是平坦的,但是各自可以占据多个平行平面,在第一侧的部分与第二侧的部分之间平行。第一侧包括电极1220和电极1222,而第二侧包括电极1221和电极1223。四个电极中的每一个可以被配置为用作信号电极或体电位电极。该实施方式包括开关1230和开关1231,并且可以包括另外的开关,例如开关1232和开关1233。如图所示,开关1231闭合而其他开关断开,这在功能上将电极1222和电极1223变为体电位电极,并且将电极1220和电极1221变为信号电极。相反,如果开关1230闭合而开关1231断开,则电极1220和电极1221被配置为体电位电极,而电极1222和电极1223被配置为信号电极。开关可以是机械的、基于半导体的、可熔断的或可编程的或可以任何其他方式设置的。开关的任何组合都是可能的并且在本公开技术的范畴内。植入式装置1200可以是无源的或有源的,并且可以用于感测组织内的电信号或对组织进行电刺激。其可以包含本文件其他地方描述的任何特征和功能。[图12]示出了允许将每个电极配置为信号电极或体电位电极的示例性开关。然而,实施方式可以包括额外开关,以将体电位电极电耦合到接地节点或共模节点,并且将信号电极与任何相关放大器电耦合。
架构和使用模型
[图13]示出了在所公开技术的实施方式中的有源感测装置的示例性功能架构1300。功能架构1300的电路可以结合在安装在装置载体内部的IC上。功能架构1300包含放大器1313(其可以包括低噪声放大器(LNA)或仪表放大器)、模数转换器ADC 1320、存储器1330(其可以包含非瞬态存储器)、通信单元1340、通信换能器1350、控制单元1360、储能器1370(其可以包括电池和/或电容器)、功率管理单元1380,以及功率换能器1390。电极的第一信号电极1301(E1)和第二信号电极1302(E2)与放大器1313的差分信号输入耦合,而第一体电位电极1303(BP1)和第二体电位电极1304(BP2)在节点1305处彼此短路,该节点也与放大器1313和ADC 1320的共模或虚拟接地输入耦合。放大器1313放大来自第一信号电极1301和第二信号电极1302的差分输入信号,并将放大的信号提供给ADC 1320的模拟信号输入以用于数字化。ADC 1320将数字化的信号递送到数据总线1306,该数据总线还与存储器1330、通信单元1340和控制单元1360耦合。控制单元1360例如通过执行包含在存储器1330中的固件中的逻辑指令来控制功能架构1300中的所有功能。例如,控制单元1360可以使功能架构1300将数字化的信号转发到存储器1330,以便稍后传达到EIU,或者它可以使功能架构1300将数字化的信号转发到通信单元1340,以便经由通信换能器1350立即传达到EIU。其还可以包含用于加密和保护所传输的信号、验证EIU以及防止与未经授权的外部代理通信的安全功能。如本文件先前所讨论的,通信换能器1350可以包括电极El、E2、BP1和BP2中的一部分或全部;其可以包括其他电极;其可以包括电感器;其可以包括光电传感器和/或致动器,包含光电二极管、光伏二极管和LEDS;或者其可以包括这些的任何组合。控制单元1360可以经由数据总线1306、通信单元1340和通信换能器1350与EIU通信以接收控制信息、固件更新等,或者提供状态信息。功率管理单元1380经由节点1305与第一体电位电极1303和第二体电位电极1304电耦合,并且其与功率换能器1390电耦合。功率换能器1390被配置为从EIU接收能量以向IC提供功率。功率管理单元1380接收来自功率换能器1390的能量,并递送电源电压VDD和VSS,它们相对于节点1305处的体电位可以分别是正的和负的。功率管理单元1380管理储能器1370,例如通过当功率换能器1390递送的能量多于即时操作所需的能量时对储能器进行充电,或者在功率换能器1390递送的能量不足以用于即时操作时消耗储能器。在一些实施方式中,功率管理单元1380可以包含体参考电路(BRC),该BRC使用来自放大器1313的信息来确定El与E2之间的平均电压(共模电压),并将该电压同时施加在节点1305处的虚拟接地以及体电位电极BP1和BP2上。BRC可以使用负反馈来产生在第一信号电极1301和第二信号电极1302的平均电压中间的稳定电压。然后其可以将稳定的电压施加到第一体电位电极1303和第二体电位电极1304。在实施方式中,功率换能器1390可以包括电极El、E2、BP1和BP2中的一部分或全部;其可以包括其他电极;其可以包括电感器;其可以包括光伏二极管;或者其可以包括这些的任何组合。在进一步的实施方式中,功率换能器1390可以包括通信换能器1350,或者反之亦然。尽管[图13]已被绘制为具有固定电极,但是E1、E2、BP1和BP2可以是如参考[图12]所述的可配置的。
[图14]示出了在所公开技术的实施方式中的具有额外传感器的有源感测装置的示例性功能架构1400。功能架构1400包含与功能架构1000类似的功率管理和供应特征,尽管这里没有绘出它们。该架构支持辅助传感器1410,该辅助传感器可以安装在有源感测装置内部,或者其可以放置于外部。传感器1410提供由放大器1420放大的测量信号。ADC 1430在辅助输入1431处接收放大的测量信号,将其数字化,并以与传递来自电极E1和E2的测量信号相同的方式将其传递到系统的其余部分。传感器1410可以是或包含与活体组织内部相关的任何传感器,包含用于温度、血流、血氧、血液成分、血压、心跳等的传感器。例如,传感器1410可包含安装在装置载体内部的光电二极管,接收通过其透明底部进入载体的光。传感器1410还可以包含照射载体下方的组织的LED,使得由组织反射并由光电二极管接收的光可以提供血氧的度量。在另一示例中,传感器1410可以是或包含安装在装置的载体内部的MEMS加速度计。尽管[图14]中的实施方式示出了具有一个传感器放大器和一个LNA的功能架构1400,以及具有两个输入的ADC 1430,但是其他实施方式可以具有额外的传感器、放大器和ADC输入。另一些实施方式可以将放大器1420与LNA组合,使得ADC 1430不需要额外的输入。然而,这些实施方式可以在放大器/LNA输入处使用多路复用器来在电极和任何(其他)传感器之间切换。尽管[图14]已被绘制为具有固定电极,但是E1、E2、BP1和BP2可以是如参考[图12]所述的可配置的。
[图15]示出了在所公开技术的实施方式中的有源刺激装置的示例性功能架构1500。该架构与功能架构1000非常相似,最大的区别在于其包括数模转换器DAC 1520和功率放大器PA 1510,而不是放大器1010和ADC 1020。与其中信号方向通常从左到右的[图10]相反,在[图15]中,信号方向通常是从右到左。换言之,数据来自EIU(未绘出),经由通信换能器(CT)和通信单元到达DAC 1520,DAC将数据从数字域转换为模拟域,并将其呈现给PA1510,PA放大信号,并将其呈现为第一信号电极1501与第二信号电极1502之间的差分刺激信号,其将信号电极的信号通常围绕在第一体电位电极1503和第二体电位电极1504处测量的体电位1505对称地平衡。在[图15]的实施方式中,功率管理单元经由体电位1505与第一体电位电极1503和第二体电位电极1504电耦合,并且其与功率换能器电耦合。功率换能器被配置为从EIU接收能量以向IC提供功率。尽管[图15]已被绘制为具有固定电极,但是E1、E2、BP1和BP2可以是如参考[图12]所述的可配置的。
[图16]示出了在所公开技术的实施方式中的具有额外传感器以及径向和切向感测的有源感测装置1600的示例性功能架构。该架构可以在诸如图2-3所示的装置中找到,该装置包括在第二侧上的两对或更多对侧向信号电极。侧向信号电极可以位于以第二信号电极为中心的圆上,或者它们可以位于其他位置。感测装置1600包含一个或多个传感器1610(已经绘出两个),每个传感器可以具有放大器1620。其进一步包含:放大器1622,该放大器可以包括用于测量感测电极E1和E2之间的信号的LNA或仪表放大器;放大器1624,该放大器可以包括用于测量侧向感测电极A1和A2之间的信号的LNA或仪表放大器;以及放大器1626,该放大器可以包括用于测量侧向感测电极A3和A4之间的信号的LNA或仪表放大器。放大器1620至放大器1626中的每一个可以耦合到多输入ADC以数字化其输入信号。在一些实施方式中,可能不存在共享ADC,而是存在多个ADC。在其他实施方式中,放大器可以是共享的,而不是专用于传感器或一对电极。在进一步的实施方式中,可以存在用于额外电极的额外放大器。
[图17]示出了在所公开技术的实施方式中的示例性外部系统1700。外部系统1700包含大脑活动受到监测的患者或测试对象的头部。患者或测试对象在头皮下方帽状腱膜下植入一个或多个有源装置。每个有源装置与外部接口单元EIU 1720通信,该外部接口单元位于头皮上,紧挨着相应植入式装置上方。每个EIU 1720例如使用外部导线与信号处理器1710耦合。信号处理器1710可以佩戴在耳朵后面,或者隐藏在眼镜框中,或者可以位于不太不便的任何其他位置。尽管[图17]示出了放置于大脑不同叶上的若干EIU,但癫痫监测仪可能只需要在大脑的每一侧安装一个装置即可发挥作用。当需要或方便时,可以移除外部系统1700。当植入式装置在其电池或电容器中存储足够的能量时,可以进行监测,并且装置可以将测量的信号存储在内部存储器中。
制造
[图18]示出了在所公开技术的实施方式中的制造植入式装置的方法1800。方法1800包括以下步骤。
步骤1810-形成具有第一侧和第二侧的载体。第一侧和第二侧至少部分地处于平行平面中,并且第一侧和第二侧相距小于5mm。载体可以是实心的或中空的,并且其可以由单件材料或由密封在一起的两个或更多个部件制成。其包括第一生物相容性电绝缘材料。该材料可以包括碳、金刚石(单晶、多晶、微晶和纳米晶)、有机物和聚合物(诸如SU8或其他类型的环氧树脂、聚酰亚胺、不同类型的弹性体、不同形式的聚对二甲苯)、陶瓷(氧化铝、氮化铝、玻璃、氧化锆等)以及任何其他生物相容性电绝缘材料。
步骤1820-在第一侧和第二侧的每一侧上形成电极,其中第一侧具有第一信号电极和第一体电位电极,并且第二侧具有第二信号电极和第二体电位电极。一些实施方式将第一信号电极与第二信号电极对准,并将第一体电位电极与第二体电位电极对准。为了对准,第一信号电极和第二信号电极具有相等的面积、形状和取向,并且同样地,第一体电位电极和第二体电位电极具有相等的面积、形状和取向。电极可以包括金属,诸如铂(以其任何形式)、钨、钛、金或适合植入的任何其他金属,或者它们可以是碳基的,诸如金刚石(例如硼掺杂、氮掺杂或以其他方式掺杂,针对任何形式的金刚石,包含单晶、多晶、微晶和纳米晶)、石墨、石墨烯或金刚石、石墨和石墨烯的任何组合,或者它们可包括金属氧化物和/或金属亚硝酸盐/氮化物(诸如氮化钛、氧化铟锡、氧化铱),或适于植入的任何其他导电材料。在一种实施方式中,用本领域已知的任何工艺步骤生长、沉积、植入或以其他方式制造电极,包含溅射、化学气相沉积(CVD)等。
步骤1830-与至少部分电极形成电连接,并将第一体电位电极与第二体电位电极电耦合。一种实施方式可以在与电极相同的时间并以相同的方式形成电连接,或者其可以在不同的时间并以不同的方式(例如通过将电线接合到电极)来形成电连接。
步骤1840-(任选的)通过将生物相容性电绝缘材料放置成超过载体的周边来增加第一侧上的电极与第二侧上的电极之间的绝缘。生物相容性电绝缘材料暴露第一信号电极、第二信号电极、第一体电位电极和第二体电位电极。生物相容性电绝缘材料可以包括,例如,聚二甲基硅氧烷(PDMS,聚合物),或任何其他绝缘且适合制造的生物相容性材料。
注意事项
尽管已经针对其特定实施方式进行了描述,但这些特定实施方式仅为说明性的,而非限制性的。例如,在一个示例性实施方式中而不是在另一个示例性实施方式中描述的元件仍然可以被使用或添加到另一个实施方式中。尽管顶视图和底视图示出了椭圆形的绝缘延伸部,但是在实施方式中,该绝缘延伸部可以是圆形的,或者具有任何其他形状。尽管大多数示例描述了有限数量的信号电极和体电位电极,但是可以使用任何数量的电极。图10-13中描述的架构的许多变型是可能的,所有这些变型都实现了类似的结果,并且所有这些变型都在本申请的范围和范畴内。尽管EIU已被呈现为同时处理到植入式装置的能量传送和与装置的通信的装置,但在一些实施方式中,这些功能可以由单独的外部单元处理。
任何合适的生物相容性材料都可用于制造本文所述的实施方式。元件的定位可以与本文所述的那些不同。模拟域和数字域之间的信号转换可以发生在架构中与所描述的不同的位置。可以在软件中提供功能。软件和固件可以使用任何合适的编程语言来实现特定实施方式的功能。
还应当理解,附图/图中描绘的一个或多个元件也可以以更加分离或集成的方式实施,或者甚至在某些情况下被移除或呈现为不可操作,如根据一个特定的应用是有用的。
如本文说明书和随后的整个权利要求书中所使用的,除非上下文另有明确规定,否则“一(a)”、“一个(an)”和“该(the)”包含复数引用。此外,如在本文的说明书和随后的整个权利要求书中所使用的,除非上下文另有明确规定,否则“在……中”的含义包含“在……中”和“在……上”。
如本文所使用的,术语“和/或”应解释为意指一个或多个项目。例如,短语“A、B和/或C”应解释为以下中的任何一个:仅A、仅B、仅C、A和B(但非C)、B和C(但非A)、A和C(但非B),或A、B和C中的全部。如本文所使用的,短语“……中的至少一个”应解释为意指一个或多个项目。例如,短语“A、B和C中的至少一个”或短语“A、B或C中的至少一个”应解释为以下中的任何一个:仅A、仅B、仅C、A和B(但非C)、B和C(但非A)、A和C(但非B),或A、B、C中的全部。如本文所使用的,短语“……中的一个或多个”应解释为意指一个或多个项目。例如,短语“A、B和C中的一个或多个”或短语“A、B或C中的一个或多个”应解释为以下中的任何一个:仅A、仅B、仅C、A和B(但非C)、B和C(但非A)、A和C(但非B),或A、B和C中的全部。
因此,尽管本文已经描述了特定的实施方式,但在上述公开中旨在进行一些修改、各种改变和替换,并且应当理解,在某些情况下,在不偏离所阐述的范围和精神的情况下,可以在不相应使用其他特征的情况下采用特定实施方式的一些特征。因此,可以进行许多修改,以使特定的情况或材料适应基本的范围和精神。
专利文献
PTL文献1:Prawer等人的美国专利第10,543,372号,“Method of Forming anEnclosure(形成外壳的方法)”。
PTL文献2:Pigeon等人的美国专利第10,601,255号,“Transmission of Energyand Data Using a Collimated Beam(使用准直波束传输能量和数据)”。
PTL 3:Denker等人的美国专利第8,366,628号,“Signal Sensing in anImplanted Apparatus with an Internal Reference(利用内部参考在植入式装置中进行的信号感测)”。

Claims (22)

1.一种植入式装置,包括:
载体,所述载体具有第一侧和第二侧,其中所述第一侧和所述第二侧至少部分地处于相距小于5mm的平行表面中;
第一信号电极,所述第一信号电极嵌入在所述第一侧上,所述第一信号电极具有第一面积;
第二信号电极,所述第二信号电极嵌入在所述第二侧上,所述第二信号电极具有第二面积;
第一体电位电极,所述第一体电位电极嵌入在所述第一侧上,所述第一体电位电极具有第三面积;以及
第二体电位电极,所述第二体电位电极嵌入在所述第二侧上,所述第二体电位电极具有第四面积,其中所述第二体电位电极电耦合到所述第一体电位电极。
2.根据权利要求1所述的植入式装置,其中:
所述第一信号电极被放置成与所述第二信号电极平行并对准;
所述第一体电位电极被放置成与所述第二体电位电极平行并对准;
所述第一面积等于所述第二面积;并且
所述第三面积等于所述第四面积。
3.根据权利要求1所述的植入式装置,进一步包括:
在所述第二侧上的三个或更多个侧向信号电极,所述三个或更多个侧向信号电极位于所述第二信号电极周围。
4.根据权利要求1所述的植入式装置,其中所述载体包括以下材料中的至少一种:金刚石、陶瓷、金属或有机物。
5.根据权利要求1所述的植入式装置,进一步包括超过所述载体的周边的绝缘材料的延伸部,所述绝缘材料包括生物相容性电绝缘材料,并且所述延伸部暴露所述第一信号电极、所述第二信号电极、所述第一体电位电极和所述第二体电位电极。
6.根据权利要求1所述的植入式装置,进一步包括至少一个磁体,所述至少一个磁体被配置为实现所述植入式装置与外部接口单元EIU之间的对准。
7.根据权利要求1所述的植入式装置,包括在所述载体内部的集成电路IC,其中:
所述IC与所述第一信号电极、所述第二信号电极、所述第一体电位电极和所述第二体电位电极电耦合;并且
所述IC包含功率管理系统,所述功率管理系统与所述第一体电位电极、所述第二体电位电极以及被配置为从外部接口单元EIU接收能量以向所述IC供电的功率换能器电耦合。
8.根据权利要求7所述的植入式装置,其中所述IC进一步包括被配置用于数字信号的长期记录的非瞬态存储器。
9.根据权利要求7所述的植入式装置,其中所述功率换能器包含以下中的至少一个:
电极,所述电极被配置为通过电容耦合从所述EIU接收功率;
电感器线圈,所述电感器线圈被配置为感应地和/或电磁地接收功率;或者
光功率换能器,所述光功率换能器被配置为光学地接收功率,其中所述光功率换能器能够被放置于所述载体内部,并且能够接收由所述EIU通过所述载体传输的功率。
10.根据权利要求7所述的植入式装置,包含被配置为在所述IC与所述EIU之间传送数据的通信接口,其中所述通信接口包括以下中的至少一个:
电极,所述电极被配置为通过电容耦合与所述EIU中的电极通信;
电感器线圈,所述电感器线圈被配置为通过电磁耦合与所述EIU通信;
光源,所述光源被配置为光学地发送数据,其中所述光源能够被放置于所述载体内部,并且能够通过所述载体向所述EIU传输数据;或者
光学传感器,所述光学传感器被配置为光学地接收数据,其中所述光学传感器能够被放置于所述载体内部,并且能够接收由所述EIU通过所述载体传输的数据。
11.根据权利要求10所述的植入式装置,其中所述IC被配置为在所述第一信号电极与所述第二信号电极之间提供差分刺激信号,其中所述差分刺激信号的共模分量等于所述第一体电位电极和所述第二体电位电极上的电位。
12.根据权利要求7所述的植入式装置,其中所述IC被配置为感测所述第一信号电极与所述第二信号电极之间的差分信号,其中所述差分信号的共模分量等于所述第一体电位电极和所述第二体电位电极上的电位。
13.根据权利要求12所述的植入式装置,进一步包括体参考电路BRC,所述BRC产生在所述第一信号电极和所述第二信号电极的平均电压中间的稳定电压,其中所述BRC将所述稳定电压施加到所述第一体电位电极和所述第二体电位电极。
14.根据权利要求12所述的植入式装置,其中所述IC进一步包括放大器LNA和模数转换器ADC,所述LNA被配置为放大所述差分信号,并且所述ADC被配置为将放大的差分信号从模拟域信号转换为数字域信号,所述IC进一步包括用于将所述数字域信号传达到所述EIU的电路。
15.根据权利要求14所述的植入式装置,进一步包括与放大器耦合的传感器,其中所述放大器被配置为放大传感器信号并将放大的传感器信号提供给所述ADC。
16.根据权利要求15所述的植入式装置,其中所述传感器包括加速度计。
17.根据权利要求12所述的植入式装置,其中所述差分信号表示脑电图EEG的通道。
18.根据权利要求12所述的植入式装置,进一步包括位于所述第二侧上的两对或更多对侧向信号电极,所述两对或更多对侧向信号电极位于以所述第二信号电极为中心的圆上,其中:
所述两对或更多对侧向信号电极中的每一对与所述IC中的放大器电耦合;并且
所述IC被配置为感测所述两对或更多对侧向信号电极中的每一对之间的侧向差分信号。
19.根据权利要求11所述的植入式装置,其中所述IC进一步包括功率放大器PA和数模转换器DAC,所述DAC被配置为将经由所述通信接口从所述EIU接收的数字域中的信号转换为模拟域信号,并且所述PA被配置为放大所述模拟域信号以呈现为在所述第一信号电极与所述第二信号电极之间分派的差分信号。
20.一种具有可配置电极的植入式装置,包括:
载体,所述载体具有第一侧和第二侧,其中所述第一侧和所述第二侧至少部分地处于平行平面中;
位于所述第一侧上的第一电极和第二电极;
位于所述第二侧上的第三电极和第四电极;
第一开关,所述第一开关与所述第一电极和所述第二电极电耦合,其中所述第一开关在其处于断开位置时将所述第一电极和所述第三电极配置为信号电极,而在其处于闭合位置时将所述第一电极和所述第三电极配置为体电位电极;以及
第二开关,所述第二开关与所述第二电极和所述第四电极电耦合,其中所述第二开关在其处于断开位置时将所述第二电极和所述第四电极配置为信号电极,而在其处于闭合位置时将所述第二电极和所述第四电极配置为体电位电极。
21.一种制造植入式装置的方法,包括以下步骤:
形成载体,所述载体具有第一侧和第二侧,其中所述第一侧和所述第二侧至少部分地处于平行平面中;
在所述第一侧和所述第二侧的每一侧上形成电极,其中所述第一侧包括第一信号电极和第一体电位电极,并且所述第二侧包括第二信号电极和第二体电位电极;以及
将所述第一体电位电极电耦合到所述第二体电位电极。
22.根据权利要求21所述的方法,进一步包括:
使用生物相容性电绝缘第一材料来形成所述载体,其中所述第一材料包括碳、金刚石、有机物、聚合物或陶瓷中的一种或多种;
使用生物相容性导电第二材料来形成电极,其中所述第二材料包括金属、掺杂碳、掺杂金刚石、金属氧化物或金属氮化物中的一种或多种;
执行生长、植入和沉积中的一项以形成电极;以及
通过将生物相容性电绝缘第三材料放置成超过所述载体的周边来增加所述第一侧上的电极与所述第二侧上的电极之间的绝缘,所述第三材料暴露所述第一信号电极、所述第二信号电极、所述第一体电位电极和所述第二体电位电极,其中所述第三材料包括金属、掺杂碳、掺杂金刚石、金属氧化物或金属氮化物中的一种或多种。
CN202180085138.4A 2020-12-18 2021-10-29 植入式神经生理学装置 Active CN116648284B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063127455P 2020-12-18 2020-12-18
US63/127,455 2020-12-18
PCT/IB2021/060057 WO2022130054A1 (en) 2020-12-18 2021-10-29 Implantable neurophysiology devices

Publications (2)

Publication Number Publication Date
CN116648284A CN116648284A (zh) 2023-08-25
CN116648284B true CN116648284B (zh) 2024-02-20

Family

ID=82058963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180085138.4A Active CN116648284B (zh) 2020-12-18 2021-10-29 植入式神经生理学装置

Country Status (6)

Country Link
US (1) US20230405345A1 (zh)
EP (1) EP4262968A1 (zh)
CN (1) CN116648284B (zh)
AU (1) AU2021399230A1 (zh)
CA (1) CA3205556A1 (zh)
WO (1) WO2022130054A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117771545A (zh) * 2024-02-26 2024-03-29 苏州新云医疗设备有限公司 植入式电刺激器及电刺激系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102783942A (zh) * 2011-05-20 2012-11-21 中国科学院电子学研究所 植入式神经信息双模检测微电极阵列芯片及制备方法
WO2016130632A1 (en) * 2015-02-10 2016-08-18 Cyberonics, Inc. Monitoring of intrinsic heart rate recovery to improve stimulation therapy for heart failure patients

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6597954B1 (en) * 1997-10-27 2003-07-22 Neuropace, Inc. System and method for controlling epileptic seizures with spatially separated detection and stimulation electrodes
US7894904B2 (en) * 2006-06-20 2011-02-22 Ebr Systems, Inc. Systems and methods for implantable leadless brain stimulation
US20080027347A1 (en) * 2006-06-23 2008-01-31 Neuro Vista Corporation, A Delaware Corporation Minimally Invasive Monitoring Methods
US8849369B2 (en) * 2009-01-15 2014-09-30 Eic Laboratories Wireless recording and stimulation of brain activity
EP3110323A4 (en) * 2014-02-27 2017-08-09 New York University Minimally invasive subgaleal extra-cranial electroencephalography (eeg) monitoring device
AU2015337848B2 (en) 2014-10-28 2020-04-16 The University Of Melbourne A method of forming an enclosure
AU2017298024B2 (en) 2016-07-21 2021-06-03 Patrick, James Finlay Transmission of energy and data using a collimated beam
AU2017377015A1 (en) * 2016-12-14 2019-07-25 Inner Cosmos Llc Brain computer interface systems and methods of use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102783942A (zh) * 2011-05-20 2012-11-21 中国科学院电子学研究所 植入式神经信息双模检测微电极阵列芯片及制备方法
WO2016130632A1 (en) * 2015-02-10 2016-08-18 Cyberonics, Inc. Monitoring of intrinsic heart rate recovery to improve stimulation therapy for heart failure patients

Also Published As

Publication number Publication date
AU2021399230A1 (en) 2023-06-08
CN116648284A (zh) 2023-08-25
EP4262968A1 (en) 2023-10-25
US20230405345A1 (en) 2023-12-21
WO2022130054A1 (en) 2022-06-23
CA3205556A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
AU2016216702B2 (en) Implantable wireless neural device
US9854987B2 (en) Distributed, minimally-invasive neural interface for wireless epidural recording
Ha et al. Silicon-integrated high-density electrocortical interfaces
US9474461B2 (en) Miniature wireless biomedical telemetry device
US20120123289A1 (en) System and method for wireless transmission of neural data
Yang et al. Challenges in scaling down of free-floating implantable neural interfaces to millimeter scale
US20120203129A1 (en) Brain Machine Interface Device
Yeon et al. Towards a 1.1 mm 2 free-floating wireless implantable neural recording SoC
WO2010042750A2 (en) System and method for miniature wireless implantable probe
WO2010027963A1 (en) Apparatus, system, and method for ultrasound powered neurotelemetry
US20210007602A1 (en) Brain implant with subcutaneous wireless relay and external wearable communication and power device
CN116648284B (zh) 植入式神经生理学装置
Kilinc et al. Remote powering and Data Communication for implanted biomedical systems
US7187967B2 (en) Apparatus and method for detecting neural signals and using neural signals to drive external functions
US11883196B2 (en) Active implantable stimulating device for on-demand stimulation of a vagus nerve
WO2018205504A1 (zh) 脑电波检测装置及设备
Drakopoulou et al. Hybrid neuroelectronics: towards a solution-centric way of thinking about complex problems in neurostimulation tools
Mutlu Challenges in neural interface electronics: miniaturization and wireless operation
WO2024086542A1 (en) Cranial hub, systems and methods of using same
Ha Silicon integrated high-density electrocortical and retinal neural interfaces
Zhang An implanted telemetry system for transcutaneous biosignal transmission

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant