CN116647374B - 一种基于大数据的网络流量入侵检测方法 - Google Patents
一种基于大数据的网络流量入侵检测方法 Download PDFInfo
- Publication number
- CN116647374B CN116647374B CN202310580044.5A CN202310580044A CN116647374B CN 116647374 B CN116647374 B CN 116647374B CN 202310580044 A CN202310580044 A CN 202310580044A CN 116647374 B CN116647374 B CN 116647374B
- Authority
- CN
- China
- Prior art keywords
- data
- network
- network traffic
- vector
- frequency band
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 21
- 239000013598 vector Substances 0.000 claims abstract description 69
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 24
- 238000000605 extraction Methods 0.000 claims abstract description 12
- 238000012549 training Methods 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 18
- 238000004891 communication Methods 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 6
- 238000011478 gradient descent method Methods 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000011218 segmentation Effects 0.000 claims description 2
- 230000006870 function Effects 0.000 description 11
- 230000006399 behavior Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1408—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
- H04L63/1416—Event detection, e.g. attack signature detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
- G06N3/0442—Recurrent networks, e.g. Hopfield networks characterised by memory or gating, e.g. long short-term memory [LSTM] or gated recurrent units [GRU]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1408—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
- H04L63/1425—Traffic logging, e.g. anomaly detection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/50—Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Security & Cryptography (AREA)
- Theoretical Computer Science (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Networks & Wireless Communication (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Signal Processing (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310580044.5A CN116647374B (zh) | 2023-05-23 | 2023-05-23 | 一种基于大数据的网络流量入侵检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310580044.5A CN116647374B (zh) | 2023-05-23 | 2023-05-23 | 一种基于大数据的网络流量入侵检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116647374A CN116647374A (zh) | 2023-08-25 |
CN116647374B true CN116647374B (zh) | 2024-05-07 |
Family
ID=87618157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310580044.5A Active CN116647374B (zh) | 2023-05-23 | 2023-05-23 | 一种基于大数据的网络流量入侵检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116647374B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113518063A (zh) * | 2021-03-01 | 2021-10-19 | 广东工业大学 | 基于数据增强和BiLSTM的网络入侵检测方法及系统 |
CN115118451A (zh) * | 2022-05-17 | 2022-09-27 | 北京理工大学 | 结合图嵌入知识建模的网络入侵检测方法 |
CN115987552A (zh) * | 2022-11-18 | 2023-04-18 | 八维通科技有限公司 | 一种基于深度学习的网络入侵检测方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106656981B (zh) * | 2016-10-21 | 2020-04-28 | 东软集团股份有限公司 | 网络入侵检测方法和装置 |
-
2023
- 2023-05-23 CN CN202310580044.5A patent/CN116647374B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113518063A (zh) * | 2021-03-01 | 2021-10-19 | 广东工业大学 | 基于数据增强和BiLSTM的网络入侵检测方法及系统 |
CN115118451A (zh) * | 2022-05-17 | 2022-09-27 | 北京理工大学 | 结合图嵌入知识建模的网络入侵检测方法 |
CN115987552A (zh) * | 2022-11-18 | 2023-04-18 | 八维通科技有限公司 | 一种基于深度学习的网络入侵检测方法 |
Non-Patent Citations (1)
Title |
---|
基于VDCNN和LSTM混合模型的入侵检测算法;王竹等;火力与指挥控制;第47卷(第2期);170-175 * |
Also Published As
Publication number | Publication date |
---|---|
CN116647374A (zh) | 2023-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101582813B (zh) | 基于分布式迁移网络学习的入侵检测系统及其方法 | |
CN111585997B (zh) | 一种基于少量标注数据的网络流量异常检测方法 | |
CN104601565B (zh) | 一种智能优化规则的网络入侵检测分类方法 | |
CN109962909B (zh) | 一种基于机器学习的网络入侵异常检测方法 | |
CN114816909B (zh) | 一种基于机器学习的实时日志检测预警方法及系统 | |
Bulakh et al. | Time series classification based on fractal properties | |
CN115348074B (zh) | 深度时空混合的云数据中心网络流量实时检测方法 | |
CN111143838B (zh) | 数据库用户异常行为检测方法 | |
CN109446804B (zh) | 一种基于多尺度特征连接卷积神经网络的入侵检测方法 | |
CN109190698B (zh) | 一种网络数字虚拟资产的分类识别系统及方法 | |
CN112738014A (zh) | 一种基于卷积时序网络的工控流量异常检测方法及系统 | |
CN112016097A (zh) | 一种预测网络安全漏洞被利用时间的方法 | |
Karanam et al. | Intrusion detection mechanism for large scale networks using CNN-LSTM | |
Harbola et al. | Improved intrusion detection in DDoS applying feature selection using rank & score of attributes in KDD-99 data set | |
CN112487406A (zh) | 一种基于机器学习的网络行为分析方法 | |
Ravipati et al. | A survey on different machine learning algorithms and weak classifiers based on KDD and NSL-KDD datasets | |
CN117892102A (zh) | 基于主动学习的入侵行为检测方法、系统、设备及介质 | |
CN117633627A (zh) | 一种基于证据不确定性评估的深度学习未知网络流量分类方法及系统 | |
CN117034112A (zh) | 一种基于样本增强与对比学习的恶意网络流量分类方法 | |
CN115473748B (zh) | 基于BiLSTM-ELM的DDoS攻击分类检测方法、装置及设备 | |
CN116647374B (zh) | 一种基于大数据的网络流量入侵检测方法 | |
CN116566724A (zh) | 用于检测DDoS攻击的检测方法及装置、存储介质 | |
CN115842645A (zh) | 基于umap-rf的网络攻击流量检测方法、装置及可读存储介质 | |
CN114726800A (zh) | 一种基于模型解释的规则式应用流量分类方法及系统 | |
Jeyanna et al. | A network intrusion detection system using clustering and outlier detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240327 Address after: Room 801, 85 Kefeng Road, Huangpu District, Guangzhou City, Guangdong Province Applicant after: Yami Technology (Guangzhou) Co.,Ltd. Country or region after: China Address before: 400065 Chongwen Road, Nanshan Street, Nanan District, Chongqing Applicant before: CHONGQING University OF POSTS AND TELECOMMUNICATIONS Country or region before: China |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240415 Address after: Room 301, No. 309 Tianfu Road, Tianhe District, Guangzhou City, Guangdong Province, 510630 (this residence is limited to office building functions) Applicant after: GUANGZHOU JOYSIM TECHNOLOGY CO.,LTD. Country or region after: China Address before: Room 801, 85 Kefeng Road, Huangpu District, Guangzhou City, Guangdong Province Applicant before: Yami Technology (Guangzhou) Co.,Ltd. Country or region before: China |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |