CN116630081A - 采油井氮气前置增能降粘增产方法 - Google Patents
采油井氮气前置增能降粘增产方法 Download PDFInfo
- Publication number
- CN116630081A CN116630081A CN202310917475.6A CN202310917475A CN116630081A CN 116630081 A CN116630081 A CN 116630081A CN 202310917475 A CN202310917475 A CN 202310917475A CN 116630081 A CN116630081 A CN 116630081A
- Authority
- CN
- China
- Prior art keywords
- crude oil
- scale
- nitrogen
- enhanced
- feature map
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims abstract description 196
- 229910052757 nitrogen Inorganic materials 0.000 title claims abstract description 93
- 238000000034 method Methods 0.000 title claims abstract description 58
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 49
- 239000010779 crude oil Substances 0.000 claims abstract description 259
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 42
- 239000003921 oil Substances 0.000 claims abstract description 17
- 238000000605 extraction Methods 0.000 claims abstract description 13
- 230000000638 stimulation Effects 0.000 claims description 29
- 230000009467 reduction Effects 0.000 claims description 28
- 238000005457 optimization Methods 0.000 claims description 24
- 238000013527 convolutional neural network Methods 0.000 claims description 22
- 238000001914 filtration Methods 0.000 claims description 19
- 230000002146 bilateral effect Effects 0.000 claims description 14
- 238000009826 distribution Methods 0.000 claims description 13
- 239000011159 matrix material Substances 0.000 claims description 11
- 239000003129 oil well Substances 0.000 claims description 11
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 10
- 239000013598 vector Substances 0.000 claims description 9
- 238000007781 pre-processing Methods 0.000 claims description 6
- 238000011176 pooling Methods 0.000 claims description 5
- 230000002708 enhancing effect Effects 0.000 claims description 3
- 230000003595 spectral effect Effects 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 2
- 238000004458 analytical method Methods 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 22
- 238000002347 injection Methods 0.000 description 19
- 239000007924 injection Substances 0.000 description 19
- 238000012545 processing Methods 0.000 description 19
- 238000003860 storage Methods 0.000 description 17
- 230000006870 function Effects 0.000 description 15
- 230000008569 process Effects 0.000 description 10
- 238000004590 computer program Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 4
- 238000009499 grossing Methods 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 230000001502 supplementing effect Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/166—Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium
- E21B43/168—Injecting a gaseous medium
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/002—Survey of boreholes or wells by visual inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
- G06N3/0455—Auto-encoder networks; Encoder-decoder networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/80—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
- G06V10/806—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level of extracted features
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Theoretical Computer Science (AREA)
- Geology (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Geochemistry & Mineralogy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Environmental & Geological Engineering (AREA)
- Mathematical Physics (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Business, Economics & Management (AREA)
- Biomedical Technology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Agronomy & Crop Science (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Strategic Management (AREA)
- Primary Health Care (AREA)
- Marketing (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- Marine Sciences & Fisheries (AREA)
- Animal Husbandry (AREA)
- Geophysics (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Multimedia (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310917475.6A CN116630081B (zh) | 2023-07-25 | 2023-07-25 | 采油井氮气前置增能降粘增产方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310917475.6A CN116630081B (zh) | 2023-07-25 | 2023-07-25 | 采油井氮气前置增能降粘增产方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116630081A true CN116630081A (zh) | 2023-08-22 |
CN116630081B CN116630081B (zh) | 2023-09-29 |
Family
ID=87613858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310917475.6A Active CN116630081B (zh) | 2023-07-25 | 2023-07-25 | 采油井氮气前置增能降粘增产方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116630081B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117217393A (zh) * | 2023-11-08 | 2023-12-12 | 新疆智能港环保科技有限公司 | 一种通过渗析扩容提高油气井产量检测修正系统 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104153769A (zh) * | 2014-07-04 | 2014-11-19 | 中国石油大学(北京) | 一种缝洞型油藏流动单元的划分及评价方法 |
CN105134151A (zh) * | 2015-08-21 | 2015-12-09 | 山东恒业石油新技术应用有限公司 | 热氮气增能降粘增产工艺 |
CN107219322A (zh) * | 2017-05-25 | 2017-09-29 | 浙江海洋大学 | 动态测定co2‑原油作用生成沥青质沉淀量的方法 |
US20190087939A1 (en) * | 2017-09-15 | 2019-03-21 | Saudi Arabian Oil Company | Inferring petrophysical properties of hydrocarbon reservoirs using a neural network |
CN113323636A (zh) * | 2021-05-19 | 2021-08-31 | 中国石油化工股份有限公司 | 一种用于复合控水增油的氮气注入量确定方法及采油方法 |
CN115115852A (zh) * | 2022-06-02 | 2022-09-27 | 中海石油(中国)有限公司天津分公司 | 一种基于壁心荧光图像灰度值的地面原油粘度预测方法 |
CN115204456A (zh) * | 2022-05-27 | 2022-10-18 | 陕西科技大学 | 一种基于油藏驱替刻蚀图像的驱油率预测方法 |
CN115808417A (zh) * | 2021-09-14 | 2023-03-17 | 中国石油化工股份有限公司 | 一种基于图像处理分析技术的油包水乳状液可视化定量分析方法 |
CN115818166A (zh) * | 2022-11-15 | 2023-03-21 | 华能伊敏煤电有限责任公司 | 轮斗连续系统无人值守自动控制方法及其系统 |
CN116259012A (zh) * | 2023-05-16 | 2023-06-13 | 新疆克拉玛依市荣昌有限责任公司 | 嵌入式增压柴油罐的监测系统及其方法 |
-
2023
- 2023-07-25 CN CN202310917475.6A patent/CN116630081B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104153769A (zh) * | 2014-07-04 | 2014-11-19 | 中国石油大学(北京) | 一种缝洞型油藏流动单元的划分及评价方法 |
CN105134151A (zh) * | 2015-08-21 | 2015-12-09 | 山东恒业石油新技术应用有限公司 | 热氮气增能降粘增产工艺 |
CN107219322A (zh) * | 2017-05-25 | 2017-09-29 | 浙江海洋大学 | 动态测定co2‑原油作用生成沥青质沉淀量的方法 |
US20190087939A1 (en) * | 2017-09-15 | 2019-03-21 | Saudi Arabian Oil Company | Inferring petrophysical properties of hydrocarbon reservoirs using a neural network |
CN113323636A (zh) * | 2021-05-19 | 2021-08-31 | 中国石油化工股份有限公司 | 一种用于复合控水增油的氮气注入量确定方法及采油方法 |
CN115808417A (zh) * | 2021-09-14 | 2023-03-17 | 中国石油化工股份有限公司 | 一种基于图像处理分析技术的油包水乳状液可视化定量分析方法 |
CN115204456A (zh) * | 2022-05-27 | 2022-10-18 | 陕西科技大学 | 一种基于油藏驱替刻蚀图像的驱油率预测方法 |
CN115115852A (zh) * | 2022-06-02 | 2022-09-27 | 中海石油(中国)有限公司天津分公司 | 一种基于壁心荧光图像灰度值的地面原油粘度预测方法 |
CN115818166A (zh) * | 2022-11-15 | 2023-03-21 | 华能伊敏煤电有限责任公司 | 轮斗连续系统无人值守自动控制方法及其系统 |
CN116259012A (zh) * | 2023-05-16 | 2023-06-13 | 新疆克拉玛依市荣昌有限责任公司 | 嵌入式增压柴油罐的监测系统及其方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117217393A (zh) * | 2023-11-08 | 2023-12-12 | 新疆智能港环保科技有限公司 | 一种通过渗析扩容提高油气井产量检测修正系统 |
CN117217393B (zh) * | 2023-11-08 | 2024-01-26 | 新疆智能港环保科技有限公司 | 一种通过渗析扩容提高油气井产量检测修正系统 |
Also Published As
Publication number | Publication date |
---|---|
CN116630081B (zh) | 2023-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yu et al. | Fast-mvsnet: Sparse-to-dense multi-view stereo with learned propagation and gauss-newton refinement | |
Li et al. | Non-locally enhanced encoder-decoder network for single image de-raining | |
CN110163246A (zh) | 基于卷积神经网络的单目光场图像无监督深度估计方法 | |
Yang et al. | Color-guided depth recovery from RGB-D data using an adaptive autoregressive model | |
CN116630081B (zh) | 采油井氮气前置增能降粘增产方法 | |
Tang et al. | Depth from defocus in the wild | |
US20220351403A1 (en) | Geological feature detection using generative adversarial neural networks | |
De Lutio et al. | Learning graph regularisation for guided super-resolution | |
Ren | Local grouping for optical flow | |
Hu et al. | A multi-stage underwater image aesthetic enhancement algorithm based on a generative adversarial network | |
CN111681198A (zh) | 一种形态学属性滤波多模融合成像方法、系统及介质 | |
CN110930409A (zh) | 一种基于深度学习的盐体语义分割方法及语义分割模型 | |
O'Byrne et al. | A stereo‐matching technique for recovering 3D information from underwater inspection imagery | |
Li et al. | Real‐Time Visualization System for Deep‐Sea Surveying | |
CN113592913A (zh) | 一种消除自监督三维重建不确定性的方法 | |
CN109064402B (zh) | 基于增强非局部总变分模型先验的单幅图像超分辨率重建方法 | |
Thapa et al. | Learning to remove refractive distortions from underwater images | |
Li et al. | CNN-Transformer hybrid network for concrete dam crack patrol inspection | |
Lu et al. | CNN‐Enabled Visibility Enhancement Framework for Vessel Detection under Haze Environment | |
Dong et al. | Dense Connected Edge Feature Enhancement Network for Building Edge Detection from High Resolution Remote Sensing Imagery | |
Nadernejad et al. | Using anisotropic diffusion equations in pixon domain for image de-noising | |
Bugeau et al. | Coherent background video inpainting through Kalman smoothing along trajectories | |
Yang et al. | Deep convolutional grid warping network for joint depth map upsampling | |
Zhu et al. | Efficient stereo matching based on pervasive guided image filtering | |
Haque et al. | Robust feature-preserving denoising of 3D point clouds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Zang Qiang Inventor after: Yang Gang Inventor after: Lu Zhimin Inventor after: Fang He Inventor after: Lu Xuehui Inventor after: Zhou Longyue Inventor before: Zang Qiang Inventor before: Yang Gang Inventor before: Lu Zhimin Inventor before: Fang He Inventor before: Lu Xuehui Inventor before: Zhou Longyue Inventor before: Shi Yongxiang Inventor before: Halheng tursong |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240110 Address after: Room 2, No. 26-8-234, Shengli Road, Karamay District, Karamay City, Xinjiang Uygur Autonomous Region 834000 Patentee after: Xinjiang Huayi Energy Development Co.,Ltd. Patentee after: Xinjiang Oilfield Heiyoushan Co.,Ltd. Address before: Room 2, No. 26-8-234, Shengli Road, Karamay District, Karamay City, Xinjiang Uygur Autonomous Region 834000 Patentee before: Xinjiang Huayi Energy Development Co.,Ltd. |