CN116646404A - Thin film transistor, integrated gate driving circuit and display panel - Google Patents
Thin film transistor, integrated gate driving circuit and display panel Download PDFInfo
- Publication number
- CN116646404A CN116646404A CN202310621003.6A CN202310621003A CN116646404A CN 116646404 A CN116646404 A CN 116646404A CN 202310621003 A CN202310621003 A CN 202310621003A CN 116646404 A CN116646404 A CN 116646404A
- Authority
- CN
- China
- Prior art keywords
- layer
- insulating layer
- layers
- thin film
- film transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 51
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 387
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 36
- 229910052757 nitrogen Inorganic materials 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 15
- 239000010408 film Substances 0.000 claims description 14
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 10
- 229910000449 hafnium oxide Inorganic materials 0.000 claims description 10
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 claims description 10
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 9
- 239000002356 single layer Substances 0.000 claims description 6
- 238000005229 chemical vapour deposition Methods 0.000 claims description 3
- 238000009413 insulation Methods 0.000 claims description 2
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 22
- 238000000151 deposition Methods 0.000 description 9
- 230000008021 deposition Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 230000007547 defect Effects 0.000 description 8
- -1 polyethylene terephthalate Polymers 0.000 description 8
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 7
- 238000001782 photodegradation Methods 0.000 description 7
- 229910000077 silane Inorganic materials 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000012994 photoredox catalyst Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6758—Thin-film transistors [TFT] characterised by the insulating substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6741—Group IV materials, e.g. germanium or silicon carbide
- H10D30/6743—Silicon
- H10D30/6746—Amorphous silicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/60—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
Landscapes
- Thin Film Transistor (AREA)
Abstract
Description
技术领域technical field
本申请涉及电子领域,尤其涉及一种薄膜晶体管、集成栅极驱动电路及显示面板。The present application relates to the field of electronics, in particular to a thin film transistor, an integrated gate drive circuit and a display panel.
背景技术Background technique
目前,薄膜晶体管中的有源层在照光后,会发生光退化,导致有源层的表面缺陷增加。而有源层存在缺陷会致使源极与漏极之间无法正常导通,影响薄膜晶体管整体的工作稳定性,进而导致显示面板显示异常。At present, the active layer in the thin film transistor will undergo photodegradation after being irradiated with light, resulting in the increase of surface defects in the active layer. Defects in the active layer will lead to the failure of normal conduction between the source and the drain, which will affect the overall stability of the thin film transistor and lead to abnormal display of the display panel.
发明内容Contents of the invention
本申请的实施例提供一种薄膜晶体管、集成栅极驱动电路及显示面板,能够提高薄膜晶体管中的绝缘层的能隙,从而降低有源层的光退化。Embodiments of the present application provide a thin film transistor, an integrated gate driving circuit, and a display panel, which can increase the energy gap of an insulating layer in the thin film transistor, thereby reducing photodegradation of an active layer.
第一方面,本申请提供一种薄膜晶体管,包括:In a first aspect, the present application provides a thin film transistor, including:
绝缘层,所述绝缘层的能隙在4.0ev-6.7ev之间;an insulating layer, the energy gap of the insulating layer is between 4.0ev-6.7ev;
有源层,所述绝缘层与所述有源层层叠设置,所述有源层的材料包括非晶硅;及an active layer, the insulating layer is stacked with the active layer, and the material of the active layer includes amorphous silicon; and
第一电极及第二电极,所述第一电极和所述第二电极位于所述有源层背离所述绝缘层的一侧,所述第二电极与所述第一电极间隔设置,所述第二电极与所述第一电极通过所述有源层连通。A first electrode and a second electrode, the first electrode and the second electrode are located on the side of the active layer away from the insulating layer, the second electrode is spaced apart from the first electrode, the The second electrode communicates with the first electrode through the active layer.
可以理解的是,现有技术中的绝缘层的能隙一般小于4ev,在有源层被照光后,有源层的电子可能会向绝缘层跃迁,从而产生缺陷,导致有源层无法提供足够的载流子将源极和栅极导通。最终导致显示面板显示异常。而本申请提供的绝缘层的能隙在4.0ev-6.7ev之间(包括端点值4.0ev和6.7ev),绝缘层的能隙的提高可以防止有源层的电子注入至绝缘层,进而有效降低有源层的光退化。It can be understood that the energy gap of the insulating layer in the prior art is generally less than 4 eV. After the active layer is illuminated, the electrons in the active layer may jump to the insulating layer, thereby generating defects, which cause the active layer to fail to provide sufficient energy. Carriers conduct the source and gate. Ultimately, the display panel displays abnormally. And the energy gap of the insulating layer provided by the present application is between 4.0ev-6.7ev (including the endpoint value 4.0ev and 6.7ev), the improvement of the energy gap of the insulating layer can prevent the electron injection of the active layer into the insulating layer, and then effectively Reduces photodegradation of the active layer.
一种可能的实施方式中,所述绝缘层为层叠设置的多层结构,所述多层结构包括第一层、第二层和第三层中的至少两种,所述第一层、所述第二层和所述第三层均为化学气相沉积形成的氮化硅膜层,所述第一层的含氮量低于所述第二层的含氮量,所述第二层的含氮量低于所述第三层的含氮量。In a possible implementation manner, the insulating layer is a stacked multi-layer structure, the multi-layer structure includes at least two of the first layer, the second layer and the third layer, the first layer, the Both the second layer and the third layer are silicon nitride film layers formed by chemical vapor deposition, the nitrogen content of the first layer is lower than that of the second layer, and the nitrogen content of the second layer is The nitrogen content is lower than that of the third layer.
一种可能的实施方式中,所述绝缘层包括两个所述第二层和两个所述第三层,在所述绝缘层朝向所述有源层的方向上,一个所述第二层、一个所述第三层、另一个所述第二层和另一个所述第三层依次层叠设置。In a possible implementation manner, the insulating layer includes two second layers and two third layers, and in the direction that the insulating layer faces the active layer, one second layer , one of the third layer, another of the second layer and another of the third layer are sequentially stacked.
一种可能的实施方式中,所述绝缘层包括一个所述第一层、一个所述第二层和两个第三层,在所述绝缘层朝向所述有源层的方向上,一个所述第一层、一个所述第三层、一个所述第二层和另一个所述第三层依次层叠设置。In a possible implementation manner, the insulating layer includes one first layer, one second layer and two third layers, and in the direction where the insulating layer faces the active layer, one of the The first layer, one third layer, one second layer and another third layer are sequentially stacked.
一种可能的实施方式中,所述绝缘层包括一个所述第一层、一个所述第二层和两个所述第三层,在所述绝缘层朝向所述有源层的方向上,一个所述第三层、一个所述第一层、一个所述第二层和另一个所述第三层依次层叠设置。In a possible implementation manner, the insulating layer includes one first layer, one second layer, and two third layers, and in a direction in which the insulating layer faces the active layer, One of the third layer, one of the first layer, one of the second layer and another of the third layer are stacked in sequence.
一种可能的实施方式中,所述绝缘层包括一个所述第一层、一个所述第二层、一个所述第三层和一个第四层,所述第四层的材料包括氧化铪或者氧化硅;In a possible implementation manner, the insulating layer includes one of the first layer, one of the second layer, one of the third layer and a fourth layer, and the material of the fourth layer includes hafnium oxide or Silicon oxide;
在所述绝缘层朝向所述有源层的方向上,一个所述第四层、一个所述第一层、一个所述第三层和一个所述第三层依次层叠设置。In a direction in which the insulating layer faces the active layer, one fourth layer, one first layer, one third layer, and one third layer are sequentially stacked.
一种可能的实施方式中,所述绝缘层包括两个所述第二层、一个所述第三层和一个第四层,所述第四层的材料包括氧化铪或者氧化硅;In a possible implementation manner, the insulating layer includes two second layers, one third layer and one fourth layer, and the material of the fourth layer includes hafnium oxide or silicon oxide;
在所述绝缘层朝向所述有源层的方向上,一个所述第二层、一个所述第四层、另一个所述第二层和一个所述第三层依次层叠设置。In the direction in which the insulating layer faces the active layer, one of the second layer, one of the fourth layer, another of the second layer and one of the third layer are stacked in sequence.
一种可能的实施方式中,所述绝缘层为单层结构,所述单层结构的材料包括氧化铪或者氧化硅。In a possible implementation manner, the insulating layer has a single-layer structure, and a material of the single-layer structure includes hafnium oxide or silicon oxide.
第二方面,本申请还提供一种集成栅极驱动电路,包括多个驱动单元,每个所述驱动单元均包括一个如上所述薄膜晶体管。In a second aspect, the present application also provides an integrated gate driving circuit, including a plurality of driving units, each of which includes a thin film transistor as described above.
第三方面,本申请还提供一种显示面板,包括显示模组和如上所述的集成栅极驱动电路,所述集成栅极驱动电路控制所述显示模组显示图像。In a third aspect, the present application further provides a display panel, including a display module and the above-mentioned integrated gate driving circuit, and the integrated gate driving circuit controls the display module to display images.
附图说明Description of drawings
为了更清楚地说明本申请的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以如这些附图获得其他的附图。In order to illustrate the technical solution of the present application more clearly, the accompanying drawings used in the implementation will be briefly introduced below. Obviously, the accompanying drawings in the following description are only some implementations of the application. As far as the skilled person is concerned, on the premise of not paying creative work, other drawings can also be obtained like these drawings.
图1是本提申请提供的显示面板的结构示意图;Fig. 1 is a schematic structural diagram of a display panel provided in this application;
图2是图1所示的显示面板中的薄膜晶体管的结构示意图;FIG. 2 is a schematic structural diagram of a thin film transistor in the display panel shown in FIG. 1;
图3是图2提供的绝缘层的第一种可能的实施例中第一种剖面示意图;Fig. 3 is a schematic cross-sectional view of the first kind in the first possible embodiment of the insulating layer provided in Fig. 2;
图4是图2提供的绝缘层的第一种可能的实施例中第二种剖面示意图;Fig. 4 is a second cross-sectional schematic diagram of the first possible embodiment of the insulating layer provided in Fig. 2;
图5是图2提供的绝缘层的第一种可能的实施例中第三种剖面示意图;Fig. 5 is a schematic cross-sectional view of a third type in the first possible embodiment of the insulating layer provided in Fig. 2;
图6是图2提供的绝缘层的第二种可能的实施例中第一种剖面示意图;Fig. 6 is a schematic cross-sectional view of the first kind in the second possible embodiment of the insulating layer provided in Fig. 2;
图7是图2提供的绝缘层的第二种可能的实施例中第二种剖面示意图;FIG. 7 is a second cross-sectional schematic diagram of a second possible embodiment of the insulating layer provided in FIG. 2;
图8是图2提供的绝缘层的第四种可能的实施例的剖面示意图。FIG. 8 is a schematic cross-sectional view of a fourth possible embodiment of the insulating layer provided in FIG. 2 .
附图标记:显示面板1000、驱动电路100、显示模组200、薄膜晶体管101、基板110、栅极120、绝缘层130、第一电极140、第二电极150、第一导电层160、有源层170、第一层131、第二层132、第三层133。Reference signs: display panel 1000, drive circuit 100, display module 200, thin film transistor 101, substrate 110, gate 120, insulating layer 130, first electrode 140, second electrode 150, first conductive layer 160, active Layer 170 , first layer 131 , second layer 132 , third layer 133 .
具体实施方式Detailed ways
为了方便理解,首先对本申请的实施例所涉及的术语进行解释。For ease of understanding, the terms involved in the embodiments of the present application are explained first.
和/或:仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。And/or: It is just a relationship describing the associated object, which means that there can be three kinds of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone. .
多个:是指两个或多于两个。Plurality: Refers to two or more than two.
连接:应做广义理解,例如,A与B连接,可以是A与B直接相连,也可以是A与B通过中间媒介间接相连。Connection: It should be understood in a broad sense. For example, the connection between A and B can be directly connected between A and B, or indirectly connected through an intermediary.
下面将结合附图,对本申请的具体实施方式进行清楚地描述。The specific implementation manners of the present application will be clearly described below in conjunction with the accompanying drawings.
请参阅图1,图1是本提申请提供的显示面板1000的结构示意图。本申请提供一种显示面板1000。显示面板1000包括集成栅极驱动电路100和显示模组200。集成栅极驱动电路100控制显示模组200显示图像。Please refer to FIG. 1 . FIG. 1 is a schematic structural diagram of a display panel 1000 provided in this application. The present application provides a display panel 1000 . The display panel 1000 includes an integrated gate driving circuit 100 and a display module 200 . The integrated gate driving circuit 100 controls the display module 200 to display images.
集成栅极驱动电路100包括多个驱动单元(图未示),每个驱动单元均包括一个薄膜晶体管101。薄膜晶体管101可以作为集成栅极驱动电路100的开关。The integrated gate driving circuit 100 includes a plurality of driving units (not shown), and each driving unit includes a thin film transistor 101 . The thin film transistor 101 can be used as a switch of the integrated gate driving circuit 100 .
可以理解的是,随着显示面板制造技术的不断发展,人们对显示面板的高解析度、窄边框的要求不断提升,越来越多的集成栅极驱动电路(Gate Driven on Array,GOA)被应用在显示面板中。集成栅极驱动电路能实现显示面板的逐行扫描驱动功能,利用集成栅极驱动电路技术将栅极驱动电路集成在显示面板的阵列基板上,可以省掉栅极驱动部分,从而可以在原材料和制作工艺两方面降低产品成本。It is understandable that with the continuous development of display panel manufacturing technology, people's requirements for high resolution and narrow frame of the display panel continue to increase, and more and more integrated gate drive circuits (Gate Driven on Array, GOA) are used Applied in the display panel. The integrated gate drive circuit can realize the progressive scan driving function of the display panel. Using the integrated gate drive circuit technology to integrate the gate drive circuit on the array substrate of the display panel can save the gate drive part, so that it can be used in raw materials and The production process reduces the product cost in two aspects.
目前,薄膜晶体管中的有源层在照光后,会发生光退化,导致有源层的表面缺陷增加。而有源层存在缺陷会致使源极与漏极之间无法正常导通,影响薄膜晶体管整体的工作稳定性,进而导致显示面板显示异常。At present, the active layer in the thin film transistor will undergo photodegradation after being irradiated with light, resulting in the increase of surface defects in the active layer. Defects in the active layer will lead to the failure of normal conduction between the source and the drain, which will affect the overall stability of the thin film transistor and lead to abnormal display of the display panel.
基于此,本申请的实施例提供一种薄膜晶体管101,能够提高薄膜晶体管101中的绝缘层的能隙,从而降低有源层的光退化。Based on this, the embodiment of the present application provides a thin film transistor 101, which can increase the energy gap of the insulating layer in the thin film transistor 101, thereby reducing the photodegradation of the active layer.
请参阅图2,图2是图1所示的显示面板1000中的薄膜晶体管101的结构示意图。薄膜晶体管101包括基板110、栅极120、绝缘层130、第一电极140、第二电极150、第一导电层160和有源层170。Please refer to FIG. 2 . FIG. 2 is a schematic structural diagram of the thin film transistor 101 in the display panel 1000 shown in FIG. 1 . The thin film transistor 101 includes a substrate 110 , a gate 120 , an insulating layer 130 , a first electrode 140 , a second electrode 150 , a first conductive layer 160 and an active layer 170 .
需说明的是,图1的目的仅在于示意性的描述基板110、栅极120、绝缘层130、第一电极140、第二电极150、第一导电层160和有源层170的连接关系,并非是对各个设备的连接位置、具体构造及数量做具体限定。而本申请实施例示意的结构并不构成对薄膜晶体管101的具体限定。在本申请另一些实施例中,薄膜晶体管101可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。It should be noted that the purpose of FIG. 1 is only to schematically describe the connection relationship between the substrate 110, the gate 120, the insulating layer 130, the first electrode 140, the second electrode 150, the first conductive layer 160 and the active layer 170, It is not a specific limitation on the connection position, specific structure and quantity of each device. However, the structure shown in the embodiment of the present application does not constitute a specific limitation on the thin film transistor 101 . In other embodiments of the present application, the thin film transistor 101 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components. The illustrated components can be realized in hardware, software or a combination of software and hardware.
示例性的,基板110可以为玻璃基板、蓝宝石基板或者硅晶片基板。或者基板110可以为柔性基板,柔性基板可以采用下述材料中的任意一种或多种制成:聚酰亚胺、聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)、聚萘二甲酸乙二醇酯(Polyethylenenaphthalate two formic acid glycol ester,PEN)、环烯烃聚合物(Cyclo-olefinpolymer,COP)、聚碳酸酯(Polycarbonate,PC)、聚苯乙烯(Polystyrene,PS)、聚丙烯(Polypropylene,PP)、聚四氟乙烯(Polytetrafluoroethylene,PTFE)。在其他实现方式中,基板110也可以选用陶瓷基板等,本申请对此不做限制。Exemplarily, the substrate 110 may be a glass substrate, a sapphire substrate or a silicon wafer substrate. Or the substrate 110 can be a flexible substrate, and the flexible substrate can be made of any one or more of the following materials: polyimide, polyethylene terephthalate (Polyethylene terephthalate, PET), polyethylene naphthalate Ethylene glycol formate (Polyethylenenaphthalate two formic acid glycol ester, PEN), cyclo-olefin polymer (Cyclo-olefin polymer, COP), polycarbonate (Polycarbonate, PC), polystyrene (Polystyrene, PS), polypropylene (Polypropylene , PP), polytetrafluoroethylene (Polytetrafluoroethylene, PTFE). In other implementation manners, the substrate 110 may also be a ceramic substrate, which is not limited in this application.
栅极120设于基板110的表面,绝缘层130覆盖栅极120。有源层170可以设于绝缘层130背离基板110的一侧表面。有源层170可以与栅极120相对设置。第一导电层160可以设于有源层170远离绝缘层130的表面。第一电极140和第二电极150设于绝缘层130远离栅极120的一侧,第一电极140和第二电极150间隔设置。其中,第一电极140可以为薄膜晶体管101的源极,第二电极150为薄膜晶体管101的漏极。或者第一电极140可以为薄膜晶体管101的漏极,第二电极150为薄膜晶体管101的源极。The gate 120 is disposed on the surface of the substrate 110 , and the insulating layer 130 covers the gate 120 . The active layer 170 may be disposed on a surface of the insulating layer 130 facing away from the substrate 110 . The active layer 170 may be disposed opposite to the gate 120 . The first conductive layer 160 may be disposed on the surface of the active layer 170 away from the insulating layer 130 . The first electrode 140 and the second electrode 150 are disposed on a side of the insulating layer 130 away from the gate 120 , and the first electrode 140 and the second electrode 150 are disposed at intervals. Wherein, the first electrode 140 may be the source of the thin film transistor 101 , and the second electrode 150 may be the drain of the thin film transistor 101 . Alternatively, the first electrode 140 may be the drain of the thin film transistor 101 , and the second electrode 150 may be the source of the thin film transistor 101 .
有源层170的材料可以为非晶硅。非晶硅在照光后可能会发生光退化,从而在表面产生缺陷。进而导致薄膜晶体管101发生漏电。The material of the active layer 170 may be amorphous silicon. Amorphous silicon can undergo photodegradation when exposed to light, creating defects on the surface. This further causes leakage of the thin film transistor 101 .
本申请的实施例提供的绝缘层130的能隙较高。绝缘层130的能隙在4.0ev-6.7ev之间。The insulating layer 130 provided by the embodiments of the present application has a relatively high energy gap. The energy gap of the insulating layer 130 is between 4.0ev-6.7ev.
可以理解的是,现有技术中的绝缘层的能隙一般小于4ev,在有源层被照光后,有源层的电子可能会向绝缘层跃迁,从而产生缺陷,导致有源层无法提供足够的载流子将源极和栅极导通。最终导致显示面板显示异常。而本申请提供的绝缘层130的能隙在4.0ev-6.7ev之间(包括端点值4.0ev和6.7ev),绝缘层130的能隙的提高可以防止有源层170的电子注入至绝缘层130,进而有效降低有源层170的光退化。It can be understood that the energy gap of the insulating layer in the prior art is generally less than 4 eV. After the active layer is illuminated, the electrons in the active layer may jump to the insulating layer, thereby generating defects, which cause the active layer to fail to provide sufficient energy. Carriers conduct the source and gate. Ultimately, the display panel displays abnormally. However, the energy gap of the insulating layer 130 provided by the present application is between 4.0ev-6.7ev (including the endpoint value 4.0ev and 6.7ev), and the improvement of the energy gap of the insulating layer 130 can prevent the injection of electrons from the active layer 170 into the insulating layer 130, thereby effectively reducing the photodegradation of the active layer 170.
另外,集成栅极驱动电路中的栅极一般会施加较高的电压,这使得栅极的电子容易向绝缘层跃迁,而跃迁至绝缘层的电子可能会与有源层的空穴复合,导致有源层的电子层和空穴层的结构会受到破坏,使有源层产生缺陷,最终导致薄膜晶体管无法正常工作。本申请提供的实施例中,当绝缘层130的能隙提高后,栅极120的电子不易向绝缘层130跃迁,从而保证有源层170可以正常工作。In addition, a high voltage is generally applied to the gate in the integrated gate drive circuit, which makes it easy for the electrons in the gate to transition to the insulating layer, and the electrons transitioning to the insulating layer may recombine with the holes in the active layer, resulting in The structure of the electron layer and the hole layer of the active layer will be damaged, causing defects in the active layer, and finally causing the thin film transistor to fail to work normally. In the embodiment provided in the present application, when the energy gap of the insulating layer 130 is increased, electrons in the gate 120 are not easy to transition to the insulating layer 130 , thereby ensuring that the active layer 170 can work normally.
本申请的绝缘层130包括多种结构,下文将以多个实施例对绝缘层130的结构进行举例描述。但应当理解,在本领域技术人员无需付出额外创造力劳动的前提下,与下文实施例相似的实施例也受到本申请的保护。The insulating layer 130 of the present application includes various structures, and the structure of the insulating layer 130 will be described as examples in several embodiments below. However, it should be understood that, on the premise that those skilled in the art do not need to pay extra creative work, embodiments similar to the following embodiments are also protected by the present application.
第一种可能的实施例中,请参阅图3,图3是图2提供的绝缘层130的第一种可能的实施例中第一种剖面示意图。绝缘层130的能隙在4.0ev~5.1ev之间。绝缘层130包括第一层131、第二层132和第三层133的至少两种。第一层131、第二层132和第三层133为等离子体增强化学气相沉积(plasma enhanced chemical vapor deposition,PECVD)形成的氮化硅膜层。在氮化硅的沉积过程中,可以使用氨气、硅烷和氮气作为气体原料。其中,氨气与硅烷的比例范围可以在5-15之间(包括端点值5和15)。氮气与硅烷的比例范围可以在15-30之间(包括端点值15和30)。示例性的,在氧化硅沉积完成后,可以激发氮气和氢气,从而产生氮气和氢气的低温等离子体,进而对刚形成的氮化硅膜层进行气氛保护。For the first possible embodiment, please refer to FIG. 3 , which is a first cross-sectional schematic view of the first possible embodiment of the insulating layer 130 provided in FIG. 2 . The energy gap of the insulating layer 130 is between 4.0ev˜5.1ev. The insulating layer 130 includes at least two of a first layer 131 , a second layer 132 and a third layer 133 . The first layer 131 , the second layer 132 and the third layer 133 are silicon nitride film layers formed by plasma enhanced chemical vapor deposition (PECVD). During the deposition of silicon nitride, ammonia, silane, and nitrogen can be used as gaseous materials. Wherein, the ratio range of ammonia to silane can be between 5-15 (inclusive of endpoints 5 and 15). The ratio of nitrogen to silane can range from 15-30 (15 and 30 inclusive). Exemplarily, after the deposition of silicon oxide is completed, nitrogen and hydrogen may be excited to generate a low-temperature plasma of nitrogen and hydrogen, and then perform atmosphere protection for the newly formed silicon nitride film.
可以理解的是,目前常用的氮化硅的化学气相沉积中,氨气与硅烷的比例大致为9,氮气与硅烷的比例大致为3。本申请中的,提高了氨气与硅烷的比例、及氮气与硅烷的比例,从而提成沉积的氮化硅膜层中的氮含量,进而提高氮化硅的绝缘性,最终达到提升绝缘层130的能隙的结果。It can be understood that, in the currently commonly used chemical vapor deposition of silicon nitride, the ratio of ammonia gas to silane is about 9, and the ratio of nitrogen gas to silane is about 3. In this application, the ratio of ammonia gas to silane, and the ratio of nitrogen gas to silane is increased, thereby increasing the nitrogen content in the deposited silicon nitride film layer, thereby improving the insulation of silicon nitride, and finally achieving the lifting of the insulating layer 130. The result of the energy gap.
第一层131的沉积速度在10A/s-15A/s之间(包括端点值10A/s和15A/s)。第一层131的膜层厚度可以在300A-1000A之间(包括端点值300A和1000A)。第一层131的含氮量低于第二层132的含氮量。The deposition rate of the first layer 131 is between 10A/s-15A/s (endpoints 10A/s and 15A/s inclusive). The film thickness of the first layer 131 may be between 300A-1000A (inclusive of endpoint values 300A and 1000A). The nitrogen content of the first layer 131 is lower than that of the second layer 132 .
第二层132的沉积速度在7A/s-10A/s之间(包括端点值7A/s和10A/s)。第二层132的膜层厚度可以在1500A-3800A之间(包括端点值1500A和3800A)。第二层132的含氮量低于第三层133的含氮量。The deposition rate of the second layer 132 is between 7A/s-10A/s (inclusive). The film layer thickness of the second layer 132 may be between 1500A-3800A (inclusive of endpoint values 1500A and 3800A). The nitrogen content of the second layer 132 is lower than that of the third layer 133 .
第三层133的沉积速度小于7A/s。第三层133的膜层厚度可以在200A-1500A之间(包括端点值200A和1500A)。第三层133可以有三种,三种第三层133的材料的沉积速度不同。具体而言,三种第三层133分别为第一子层(图未示)、第二子层(图未示)和第三子层(图未示)。第一子层的沉积速度在5A/s-7A/s之间(包括端点值5A/s和7A/s)。第一子层的膜子层厚度可以在500A-1500A之间(包括端点值500A和1500A)。第一子层的含氮量低于第二子层的含氮量。第二子层的沉积速度在3A/s-5A/s之间(包括端点值3A/s和5A/s)。第二子层的膜子层厚度可以在200A-500A之间(包括端点值200A和500A)。第二子层的含氮量低于第三子层的含氮量。第三子层的沉积速度小于3A/s。第三子层的膜子层厚度可以在200A-500A之间(包括端点值200A和500A)。The deposition rate of the third layer 133 is less than 7A/s. The film thickness of the third layer 133 may be between 200A-1500A (inclusive of endpoints 200A and 1500A). There may be three types of third layers 133 , and the deposition speeds of the materials of the three types of third layers 133 are different. Specifically, the three types of third layers 133 are respectively a first sub-layer (not shown in the figure), a second sub-layer (not shown in the figure) and a third sub-layer (not shown in the figure). The deposition rate of the first sub-layer is between 5A/s-7A/s (endpoints 5A/s and 7A/s inclusive). The film sublayer thickness of the first sublayer may be between 500A and 1500A inclusive. The nitrogen content of the first sublayer is lower than that of the second sublayer. The deposition rate of the second sublayer is between 3A/s-5A/s (endpoints 3A/s and 5A/s inclusive). The film sublayer thickness of the second sublayer may be between 200A and 500A (inclusive). The nitrogen content of the second sublayer is lower than that of the third sublayer. The deposition rate of the third sublayer is less than 3A/s. The film sublayer thickness of the third sublayer may be between 200A and 500A (inclusive).
可以理解的是,降低成膜速率可以有效的提高氮化硅膜层中的氮的含量。进而提高氮化硅的绝缘性,最终达到提升绝缘层130的能隙的结果。It can be understood that reducing the film forming rate can effectively increase the nitrogen content in the silicon nitride film layer. Further, the insulating property of the silicon nitride is improved, and finally the energy gap of the insulating layer 130 is increased.
第一种可能的实施例中包括多种实施方式。第一种实施方式中,请再参阅图3,绝缘层130包括一个第一层131、一个第二层132和两个第三层133,在绝缘层130朝向有源层170的方向上,一个第一层131、一个第三层133、一个第二层132和另一个第三层133依次层叠设置。其中,一个第三层133可以为第一子层,另一个第三层133可以为第三子层。也即为,一个第一层131、一个第三子层、一个第二层132和一个第一子层依次层叠设置于基板110朝向有源层170的表面。Multiple implementations are included in the first possible embodiment. In the first implementation mode, please refer to FIG. 3 again. The insulating layer 130 includes a first layer 131, a second layer 132 and two third layers 133. In the direction where the insulating layer 130 faces the active layer 170, one The first layer 131 , a third layer 133 , a second layer 132 and another third layer 133 are stacked in sequence. Wherein, one third layer 133 may be the first sub-layer, and the other third layer 133 may be the third sub-layer. That is, a first layer 131 , a third sub-layer, a second layer 132 and a first sub-layer are sequentially stacked on the surface of the substrate 110 facing the active layer 170 .
第二种实施方式中,请参阅图4,图4是图2提供的绝缘层130的第一种可能的实施例中第二种剖面示意图。绝缘层130包括两个第二层132和两个第三层133,在绝缘层130朝向有源层170的方向上,一个第二层132、一个第三层133、另一个第二层132和另一个第三层133依次层叠设置。其中,第三层133可以为第一子层、第二子层或第三子层。For the second implementation manner, please refer to FIG. 4 , which is a second cross-sectional schematic diagram of the first possible embodiment of the insulating layer 130 provided in FIG. 2 . The insulating layer 130 includes two second layers 132 and two third layers 133, in the direction of the insulating layer 130 towards the active layer 170, one second layer 132, one third layer 133, another second layer 132 and Another third layer 133 is stacked in sequence. Wherein, the third layer 133 may be the first sub-layer, the second sub-layer or the third sub-layer.
具体为,一个第二层132、一个第一子层、另一个第二层132和另一个第一子层依次层叠设置于基板110朝向有源层170的表面。或者,一个第二层132、一个第二子层、另一个第二层132和另一个第二子层依次层叠设置于基板110朝向有源层170的表面。再或者,一个第二层132、一个第三子层、另一个第二层132和另一个第三子层依次层叠设置于基板110朝向有源层170的表面。Specifically, one second layer 132 , one first sub-layer, another second layer 132 and another first sub-layer are sequentially stacked on the surface of the substrate 110 facing the active layer 170 . Alternatively, one second layer 132 , one second sub-layer, another second layer 132 and another second sub-layer are sequentially stacked on the surface of the substrate 110 facing the active layer 170 . Alternatively, a second layer 132 , a third sub-layer, another second layer 132 and another third sub-layer are sequentially stacked on the surface of the substrate 110 facing the active layer 170 .
第三种实施方式中,请参阅图5,图5是图2提供的绝缘层130的第一种可能的实施例中第三种剖面示意图。绝缘层130包括一个第一层131、一个第二层132和两个第三层133,在绝缘层130朝向有源层170的方向上,一个第三层133、一个第一层131、一个第二层132和另一个第三层133依次层叠设置。其中,第三层133可以为第一子层、第二子层或第三子层。For the third implementation manner, please refer to FIG. 5 , which is a third cross-sectional schematic diagram of the first possible embodiment of the insulating layer 130 provided in FIG. 2 . The insulating layer 130 includes a first layer 131, a second layer 132 and two third layers 133. In the direction of the insulating layer 130 towards the active layer 170, a third layer 133, a first layer 131, a first layer 133 The second layer 132 and another third layer 133 are stacked in sequence. Wherein, the third layer 133 may be the first sub-layer, the second sub-layer or the third sub-layer.
具体为,一个第三子层、一个第一层131、一个第二层132和一个第一子层依次层叠设置于基板110朝向有源层170的表面。或者,一个第三子层、一个第一层131、一个第二层132和另一个第三子层依次层叠设置于基板110朝向有源层170的表面。再或者,一个第二子层、一个第一层131、一个第二层132和一个第二子层依次层叠设置于基板110朝向有源层170的表面。Specifically, a third sublayer, a first layer 131 , a second layer 132 and a first sublayer are sequentially stacked on the surface of the substrate 110 facing the active layer 170 . Alternatively, a third sublayer, a first layer 131 , a second layer 132 and another third sublayer are sequentially stacked on the surface of the substrate 110 facing the active layer 170 . Alternatively, a second sublayer, a first layer 131 , a second layer 132 and a second sublayer are sequentially stacked on the surface of the substrate 110 facing the active layer 170 .
第二种可能的实施例中,请参阅图6,图6是图2提供的绝缘层130的第二种可能的实施例中第一种剖面示意图。与第一种实施例不同的是,绝缘层130还包括一个第四层134,第四层134的材料包括氧化铪。氧化铪可以为等离子体增强化学气相沉积形成,氧化铪的能隙范围在5.5ev-6.7ev之间。第四层134的膜层厚度可以在200A-500A之间。For the second possible embodiment, please refer to FIG. 6 . FIG. 6 is a schematic cross-sectional view of the first kind in the second possible embodiment of the insulating layer 130 provided in FIG. 2 . Different from the first embodiment, the insulating layer 130 further includes a fourth layer 134, and the material of the fourth layer 134 includes hafnium oxide. Hafnium oxide can be formed by plasma enhanced chemical vapor deposition, and the energy gap range of hafnium oxide is between 5.5ev-6.7ev. The film thickness of the fourth layer 134 may be between 200A-500A.
在第二种可能的实施例中包括两种实施方式。第一种实施方式中,在绝缘层130朝向有源层170的方向上,一个第四层134、一个第一层131、一个第二层132和一个第三层133依次层叠设置。其中,第三层133可以为第一子层、第二子层或第三子层。In a second possible embodiment two implementations are included. In the first implementation manner, a fourth layer 134 , a first layer 131 , a second layer 132 and a third layer 133 are sequentially stacked in a direction in which the insulating layer 130 faces the active layer 170 . Wherein, the third layer 133 may be the first sub-layer, the second sub-layer or the third sub-layer.
第二种实施方式中,请参阅图7,图7是图2提供的绝缘层130的第二种可能的实施例中第二种剖面示意图。绝缘层130包括两个第二层132、一个第三层133和一个第四层134。在绝缘层130朝向有源层170的方向上,一个第二层132、一个第四层134、另一个第二层132和一个第三层133依次层叠设置。其中,第三层133可以为第一子层、第二子层或第三子层。For the second implementation manner, please refer to FIG. 7 , which is a second cross-sectional schematic diagram of a second possible embodiment of the insulating layer 130 provided in FIG. 2 . The insulating layer 130 includes two second layers 132 , one third layer 133 and one fourth layer 134 . In the direction from the insulating layer 130 to the active layer 170 , a second layer 132 , a fourth layer 134 , another second layer 132 and a third layer 133 are stacked in sequence. Wherein, the third layer 133 may be the first sub-layer, the second sub-layer or the third sub-layer.
第三种可能的实施例中,与第二种可能的实施例不同的是,第四层134的材料为氧化硅。In the third possible embodiment, different from the second possible embodiment, the material of the fourth layer 134 is silicon oxide.
第三种可能的实施例中包括两种实施方式。请再参阅图6,第一种实施方式中,在绝缘层130朝向有源层170的方向上,一个第四层134、一个第一层131、一个第三层133和一个第三层133依次层叠设置。其中,第三层133可以为第一子层、第二子层或第三子层。The third possible embodiment includes two implementation manners. Please refer to FIG. 6 again. In the first implementation manner, in the direction of the insulating layer 130 towards the active layer 170, a fourth layer 134, a first layer 131, a third layer 133 and a third layer 133 are sequentially Cascading settings. Wherein, the third layer 133 may be the first sub-layer, the second sub-layer or the third sub-layer.
第二种实施方式中,请再参阅图7,绝缘层130包括两个第二层132、一个第三层133和一个第四层134。在绝缘层130朝向有源层170的方向上,一个第二层132、一个第四层134、另一个第二层132和一个第三层133依次层叠设置。其中,第三层133可以为第一子层、第二子层或第三子层。In the second implementation manner, please refer to FIG. 7 again, the insulating layer 130 includes two second layers 132 , one third layer 133 and one fourth layer 134 . In the direction from the insulating layer 130 to the active layer 170 , a second layer 132 , a fourth layer 134 , another second layer 132 and a third layer 133 are stacked in sequence. Wherein, the third layer 133 may be the first sub-layer, the second sub-layer or the third sub-layer.
第四种可能的实施例中,请参阅图8,图8是图2提供的绝缘层130的第四种可能的实施例的剖面示意图。与前三种可能的实施例不同的是,绝缘层130为单层结构。单层结构的材料包括氧化铪或者氧化硅。For a fourth possible embodiment, please refer to FIG. 8 , which is a schematic cross-sectional view of a fourth possible embodiment of the insulating layer 130 provided in FIG. 2 . Different from the previous three possible embodiments, the insulating layer 130 is a single-layer structure. Materials for the single-layer structure include hafnium oxide or silicon oxide.
本申请还通过下文的两个公式来对薄膜晶体管101的性能进行探究。The present application also explores the performance of the thin film transistor 101 through the following two formulas.
公式1:Formula 1:
I_ds=W/L*μ_eff*C_ox*[(V_gs-V_th)*V_ds-(V_ds^2)/2]I_ds=W/L*μ_eff*C_ox*[(V_gs-V_th)*V_ds-(V_ds^2)/2]
公式2:Formula 2:
V_(gs(ob))=V_GH-V_GLV_(gs(ob))=V_GH-V_GL
公式1中,W/L表示薄膜晶体管101的沟道宽和沟道长度之比,μ_eff表示电子迁移率,C_ox表示薄膜晶体管101中栅极120-绝缘层130-有源层170的结构的单位面积电容,V_gs表示栅极120和源极的电压差,V_th表示薄膜晶体管101的阈值电压,V_ds表示源极和漏极的电压差。In Formula 1, W/L represents the ratio of the channel width to the channel length of the thin film transistor 101, μ_eff represents the electron mobility, and C_ox represents the unit of the structure of the gate 120-insulating layer 130-active layer 170 in the thin film transistor 101 For area capacitance, V_gs represents the voltage difference between the gate 120 and the source, V_th represents the threshold voltage of the TFT 101 , and V_ds represents the voltage difference between the source and the drain.
公式2中,V_GH表示薄膜晶体管101开态时的电压,V_GL表示薄膜晶体管101关态时的电压,V_(gs(on))表示薄膜晶体管101的电压差。In Equation 2, V_GH represents the voltage of the thin film transistor 101 when it is on, V_GL represents the voltage when the thin film transistor 101 is off, and V_(gs(on)) represents the voltage difference of the thin film transistor 101 .
可以理解的是,薄膜晶体管101的电压差越大,薄膜晶体管101的开态电流就越大。因此降低薄膜晶体管101关态时的电压,可以有效的提到薄膜晶体管101的开态电流,从而改善薄膜晶体管101的工作稳定性,进而避免显示面板1000由于驱动电路不稳定而导致显示异常。It can be understood that, the larger the voltage difference of the thin film transistor 101 is, the larger the on-state current of the thin film transistor 101 is. Therefore, reducing the off-state voltage of the thin film transistor 101 can effectively increase the on-state current of the thin film transistor 101 , thereby improving the working stability of the thin film transistor 101 , thereby avoiding abnormal display of the display panel 1000 due to an unstable driving circuit.
另外,在薄膜晶体管101中,提高其绝缘层130的能隙可以提高绝缘层130的介电常数,进而提高薄膜晶体管101中栅极120-绝缘层130-有源层170的结构的单位面积电容(C_ox),从而可以提高电流,使电流大小足够驱动显示面板1000显示画面。In addition, in the thin film transistor 101, increasing the energy gap of the insulating layer 130 can increase the dielectric constant of the insulating layer 130, thereby increasing the capacitance per unit area of the gate 120-insulating layer 130-active layer 170 structure in the thin film transistor 101. (C_ox), so that the current can be increased to make the current sufficient to drive the display panel 1000 to display images.
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。The embodiments of the present application have been introduced in detail above, and specific examples have been used in this paper to illustrate the principles and implementation methods of the present application. The descriptions of the above embodiments are only used to help understand the methods and core ideas of the present application; meanwhile, for Those skilled in the art will have changes in specific implementation methods and application scopes based on the ideas of the present application. In summary, the contents of this specification should not be construed as limiting the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310621003.6A CN116646404A (en) | 2023-05-26 | 2023-05-26 | Thin film transistor, integrated gate driving circuit and display panel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310621003.6A CN116646404A (en) | 2023-05-26 | 2023-05-26 | Thin film transistor, integrated gate driving circuit and display panel |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116646404A true CN116646404A (en) | 2023-08-25 |
Family
ID=87639396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310621003.6A Pending CN116646404A (en) | 2023-05-26 | 2023-05-26 | Thin film transistor, integrated gate driving circuit and display panel |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116646404A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6215857A (en) * | 1985-07-12 | 1987-01-24 | Matsushita Electric Ind Co Ltd | Method of manufacturing field effect transistor |
JPS63117469A (en) * | 1986-11-05 | 1988-05-21 | Sumitomo Metal Ind Ltd | Thin-film semiconductor device |
JPH0234821A (en) * | 1988-07-25 | 1990-02-05 | Matsushita Electric Ind Co Ltd | Thin film transistor |
JPH06177382A (en) * | 1992-12-10 | 1994-06-24 | Sharp Corp | Thin film transistor and liquid crystal display panel using it |
CN103681673A (en) * | 2012-09-14 | 2014-03-26 | 瑞萨电子株式会社 | Semiconductor device and semiconductor device manufacturing method |
CN114823730A (en) * | 2022-04-20 | 2022-07-29 | 广州华星光电半导体显示技术有限公司 | Display panels and display devices |
-
2023
- 2023-05-26 CN CN202310621003.6A patent/CN116646404A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6215857A (en) * | 1985-07-12 | 1987-01-24 | Matsushita Electric Ind Co Ltd | Method of manufacturing field effect transistor |
JPS63117469A (en) * | 1986-11-05 | 1988-05-21 | Sumitomo Metal Ind Ltd | Thin-film semiconductor device |
JPH0234821A (en) * | 1988-07-25 | 1990-02-05 | Matsushita Electric Ind Co Ltd | Thin film transistor |
JPH06177382A (en) * | 1992-12-10 | 1994-06-24 | Sharp Corp | Thin film transistor and liquid crystal display panel using it |
CN103681673A (en) * | 2012-09-14 | 2014-03-26 | 瑞萨电子株式会社 | Semiconductor device and semiconductor device manufacturing method |
CN114823730A (en) * | 2022-04-20 | 2022-07-29 | 广州华星光电半导体显示技术有限公司 | Display panels and display devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1210814C (en) | Thin film transistor and matrix display device | |
US11637134B2 (en) | Array substrate, method for manufacturing the same, and display device | |
US20120181533A1 (en) | Thin film transistor array panel | |
CN106981520A (en) | Thin film transistor (TFT) and preparation method thereof, array base palte and display device | |
US20180083047A1 (en) | Tft substrate and manufacture method thereof | |
WO2017124686A1 (en) | Tft array substrate structure and manufacturing method thereof | |
TWI599023B (en) | Pixel structure and its manufacturing method | |
TW201635497A (en) | Thin film transistor and pixel structure | |
CN110047850A (en) | A kind of tft array substrate, preparation method and its display panel | |
US20160181290A1 (en) | Thin film transistor and fabricating method thereof, and display device | |
US20180204858A1 (en) | Display substrate having an organic layer and fabricating method thereof | |
CN108376691A (en) | Display panel and display device | |
CN116646404A (en) | Thin film transistor, integrated gate driving circuit and display panel | |
CN111384071B (en) | Pixel structure, array substrate, display device and manufacturing method | |
KR102180242B1 (en) | High-permittivity transistor and manufacturing method thereof | |
CN110676269A (en) | Array substrate and display motherboard | |
CN113327935B (en) | Display panel and preparation method thereof | |
CN100342552C (en) | Thin film transistor and manufacturing method thereof | |
CN110379819A (en) | Array substrate, manufacturing method thereof and display panel | |
CN1599080A (en) | Thin film transistor and plane display device | |
CN114779543B (en) | Display panel and manufacturing method thereof | |
CN106469750A (en) | Thin film transistor (TFT) and its manufacture method | |
CN111162096A (en) | Array substrate and display panel | |
CN114442391B (en) | Array substrate and display panel | |
US11762249B1 (en) | Display panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |