CN116636151A - 用于卫星导航接收器的自适应窄频带和宽频带干扰抑制 - Google Patents
用于卫星导航接收器的自适应窄频带和宽频带干扰抑制 Download PDFInfo
- Publication number
- CN116636151A CN116636151A CN202180079080.2A CN202180079080A CN116636151A CN 116636151 A CN116636151 A CN 116636151A CN 202180079080 A CN202180079080 A CN 202180079080A CN 116636151 A CN116636151 A CN 116636151A
- Authority
- CN
- China
- Prior art keywords
- signal
- filter
- module
- band
- epoch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001629 suppression Effects 0.000 title claims abstract description 116
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 57
- 238000001914 filtration Methods 0.000 claims abstract description 83
- 238000000034 method Methods 0.000 claims abstract description 60
- 230000004913 activation Effects 0.000 claims abstract description 7
- 230000009849 deactivation Effects 0.000 claims abstract description 5
- 238000010183 spectrum analysis Methods 0.000 claims abstract description 3
- 238000001228 spectrum Methods 0.000 claims description 62
- 230000004044 response Effects 0.000 claims description 27
- 238000005259 measurement Methods 0.000 claims description 11
- 230000008569 process Effects 0.000 abstract description 34
- 239000000523 sample Substances 0.000 description 49
- 239000002131 composite material Substances 0.000 description 42
- 238000010586 diagram Methods 0.000 description 32
- 238000006243 chemical reaction Methods 0.000 description 29
- 238000012545 processing Methods 0.000 description 26
- 238000013500 data storage Methods 0.000 description 22
- 238000005070 sampling Methods 0.000 description 22
- 230000002452 interceptive effect Effects 0.000 description 18
- 230000015556 catabolic process Effects 0.000 description 15
- 238000006731 degradation reaction Methods 0.000 description 15
- 230000003595 spectral effect Effects 0.000 description 15
- 238000007906 compression Methods 0.000 description 13
- 238000004891 communication Methods 0.000 description 11
- 238000007493 shaping process Methods 0.000 description 11
- 239000000284 extract Substances 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 230000006978 adaptation Effects 0.000 description 8
- 238000012937 correction Methods 0.000 description 8
- 230000007704 transition Effects 0.000 description 8
- 238000013461 design Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 230000009977 dual effect Effects 0.000 description 6
- 238000013473 artificial intelligence Methods 0.000 description 5
- 230000002238 attenuated effect Effects 0.000 description 5
- 230000010363 phase shift Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 238000010845 search algorithm Methods 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 3
- 238000011217 control strategy Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000013139 quantization Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000002902 bimodal effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 238000013468 resource allocation Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000010252 digital analysis Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000005433 ionosphere Substances 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000013442 quality metrics Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 235000015170 shellfish Nutrition 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000005436 troposphere Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/10—Means associated with receiver for limiting or suppressing noise or interference
- H04B1/109—Means associated with receiver for limiting or suppressing noise or interference by improving strong signal performance of the receiver when strong unwanted signals are present at the receiver input
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/10—Means associated with receiver for limiting or suppressing noise or interference
- H04B1/1027—Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H21/00—Adaptive networks
- H03H21/0012—Digital adaptive filters
- H03H21/002—Filters with a particular frequency response
- H03H21/0021—Notch filters
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Noise Elimination (AREA)
Abstract
一种选择性滤波模块(144)被布置为根据目标接收频带宽度对数字基带信号进行滤波或处理,其中该选择性滤波模块包括被配置为抑制干扰所接收的射频信号的干扰分量的窄频带抑制滤波器(110)和宽频带滤波器(114)。窄频带抑制滤波器(110)被配置为抑制第一干扰分量,其中窄频带抑制滤波器(110)包括自适应陷波滤波器(NF)。宽频带抑制滤波器(114)被配置为根据脉冲消隐技术来抑制第二干扰分量。电子数据处理器(160)适于根据ADC饱和、陷波滤波器的激活/停用、和宽频带频谱分析中的一个或更多个策略滤波器控制因素,来控制窄频带抑制滤波器(110)和宽频带抑制滤波器(114)的一个或更多个滤波器系数。
Description
相关申请
本申请是2021年9月30日提交的美国专利申请号17/449,596的继续申请,该申请要求2020年12月28日提交的美国临时申请号63/131,065和2020年10月16日提交的美国临时申请号63/093,161的优先权,其中美国专利申请号17/449,596和美国临时申请号63/131,065的内容通过引用并入本文。
技术领域
本公开涉及用于卫星导航接收器的自适应窄频带和宽频带干扰抑制。
背景技术
电磁频谱对于无线通信是有限的。由于无线通信在工程上被设计为终端用户支持更大的数据传输吞吐量,因此对卫星导航接收器的潜在干扰倾向于增加。干扰可能由各种技术因素引起,诸如无线发射器之间的频率间隔或空间分离不足、无线信号之间的互调失真、接收器灵敏度降低、或与扩展频谱信号的完全正交编码的偏离、政府监管机构的过时的无线电或微波频率传播建模等。因此,需要通过自适应窄频带干扰抑制系统来改善干扰。
发明内容
根据一个实施例,一种带有干扰抑制的接收器系统,所述接收器系统包括用于接收射频信号的天线。下变频器被配置为将所述射频信号转换为中频信号。模数转换器被配置为将所述中频信号或模拟基带信号转换为数字基带信号。选择性滤波模块被配置为根据目标接收频带宽度对所述数字基带信号进行滤波或处理,其中所述选择性滤波模块包括被配置为抑制干扰所接收的射频信号的干扰分量的窄频带抑制滤波器和宽频带抑制滤波器。所述窄频带抑制滤波器被配置为抑制第一干扰分量,其中所述窄频带抑制滤波器包括支持无限脉冲响应(IIR)模式的自适应陷波滤波器(NF)。所述宽频带抑制滤波器被配置为根据脉冲消隐技术来抑制第二干扰分量。电子数据处理器适于根据ADC饱和、所述陷波滤波器的激活/停用、和宽频带频谱分析中的一个或更多个策略滤波器控制因素,来控制所述窄频带抑制滤波器和所述宽频带抑制滤波器的一个或更多个滤波器系数。
附图说明
图1A是具有用于射频信号(诸如微波卫星信号)的自适应窄频带干扰抑制和宽频带干扰抑制的数字信号处理的接收器系统的一个实施例的框图。
图1B是图1的更详细的第一窄频带抑制系统、第一宽频带抑制系统、第二窄频带抑制系统和第二宽频带抑制系统的框图。
图2是具有用于干扰抑制系统的自动增益控制器(AGC)和消隐控制器的接收器系统的一个实施例的框图。
图3是说明性幅度与时间响应关系的一个可能示例,其图示说明了在AGC模式中不存在AGC的补偿的情况下,由于所接收的信号的削波(clipping)和宽频带干扰所导致的模数转换器(ADC)的饱和。
图4是说明性幅度与时间响应关系的一个可能示例,其图示说明了在AGC模式转换到滤波器调整模式中,不存在AGC的补偿的情况下,由于所接收的信号的削波和窄频带干扰所导致的模数转换器(ADC)的饱和。
图5是合并自适应窄频带干扰抑制和宽频带干扰抑制的滤波器系统的一个实施例的框图。
图6是滤波器系统的一个实施例的框图,该滤波器系统基于干扰信号相对于所接收的信号的环境感知而合并了自适应窄频带干扰抑制和宽频带干扰抑制。
图7是滤波器系统的一个实施例的框图,该滤波器系统基于频谱分析仪观察相对于所接收的信号的干扰信号(例如,无线电环境感知),来控制自适应窄频带干扰抑制和宽频带干扰抑制。
图8是滤波器系统的一个实施例的框图,该滤波器系统基于来自频谱分析仪的频率与幅度响应关系来控制干扰抑制,该频谱分析仪进行线性到对数转换(例如,通过应用迭代泰勒展开级(iterative Taylor expansion series)和查找表(LUT))。
图9A是宽频带频谱分析仪的一个实施例的框图,该宽频带频谱分析仪根据每个GNSS频带的幅度与频谱关系来识别峰图案。
图9B是双模峰图案的幅度与频谱关系的一种可能的图示。
图10表示控制自适应窄频带陷波滤波器的迟滞启用和禁用的控制器(例如,电子数据处理器)的状态图的图示。
图11A是在诸如干扰信号之类的纯噪声环境中陷波滤波器的各种滤波器系数的幅度与时间(例如,采样间隔的数量)关系的图。
图11B是滤波器的样本与频率关系的说明性图,其图示了群延迟或相位失真与频率关系。
图12A是陷波滤波器的各种滤波器系数的幅度与时间(例如,采样间隔的数量)关系的说明图,其涉及由陷波滤波器配置和无线电接收条件或环境的不匹配所导致的滤波器的性能退化。
图12B是说明群延迟或相位失真与频率关系的用于滤波器的样本与频率关系的说明图。
图13是涉及在存在相位跳变的情况下陷波滤波器的规则的重新安定(resettlement)的说明图。
图14是具有延迟线和抽头(tap)的陷波滤波器的框图,其中陷波滤波器在存在相位跳变的情况下经历陷波滤波器的状态转换、规则的重新安定。
图15是涉及存在相位跳变的情况下的陷波滤波器的快速重新安定的说明图,其中快速重新安定的快速重新安定周期小于图13的规则重新安定的规则重新安定周期。
图16是具有延迟线和抽头的陷波滤波器的框图,其中陷波滤波器在存在相位跳变的情况下经历陷波滤波器的状态转换、快速重新安定。
在任何一组两张或更多张附图中的相同的附图标记指示相同的特征、步骤、元件、步骤或过程。
具体实施方式
如本文件中所使用的,适用于、被布置为或被配置为是指一个或更多个数据处理器、逻辑设备、数字电子电路、延迟线或电子设备被编程有待执行的软件指令或者设有等效电路,以执行本文件中阐述的任务、计算、估计、通信或其他功能。
电子数据处理器是指微控制器、微处理器、算术逻辑单元、布尔逻辑电路、数字信号处理器(digital signal processor,DSP)、可编程门阵列、专用集成电路(applicationspecific integrated circuit,ASIC)或用于执行可存储在任何数据存储设备中的软件指令、逻辑、代码或模块的另一电子数据处理器。
如本文件所使用的,射频信号包括处于毫米频带、微波频带、超高频频带或用于数据、语音、遥测、导航信号等的无线通信的其他频带中的任何电磁信号或无线通信信号。
图1A是具有用于射频信号(诸如,微波卫星信号102)的自适应窄频带干扰抑制的数字信号处理的接收器系统100的框图。全球导航卫星系统(global navigationsatellite system,GNSS)包括围绕地球轨道运行的卫星101的星座。每个卫星101(例如,GNSS卫星)包括用于发射期望的导航卫星信号102或可以被GNSS接收器系统100接收的射频信号的发射器。同时,干扰发射器104可以在一频率上(或在一频带宽度上)并且以调制发射干扰信号103,该调制可能干扰GNSS接收器的期望的导航卫星信号102的接收。
接收器系统100表示诸如全球导航卫星系统(GNSS)接收器之类的无线电接收器的一种可能接收环境的说明性示例。卫星101(例如,卫星载具)在多个频率上发射卫星信号102,使得信号的集合集可以被称为复合信号(composite signal)。例如,在图1A中,Lx可以表示在全球定位系统(GPS)中使用的L1、L2、L5信号。卫星信号102将由自由空间传播、电离层和对流层衰减或干扰。实际上,卫星信号102可能受到背景噪声和/或一些潜在干扰信号103(例如,窄频带干扰信号)的影响。例如,在地面无线电塔处,干扰发射器104(例如,其使用第五代(5G)无线技术并声称高达每秒20吉比特(20Gbps)的数据传输速率和相应的宽频带宽度)可以在与来自卫星101的一个或更多个所发射的卫星信号102相同或相邻频带内发射一个或更多个干扰信号103。干扰信号103可以包括宽频带干扰(widebandinterference,WBI,例如类脉冲信号)或窄频带干扰(narrowband interference,NBI,例如连续波(continuous wave,CW)信号,其频带宽度比GNSS信号相对更窄),或者WBI和NBI分量。本公开的范围将集中于减少或滤波单独的来自一个或更多个窄频带干扰信号的干扰或来自一个或更多个窄频带干扰信号与宽频带干扰信号的组合的干扰。如本文所使用的,NBI可以与一个NBI分量或多个NBI分量同义。
图1A示出了能够接收由卫星101发射的信号的接收器系统100(例如,卫星导航接收器),该信号包括一个或更多个载波信号(例如,全球定位系统(GPS)的第一载波(L1)、第二载波(L2)和附加的第三载波(L5)),使得该接收器系统100可以基于所接收到的信号以非常高的准确度和精度确定位置、速度和姿态(例如,偏航、俯仰(tilt)和侧倾角度)。所接收到的信号可以从一个或更多个卫星101发射,诸如GPS卫星、伽利略兼容卫星(Galileo-compatible satellite)或全球导航卫星系统(Global Navigation Satellite System,GLONASS)卫星。卫星101具有大致已知的轨道位置与时间关系,其可以被用于基于卫星101中的四个或更多个卫星与接收器100的天线106之间的一个或更多个所接收的信号的传播时间来估计接收器系统100(例如,卫星导航接收器)的天线106与每个卫星101之间的相对位置。
精确点定位(precise point positioning,PPP)包括使用通过校正数据无线提供的时钟校正和精确卫星轨道,而不是通过在所接收到的卫星信号上编码的正常卫星广播信息(星历表和时钟数据),来确定移动接收器的相对位置或绝对位置。PPP可以使用适用于广泛地理区域的校正数据。尽管使用最先进的算法得到的位置可以精确到几厘米内,但是常规的精确点定位可能需要高达数十分钟的长收敛时间才能稳定和确定用以实现所声称的(例如,所宣传的)稳态准确度的浮点或整数模糊度值。因此,如此长的收敛时间通常是PPP适用性的限制因素。
根据一个实施例,图1A图示了具有双路径接收器配置的接收器系统100。在具有干扰抑制的双路径接收器配置中,接收器系统100包括天线106,该天线106用于接收射频信号,诸如微波频率卫星信号(例如,来自多个卫星(例如,至少四颗轨道运行的卫星)的一个或更多个卫星载波信号)。天线106耦合到信号分离器107,该信号分离器107将所接收到的射频信号分离成第一射频信号和第二射频信号,其中第一射频信号和第二射频信号彼此大致一致。此外,第一射频信号和第二射频信号实质上是在天线106的输出端口105处接收到的射频信号的衰减版本。分离器107可以包括同向双工器(diplexer)、混合分离器107、射频转换器(radio frequency transformer)等。
这里,将双频带系统描述为示例,然而在其他配置中可以使用用于对应的不同频带的多个并行信号路径。例如,双频带系统包括低频带和高频带,其中低频带具有比高频带更低的频率范围。对于全球定位系统(GPS),卫星101的所发射的L1频率信号可以包括高频带;所发射的L2频率信号可以包括低频带信号。此外,L1载波为1,575.42MHz,其使用在载波的每一侧占据目标接收频带宽度的P(Y)代码(伪随机噪声代码)和M代码来调制。同时,L2载波为1,227.6MHz,并且.使用在载波的每一侧占据目标接收频带宽度的C/A(粗捕获)代码、P(Y)代码(伪随机噪声代码)和M代码来调制。分离器107(例如,同向双工器)将复合信号分离成第一信号路径(例如,上信号路径或高频带路径)和第二信号路径(例如,下路径或低频带路径)。
在一个实施例中,信号分离器107或混合器可以将所接收到的信号分离成两个所接收到的射频信号,以供第一模拟模块111和第二模拟模块131处理。第一模拟模块111可以包括可选的前置放大器141或低噪声放大器(low-noise amplifier,LNA),以用于放大所接收到的信号。类似地,第二模拟模块131可以包括可选的前置放大器151或低噪声放大器(LNA),以用于放大所接收到的信号。为了简化接收器模拟滤波设计,典型的现代GNSS接收器的前端使用宽频带前端设计利用两个/三个宽频带滤波器(未示出)来接收多个GNSS信号,其中每个频带以目标频带宽度为目标(例如,140MHz-300MHz)。
在第一信号路径中,第一下变频器(downconverter)142被配置为将(放大的)第一射频信号转换为中频信号。例如,第一模拟模块111包括第一下变频器142(诸如,混频器和本地振荡器的组合),该第一下变频器142将高频带(L1、G1、B1或与GNSS关联的类似频率)射频(RF)移动到中频(intermediate frequency,IF)。第一下变频器142耦合到第一模数(analog-to-digital,ADC)转换器112。
在第一信号路径中,第一自动增益控制器(automatic gain control,AGC)143耦合到第一ADC 112和第一下变频器142。例如,在第一信号路径的一个配置中,第一自动增益控制器(AGC)143耦合到第一ADC 112、第一下变频器142和第一前置放大器141。第一自动增益控制器(AGC)143可以控制到对应的第一模数转换器(ADC)112的输入信号的增益(例如,均方根(root mean square,RMS)振幅)恒定或在目标范围内(例如,尽管在环境射频噪声和干扰信号103中存在波动)。第一AGC 143从第一ADC 112接收增益相关的反馈以调整第一下变频器142(和/或第一前置放大器141)的增益设定。
在第二信号路径中,第二下变频器152被配置为将(放大的)第二射频信号转换为中频信号。例如,第二模拟模块131包括第二下变频器152(例如,混频器和本地振荡器的组合),该第二下变频器152将低频带(L2,或与GNSS关联的类似频率)射频(RF)移动到中频(IF)。
在第二信号路径中,第二自动增益控制器(AGC)153耦合到第二ADC 132和第二下变频器152。例如,在第二信号路径的一个配置中,第二自动增益控制器(AGC)153耦合到第二ADC 132、第二下变频器152和第二前置放大器151。第二自动增益控制器(AGC)153可以控制到对应的第二模数转换器(ADC)132的输入信号的增益(例如,均方根(RMS)振幅)恒定或在目标范围内(例如,尽管在环境射频噪声和干扰信号103中存在波动)。第二AGC 153从第二ADC 132接收增益相关的反馈以调整第二下变频器152(和/或第二前置放大器151)的增益设定。
每个模数转换器(ADC)(112、132)可以耦合到其相对应的提供可变增益放大的自动增益控制器(AGC)(143、153)。反过来,每个AGC耦合到其相对应的下变频器(142、152)。在一个实施例中,自动增益控制器AGC向下变频器(142、152)或与该下变频器相关联的中频(IF)滤波器(例如,模拟IF滤波器)提供反馈信号。下变频器(142、152)或其模拟IF滤波器使ADC 112内的信号电压(峰对峰)适应于与其操作范围相称。
在一个实施例中,每个ADC(112、132)使用预限定的采样率对模拟接收信号(来自相对应的下变频器(142、152))进行采样,根据奈奎斯特定理(Nyquist theorem),该采样率应等于或大于频带宽度(例如,目标接收频带宽度)的两倍以用于实际采样设计。ADC的频带宽度确定在给定量化损耗下的最大可容忍干扰。所得到的数字序列、滤波器输入或基带信号(113、133)将所接收到的信号(例如,第一信号(例如,高频带RF信号)和第二信号(例如,低频带RF信号))重建到具有相对应的基带频带宽度或范围的基带信号。
关于来自其各自的ADC(112、132)的AGC反馈控制,AGC反馈控制可以在模拟或数字域中完成。例如,如果使用模拟控制,包络检测器(envelope detector)通常被用于AGC和可变增益控制。由于数字处理理论和实践的进步,用于AGC反馈控制的数字处理可以基于统计过程,例如在对应的模数转换器(ADC;112、132)的输出处的样本数字流(或基带信号113、133;例如滤波器输入)的直方图的数字分析,以生成反馈信号来控制AGC(143、153),例如与对应的第一信号路径相关联的第一AGC 143和与第二信号路径相关联的第二AGC 153。每个AGC都耦合到下变频器(142、152),该下变频器实际上可以包括下变频器和具有固有增益/放大调整的IF滤波器模块。
第一模数转换器112被配置为将中频信号或模拟基带信号转换为数字基带信号。第一选择性滤波模块144被布置为对数字基带信号进行滤波或处理,其中该第一选择性滤波模块144可以包括第一子频带滤波器114(例如,第一带通滤波器)和第一窄频带抑制系统110(例如,单独的第一窄频带抑制滤波器、或与带通滤波器一起的第一窄频带抑制滤波器),该第一窄频带抑制系统110被配置为抑制干扰所接收到的射频信号的干扰分量。
在一个实施例中,选择性滤波模块(144、154)包括支持无限脉冲响应(infiniteimpulse response,IIR)的自适应陷波滤波器(adaptive notch filter)。在选择性滤波模块(144、154)内,电子控制器或电子数据处理器被配置为控制自适应陷波滤波器,并且执行搜索技术(例如,人工智能(A1)搜索技术)以收敛滤波器系数,并且实时地递归地调整该自适应陷波滤波器的滤波器系数,以便自适应地调整一个或更多个滤波器特性(例如,最大陷波深度或衰减、陷波的频带宽度、或陷波的总体幅度与频率响应关系)。
第一选择性滤波模块144包括第一窄频带抑制系统110,例如支持无限脉冲响应(IIR)的自适应陷波滤波器。控制器被配置为控制第一自适应陷波滤波器,并且执行搜索技术(例如,人工智能(A1)搜索技术)以收敛第一滤波器系数,并且实时地递归地调整第一自适应陷波滤波器的第一滤波器系数,以便自适应地调整一个或更多个滤波器特性(例如,最大陷波深度或衰减、陷波的频带宽度、或陷波的总体幅度与频率响应关系)。
在第二信号路径中,第二模数转换器132被配置为将中频信号或模拟基带信号转换为数字基带信号。第二选择性滤波模块154被布置为对数字基带信号进行滤波或处理,其中第二选择性滤波模块154可以包括第二子频带滤波器134(例如,第二带通滤波器)和第二窄频带抑制系统130(例如,第二窄频带抑制滤波器),该第二窄频带抑制系统130被配置为抑制干扰所接收到的射频信号的干扰分量。
第二选择性滤波模块154包括第二窄频带抑制系统130,例如支持无限脉冲响应(IIR)的自适应陷波滤波器。在第二选择性滤波模块154中,电子控制器或电子数据处理器被配置为控制第二自适应陷波滤波器,并且执行搜索技术(例如,人工智能(A1)搜索技术)以收敛第二滤波器系数,并且实时地递归地调整第二自适应陷波滤波器的第二滤波器系数,以便自适应地调整一个或更多个滤波器特性(例如,最大陷波深度或衰减、陷波的频带宽度、或陷波的总体幅度与频率响应关系)。
选择性滤波模块(诸如,第一选择性滤波模块144或第二选择性滤波模块154)被布置为对数字基带信号进行滤波或处理,其中滤波模块可以包括以下中的一个或更多个:(a)第一子频带滤波器114或第一信道滤波器,例如用于对目标接收频带宽度之外的信号进行滤波的带通滤波器;(b)第一窄频带抑制系统110,例如窄频带抑制滤波器,其被配置为抑制在目标抑制频率处或在目标抑制频带宽度内的干扰所接收到的射频信号的干扰分量;(c)第二子频带滤波器134或第二信道滤波器,例如用于对目标接收频带宽度之外的信号进行滤波的带通滤波器;(d)第二窄频带抑制系统130,例如窄频带抑制滤波器,其被配置为抑制在目标抑制频率处或在目标抑制频带宽度内的干扰所接收到的射频信号的干扰分量。例如,在每个选择性滤波模块(144、154)或每个子频带滤波器(114、134)内,例如带通滤波器(BPF)衰减或抑制下变频器(142、152)的混频器输出的图像频带(image band)、或所接收的信号的目标接收频带宽度之外的关于其中心载波的频率。
第一选择性滤波模块144包括第一子频带滤波器114(例如,数字GNSS频带滤波器),该第一子频带滤波器114在对应于基带信号(例如,滤波器输入113)的第一节点处从第一信号(例如,高频带信号或整个高频带频谱)中提取目标分量或数字信号。在第一子频带滤波器114的输出终端处,信号115或第一合成信号(resultant signal)包括处于感兴趣频带(例如,L1或G1或B1)的GNSS信号、窄频带干扰NBI和噪声;宽频带干扰(WBI)。类似地,第二选择性滤波模块154包括第二子频带滤波器134(例如,数字GNSS频带滤波器),该第二子频带滤波器134在对应于基带信号的滤波器输入133的第二节点处从第二信号(例如,低频带信号或整个低频带频谱)中提取目标分量或数字信号。在第二子频带滤波器134的输出终端处,信号135或第二合成信号包括处于感兴趣频带(例如,L2或G2或B2)的GNSS信号、窄频带干扰NBI和噪声;WBI。WBI缓解并未在本公开中直接解决,然而某些滤波技术可能对NBI和WBI两者具有一般适用性。
在一个示例中,所接收到的卫星信号102(例如,所接收到的信号或所接收到的复合信号)中相对强的NBI分量将导致信噪比(signal-to-noise ratio,SNR)退化。在实践中,这种SNR退化显著地由NBI参考在频域(frequency domain)中相对于伪随机噪声(pseudorandom noise,PN)调制的射频信号的相对位置以及特定PN序列所提供的解扩增益(de-spreading gain)确定。将在本公开的后面讨论这种对SNR退化或接收器性能的影响的数量分析。
为了减轻NBI对PN序列解调性能的影响,第一窄频带抑制系统110自适应地抑制NBI。如图1A所示,第一窄频带抑制系统110耦合到第一子频带滤波器114的第一滤波器输出的信号115。第一窄频带抑制系统110对第一信号进行滤波以抑制该第一信号中的NBI。
类似地,第二窄频带抑制系统130(例如,单独的窄频带滤波器、或与带通滤波器一起的窄频带滤波器)对第二信号进行滤波以抑制该第二信号中的NBI。如图1A所示,第二窄频带抑制系统130耦合到第二子频带滤波器134的与信号135相关联的第二滤波器输出。第二窄频带抑制系统130对第二信号进行滤波以抑制该第二信号中的NBI。
在每个窄频带抑制系统(110、130)的输出处,因为NBI将被完全消除,因此残留信号(例如,输入到频带选择多路复用器120的残留信号)在理想情况下仅包含PN信号和噪声。在实践中,基于本公开中所描述的自适应滤波算法的实施例的性能,在PN信号中将衰减、减少或改善NBI。
如图1A所示,第一选择性滤波模块144包括以下与第一数字信号路径256相关联的一个或更多个:(a)第一子频带滤波器114,例如第一信道滤波器或第一带通滤波器,用于对第一目标接收频带宽度(例如,用于L1或L2信号的GNSS子频带)进行滤波;和(b)第一窄频带抑制系统110,例如第一自适应窄频带干扰抑制滤波器。第二选择性滤波模块154包括以下与第二数字信号路径257相关联的一个或更多个:(a)第二子频带滤波器134,例如第二信道滤波器或第二带通滤波器,用于对第二目标接收频带宽度(例如,用于L1或L2信号的GNSS子频带)进行滤波;和(b)第二窄频带抑制系统130,例如第二自适应窄频带干扰抑制滤波器。
沿着第一模拟信号路径156(例如,上信号路径),来自分离器107(例如,耦合器)的第一模拟信号由第一下变频器142处理,该第一下变频器142包括IF滤波器(例如,模拟IF滤波器)。第一下变频器142耦合到对应的第一ADC 112。第一AGC 143耦合在第一ADC 112和第一下变频器142之间,以用于调整增益或缩放到第一ADC 112的输入信号。在第一ADC 112的输出处,第一合成数字流或数字基带信号113(例如,滤波器输入)表示基带范围内的低频带RF信号。第一子频带滤波器114(例如,可动态配置的带通选择性滤波)从目标频带(例如,L1)提取信号。添加第一NBI抑制系统110以减轻目标频带上的PN解调退化。本公开描述了第一窄频带抑制系统110和第二窄频带抑制系统130单独地和相互一起地用于WBI滤波的说明性的或可能的设计(以及各自相应的估计的或建模的性能)。
等效地,对于其沿着第一模拟信号路径156(例如,上信号路径)的相对部分,来自分离器107(例如,耦合器)的第二模拟信号路径157(例如,下信号路径)由第二下变频器152处理,该第二下变频器152包含IF滤波器(例如,模拟IF滤波器)。第二下变频器152耦合到第二ADC 132。第二AGC 153耦合在第二ADC 132和第二下变频器152之间,以用于调整增益或缩放到第二ADC 132的输入信号。在第二ADC 132的输出处,第二合成数字流或数字基带信号133表示基带范围内的低频带RF信号。带通选择性滤波134从目标频带(例如,L2、L5等)提取信号。添加第二NBI抑制系统130以减轻目标频带上的PN解调退化。本公开描述了第一窄频带抑制系统110和第二窄频带抑制系统130的说明性的或可能的设计(以及各自相应的估计的或建模的性能)。
频带选择多路复用器(band-selection multiplexor,MUX)120耦合到第一窄频带抑制系统110(例如,第一自适应窄频带抑制滤波器)和第二窄频带抑制系统130(例如,第二自适应窄频带抑制滤波器)的输出,以选择表示第一信号(例如,第一目标GNSS信号)或第二信号(例如,第二目标GNSS信号)的数字样本流或信道,其中每个信号可以用目标PN序列或另一编码方案来调制或编码。例如,如果目标PN序列类型是GPS L1载波(CA),则频带选择多路复用器选择第一信号、第一信道或L1频带。
在一个实施例中,一个或更多个适当的样本流将由GNSS信道处理模块145进一步处理,该GNSS信道处理模块145通常包括:一个或更多个载波相位解调器、在多个延迟相位处采样的副本或本地PN代码生成器、相关器的组、和多个累加器,以便以一毫秒(ms)或多毫秒的间隔创建一组同相(I)和正交相(Q)测量,以驱动基带跟踪环路。
此外,在一些实施例中,GNSS信道处理模块145还可以包括二进制偏移子载波(binary offset sub-carrier,BOC)调制器(用于现代GNSS信号,诸如GPSL1C、北斗B1C、伽利略E1信号等)。
在一个实施例中,GNSS信道处理模块145可以包括用于跟踪码相位和载波相位的基带跟踪环路模块。例如,基带跟踪环路模块导出校正信号或控制信号,以控制GNSS信号处理模块中的本地振荡器或数控振荡器(numerically controlled oscillator,NCO),以保持信道中所接收的信号和该信道相对于码相位和载波相位的本地副本之间的同步。
如图1A所示,GNSS信道处理模块145耦合到导航处理模块155。在一个实施例中,导航处理模块155从卫星101获取伪距测量结果(pseudo-range measurement)和载波相位测量结果以及其他相关信息以生成位置解,该位置解被用作用于将(例如,较低时间精度的)接收器晶体级时钟与(例如,较高时间精度的)基于卫星的原子级时钟对准的反馈;该解还与其他信息结合生成视野内卫星101列表,以控制适当的接收器资源分配。位置解可以限定以下中的一个或更多个:接收器的二维或三维位置,其可以用地理坐标表示;姿态,诸如侧倾、俯仰和偏航角度数据;和表示速度的运动数据,和/或与位置和姿态数据相关的加速度数据。
干扰信号103可以包括宽频带干扰分量(WBI,例如类脉冲信号)、窄频带干扰分量(NBI)或两者。通常,WBI源自脉冲干扰信号或类脉冲干扰信号,而NBI源自连续波(CW)干扰。与WBI不同,NBI具有相对于GNSS信号较窄的频带宽度。例如,WBI可以具有比GNSS信号或卫星信号102,诸如全球定位系统的L1、L2或L5信号(例如,单独或共同的Lx信号),更大的频带宽度。
在一个实施例中,第一(RF到IF)模拟模块111包括第一带通滤波器(bandpassfilter,BPF),该第一带通滤波器抑制与第一模拟模块111相关联的下变频器142的混频器输出的图像频带。例如,第一模拟模块111可以包括高频带RF到IF模拟链,其包括滤波器和可变增益放大器(例如,自动增益控制器143)。在替代实施例中,在第一模拟模块111内,可以使用单级或多级的中频IF滤波。
类似地,第二(RF到IF)模拟模块131包括第二带通滤波器(BPF),该第二带通滤波器抑制与第二模拟模块131相关联的下变频器152的混频器输出的图像频带。例如,第二模拟模块131可以包括低频带RF到IF模拟链,其包括滤波器和可变增益放大器(例如,自动增益控制器153)。在替代实施例中,在第二模拟模块内,可以使用单级或多级的中频IF滤波。
自动增益控制器(AGC)(143、153)包括可变增益放大器(variable gainamplifier,VGA),该可变增益放大器适于在对应的ADC(112、132)所需的操作范围内调整信号电压(峰对峰信号电压)),以便最小化:(a)进入ADC(112、132)的数字基带信号(或采样模拟信号输入)的失真、或(b)进入ADC(112、132)的数字基带信号(或采样模拟信号输入)的削波、或这两者。
每个ADC(112、132)使用预限定的采样率,例如根据奈奎斯特定理的采样率,对模拟信号进行采样。根据奈奎斯特定理的常见解释,采样率应大于用于(例如,真实和虚拟建模信号分量的)复杂采样的ADC(112、132)的采样模拟输入信号的频带宽度,并且是用于真实采样设计的ADC(112、132)的采样模拟输入信号的频带宽度的两倍。ADC的频带宽度可以确定或影响给定量化损失下的最大可容忍干扰,然而ADC的特定设计可以变化。
ADC(112、132)输出获得的数字序列或数字基带信号113,其表示基带范围内的所接收的信号的RF频谱。在接收器的第一数字前端中,第一选择性滤波模块144包括第一子频带滤波器114(例如,数字带通滤波器),该第一子频带滤波器114执行以下中的一个或更多个:(a)对数字基带信号113的频带外分量进行滤波;(b)基于输入基带信号113的观察到的直方图(例如,在干扰周期期间)来监测该输入基带信号113的(例如,频率与幅度响应关系的)动态变化;(c)单独地或与ADC一起地产生反馈以控制第一模拟模块111中的VGA或AGC143;以及(d)基于对输入基带信号113的评估(例如,直方图中的动态变化)来检测基带信号中的WBI,并且启用消隐(blanking)功能以在稳态操作模式中抑制WBI。在一个配置中,输入基带信号的动态变化可以参考GNSS接收器的校准设定或出厂设定中的基准输入基带信号的一般无干扰接收周期。
在一个实施例中,第一子频带滤波器114的数字GNSS频带滤波从由相应的基带数字信号113所表示的整个所接收的信号频谱中提取目标分量。由第一子频带滤波器输出的合成信号可以包括以下信号分量:(1)感兴趣频带(例如,L1或G1或B1)的GNSS信号;(3)NBI;(4)WBI(例如,未被第一子频带滤波器114消隐、衰减、抑制或滤波的程度)和(5)噪声分量(例如,本底噪声和接收器噪声)。
ADC(112、132)输出获得的数字序列或数字基带信号133,其表示基带范围内的所接收的信号的RF频谱。在接收器的第二数字前端中,第二选择性滤波模块154包括第二子频带滤波器134(例如,数字带通滤波器),该第二子频带滤波器134执行以下中的一个或更多个:(a)对数字基带信号133的频带外分量进行滤波;(b)基于输入基带信号133的观察到的直方图(例如,在干扰周期期间)来监测该输入基带信号133的(例如,频率与幅度响应关系的)动态变化;(c)单独地或与ADC一起地产生反馈以控制第一模拟模块111中的VGA或AGC153;以及(d)基于对输入基带信号133的评估(例如,直方图中的动态变化)来检测基带信号中的WBI,并且启用消隐功能以在稳态操作模式中抑制WBI。在一个配置中,输入基带信号的动态变化可以参考GNSS接收器的校准设定或出厂设定中的基准输入基带信号的一般无干扰接收周期。
在一个实施例中,第二子频带滤波器134的数字GNSS频带滤波从由相应的基带数字信号133所表示的整个所接收的信号频谱中提取目标分量。由第二子频带滤波器134输出的合成信号可以包括以下信号分量:(1)感兴趣频带(例如,L2或G2或B2)的GNSS信号;(3)NBI;(4)WBI和(5)噪声分量(例如,本底噪声和接收器噪声)。
如果在所接收的信号中存在相对较强的NBI分量,其超过了相对于期望的接收信号或目标接收信号的相对信号强度阈值或绝对信号强度阈值,则NBI将导致信噪比(SNR)退化。SNR退化可能取决于各种因素,诸如NBI参考与所接收的信号的相对位置、以及对所接收的信号的编码或调制,例如在频域中具有类似伪随机噪声(PN)信号的扩展频谱调制以及特定PN序列所提供的解扩增益。为了减轻NBI对PN序列解调性能的影响,使用第一NB抑制系统110以自适应地抑制NBI,并且使用第二NB抑制系统130以自适应地抑制NBI。NB抑制系统(110、130)的输出处的残余信号在理想情况下仅包括PN信号和噪声。
同时,第一子频带滤波器114应用WBI消隐;第二子频带滤波器134应用WBI消隐来解决或衰减WBI。在第一子频带滤波器114中,WBI消隐技术可以引入或趋向于引入相位跳变,该相位跳变又可以导致具有高频分量的误差信号以驱动NBI抑制系统110的自适应反馈更新。因此,在第一选择性滤波模块144内,补偿器补偿潜在的相位跳变以维护第一NB抑制系统110的全部性能;避免第一NB抑制系统110(例如,NB抑制模块)的瞬态或永久发散。
在第二子频带滤波器134中,WBI消隐技术可以引入或趋向于引入相位跳变,该相位跳变又可以导致具有高频分量的误差信号以驱动第二NBI抑制系统130的自适应反馈更新。因此,在第二选择性滤波模块154内,补偿器补偿潜在的相位跳变以维护第二NB抑制系统130的全部性能;避免第二NB模块130的瞬态或永久发散。在本公开中引入一种策略方法以改善稳定性问题并且加快重新安定过程。
在一个实施例中,第一子频带滤波器114或数字前端:对基带信号113的频带外分量进行滤波;监测基带信号的随时间变化的频谱;以及基于所监测的频谱向第一模拟模块111(例如,低频带前端)提供VGA反馈控制。类似地,第二子频带滤波器134或数字前端:对基带信号133的频带外分量进行滤波;监测基带信号的随时间变化的频谱;以及基于所监测的频谱向第二模拟模块131提供VGA反馈控制。选择性滤波模块(144、154)(例如,带通选择性滤波模块)从目标频带(例如,L2、L5等)中提取信号。添加NBI抑制系统(110、130)以减轻由NBI导致的PN解调恶化。
频带选择多路复用器120(例如,频带选择MUX)从携载目标PN序列的频带或该频带内的一个或更多个信道中选择样本流。例如,为了解码或解调L1信道上的编码信息,如果目标PN序列类型是GPS L1载波(CA),则频带选择多路复用器120需要选择L1频带。适当的样本流将由GNSS信道模块145进一步处理,该GNSS信道模块145通常包含一个或更多个载波相位解调器、在多个延迟相位采样的PN代码生成器、二进制偏移子载波(BOC)调制器(用于现代GNSS信号,诸如GPSL1C、北斗B1C、伽利略El信号等)和多个累加器,以便以一毫秒(ms)或多毫秒的间隔创建一组同相(I)和四相(Q)测量,以驱动基带跟踪环路。从基带跟踪环路模块导出的校正信号控制信道处理模块145中的数控振荡器(NCO),以保持信道中的所接收的信号和该信道的本地副本之间的同步。
导航处理模块155从卫星获取伪距测量结果和载波相位测量结果以及其他相关信息以生成位置解,该位置解被用作用于将接收器晶体级时钟与基于卫星的原子级时钟对准的反馈;该解还与其他信息结合生成视野内卫星列表,以控制适当的接收器资源分配。
为了使GNSS接收器能够同时抑制WBI和NBI,第一选择性滤波模块144、第二选择性滤波模块154或电子数据处理器被配置为从所接收到的样本流(例如,数字基带信号(113、133))中识别和分类干扰的类型。干扰的识别和分类驱动AGC控制策略以定制且有效的方式抑制不同类型的干扰。
一般地,第一NB抑制系统110、第二NB抑制系统130或两者包括用于抑制NBI的陷波滤波器。第一NB抑制系统110和第二NB抑制系统130各自包括可以被配置为有限脉冲响应或无限脉冲响应的陷波滤波器。例如,陷波滤波器的目标是提取NBI的相位特性,基于该相位特性,该陷波滤波器可以从过去收集的样本中预测或估计下一个接收样本。使用NBI,例如连续波干扰CW,给定相位步长f*Ts(其中,f是CW的频率,并且Ts是采样周期)作为先验信息(例如,预限定数据),第一NB抑制系统110、第二NB抑制系统130或两者的陷波滤波器可以使用过去接收的样本来预测或估计下一个接收样本。因此,至少在没有补偿的情况下,WBI倾向于使第一NB抑制系统和第二NB抑制系统对这种相位步长的估计的准确性退化。ADC(11、132)的饱和会引入相位失真,这又会使第一NB抑制系统和第二NB抑制系统对这种相位步长的估计的准确性退化。相位失真会阻止线性陷波滤波器准确地预测下一个接收到的NBI样本的相位。作为结果,GNSS接收器被配置为最小化ADC(112、132)的ADC饱和事件以有利于NBI的正确抑制。因此,为了最小化ADC饱和,AGC(143、153)需要调整增益以在ADC(112、132)的ADC输入动态范围内缩放波形。
在一个实施例中,第一子频带滤波器114、第二子频带滤波器134使用脉冲消隐方法来抑制WBI。在WBI发生的占空比期间,在ADC(112、132)内检测到ADC饱和的短期事件。为了优化消隐性能,预计接收器将保持在当WBI不存在时的时间周期内所确定或决定的AGC(143、153)的恒定AGC增益。如果在存在WBI或发生WBI事件时错误地确定AGC(143、153)的AGC增益,则在当不存在WBI时不使用ADC(112、132)的大部分ADC动态范围;因此,GNSS接收器不能充分地利用无WBI环境中的ADC(112、132)的量化准确性。作为结果,第一选择性滤波模块144、第二选择性滤波模块154和/或电子数据处理器使用通常限于当WBI被识别的时间周期或与WBI被识别的时间周期对准的检测和消隐方法,以保持恒定的AGC增益并将被WBI损坏的样本归零。
如上所述,在存在NBI的情况下,AGC需要进行调整以使输入波形与ADC输入动态范围兼容。然而,相反,对于WBI,如果WBI被识别出,则AGC需要保持恒定。因此,在本公开中提出了一种创新的AGC控制方案,从而平衡AGC(143、153)的恒定的和可调的AGC增益的权衡。
图1B是第一选择性滤波模块144和第二选择性滤波模块154的框图。在一个配置中,第一数字前端可以提供ADC 112的输出和第一选择性滤波模块144之间的接口;第二数字前端可以提供ADC 132的输出和第二选择性滤波模块154之间的接口。在另一配置中,第一数字前端与第一选择性滤波模块144集成并且并入该第一选择性滤波模块144中;第二数字前端与第二选择性滤波模块154集成并并入该第二选择性滤波模块154中。第一选择性滤波模块144包括第一子频带滤波器114和第一NB抑制系统110以支持对WBI、NBI或两者的滤波。第二选择性滤波模块154包括第二子频带滤波器134和第二NB抑制系统130以支持对WBI、NBI或两者的滤波。
在图1B中,第一选择性滤波模块144包括耦合到第一数据总线162的第一电子数据处理器160、第一数据端口161和第一数据存储设备163。例如,第一电子数据处理器160、第一数据端口161和第一数据存储设备163可以通过第一数据总线162彼此通信数据消息。在一个实施例中,第一数据存储设备163可以存储滤波器参数、滤波器系数、基准滤波器参数、基准滤波器系数和软件指令,所述软件指令与自适应滤波器、预测性滤波器、用于滤波器参数和滤波器系数的最小二乘法(least minimum square,LMS)搜索算法、用于滤波器参数和滤波器系数的最小均方误差(minimum mean square error,MMSE)搜索算法、用于估计或确定滤波器参数和滤波器系数的Steiglitz-McBride模型、以及用于估计或确定滤波器参数和滤波器系数的修改的Steiglitz-McBride模型相关。如图所示,第一数据存储设备可以存储与以下中的一个或更多个相关的软件指令或软件模块:第一NB抑制系统110(例如,初级第一自适应陷波滤波器、次级第一自适应陷波滤波器)和第一子频带滤波器114(例如,第一宽频带滤波器)。
在替代实施例中,单独地或者与.上述初级第一自适应陷波滤波器、次级第一自适应陷波滤波器和第一宽频带滤波器相结合,第一数据存储设备163可以存储用于以下中的任何一项的程序指令:(a)滤波器仿真;(b)初始化、估计、更新、复位、存储和检索滤波器系数和滤波器参数;(c)配置、控制、通信操作数字电路(例如,耦合到第一数据端口 161的数字信号处理器),所述数字电路包括延迟线、加法器、移位寄存器、相加器和其他数字部件。
在图1B中,第二选择性滤波模块154包括耦合到第二数据总线172的第二电子数据处理器170、第二数据端口171和第二数据存储设备173。例如,第二电子数据处理器170、第二数据端口171和第二数据存储设备173可以通过第二数据总线172彼此通信数据消息。
在一个实施例中,第二数据存储设备173可以存储滤波器参数、滤波器系数、基准滤波器参数、基准滤波器系数和软件指令,所述软件指令与自适应滤波器、预测性滤波器、用于滤波器参数和滤波器系数的最小二乘法(LMS)搜索算法、用于滤波器参数和滤波器系数的最小均方误差(MMSE)搜索算法、用于估计或确定滤波器参数和滤波器系数的Steiglitz-McBride模型、以及用于估计或确定滤波器参数和滤波器系数的修改的Steiglitz-McBride模型有关。如图所示,第二数据存储设备173可以存储与第二NB抑制系统130(例如,初级第二自适应陷波滤波器和/或次级第二自适应陷波滤波器)和第二子频带滤波器134(例如,第二宽频带滤波器)相关的软件指令或软件模块。
在替代实施例中,单独地或者与上述初级第二自适应陷波滤波器和次级第二自适应陷波滤波器相结合,第二数据存储设备173可以存储用于以下中的任何一项的程序指令:(a)滤波器仿真;(b)初始化、估计、更新、复位、存储和检索滤波器系数和滤波器参数;(c)配置、控制、通信操作数字电路(例如,耦合到第二数据端口171的数字信号处理器),所述数字电路包括延迟线、加法器、移位寄存器、相加器和其他数字部件。
在第二数据存储设备173内,可以配置滤波器参数、滤波器参数和滤波器仿真、延迟线、加法器、移位寄存器、相加器和其他结构。如图所示,数据存储设备包括初级第二自适应陷波滤波器和次级第二自适应陷波滤波器。
在图1B中,第一电子数据处理器160、第二电子数据处理器170或这两者可以包括一个或更多个电子数据处理器。每个电子数据处理器包括以下中的一个或更多个:微处理器、多核微处理器、微控制器、可编程逻辑设备、可编程门阵列、算术逻辑单元、布尔逻辑单元、电子逻辑电路或系统、数字电路、数字信号处理器(DSP)和专用集成电路(ASIC)或其他数据处理设备。在一个实施例中,电子数据处理器可以执行存储在数据存储设备46中的软件指令。例如,电子数据处理器(160、170)可以执行软件指令以促进、支持、合并、调用、配置或模拟以下中的任一项:数字延迟线、移位寄存器、存储器寄存器、存储器堆栈、加法器、相加器、数字滤波器部件、数字陷波滤波器、预测性或自适应性滤波器模块、滤波器参数、滤波器系数和自适应滤波器的基于人工智能(AI)的控制。
在图1B中,第一数据存储设备163、第二数据存储设备173或这两者可以包括一个或更多个数据存储设备。每个数据存储设备(163、173)可以包括以下中的一个或更多个:电子存储器、非易失性电子存储器、移位寄存器、存储器堆栈、延迟线、寄存器、非易失性随机存取存储器、磁存储设备、光存储设备、或用于存储和检索数字数据和/或模拟数据的任何其他设备。
如在图1B中所示,第一数据存储设备163能够存储软件指令,例如软件模块或部件、逻辑和数据结构,以实现第一子频带滤波器114(例如,第一自适应滤波器)和第一窄频带抑制系统110(例如,第一自适应陷波滤波器)。此外,第一子频带滤波器114可以具有通带幅度与频率响应关系,以便(选择性地)传递所接收到的卫星信号的一个或更多个所选择的信道或子频带。第一窄频带抑制系统110可以具有复杂的幅度与频率响应关系,其具有以下中任-项:(a)一个或更多个抑制陷波,用于以离散的对应目标频率衰减NBI;(b)多个抑制陷波,用于在目标抑制频率范围内(例如,在相对应的连续或不连续目标抑制频带宽度上)衰减NBI、WBI或两者;(c)一个或更多个带通特性(例如,用于哀减NBI、WBI或两者或),用于将所接收的卫星信号的期望或目标分量(例如,PN调制或其他编码信息)传递到GNSS信道处理145和/或导航处理模块155,以产生与接收器系统100(或其大线106)相关联的位置、速度、姿态和/或运动数据。
在图1B中,第二数据存储设备173能够存储软件指令,例如软件模块或部件、逻辑和数据结构,以实现第二子频带滤波器134(例如,第二自适应滤波器)和第二窄频带抑制系统130(例如,第二自适应陷波滤波器)。此外,第二子频带滤波器134可以具有通带幅度与频率响应关系,以便(选择性地)传递所接收到的卫星信号的一个或更多个所选择的信道或子频带。第二窄频带抑制系统130可以具有复杂的幅度与频率响应关系,其具有以下中任一项:(a)一个或更多个抑制陷波,用于以离散的对应目标频率衰减NBI;(b)多个抑制陷波,用于在目标抑制频率范围内(例如,在相对应的连续或不连续目标抑制频带宽度上)衰减NBI、WBI或两者;(c)一个或更多个带通特性(例如,用于衰减NBI、WBI或两者或),用于将所接收的卫星信号的期望或目标分量(例如,PN调制或其他编码信息)传递到GNSS信道处理145和/或导航处理模块155,以产生与接收器系统100(或其天线106)相关联的位置、速度、姿态和/或运动数据。
第一数据端口161和第二数据端口171可以包括以下数据端口或输入/输出数据端口中的一个或更多个。每个数据端口(161、171)可以包括缓冲存储器和电子收发器,以用于将数据消息传送到网络元件或经由通信网络来传送数据消息,例如因特网或无线通信网络(例如,蜂窝电话网络,或高频带宽度智能手机数据通信无线网络)。
在一个实施例中,在第一数字信号路径256中,第一数据端口161可以支持来自第一选择性滤波模块144中的第一ADC 112的数字基带信号的接收和数据处理。同时,在第二数字信号路径257中,第二数据端口171可以支持来自第二选择性滤波模块154中的第二ADC132的数字基带信号的接收和数据处理。
在替代实施例中,一个或更多个附近的特定接收器系统100(例如,GNSS接收器)可以与第一无线通信设备相关联,该第一无线通信设备在与第二无线通信设备相关联的附近的特定GNSS接收器处发射或共享与与NBI相关联的滤波器系数和/或地理位置,其中无线通信设备耦合到第一数据端口、第二数据端口或两者。
在图2中结合图3和图4图示了AGC和WBI控制策略。图2的方法可以在例如图1B所图示的计算机硬件上执行。基于所提出的方法,分别在图3和图4中显示了两个示例来解释图2的控制系统200的功效。
在图2中,电子数据处理器管理时钟信号221,该时钟信号221触发T1周期计数器222以递增(例如,将计数递增1)。此外,T1周期计数器222在相应的第一周期(例如,预限定的T1周期)被触发时或每个时间间隔产生相应的T1历元(epoch)信号223。如本文件所使用的,历元是所接收到的卫星信号或所接收到的GNSS信号的载波相位的离散测量时间周期或采样间隔。可以参考特定GNSS系统的基准时间和日期(例如,GPS时间)或作为用于协调世界时间的偏移来测量历元。
电子数据处理器或T2周期计数器226管理T2历元信号227。每个T1历元由T2周期计数器226计数,该T2周期计数器226在当相应的第F一时间周期(例如,预限定的T2周期)被触发时或每个时间间隔产生T2历元信号227。
在时钟信号221的每个时钟循环(例如,脉冲在脉冲串内的前沿或后沿),ADC(112、132)的输入样本或由ADC(112、132)输出的数字基带信号(113、133;例如数据样本)由饱和计数器201(例如,第一矢量饱和计数器)进行评估,该饱和计数器201对小于下阈值或大于上阈值的一个或更多个样本的幅度进行计数和累加。如果存在具有小于下阈值的小幅度的过量样本,则被称为过压缩违规(over-compression violation),并且暗示AGC(143、153)的AGC增益的不足。相反,如果存在具有高于上阈值的较大幅度的过量样本,则被称为溢出违规(overflow violation),指示AGC(143、153)的AGC增益的过度增益或幅度饱和。
在每个T1历元信号223中,数据处理器或T1饱和评估器203(例如,T1饱和模块)评估一个或更多个样本的过压缩违规和溢出违规的矢量信号202(或累积计数)。如果溢出违规的累积计数超过第一阈值216(例如,上预限定阈值),则数据处理器或T1饱和评估器203将矢量信号204(例如,矢量事件信号)发送到T2饱和计数器205(例如,T2饱和计数器模块);矢量信号204的第一溢出分量224(例如,第一溢出标志或第一溢出违规信号)被触发。然而,如果过压缩违规的累积计数超过第二阈值217(例如,下预限定阈值),则数据处理器或T1饱和评估器203生成矢量信号204的第一过压缩分量225(例如,第一过压缩标志、第一过压缩信号或过压缩信号)。T1饱和评估器203或数据处理器在每个T1历元信号223处重复上述过程。
在第二时间周期(例如,预限定的T2周期),电子数据处理器或T2饱和计数器205(例如,T2饱和计数器模块)累加违规矢量信号204的倍数以对违规进行计数。在每个T2历元信号227处,如果溢出违规超过第三阈值218(例如,上预限定阈值),则数据处理器或T2饱和计数器205触发矢量信号206的第二溢出分量(例如,第二溢出违规标志)。然而,如果过压缩违规超过第四阈值219(例如,下预限定阈值),则数据处理器或T2饱和模块205开启该信号206的第二过压缩分量(例如,第二过压缩违规标志)。电子数据处理器或T2饱和计数器205在每个T2历元信号227处保持重复上述过程。
在T2历元信号227的第一T2历元处,数据处理器或AGC模式控制模块207确定要用于第二T2历元或T2周期的第二AGC模式信号209。数据处理器或AGC模式控制模块207接收对溢出违规和过压缩违规进行计数的矢量信号206的输入以及第一AGC模式信号208(例如,针对T1历元或T1周期),并且基于该对溢出违规和过压缩违规进行计数的矢量信号206的输入和第一AGC模式信号208,来输出用于第二T2历元或第二T2周期的第二AGC模式信号209。
如表1所示,假定AGC(143、153)的第一AGC模式信号处于稳态模式;如果在第一T2历元226处,矢量信号206的溢出分量是“开启”(例如,活动标志、活动状态或启用状态)或者矢量信号206的过压缩分量为“开启(on)”(例如,活动标志、活动状态或启用状态),则数据处理器或AGC模式控制模块207将第二AGC模式信号209切换到调整模式。然而,如果矢量信号206的两个分量都是“关闭(off)”(例如,不活动标志、活动状态或禁用状态),则数据处理器或AGC模式控制模块207在稳态下输出未改变的第二AGC模式信号209。
如表1所示,第一AGC模式信号208可以包括稳态模式或调整模式;类似地,第二AGC模式信号209可以包括稳态模式或调整模式。在表1中,如果第一AGC模式信号208处于稳态模式,如果矢量信号206的溢出分量为“开启”或矢量信号206的过压缩分量为“开启”,则第二AGC模式信号209切换到调整模式;否则,第二AGC模式信号209保持在稳态模式。例如,如图所示,如果矢量信号206的溢出分量和矢量信号206的过压缩分量都是“关闭”,则第二AGC模式信号209保持在稳态模式。
如果第一AGC模式信号208处于调整模式,如果在第一T2历元226处,矢量信号206的溢出分量为“开启”或者矢量信号206的过压缩分量为“开启”,则第二AGC模式信号209保持不变(例如,保持其状态原封不动)。然而,如果第一AGC模式信号208处于调整模式,如果矢量信号206的两个分量都是“关闭”,则第二AGC模式信号209切换到“稳态”。
在一个配置中,如果根据表1满足溢出信号和过压缩条件,则第二AGC模式信号209复制或传播第一AGC模式信号208,并且在第二T2周期内被用作AGC模式或第二AGC模式信号209。上述过程在T2历元信号227的每个T2历元处重复(例如,在一周期期间)。
表1:AGC模式信号208和209转换表
表2:AGC调整信号211
VGA(例如,可变增益放大器)控制接口模块210接收第一AGC模式信号208的输入数据和T1饱和评估器203的输出信号212(例如,AGC调整信号)。VGA控制接口模块210基于第一AGC模式信号208的输入数据和T1饱和评估器203的输出来输出控制信号211(例如,增益控制信号)。例如,VGA控制接口模块210可以包含遵循表2的逻辑,其中表2说明了使用控制信号211来调整AGC增益的决定。
在表2中,如果第一AGC模式信号208处于稳态模式,则不管在每个T1历元(例如,T1历元信号223)处的第一溢出分量224(例如,溢出违规信号)或第一过压缩分量225(例如,过压缩违规信号)如何,AGC增益保持恒定、不变或原封不动。在这种状况下,溢出违规被视为来自类似短期脉冲的WBI的影响,并且过压缩违规被视为间歇性WBI。然而,根据表2,第一AGC模式信号208处于调整模式,在每个T1历元处,VGA控制接口模块210(例如,AGC接口控制模块)在接收到第一溢出分量224(例如,溢出违规信号)后,用增益递减命令对增益控制信号211进行编码;VGA控制接口模块210(例如,AGC接口控制模块)在接收到第一过压缩分量225后,用增益递增命令对增益控制信号211进行编码。对于每个递减或递增命令,电子数据处理器、第一选择性滤波模块144、第二选择性滤波模块154或前端将通过单个或多个基本增益步长来调整AGC增益。
在图2中,消隐和NF(陷波滤波器)控制模块213宣称或实现基带信号(113、133)或ADC(112、132)的ADC输出信号。如果ADC样本的幅度超过第三阈值218(例如,上预限定阈值、或消隐阈值、或溢出事件阈值),则消隐和NF控制模块213将ADC样本复位为与消隐操作或消隐过程一致的“零”幅度;否则ADC样本保持不变。
消隐是指在类脉冲干扰的持续时间内抑制所观察到的数字信号值和/或在数字域中插入用于所观察到的信号幅度的空值(例如,零值)。例如,在消隐过程中,所接收到的GNSS信号的信号值:(a)可以在类脉冲生扰的持续时间(例如,大约10毫秒到100毫秒)内被置空或置零,以减少、衰减、陷波或滤波掉WBI;(b)可以在类脉冲干扰的持续时间内限制或削波到小于消隐阈值幅度的较低幅度水平,以减少、衰减、陷波或滤波掉WBI;和/或(c)可以在类脉冲干扰的持续时间内基于所估计的本底噪声分配信号值,以减少、哀减、陷波或滤波掉WBI。作为结果,可以创建滤波信号215(例如,新的滤波样本流)以用于具有哀减或减少的WBI分量的未来处理。如先前所讨论的,假定AGC处于稳态模式,则短期溢出事件指示检测到类脉冲WBI。
与溢出饱和的存在类似,来自ADC(112、132)的基带信号(113、133)的复位会引入不连续性,诸如相位跳变或相位抖动,其对第一NB抑制系统110、第二NB抑制系统130或两者的陷波滤波器的性能和稳定性产生负面影响。因此,每当样本复位发生时装置门控制模块232产生样本复位信号231,以补偿潜基带信号(113、133)中的可能由第一子频带滤波器114、第二子频带滤波器134、电子数据处理器、数字前端或图5的数字GNSS频带选择性滤波器(115/135)对WBI的消隐所产生的潜在相位不连续性或相位跳变。在整个文件中,“115/135”是指信号115、信号135或信号115和135两者。
在图13至图16中,包括图13和图16,进一步限定了装置门控制模块232,该装置门控制模块232用于促进重新安定或返回到第一NB抑制系统110、第二NB抑制系统130或两者的陷波滤波器的稳态的快速方法。快速重新安定方法依赖于所接收到的GNSS信号,其中可以检测到相位不连续性。装置门控制模块232或数据处理器(160、170)被配置为防止由于样本复位信号231的频繁出现(shuffling)而造成的干扰。在第一样本历元T1(例如,Tsl),装置门控制模块232复位第一复位信号231的样本触发器或输入。此外,装置门控制模块232或数据处理器(160、170)启用门控样本复位信号214,并且开始对由信号232预限定的第一“复位”周期进行计数。如果在预限定的复位周期期满之前,第二复位信号231出现,装置门控模块232复位并重新开始对第二复位周期计数(例如,下一个复位周期或复位周期N+1);否则,在第一复位周期(例如,先前的复位周期或复位周期N)期满之后禁用门控复位信号214。
图3是说明性幅度与时间响应关系的一个可能示例,其图示说明了在AGC控制模式中不存在AGC的补偿的情况下,由于所接收的信号的宽频带干扰和削波所导致的模数转换器(ADC)的饱和。竖直轴线指示所接收到的GNSS载波信号的信号幅度249或振幅(例如,以毫伏或等效dBm表示,用于相应的接收器天线终端阻抗),而水平轴线表示时间248(例如,以秒表示)。在图2和图3中相同的附图标记指示相同的特征或元件。
图3图示了如果饱和计数器201的溢出事件由WBI(例如,类脉冲WBI)引起的情况下AGC模式控制模块207(例如,AGC模式控制器)或AGC(143、153)的AGC模式控制的示例。图3假定以下一个或更多个条件:(1)AGC已经安定或稳定,例如AGC模式信号208处于数字基带(113、133)或ADC样本的稳态模式;(2)数字基带或ADC样本包括超过阈值信号一强度的强窄频带干扰(NBI)信号241;(3)每个Ti(i=1...10)表示T1历元;以及(4)在所图示的时间周期内沿水平轴线存在一组(例如,十个)T1历元。在一个配置中,每十个T1历元表示对应的T2周期或T2历元。
然而,在替代实施例中,每个Ti(i=1...10)可以表示T2历元,其包括一个或更多个(例如,十个)T1历元。
在图3中,从历元244开始,由GNSS接收器引入或接收类脉冲宽频带干扰WBI信号242。WBI信号242、NBI信号241和目标接收的GNSS载波信号形成复合波形243。
在一个实施例中,电子数据处理器(160、170)和饱和计数器201确定和计数针对其中到ADC的数字基带信号或所接收的GNSS模拟输入(例如,低频带L1信号或高频带L2信号)超过阈值最大信号电平(例如,第一阈信216或第三阈值218(例如,(一个或更多个)上限))的对应的采样间隔的样本。例如,每个历元可以存在一个或更多个多重采样间隔。类似地,数据处理器和饱和计数器201确定和计数针对其中到ADC的数字基带信号或所接收的GNSS模拟输入(例如,低频带L1信号或高频带L2信号)超过阈值最小信号电平的绝对值(例如,或低于阈值最小信号电平)(例如第二阈值217或第四阈值219(例如,(一个或更多个)下限))的对应的采样间隔的样本。
数据处理器(160、170)和T1饱和评估器203确定和计数其中到ADC的数字基带信号或所接收的GNSS模拟输入(例如,低频带L1信号或高频带L2信号)超过基于第一阈值216(例如,上预限定阈值)的阈值最大信号电平的每个历元(例如,其可以包括一个或更多个采样间隔)。例如,T1饱和评估器203对针对其中到ADC的数字基带信号或所接收的GNSS模拟输入(例如,低频带L1信号或高频带L2信号)超过阈值最大信号电平(例如,第一阈值216或上预限定阈值)和/或超过阈值最小信号电平的绝对值(例如,第二阈值217)的每个历元的计数或累积计数进行递增。在一个配置中,累积的计数在多个历元内保持或累积,例如每个T2历元有多个T1历元。T1饱和评估器203或数据处理器可以将时间周期或一系列T1历元上的溢出饱和计数表示或表达为溢出的概率。
在该样本图中,在T1历元的每个连续周期,在T2饱和计数器205中累积矢量信号204的第一溢出分量224。T2饱和计数器205(例如,矢量计数器)对矢量信号204的第一溢出分量224进行计数。如图3的示例所图示的,仅出于解释目的,电子数据处理器(160、170)或T2饱和计数器205将溢出饱和计数递增到四,对应于T1历元(例如,或者在替代实施例中为T2历元)的四个饱和周期,该四个饱和周期被标记为周期T1(244)、周期T5(245)、周期T7(246)和周期T9(247),在所述周期中发生溢出饱和。沿着时间248的水平轴线,在周期T1(244)、周期T5(245)、周期T7(246)和周期T9(247)下方,“Y”指示对于在每个对应周期内的对应T1历元(例如,或在替代实施例中的T2历元)期间(或之后)的溢出饱和状态(例如,计数递增)为“是”。在实践中,数据处理器或T2饱和计数器205可以确定可能与图3的图示不同的实际的溢出饱和计数。
在替代实施例中,任何饱和的T2历元都可以指代包括一个或更多个T1历元(例如,高达十个T1历元)的溢出饱和历元,相应饱和状态对应于Y或“是”;其中“N”(沿着时间248的水平轴线)指示在每个对应的周期内对应的T1历元期间没有溢出饱和状态(例如,每个不饱和的T2历元,其可以指代没有包括十个对应的T1历元的溢出饱和历元)。
如果数据处理器(160、170)或AGC模式控制模块207(例如,AGC模式控制器)或AGC(143、153)确定上述溢出概率(或矢量信号204的第一溢出分量224的相应累积计数)在基于阈值(例如,不超过第三阈值218)的范围内WBI候选的占空比内,则第二AGC信号模式信号209相对于第一AGC模式信号208在第一周期内(例如,从第一个T1历元到第十个T1历元的T1历元,其可以被称为第一T2历元或先前的T2历元)保持不变,并且被用于第二周期(例如,第十一个T1历元到第二十个T1历元,其可以被称为T2历元周期或下一个T2历元)。
在某些配置中,无论溢出饱和状态如何,沿着时间248的轴线,一个或更多个T1历元的每个下一个连续周期被标记为Tx+1,其中Tx(例如,229)是一个或更多个T1历元(例如,在某些配置中为十个T1历元)的先前周期,其中Tx+1(例如,229)是一个或更多个T1历元的先前的T1周期之后的一个或更多个T1历元的下一个周期,并且其中X是大于或等于二的任何正整数。T1周期244之后是T2周期289(如果每个Tx历元具有一个T1历元的持续时间,而不是如某些替代实施例中的十个T1历元,则它不同于T2历元)。
图4是说明性幅度与时间响应关系的一个可能示例,其图示说明了在AGC模式转换到滤波器调整模式中,不存在AGC的补偿的情况下,由于所接收的信号的窄频带干扰和削波所导致的模数转换器(ADC)的饱和。竖直轴线指示所接收到的GNSS载波信号的信号幅度249或振幅(例如,以毫伏或等效dBm表示,用于相应的接收器天线终端阻抗),而水平轴线表示时间248(例如,以秒表示)。
图4图示了如果溢出事件由NBI引起的情况下AGC模式控制模块207(例如,AC模式控制器)或AGC(143、153)的AGC模式控制的示例。图4假定以下一个或更多个条件:(1)AGC已经安定,或者第一AGC模式信号.208对于所接收到的ADC输入样本或由PN信号(例如,具有PN调制的目标GNSS载波信号)和类脉冲WBI 262构成的数字基带信号(113、133)处于稳态模式;(2)每个Ti(i=1...10)表示T1历元;(3)在T2历元或T2周期中有10个T1历元。
然而,在替代实施例中,每个Ti(i=1...10)可以表示T2历元,其包括一个或更多个(例如,十个)T1历元。
从T1历元251开始,引入或接收窄频带干扰(NBI)信号26l。NBl261、宽频带干扰(WBI)262和目标接收的GNSS信号(例如,具有PN调制)形成复合波形263。在图4中,在每个T1历元(被标记为历元周期251、252、253、254、255、256、257、258、259和260)处,在T2饱和计数器205(例如,矢量计数器)中累积矢量信号204的第一溢出分量224。在限定从第一个Tl历元周期到第十个T1历元周期260的T2历元227的第十个T1历元处,溢出饱和计数高达十,对应于在一个或更多个T1历元期间发生溢出的任意T1历元周期(251到260,包括251和260在内)。当溢出饱和的概率超过任何范围内WBI候选的任何占空比(例如,超过第三阈值218)时,第二AGC信号模式信号209在下一个周期或T2周期(例如,包括第11个T1历元到第20个T1历元的第二T2周期)内切换到调整模式,而不是针对先前的周期或T1历元(例如,包括十个第一T1历元的第一T2周期)的稳态模式信号(例如,第一模式AGC信号208)。
与上述的图4的溢出饱和的概率所指示的调整模式一致,从第二T2周期(例如,末图示的第十一个T1周期,其中每个历元周期表示一个T1历元)开始,其中AGC模式信号208处于调整模式,AGC模式控制模块207或AGC(143,153)递减增益,以将复合波形263压缩在ADC(112、132)的指定频带宽度或ADC输入动态范围内。
在如上文结合图4所讨论的第二T2历元(例如,图4中未示出)中的调整模式之后,并且如果溢出饱和计数为四,如图3所图示的,相对于针对第二T2历元(例如,第二周期)和第三T2历元(例如,第三周期)的调整模式中的模式信号(例如,第一AGC模式信号208或第二AGC模式信号209),在第三T2历元中,第二AGC模式信号209或AGC(143、153)对于第四T2周期切换回(例如,复位或恢复)到稳态模式。
结合图2至图4,包括图2和图4和随附的文本,当GNSS接收器处于活动或开启时,AGC模式控制模块207或AGC(143、153)的AGC模式转换和增益调整过程可以重复,以减少或减轻NBI或类脉冲WBI的有害影响。
图5图示了用于解决潜在的相位跳变问题的NBI和WBI抑制的集成系统的框图。图5图示了被配置为抑制NBI和WBI两者的集成系统,其中该集成系统可以包括第一选择性滤波模块144、第二选择性滤波模块154或这两者。ADC输出信号或数字基带信号(113、133)可以由三个分量组成:(1)NBI信号301、(2)PN序列(其调制GNSS载波信号)和噪声信号302、和(3)WBI信号304。如图6所示,附图标记302表示GNSS载波信号的伪随机噪声代码(PN)和噪声信号302(n)。
消隐和陷波滤波器控制模块213(图2)检测可能被WBI损坏的信号(113、133)的可疑片段。当消隐启用信号228或逻辑电平被提供给消隐和陷波滤波器控制模块213时,所检测到的可疑片段被消隐(例如,设定为零或其他预限定值)以形成具有降低的或抑制的WBI信号分量304的新滤波信号215。
在图5中,数字选择性滤波模块(144、154;例如数字选择性滤波器或带通滤波器)可以包括图1A的第一子频带滤波器114和第二子频带滤波器134。在图5所示的实施例中,系统假设了NBI信号301和WBI信号304与PN代码序列和噪声信号302共享相同的频谱。因此,由数字选择性滤波模块(144、154)从诸如宽频带样本信号(例如,其中WBI被消隐)之类的滤波后的信号215中提取的合成信号(116、136)包括NBI信号301、PN序列和噪声信号302。
在图5中,陷波滤波器306可以包括图1A的第一NB抑制系统110和第二NB抑制系统130。陷波滤波器306具有输出陷波信号,通过混频器将该输出陷波信号与基准信号混合以向加法器308提供输入信号314。如图所示,通过加法器308将来自数字选择性滤波器(144、154)的未陷波的合成信号(116、136)与输入信号314相加以向自适应模块311提供输入,以用于最小化在包括误差、PN和噪声的所接收的GNSS信号中的NBI和误差。
在第一样本历元处,陷波滤波器306递归地提取NBI分量,并且生成当前的NBI信号307的估计。陷波滤波器306促进生成在第一历元处采样的抽头矢量信号313。在第二样本历元处,陷波滤波器306组合当前的NBI信号307,(例如,用于当前历元n(例如,第一历元)的当前NB信号)和抽头矢量信号313,以便生成NBI估计314,该NBI估计314在理想情况下与在第二历元处采样的信号(116、136)的NBI分量(例如,下一个NBI信号或下一个历元n+1(例如第二历元))很好地匹配。然后,信号(116、136)中的NBI分量(例如,下一个NBI分量314)被相加器或加法器308去除,并且产生复合GNSS信号309,该复合GNSS信号309由噪声、PN序列和残留误差构成。在某种程度上,图5的系统显著地从合成信号(116、136;例如,所接收的信号或其数字样本)中去除NBI分量,滤波后的复合GNSS信号309类似于噪声,其驱动自适应模块311更新抽头矢量信号313以对第三样本历元重复该过程。每个采样间隔或采样时钟可以重复结合图5所讨论的过程。
可以应用图5的系统以减少在一些GNSS接收器中倾向于与WBI和NBI的组合滤波相关联的相位跳变。NBI 301是所接收到的复合GNSS信号的信号分量。连续波(CW)干扰的作为NBI的简化模型的数学模型可以被表示如下:
等式1:
k表示第k个样本历元:;
JNB(k)是表示NBI的历元或序列的时间序列;
ANB表示NBI的振幅(例如,在每个相应的历元k期间);以及
ω0表示(例如,与相应的历元k相关联的)NBI的归一化的角度频率。
在图5中,ω0可以被指示为W0,其中ω0和W0视为等同项。假设NBI信号301、WBI信号304、以及PN代码和噪声信号302共享共同的频谱,并且都在数字频带选择性滤波模块(144、154)、第一子频带滤波器114和/或第二子频带滤波器134的通带内,使得滤波器输出处的合成信号(116、136)可以被写成:
等式2:r(k)=bk(k){PN(k)+JNB(k)+JWB(k)+n(k)},其中
r(k)表示在相应的历元k期间由各个GNSS频带(例如,第一子频带、第二子频带或这两者)观察到的信号(116、136);
PN(k)是相应的历元k期间的GNSS伪随机序列(例如,调制GNSS载波信号的代码);
n(k)是相应的历元k期间的热噪声干扰;
JNB(k)是相应的历元k期间的窄频带干扰信号(301);
JWB(k)表示相应的历元k期间的宽频带干扰信号(304);以及
bk(k)是具有值集{0,1}的相应历元k的消隐序列,其中该值集中的0是指通过消隐和NF控制模块213检测到溢出饱和,并且基带信号(113、133)的数据样本已经被复位;并且该值集中的1是指基带信号(113、133)的(一个或更多个)数据样本被传递以用于进行处理(例如,通过窄频带抑制系统(11O、130),其中不存在材料/可检测的类脉冲的WBI)。
在图5中,如果陷波滤波器306安定在稳态模式,并且如果消隐和NF控制模块213的消隐功能未激活或无效,则抽头矢量信号313准确地表示的相位阶跃,这是第二NBI样本和第一NBI样本之间的相位差。陷波滤波器306(例如,自适应陷波滤波器子系统)和矢量信号313非常适合于使用在第k个历元之前所接收到的样本来预测在该第k个历元处的NBI。图5的自适应模块311可以包括用于NBI预测过程的卡尔曼(Kalman)滤波器、修改的卡尔曼滤波器、预测性滤波器或人工智能预测性模型。例如,自适应模块311或卡尔曼滤波器可以使用一个或更多个观测信号和基准信号的总和,连同延迟和反馈一起来处理采样数据,以便补偿噪声、误差和不确定性。在一个配置中,自适应模块311可以将用于历元的所接收到的复合GNSS信号309(例如,误差信号)用作输入,如下:
等式3:e(k)=JWB(k)+PN(k)+n(k),其中:
e(k)是相应历元k的滤波后的复合GNSS信号(例如,误差信号);
PN是相应PN(k)的伪随机噪声代码,是相应历元k期间的GNSS伪随机序列(例如,调制GNSS载波信号的代码);
n(k)是相应的历元k期间的热噪声干扰。
相应历元k的滤波后的复合GNSS信号如果不存在于WBI中,则通常很小且类似于噪声(零均值)。因此,在长周期内,抽头矢量信号313的预期均值保持恒定的目标值。
然而,不可预知的干扰,诸如图5中所图示的WBI和消隐功能,将会对陷波滤波器306的稳定性和性能产生负面影响。例如,如果陷波滤波器306在稳态模式下操作或安定,则在第二历元(例如,T2历元),消隐和NF控制模块213检测溢出饱和并且消隐该样本;信号(116、136)被复位为“0”或与类脉冲的WBI的消除或哀减一致的预定值。此外,在NF控制模块213的消隐之后,局部预测的NBI信号为 其中,合成的滤波后的复合GNSS信号309变为如下:
等式4:e(k)=-JNB(k),
e(k)是相应历元k的滤波后的复合GNSS信号(例如,误差信号);以及
JNB(k)是相应历元k期间的窄频带干扰信号(301)。
与等式3相比,在等式4中,如果存在对NBI的估计,则滤波后的复合GNSS信号309(例如,误差信号)通常更大,这可能使自适应模块311的正常操作偏置或失真。在等式4中,较大的滤波器复合GNSS信号309(例如,通常较大的误差信号)在第二历元处倾向于使抽头矢量信号313失真,并且使第三历元的局部NBI预测314不准确。因此,不准确会导致滤波后的复合GNSS信号309(例如,误差信号)对于第三历元很大,并且进一步偏置抽头矢量信号313。
结合图5,前一段中描述的失真过程可能导致以下项中的一个或更多个:(1)抽头矢量信号313由于滤波后的复合GNSS信号309中的较大的更新误差而振荡;因此对于一个或更多个数字陷波滤波器的准确滤波器系数,导致陷波滤波器306与陷波频率和深度的准确预测的潜在分歧;(2)滤波后的复合GNSS信号309(例如,误差信号)具有较大的末补偿的NBI分量,如果不导致由于滤波后的复合GNSS信号309中的相位不连续性(例如,相位跳变)引起的所接收到的GNSS信号的载波相位的失锁,则至少使载波相位跟踪环路和/或码相位跟踪环路的GNSS跟踪性能退化。
此外,除了由消隐序列bk(k)引入的相位不连续性之外,未检测到的WBI(未被消隐)也可以导致陷波滤波器收敛的潜在振荡和跟踪性能的退化。
图6是滤波器系统的一个实施例的框图,该滤波器系统基于干扰信号相对于所接收的信号的环境感知而合并了自适应窄频带干扰抑制和宽频带干扰抑制。图5的系统构建或添加到图6的系统。图5和图6或在任何一组两张或更多张附图中的相同的附图标记指示相同的特征、元件、步骤或方法。
阻滞和控制模块(balking and control module)213接收NBI信号301和伪随机噪声代码和噪声302作为对第一加法器413的输入以产生第一误差信号。第一误差信号303和WBI被输入到可选的第二加法器417中,该第二加法器417产生第二误差信号(例如,多个信号)以应用于数字GNSS频带选择性滤波(144、154)。为了避免由可检测的WBI导致的负面影响,其中相位不连续性通过消隐和陷波滤波器(NF)控制模块213引入,图6还包括对图5的处理系统的控制模块。与图5的系统相比。在图6中,陷波滤波器控制模块410用于生成决策矢量信号402,该决策矢量信号402包括陷波滤波器排序信号415、抽头矢量禁用信号425和陷波滤波器存储器复位信号435。陷波滤波器控制模块410包括两个关键部件:(1)宽频带快速傅甲叶变换(FFT)频谱分析仪和(2)一组GNSS频带峰图案识别器。
在图6中,在NF控制模块410中,宽频带FFT频谱分析仪使用由ADC(112、132)输出以生成频谱的基带信号(113、133);使用矢量索引信号411(例如,位置信号矢量)和GNSS整形滤波器信号412(例如,整形校正信号)针对特定的GNSS频带(例如,用于GPS的L1频带或L2频带)对每个峰识别器编程。
陷波滤波器控制模块410与来自消隐和NF控制模块213的装置门控复位信号214(例如,消隐序列)相组合,通过滤波器排序信号415、抽头矢量更新禁用信号425以及陷波滤波器存储器复位信号435来决定陷波滤波器(306、110、130)的最佳配置。
在一个实施例中,自适应模块311提供反馈以调整陷波滤波器306。自适应模块311接收滤波器排序信号415、抽头矢量更新禁用信号425和陷波滤波器存储器复位信号435和复合GNSS信号309(例如,具有误差、伪随机噪声代码和噪声分量),并且将误差信号312(例如,反馈)输出到陷波滤波器306。陷波滤波器306的输出信号307和抽头矢量信号313被提供给乘法器421(例如,混频器),并且用于产生第三加法器308的输入。此外,加法器308将数字GNSS频带选择性滤波(144、154)的输出加到乘法器421的输出,以产生被陷波滤波的复合GNSS信号309作为多路复用器406的输入。多路复用器406可以选择包含以下中的一个或更多个的合成信号407:(a)复合GNSS信号309的陷波滤波后的信号、或(b)数字GNSS频带选择性滤波(144、154)的未陷波的输出。在替代实施例中,多路复用器406可以选择包括复合GNSS信号的陷波滤波后的信号和未陷波滤波的信号两者的数字分量(例如,加权分量)的合成信号407。
陷波滤波器控制模块410通过控制到多路复用器406(例如MUX 406)的启用信号404(例如,ON/OFF信号、选择信号或这两者)来决定何时包括陷波滤波器过程。期望合成信号407减轻NBI以及最小化否则可能潜在地由WBI分量的消隐或滤波所引起的失真。
图7是陷波滤波器控制模块410的一个实施例的框图,该陷波滤波器控制模块410基于频谱分析仪观察相对于所接收的信号的干扰信号(例如,无线电环境感知),来控制自适应窄频带干扰抑制和宽频带干扰抑制。结合图8至图10包括图8和图10来讨论图7的滤波器系统及其相关部件。
包括图11A和图11B的图11提供了在只有噪声的情况下与陷波滤波器相关联的性能退化的说明性图表。另外,包括图12A和图12B的图12提供了由陷波滤波器配置和无线电接收条件的不匹配所引起的性能退化的说明性图表。在可能的情况下,图7至图10包括图7和图10中的陷波滤波器n的设计可以被配置为解决在图11和图12中所阐述的情况和接收条件。
在图7中,陷波滤波器控制模块410包括宽频带FFT频谱分析仪591和峰识别器模块515(例如,能够识别多个峰),其中每个峰识别器模块515被配置用于特定的GNSS频带。例如,FFT频谱分析仪591包括样本存储器单元507(例如,N采样缓冲器)、FFT蝶形传播(butterfly propagation)模块502(例如,N FFT模块)、幅度计算模块504和线性到dB转换模块510。在一个实施例中,宽频带数字基带信号(113、133)(例如,作为数据样本)存储在复数格式(complex number format)的存储器单元507中,包括同相分量和正交相分量。样本的数量(N)通常被设计或被配置为2M以促进蝶形传播,其中数据处理器通过评估(例如,平衡)以下因素中的一个或更多个:频率分辨率、对NBI的检测敏感度和计算复杂度,来确定或选择M。
存储器单元507输出矢量复信号(vector complex signal)501,由N样本FFT模块502处理该矢量复信号501。N样本FFT模块502基于输入的矢量复信号来输出复矢量503(例如,复输出矢量),该复矢量503表示输入数字基带信号(113、133)的频谱密度。
幅度单元504从复矢量503中提取幅度或功率信息。幅度单元504可以包括低通滤波器,其中低通滤波器对多个FFT周期上的FFT幅度的N个样本进行平均以进一步降低噪声。
为了简化从宽频带FFT频谱到每个特定GNSS频带频谱的转换并便于峰搜索,线性到分贝(dB)转换模块510将线性频谱幅度转换成分贝幅度尺度(例如,特定对数尺度)或另一对数尺度。在一个实施例中,以分贝(dB)或另一对数尺度表示的输出频谱信号506(例如,合成信号)被馈送到GNSS滤波器或GNSS频谱整形模块508中,以便归一化、缩放、压缩或调整输出频谱信号。GNSS频谱整形模块508的频谱信号513(例如,输出频谱信号)或一个或更多个GNSS频带峰识别器(例如峰识别器模块515(例如,峰搜索模块))的频谱信号513。
在GNSS频带或子频带中,典型的宽频带频谱可以使用大约300MHz的采样频率来表示100-130兆赫兹(MHz)的频带宽度。例如,聚合宽频带通常可以在单个GNSS接收器中包括GPS L1、GLONASS GI和北斗B1。GNSS频带选择性滤波模块(144、154),例如第一子频带滤波器114和第二子频带滤波器134,被用于从宽频带数字基带信号(113、133)中提取特定的单独GNSS频带。因此,可以使用宽频带输出频谱信号506的相应部分重建单独的GNSS频带频谱或子频带频谱,所述宽频带输出频谱信号506具有通过针对每个相应GNSS频带或GNSS子频带进行的GNSS频谱整形实现的(频率与幅度的)GNSS整形校正。宽频带数字基带信号频谱(113、133)上的GNSS频带的部分由矢量索引信号411{IDX0,IDX1}表示,其中IDX0是对快速傅立叶变换(FFT)输出频谱信号506的低索引,并且IDX1是输出频谱信号506的高索引(例如,可以被表示为FFT矢量信号)。在一个实施例中,整形滤波器信号412表示来自选择性滤波模块(144、154)(例如,第一子频带滤波器114和第二子频带滤波器134)的GNSS频带选择性滤波器形状。GNSS频谱整形模块508为特定的相应GNSS频带生成频谱信号513。
特定的相应GNSS频带或GNSS子频带的频谱信号513的频率内容被输入到一个或更多个峰识别器模块515。对于特定的相应GNSS频带或子频带,每个峰识别器模块515对频谱信号513中的高于预限定阈值的峰的数量进行计数。峰识别器模块515依赖于分离信号514以正确地分类和排序(排名)最高的N个峰值,其中N由陷波滤波器(110、130)(例如,级联陷波滤波器)可以同时抑制的干扰的最大数量确定,并且频谱上的分离信号514避免对属于单一峰的多个大点进行计数。输出信号516(例如,输出峰信号)包括以dB为单位的N个最高峰和由每个相应的峰识别器模块515计算的本底噪声。
使用矢量信号516(例如,输出峰信号)、装置门控复位信号214和有序对信号518{OnTh,OffTh},陷波滤波器配置模块517优化陷波滤波器(110、130)的设定,例如滤波器排序信号415、抽头矢量更新禁用信号425、存储器复位信号435和陷波滤波器启用信号404的排序。双阈值信号518或迟滞信号被用于防止不同配置之间以及应用和不使用陷波滤波器(110、130)之间的频繁转换(例如,用于避免所接收到的滤波GNSS信号或其PN分量中的相位不连续性)。
每个峰识别器模块515可以根据软件指令或if-then(如果……,则……)语句的规则集进行操作,所述语句例如是以下中的任何一项:(a)如果相对于本底噪声的峰超过OnTh,则该峰被计算在内并且.陷波滤波器的排序递增1;(b)如果相对于本底噪声的峰低于OffTh,则该峰不被计算在内并且.不使排序增加;以及(c)如果相对于本底噪声的峰介于OffTh和OnTh之间,如果该峰之前被计数过,则该峰被计数,否则如果该峰未被计数过,则不被计数。将在本文件中稍后讨论关于峰识别器模块515的更多技术细节。
在图7中,线性到dB转换模块510促进(例如,简化)由GNSS频带频谱整形模块508进行的单独的GNSS频带频谱整形以及由峰识别器模块515进行的峰搜索和峰识别过程。在线性到dB转换模块510内,可以根据以下等式对线性幅度到dB转换进行建模:
等式5:Dv=20log10A,其中,
Db表示以dB为单位的频谱功率;
A以平均功率的平方根表示频谱幅度(例如,在频域中)。
由于log()的非线性函数,线性到dB转换模块510可以使用查找表(LUT)而不是根据以上等式来确定所述转换。然而,幅度域中的大动态范围需要大存储器大小来存储每个日志值。例如,如果幅度范围从0到65535,则它需要64KB(例如,千比特(Kilobits)或千字节(Kilobytes))的存储器大小。但是,如果对数曲线被压缩(例如,严重地压缩),则3dB增量意味着单步长(从1到2)或一万步长(从10,000到20,000)。因此,在一个实施例中,线性到dB转换模块510可以使用创新且通用的对数实施方式,其使用泰勒展开加有限大小的LUT,如下文更详细描述的。
图8是滤波器系统的一个实施例的框图,该滤波器系统基于来自频谱分析仪的频率与幅度响应关系来控制干扰抑制,该频谱分析仪进行线性到对数转换(例如,通过应用迭代泰勒展开级和查找表(LUT))。图8是由等式5表示的线性到分贝转换的实施方式。在讨论具体实施方式之前,首先引入使用泰勒展开的理论推导和实际逼近。假设幅度是N位整数,等式5可以被重写为如下:
等式6:其中,
F是[0,2M-1]范围内的整数;
I是范围为[0,2N-M-1]的较高位部分;以及
ln()是具有更简单的泰勒展开的自然对数函数。
为了应用泰勒展开,需要将等式6分解为多项,如以下等式所阐述:
等式7:
其中,
Mln(2)是常数;
I是N-M位整数;以及
可以使用泰勒展开来进一步展开
等式7中的的泰勒展开可以与以下等式结合来解释:
等式8:
其中,O()是3次和更高次项的总和,
为了最小化误差并且能够将线性逼近应用于泰勒展开,合理地要求如下:
等式9:并且因此二阶和加高阶截断的上界变为:
等式10:
为了满足等式9所表示的条件,基于F在[0,2M-1]范围内的等式6,需要I>=4,即查找表(LUT)需要有2M+2个表项。因此,导出以下等式以支持具有泰勒级数展开的LUT:
等式11:其中,
6M是常数;
以及
是逻辑断言,如果条件为“真”,则该逻辑断言为“1”,否则等于“0”。
关于等式7中的项ln(I),如果I小于2M+2,则分贝值可以简单地通过LUT来求解。否则,线性到分贝转换模块510可以将等式6中所讨论的方法迭代地应用到等式11以确定分贝值,这符合以下对I的估计:
等式12:ln(I)=ln(I1·2M+I2),直到其接近I1<2M+2。
图8是滤波器系统的一个实施例的框图,该滤波器系统基于来自具有线性到分贝转换模块510的频谱分析仪的频率与幅度响应关系来控制干扰抑制,该线性到分贝转换模块510进行线性到对数转换(例如,通过应用迭代泰勒展开级和查找表(LUT))。图8图示了本文件的前述段落所涉及的理论分析的实现。
在图8的示例中,简化线性到分贝转换模块510的框图,假设I≤2M+2,使得不需要并且未示出迭代应用等式6至等式11,包括等式6和等式11。然而,在实践中,可以理解,线性到分贝转换模块510的其他配置可以使用支持等式6至等式11(包括等式6到11)的迭代应用和关联解的逻辑或软件指令。
在图8中,更详细地图示了线性到分贝转换模块510,其中N和M是正整数值。图7的幅度模块504将输入信号505[X[N-1:0](例如,线性幅度输入信号)作为N位整数提供给线性到分贝转换模块510。
决策模块521确定输入信号505(例如,线性幅度输入信号)是否大于或等于阈值,其中阈值可以被设定为2M+2,其中M或自然对数,M的底数2为常数。如果决策模块521确定输入信号505小于(例如,不等于或大于)阈值(例如,阈值2M+2),则线性到分贝转换模块510使用第一查找表(LUT)530以生成线性到分贝转换。然而,如果(决策模块521确定)输入信号505(例如,线性幅度输入信号)大于或等于阈值(例如,阈值2M+2),则线性到分贝转换模块510继续评估输入信号505(例如,线性幅度输入信号)的分量的模块。
如果输入信号505被应用于第一LUT 530,并且该第一LUT 530与决策模块521一致地使用,则第一LUT 530被用于完成转换,并且如果输入信号505在第一LUT 530的范围内则选择合成信号538。
否则,或者如果(决策模块521确定)输入信号505大于或等于阈值(例如,其中阈值可以被设定为2M+2),则输入信号505被分成如下分量:(1)M位整数F(信号523)和(2)较高的N-M位整数I(信号524)。
较高的N-M位整数I(信号524)输入到第二查找表(LUT)590。如果信号524在第二LUT 590的范围内,则该第二LUT 590完成20log(I)的转换并产生输出信号533,该输出信号533被应用于第一加法器535。第一加法器535输出该输出信号533和从M位整数F(信号523)导出的输出信号532的和、或(2)较高的N-M位整数I(信号524)、或这两者。如图8所示,信号534是恒定信号20log(2M)或6M。
第一比较器529将在比较器端子B处来自恒定路径595的信号526(例如,2MI)与在比较器端子A处来自第一值路径596的第一阈值2F(信号527)进行比较。如果比较器端子A处的输入信号527大于比较器端子B处的输入信号526,则第一比较器529可以生成逻辑电平信号532,例如高电平逻辑信号(T=1)。第一加法器535对逻辑电平信号532、信号533和20log(2M)信号534求和以产生和信号592。
第二比较器528将比较器端子B处的信号526与比较器端子A处的来自第二值路径594的第二阈值4F(信号525)进行比较,用于获得等式11中的的近似。如果比较器端子A处的输入信号525大于比较器端子B处的输入信号526,则第二比较器528可以生成逻辑电平信号531,例如高电平逻辑信号(T=1)。第二加法器536对逻辑电平信号531和信号592求和以产生和信号537。
如上所述,第二LUT 590完成201og(I)的转换并且产生输出信号533,该输出信号被应用于第一加法器535。第一加法器535输出该输出信号533、从M位整数F(信号523)导出的输出信号532和201og(2M)信号534的和。如图8所示,信号534是恒定信号201og(2M)或6M。如果输入信号505超过第一LUT 530的LUT范围,则将201og(I)信号533、20log(2M)信号534以及校正信号531和532加在一起以实现对数转换。
多路复用器539被配置有线性到分贝转换模块510(或电子数据处理器)的逻辑,以便结合由第一比较器529和第二比较器528的信号分量(例如,分信号分量523、524)的评估来提供合成信号作为第一LUT 530的输出或第二LUT 590的结果。由每个相应的GNSS频带或子频带的每个峰识别器模块515使用以分贝dB为单位的输出频谱信号506(例如,合成信号),来识别所接收到的GNSS信号的振幅或幅度的峰。
图9包括图9A和图9B。图9A是宽频带频谱分析仪的一个实施例的框图,该宽频带频谱分析仪包括一个或更多个峰识别器模块515,其根据每个GNSS频带的幅度593与频率597(例如,频谱)关系来识别峰图案。在图9中,(图7的)GNSS频谱整形模块508提供特定的GNSS子频带频谱或GNSS频带频谱信号513(例如,频谱矢量信号)作为与相同的GNSS子频带或GNSS频带相关联的相应峰识别器515的输入。
峰识别器模块515可以包括归并分类单元551,该归并分类单元551对所输入的GNSS子频带频谱或GNSS频带频谱信号513进行分类。在一个实施例中,归并分类单元551输出矢量信号(552、560),该矢量信号(552、560)是按降序排序分类的合成信号,并且格式为{Magnitude,IDX},其中Magnitude是到每个快速傅里叶变换(FFT)bin的以dB为单位的功率,并且IDX是与频谱信号513(例如,矢量信号)中的对应幅度相关联的索引。
在图9中,除了归并分类模块551(例如,归并分类单元)之外的模块单独地和共同地被配置为从矢量信号(552、560)中识别高达N个或N个有效峰。每个峰识别器模块515可以将频率分离参数用于峰鉴别过程,这对于防止峰识别器模块515计数(例如,过度计数)实际上属于同一峰的多个峰点是重要的。峰鉴别过程可以通过说明性示例来解释,其中不失一般性,例如其中两个峰由比较器(555、556)识别。特别地,峰识别模块515的峰辨别过程通过使用两个比较器555和556以及一个延迟单元(D)557来准确地识别两个(N=2)峰。然而,更一般地,N个峰提取使用N个比较器和N-1个延迟单元。
这里,如图9B所示,在波形579中,所接收到的GNSS频谱是双峰或双峰频率587与幅度593分布关系。图9B进一步由表3限定,其中第一列是对图9B的波形579上的峰点的索引;第二列是图9B中那些峰点的附图标记;第三列是分类后的矢量信号(552、560)的分类索引;第四列是格式为{Magnitude,原始波形中的IDX}的排序后的合成信号552;第五列列出了整个迭代之后提取的峰。
在一个示例中,在峰识别或峰提取之前,分离信号514被设定为应用于第一比较器555和第二比较器556的阈值(Th)(例如,4);在D型正反器(D-type flip-flop)或D型锁存器(D-type latch)的输出处,信号554被设定为第一参考值(例如,-5);并且信号560被设定为第二参考值(例如,-5)。当在启用端子处启用时,D型锁存器可以被配置为将D输入端子处的逻辑值传输到Q输出端子,并且保持所传输的逻辑值直到下一个时钟脉冲。
第一比较器555比较索引值(其与矢量信号(552、660)中的对应幅度相关联并且基于频谱信号513)与第一基准或阈值(Th)之间的差,以向第一比较器555的比较器输出端子提供指示性逻辑输出信号559。如果差大于阈值,则第一比较器555向比较器输出端子提供指示性逻辑输出信号559(例如,真或高逻辑电平)。然而,如果差不大于阈值,则第一比较器555向比较器输出端子提供与指示性逻辑输出信号559相反的相反逻辑输出(例如,假或低逻辑电平)。
第二比较器556比较索引值与阈值(Th)的第二基准之间的差,以向第二比较器556的比较器输出端子提供指示性逻辑输出信号561(例如,真或高逻辑电平)。如果差大于阈值,则第二比较器556向比较器输出端子提供指示性逻辑输出信号561。然而,如果差不大于阈值,则第二比较器556向比较器输出端子提供与指示性逻辑输出信号561相反的相反逻辑输出(例如,假或低逻辑电平)。
如图9B的波形579所图示的,频谱信号513(例如,被输入到峰识别器模块515或峰搜索模块中的输入信号)在不同的中心频率处具有两个峰。N峰存储器模块515接收信号(552、566),其中N峰存储器模块566可以更新与信号552的对应幅度相关联的索引。在由归并分类模块551提供的范围内,峰识别器模块515或电子数据处理器通过访问所输入的频谱信号(513、553)中的(分类索引的)零元素开始,以产生输出信号516(例如,输出峰信号),并且接下来访问(分类索引的,例如分类索引的第一元素的)下一个元素;并且以此类推。
对于分类索引的零元素,归并分类模块551将信号560设定为索引值5,(其中该索引与图9B中的峰点570相关联)。从第一参考信号554(-5)或第二参考信号558(-5)中减去峰点570的索引值(5)以产生差10。此外,在示例中,差(10)大于阈值(4)(即,10>4)。
表3:峰识别的示例
在图9A和图9B中,可以结合上表3来描述。在图9A中,如果峰识别器模块515确定信号561和559两者都为真(例如,或高逻辑电平),则与(AND)门(1)使信号563为真;(2)使索引计数器564递增(例如,将5递增1,以在表3的最后一列中产生为6的递增后或更新后的索引(565);(3)将峰信号{570}(例如,峰信号幅度)存储在存储器块或N峰存储器模块566(例如,具有索引计数器的相关的递增后/更新后的索引(或例如6))的第0个位置(分类索引);(4)通过延迟单元(D)557将信号554推入558中;(5)用6(到波形579中峰点570的更新后或递增后的索引)更新信号554。
在以不同的输入信号或输入状态执行图9A的框图的第二示例中,峰识别器模块515或数据处理器访问矢量信号(552、560)的(分类索引的)第一元素,并且将信号560设定为索引值6。第一比较器555将信号560的索引值(6)与第一参考值554(例如,6)的差与阈值(例如,4)进行比较;因此输出信号559为假。尽管第二比较器556确定信号560(具有索引值6)和信号558(具有第二参考值(-5))的差为11,其中信号561为真,与(AND)门562的输出在信号563处保持为假。因此,第一元素(分类索引的元素1)不表示图9B的波形579上的点571处的峰,其与波形579一致。此外,在波形579中,很明显的是,点571、570、572和573形成单个峰形状,其中由点570指出峰的最大功率或幅度。类似地,点575、574和576形成单个峰形状,其中由点574指示最大功率或幅度。
在以不同的输入信号或输入状态执行图9A的框图的第三示例中,峰识别器模块515或数据处理器访问矢量信号(552、560)的(分类索引的)第二元素,并且将信号560设定为索引值7。第一比较器555将信号560的索引值(7)与第一参考值554(例如,6)的差与阈值(例如,4)进行比较;因此输出信号559为假。尽管第二比较器556可以确定信号560(具有索引值7)和信号558(具有第二参考值(针对延迟单元557,如果延迟的时钟循环的周期等于或大于2,则为-5;并且如果时钟周期是一个循环延迟,则为6))的差为12,其中信号561为真,与(AND)门562的输出在信号563处保持为假。因此,第二元素(分类索引的元素2)不表示图9B的波形579上的点572处的峰,其与波形579一致。
在以不同的输入信号或输入状态执行图9A的框图的第四示例中,峰识别器模块515或数据处理器访问矢量信号(552、560)的(分类索引的)第三元素,并且将信号560设定为索引值14。第一比较器555将信号560的索引值(14)与第一参考值554(例如,7)的差与阈值(例如,4)进行比较;因此输出信号559为真。第二比较器555将信号560的索引值(14)与第二参考值554(例如,6)的差与阈值(例如,4)进行比较;因此输出信号561为真。因此,第三元素(分类索引的元素3)表示图9B的波形579上的点574处的峰。
峰识别器模块515或数据处理器访问矢量信号(552、560)的第三元素,并且将信号560设定为索引14。索引14超过信号554(例如,6或7)和信号558(例如,6或-5)至少4,并且.因此(1)使信号563为真;(2)使计数器564递增1(例如,索引14被更新、递增到索引15);(3)将峰信号{574}存储在存储器块566的第一位置(例如,连同更新后的递增的索引15);(4)用更新值(例如,6或7)更新信号560;(5)用更新后的递增索引(例如,15,波形579中的峰点574的索引)更新信号554。
在结合图9A、图9B和表3所讨论的整个迭代过程之后,峰识别器模块515从多模态频谱波形中正确地提取峰,并将这些峰列在矢量信号516中。
图10表示图6(例如,电子数据处理器)中的陷波滤波器控制模块410(例如,陷波滤波器控制器)的状态图的图示,该陷波滤波器控制模块410控制自适应窄频带陷波滤波器的迟滞启用和禁用。陷波滤波器控制模块410(例如,陷波滤波器控制器)可以控制第一NB抑制系统110和第二NB抑制系统130以应用迟滞控制,从而防止陷波滤波器排序的频繁改变和/或频繁地开启和关闭启用信号404。
图10图示了所提出的操作陷波滤波器控制模块410(例如,陷波滤波器控制器)的方法,其中水平轴线(x轴)580表示信噪比(SNR)的度量,并且竖直轴线(y-轴)表示陷波滤波器的激活或停用或滤波器排序(例如,用于对信号陷波进行滤波的单级滤波器,或用于对多个对应的陷波进行滤波的多级级联滤波器),例如第一NB抑制系统110和第二NB抑制系统130.
在图10中,最初,陷波滤波器控制模块410的迟滞控制将被设定为零排序,并且图6中的启用信号404将被设定为假。来自峰识别器模块515的所选择的输出峰信号516用于为相应的GNSS频带或子频带的相应峰点产生SNR度量。此外,如果任何SNR度量值超过信号强度、信号质量或SNR的上阈值,例如通过过渡曲线582(在图10中)所示的信号518的OnTh(585),则陷波滤波器控制模块410可以将启用信号404设定为真。所选择的输出峰信号516将保持有效,直到该峰的SNR低于信号强度、信号质量或SNR的下阈值,例如通过过渡曲线581(在图10中)所示的信号518的OffTh(584)。例如,信号质量可以基于SNR、信号强度或误码率、精度稀释、信号衰落、信号接收可靠性与时间关系、或其他信号质量度量。通过平衡响应灵敏度和陷波滤波器配置的稳定性来挑选陷波滤波器在其中激活或启用的瞬变容限区583。
图6描述了陷波滤波器控制模块410,而图11A、图11B、图12A和图12B图示了当陷波滤波器未被最佳配置时的情况的性能关注。
图11A是在诸如干扰信号之类的纯噪声环境中陷波滤波器的各种滤波器系数的幅度615与时间617(例如,采样间隔的数量)关系的图。在图11A中,到陷波滤波器的输入信号(116、136)可以仅包括噪声和PN序列。此外,在该示例中,图6的抽头矢量信号313包括两个复抽头系数并且是类噪声的,这是因为第二噪声样本的相位与第一噪声样本的相位不相关。因此,抽头矢量信号313无助于抑制任何干扰。
在纯噪声环境下,与没有陷波滤波器处理的情况相比,有陷波滤波器的情况下的性能退化更多。在图11A中,信号601是抽头矢量信号313的第一复抽头的实部;信号602是抽头矢量信号313的第一复抽头的虚部;信号603是抽头矢量信号313的第二复抽头的实部;信号604是抽头矢量信号313的第二复抽头的虚部。所有信号(601、602、603、604)都是类噪声的,并且在足够长的更新间隔周期期间(例如,40,000次更新)收敛到零平均值。
图11B是滤波器的样本605与频率607关系的说明性图,其图示了群延迟或相位失真与频率关系。由信号611表示陷波滤波器的群延迟,其中陷波滤波器在对应的特定历元采用复抽头值。与跨越采样频率的理想常数“0”群延迟(信号612)相比,群延迟信号611在采样频率上显示出多个随机纹波。特别地,如果将本公开的选择性陷波滤波应用于GLONAASFDMA GNSS系统,则群延迟信号611会导致用于GLONSSFDMA系统的使用的随机频间偏置。此外,类噪声的抽头矢量就像带有内部热噪声的电子设备一样执行,并因此使处理更加有噪声。
图12A是陷波滤波器的各种滤波器系数的幅度与时间(例如,采样间隔的数量)关系的说明图,其涉及由陷波滤波器配置和无线电接收条件或环境的不匹配所导致的滤波器的性能退化。在图12A中,到陷波滤波器的输入信号(116、136)包括强连续波(CW)干扰。就图6的抽头矢量信号313具有两个维度或两个抽头以抑制两个相应的CW干扰而言,对于仅存在单一CW干扰情况中的GNSS的接收,具有对CW干扰双重抑制的配置会导致不想要的失真(例如,如图12B的曲线631所图示的)。在图12A中,信号621是抽头矢量信号313的第一复抽头的实部;信号622是抽头矢量信号313的第一复抽头的虚部;信号623是抽头矢量信号313的第-复抽头的实部;信号624是抽头矢量信号313的第二复抽头的虚部。两个抽头可以被配置为收敛到不同的常数,这些常数一起工作以抑制单一CW干扰,从而最小化或解决否则可能会发生的潜在失真。
图12B是说明群延迟或相位失真与频率关系的用于滤波器的样本与频率关系的说明图。由信号631表示陷波滤波器的群延迟,通过在特定历元采用复抽头。与在CW频率633处显示不连续性的理想群延迟632相比,实际群延迟信号631在频率位置633处与理想群延迟632匹配得很好。然而,实际群延迟631在频率位置634处显示第二群延迟不连续性。位置634处的第二不连续性是由于使用双抽头矢量信号313来抑制单一CW导致的,理想情况下应该使用单一抽头信号来抑制所述单一CW。特别地,如果将具有两个抽头的选择性陷波滤波应用于GLONAASFDMA(频分多址)GNSS系统,则此类群延迟失真会在GLONASS FDMA GNSS系统中引入恼人的频间偏置。
从图11A和图1B所图示的示例以及图12A和图12B所图示的示例,如果陷波滤波器未与观察到的干扰对准,则陷波滤波器可能不会为高性能GNSS解决方案提供益处。例如,如果陷波滤波器状态或配置与接收情况不匹配,则GNSS信号的接收或GNSS接收器性能可能会退化。为了解决所观察到的干扰与陷波滤波器状态(例如,一时间周期内的启用与一时间周期内的禁用)和配置的对准,陷波滤波器控制模块410感知接收条件并最佳地配置和控制陷波滤波器。
在图13至图16(包括图13和图16)中阐述存在可检测的WBI的情况下的快速重新安定过程。
图13是经归一化的信号幅度901(例如,说明性的余弦或正弦函数)与时间902关系的说明图,其涉及在存在相位跳变的情况下陷波滤波器的规则的重新安定。
在图13中,诸如由图1A、图5和/或图6的一个或更多个基带信号(113、133)所表示的复合信号可能会受到一些WBI信号304的干扰,该WBI信号304将对图5中的陷波滤波器306(例如线增强(line enhancement,LE)模块或LE滤波器)的性能和稳定性产生负面影响。在一个实施例中,线增强模块包括自适应线增强模块,该自适应线增强模块具有包括目标信号分量和噪声分量的复合信号的输入以及具有衰减、减少或消除噪声分量的输出。例如,自适应线增强模块可以包括具有未被延迟的第一信号路径和耦合到延迟单元的第二信号路径的设备,该延迟单元将样本延迟一个或更多个样本(例如,采样间隔),其中第一信号路径和第二信号路径耦合到加法器,该加法器将第一信号路径的第一信号与第二信号路径的第二信号相加以产生差或误差信号。例如,差或误差信号可以被提供给放大器以调整增益、幅度与频率响应关系、和/或滤波器系数(例如,滤波器权重),所述滤波器系数被应用于基于第二信号路径生成输出,诸如在美国专利No.4,238,746中所阐述的。
如本文件结合图5先前所解释的,消隐模块和NF控制模块213可以检测脉冲(例如,大脉冲),并且在脉冲周期内将样本归零(或调整)以解决或减少WBI。然而,消隐算法也引入相位跳变,类似于WBI,这对诸如第一NB抑制系统110和第二NB抑制系统130之类的陷波滤波器306产生负面影响。通过学习从历元k-1到历元k的NBI的相位步长,陷波滤波器(306、110、130)能够局部地预测历元k处的NBI波形,使得可以在历元k处从所接收到的复合信号中去除NBI分量。在图13中,对陷波滤波器(306、110、130)性能的负面影响可能来自潜在的相位跳变;后面的图解决相位补偿器以减轻相位跳变的影响,其使用图6的信号425和信号435(或信号的相应数据消息)。
图13和表4描述了在6个历元处的CW采样的样本信号。例如,从历元k到历元k+1的每个周期可能包含单个样本周期或多个样本周期。在图14中图示对应的系统状态转换。
图14是具有延迟线(例如,线增强模块)、加法器和抽头(例如,抽头更新模块)的陷波滤波器的框图,其中陷波滤波器在存在相位跳变的情况下经历陷波滤波器的转换、规则的重新安定。抽头更新模块被配置有滤波器系数,该滤波器系数可以确定陷波的参数,诸如陷波滤波器的陷波频率、最大陷波深度和陷波形状因子。在一个实施例中,每个线增强模块包括陷波滤波器的用于估计NBI的部件。
如果陷波滤波器(306、110、130)已经安定在稳态模式,则在历元T0处,具有相应的时间延迟721(例如,一个采样间隔或周期的时间延迟,例如单位延迟)的初步线增强模块802的存储器(例如,寄存器、堆栈或数据存储)具有输入信号矢量(例如,初始输入矢量)的信号状态731并且接收自适应抽头矢量,其中在历元T0处,自适应抽头矢量的相同信号状态731出现在初步线增强模块802的输入处和第一抽头更新模块750的输出处。
基于输入信号矢量和自适应抽头矢量的前述状态731,初步线增强模块802对在相应历元T1处采样的NBI(例如,接收的输入信号样本702(例如,NBI))进行预测信号712的局部预测。第一加法器770通过在历元T1内将预测信号712添加到第一线增强模块804的所接收的输入信号702(例如,在时间T1处具有潜在NBI的所接收的信号的样本的输入信号状态)来确定误差信号。在理想条件下,预测信号712与所接收的输入信号702(例如,其具有实际或潜在的NBI)完美匹配,这导致误差信号742在第一加法器770的输出处为零。
如果第一加法器770产生为零的误差信号742,则信号742驱动抽头更新模块750维持历元T0的先前输出抽头矢量信号731用于历元T1。在图13和图14中图示该过程,通过示出所接收的输入信号702(例如,包括NBI的用于历元T1的样本)与预测信号712完美地重叠来显示。从历元T0到T1的这个过程对每个下一个历元重复,例如从历元T1到历元T2的周期。然而,更一般地,第二加法器771将第二线增强模块806的所接收的输入信号703(例如,在相应历元T2处的具有实际或潜在NBI的样本)和预测信号713与相应的时间延迟723相加以产生误差信号743。第二抽头更新模块750接收误差信号743作为输入,并且确定抽头矢量信号(731或732)。
在历元T2处,具有相应时间延迟806的第二线增强模块806将存储器状态713与抽头矢量信号(731或732)组合以产生用于历元T3的预测NBI信号714。然而,在历元T3处,具有相应时间延迟724的第三线增强模块808接收输入信号704(例如,对于具有潜在或实际的NBI的相应历元T3),在说明性示例中,其包括相对于在历元T2处采样的所接收到的输入信号703的相位跳变。因此,在第三加法器772的输出处,历元T3处的误差信号744是显着的,并且将抽头矢量信号改变为信号状态734,第三线增强模块808对其存储器状态和相应的时间延迟724进行处理以获得用于历元T4的局部预测信号715。如图14所图示的,在历元T3处的抽头矢量信号的变化使得局部预测信号715更接近于相应历元T4处的所接收到的输入信号705(例如,所接收到的输入样本)。
在历元T4处,由于第四加法器773输出处的误差信号745,在说明性示例中,第四抽头更新模块750进一步调整抽头矢量信号735以减少误差信号(在与先前的或第三抽头更新模块750相同的更新方向上);合成的抽头矢量信号735与第四线增强模块810的存储器状态725组合以生成用于对应的历元T5的局部预测信号716。
在历元T5处,由于由第五抽头更新模块750的潜在滤波器过冲问题(沿相同方向的步长太大),与局部预测信号715和相应历元T4处的所接收的信号样本705之间的符号相比,局部预测信号716和所接收的信号样本706之间的符号翻转(或相反)。因此,在第五加法器774的输出处,历元T5处的误差信号746驱动第五抽头更新模块750以在与历元T4处的先前抽头矢量信号735相反的方向上调整抽头矢量信号736。在历元T5期间,第五线增强模块812的抽头矢量736和存储器状态和线延迟726在第一数据端口161和/或第二数据端口171处确定或建立新的安定或局部预测状态717以用于历元T6。
在图16的说明性示例中,在新稳态安定之后,在历元T6处,局部预测信号717再次与所接收的信号样本707完美匹配,这可以驱动第六加法器775的输出误差信号747趋近或达到零。因此,稳态局部预测信号717通常保持在滤波器输出718处,直到下一个相位跳变发生(例如,在一个或更多个所接收到的输入信号或所接收到的输入信号样本中,其可以包含NBI或由NBI导致的相位跳变)。一旦发生下一个相位跳变,则重复图14的前述步骤所描述的安定过程。
在图13和图14所示的这个示例中,所接收的输入信号样本704中的由具有相应时间延迟724的第三线增强模块808处理的相位跳变在相应的历元T3处不必要地导致误差信号744改变抽头矢量信号731。在图13中,在历元T3处(具有所接收到的输入信号(样本)704),陷波滤波器(306、110、130)能够正确地预测在相应历元T4处的下一个所接收的输入信号(样本)705,其中陷波滤波器(306、110、130)和第三线增强模块808在历元T3处使用抽头矢量信号734和所接收的信号样本704。在没有相位调整的情况下,历元T2处的信号状态713和历元T3处的信号一状态714不能被用于导出在T4处的所接收的信号样本705。陷波滤波器或数据处理器(160、170)可以基于在历元T3处的接收到的输入信号704和在历元T2处的接收到的输入信号样本703之间的观察到的相位差来估计相位调整或补偿相移。就可以检测到相位跳变而言,可以将此类检测信息(例如,补偿相移)传递给自适应模块311,以减轻或抵消结合图14描述的重新安定过程的负面影响。
图15是归一化信号幅度901(例如,说明性的余弦或正弦函数)与时间902关系的说明图,其涉及存在相位跳变的情况下的陷波滤波器的快速重新安定,其中快速重新安定的快速重新安定周期小于图13的规则重新安定的规则重新安定周期。类似地,图16是具有延迟线和抽头的陷波滤波器的框图,其中陷波滤波器在存在相位跳变的情况下经历陷波滤波器的状态转换、快速重新安定。
在图15和图16中图示了这里提出的创新的控制策略可以加快重新安定过程。相位跳变和相关联的补偿相移可以存储在到陷波滤波器系统的数据存储设备中(例如,作为先验知识,或在查找表中)。例如,消隐和陷波滤波器(NF)控制模块213可以触发复位信号214;其中在一个配置中,复位信号可以表示所检测到的相位跳变信号和对应的已知的补偿相移。
图16的滤波器系统(例如,陷波滤波器)类似于图14的滤波器系统,其中相同的附图标记表示相同的元件,除了在图16中添加或显示到线增强元件(808、810)的控制信号435的输入端子,以及向抽头更新模块(750)中的某些添加或显示用于控制信号425的输入端子。
如图16所示,陷波滤波器控制模块410使用复位信号214来生成矢量信号402以最佳地配置陷波滤波器(306、110、130)。矢量信号402包括启用信号404(例如,ON/OFF信号)和子矢量信号405。子矢量信号405包括滤波器排序信号415、抽头更新禁用信号425和存储器复位信号435。控制信号425和435(例如,来自图6的陷波滤波器控制模块410)用于描述图6所图示的新的重新安定过程。
在图16中,在历元T3处,复位信号435被用于复位图16中的第三线增强模块808(例如,滤波器元件)的存储器,并且将其设定为状态764(例如,与图14中的用于第三线增强模块808的状态724相比)。例如,第三线增强模块808具有对应的时间延迟764(其可以被应用于预测信号714)。这里,在图16的说明性示例中,状态764包括新接收的信号样本704和零,其中新的存储器状态764复位到在所接收到的输入信号704中隐含的新相位,与在数据存储设备(例如,其对于相应的消隐操作而被激活以用于WBI减少)中存储的补偿相移(例如,先验信息)一致。同时在对应的历元T3期间,第三抽头更新模块750接收禁用信号425并且忽略历元T3处的显著误差信号744,从而使得来自历元T2的先前抽头输出信号731在历元T3处完好无损。对于具有相位跳变的说明性示例,与图14中的抽头矢量信号734相比,抽头信号731更好地表示了历元T3之后的连续性。在历元T3处,使用抽头矢量731和新的存储器状态信号764,获得用于历元T4的预测信号795,其接近对应的历元T4处的所接收到的输入信号(样本)705(例如,具有NBI)更多。
在历元T4处,由于确定宽频带干扰(WBI)已经消失中的延迟,陷波滤波器控制模块410(例如,通过控制信号425)将在延迟周期期间继续禁用第四抽头更新模块750,从而保持抽头矢量信号731与先前的历元T3保持一致。同时,第四线增强器810的存储器状态被复位到新状态765,其被用于生成预测信号796以用于相应的历元T5。
在历元T5处,陷波滤波器控制模块410不禁用具有相应时间延迟750的第五抽头更新模块812,并且不复位第五线增强模块812(例如,第五线增强器)的存储器。预测信号796和相应历元T5处的所接收的输入信号(样本706)之间的误差信号786仅需要由第五抽头更新模块750对(历元T4的)抽头矢量信号731进行轻微调整,以产生用于历元T5的抽头矢量信号776。在T5历元处,新策略及时完成了重新安定过程;显着地减少了可能的大误差和潜在的过冲问题,否则这些在说明性示例中可能会在相应历元T3处由在所接收的输入信号(样本)中引入的单个相位跳变经历。在历元T5处,第五线增强模块812提供从存储器状态766和抽头矢量信号776产生的预测信号797。预测信号与历元T6处的接收到的信号样本707非常匹配。
表4提供了关于图13和图14中所图示的重新安定和补偿相位配置的一个实施例的用于对应历元的接收到的信号样本、信号状态和预测信号。表5提供了关于图15和图16中所图示的重新安定和补偿相位配置的另一实施例(例如,替代实施例)的用于相应历元的接收到的信号样本、信号状态和预测信号。
表4:图13和图14的信号列表
表5:图15和图16的信号列表
尽管在本公开中已经描述了接收器、系统、方法、过程和示例的某些实施例,但是本公开的覆盖范围可以扩展到接收器、系统、方法、过程和示例以及在本文中公开的系统和概念的变型。例如,在可能根据本公开内容授予的任何专利中,一项或多项权利要求可以在适用法律等下所允许的全部范围内涵盖等效物和变型。
Claims (9)
1.一种带有干扰抑制的接收器系统,所述接收器系统包括:
天线,其用于接收射频信号;
下变频器,其用于将所述射频信号转换为中频信号;
模数转换器(ADC),其用于将所述中频信号或模拟基带信号转换为数字基带信号;
选择性滤波模块,其用于根据目标接收频带宽度对所述数字基带信号进行滤波,所述选择性滤波模块包括窄频带抑制滤波器和宽频带抑制滤波器;
所述窄频带抑制滤波器被配置为抑制第一干扰分量,窄频带抑制滤波器包括支持无限脉冲响应模式的自适应陷波滤波器(NF);
所述宽频带抑制滤波器被配置为根据脉冲消隐技术来抑制第二干扰分量;
电子数据处理器,其用于根据ADC饱和、所述陷波滤波器的激活/停用、和宽频带频谱分析中的一个或更多个策略滤波器控制因素,来控制窄频带抑制滤波器和所述宽频带抑制滤波器的一个或更多个滤波器系数。
2.根据权利要求1所述的接收器系统,还包括:
自动增益控制(AGC)模块,其被配置为最小化由通过被输入到所述ADC的所述中频信号所引起的所述ADC的饱和导致的窄频带干扰(NBI)的波形的任何不连续性;并且
与AGC模块衰减被输入到所述ADC的所述中频信号的幅度相结合,所述宽频带抑制滤波器同时被配置为通过应用所述脉冲消隐技术来抑制类脉冲的宽频带干扰(WBI)。
3.根据权利要求1所述的接收器系统,还包括:
稳定性模块,其用于最小化由所述ADC饱和导致的对陷波滤波器(NF)稳定性的负面影响。
4.根据权利要求1所述的接收器系统,其中,所述ADC的饱和包括ADC削波,所述ADC削波引入所述NBI的波形不连续性,所述波形不连续性能够影响所述NF的性能,并且所述接收器系统还包括:
预测滤波器,其基于所述NBI的所述波形不连续性提供对所述NBI波形的局部估计,以便基于所述NBI波形的所述局部估计来自适应地调整所述NF的一个或更多个滤波器系数。
5.根据权利要求1所述的接收器系统,其中,NF的激活或开启以测量失真影响载波相位测量结果和伪距测量结果中的至少一个;并且所述接收器系统还包括:
失真补偿器,其用于自适应地调整所述NF的一个或更多个滤波器系数,以便减少或最小化当所述NF被激活或开启时的所述测量失真。
6.根据权利要求5所述的接收器系统,其中,所述失真补偿器被配置为施加迟滞以避免由于频繁地启动和关闭所述NF而导致的所述测量失真。
7.根据权利要求1所述的接收器系统,还包括:
基于定点快速傅立叶变换(FFT)的宽频带频谱分析仪,从所述宽频带频谱分析仪能够导出每个全球导航卫星系统(GNSS)频带的幅度与频谱关系,每个频带的所述幅度与频谱关系是基于相应的选择性滤波模块的GNSS选择性滤波器响应被补偿的。
8.根据权利要求7所述的接收器系统,其中,所述宽频带频谱分析仪适于应用使用泰勒展开和可管理查找表(LUT)的大尺度线性到对数(分贝)转换器。
9.根据权利要求1所述的接收器系统,其中,所述宽频带频谱分析仪适于从每个GNSS频带的所述幅度与频谱关系中提取主图案或峰图案;并且
所述电子数据处理器被配置为将所述NF自适应地且最佳地配置到所感测的无线电环境。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063131065P | 2020-12-28 | 2020-12-28 | |
US63/131,065 | 2020-12-28 | ||
US17/449,596 | 2021-09-30 | ||
US17/449,596 US11671133B2 (en) | 2020-10-16 | 2021-09-30 | Adaptive narrowband and wideband interference rejection for satellite navigation receiver |
PCT/US2021/072040 WO2022147378A2 (en) | 2020-12-28 | 2021-10-26 | Adaptive narrowband and wideband interference rejection for satellite navigation receiver |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116636151A true CN116636151A (zh) | 2023-08-22 |
Family
ID=82261130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202180079080.2A Pending CN116636151A (zh) | 2020-12-28 | 2021-10-26 | 用于卫星导航接收器的自适应窄频带和宽频带干扰抑制 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4268376A2 (zh) |
CN (1) | CN116636151A (zh) |
AU (1) | AU2021414006A1 (zh) |
CA (1) | CA3199676A1 (zh) |
WO (1) | WO2022147378A2 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115549709B (zh) * | 2022-11-29 | 2023-03-24 | 富景慧智(北京)科技有限公司 | 一种用于抑制多通道互干扰的卫星通信系统和方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7321611B2 (en) * | 1994-09-20 | 2008-01-22 | Alereen, Inc. | Method and transceiver for full duplex communication of ultra wideband signals |
US7526052B2 (en) * | 2004-12-21 | 2009-04-28 | Raytheon Company | Configurable filter and receiver incorporating same |
US8385483B2 (en) * | 2008-11-11 | 2013-02-26 | Isco International, Llc | Self-adaptive digital RF bandpass and bandstop filter architecture |
KR101671389B1 (ko) * | 2010-03-05 | 2016-11-01 | 삼성전자 주식회사 | 가변 대역 폭 적응 노치 필터, 및 가변 대역 폭 적응 노치 필터를 이용하여 하울링을 제거하는 방법 및 장치 |
-
2021
- 2021-10-26 WO PCT/US2021/072040 patent/WO2022147378A2/en active Application Filing
- 2021-10-26 CN CN202180079080.2A patent/CN116636151A/zh active Pending
- 2021-10-26 CA CA3199676A patent/CA3199676A1/en active Pending
- 2021-10-26 AU AU2021414006A patent/AU2021414006A1/en active Pending
- 2021-10-26 EP EP21916575.0A patent/EP4268376A2/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP4268376A2 (en) | 2023-11-01 |
CA3199676A1 (en) | 2022-07-07 |
WO2022147378A3 (en) | 2022-09-22 |
AU2021414006A1 (en) | 2023-07-06 |
AU2021414006A9 (en) | 2024-08-01 |
WO2022147378A2 (en) | 2022-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11671133B2 (en) | Adaptive narrowband and wideband interference rejection for satellite navigation receiver | |
Mosavi et al. | Narrowband interference suppression for GPS navigation using neural networks | |
CA2625224C (en) | Sampling threshold and gain for satellite navigation receiver | |
US11750274B2 (en) | Adaptive narrowband interference rejection for satellite navigation receiver | |
US10281556B2 (en) | Interference detection and rejection for wide area positioning systems | |
CN116325644A (zh) | 用于卫星导航接收机的自适应窄带抗干扰 | |
RU2513028C2 (ru) | Устройство подавления узкополосных помех в спутниковом навигационном приемнике | |
AU2013363405A1 (en) | Methods and apparatus for ameliorating signal reception | |
CA2631315A1 (en) | Processing of interference on a radiofrequency signal by power inversion | |
CN116636151A (zh) | 用于卫星导航接收器的自适应窄频带和宽频带干扰抑制 | |
US8159390B2 (en) | Temporal CW nuller | |
Nguyen et al. | An adaptive bandwidth notch filter for GNSS narrowband interference mitigation | |
Abdizadeh | GNSS signal acquisition in the presence of narrowband interference | |
Jiang et al. | Mitigation of narrow-band interference on software receivers based on spectrum analysis | |
US20130034127A1 (en) | Systems and Methods of Dynamic Spur Mitigation for Wireless Receivers | |
Li et al. | Channel compensation multipath mitigation technique for Kalman‐Based Least Mean Square based on Kalman estimation | |
Khan et al. | Adaptive Inter-Loop Aiding for Performance Improvements in Low CNIR Environments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |