CN116629324A - 一种面向模型生成文本重复退化现象的优化生成方法 - Google Patents
一种面向模型生成文本重复退化现象的优化生成方法 Download PDFInfo
- Publication number
- CN116629324A CN116629324A CN202310919239.8A CN202310919239A CN116629324A CN 116629324 A CN116629324 A CN 116629324A CN 202310919239 A CN202310919239 A CN 202310919239A CN 116629324 A CN116629324 A CN 116629324A
- Authority
- CN
- China
- Prior art keywords
- text
- model
- generation
- dimension
- fitness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000015556 catabolic process Effects 0.000 title claims abstract description 36
- 238000006731 degradation reaction Methods 0.000 title claims abstract description 36
- 238000005457 optimization Methods 0.000 title claims abstract description 14
- 230000007246 mechanism Effects 0.000 claims abstract description 61
- 230000006835 compression Effects 0.000 claims abstract description 39
- 238000007906 compression Methods 0.000 claims abstract description 39
- 238000012549 training Methods 0.000 claims abstract description 32
- 238000006243 chemical reaction Methods 0.000 claims abstract description 27
- 230000002068 genetic effect Effects 0.000 claims abstract description 19
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 17
- 239000011159 matrix material Substances 0.000 claims description 58
- 230000035772 mutation Effects 0.000 claims description 57
- 239000012634 fragment Substances 0.000 claims description 38
- 210000000349 chromosome Anatomy 0.000 claims description 35
- 238000006467 substitution reaction Methods 0.000 claims description 34
- 230000006870 function Effects 0.000 claims description 31
- 238000005070 sampling Methods 0.000 claims description 21
- 230000008303 genetic mechanism Effects 0.000 claims description 16
- 238000011156 evaluation Methods 0.000 claims description 13
- 238000004364 calculation method Methods 0.000 claims description 10
- 238000004590 computer program Methods 0.000 claims description 10
- 238000009826 distribution Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- 239000013598 vector Substances 0.000 claims description 6
- 238000003062 neural network model Methods 0.000 claims description 5
- 238000007781 pre-processing Methods 0.000 claims description 5
- 230000003252 repetitive effect Effects 0.000 claims description 5
- 238000005520 cutting process Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 3
- 210000002569 neuron Anatomy 0.000 claims description 3
- 238000012163 sequencing technique Methods 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 238000013528 artificial neural network Methods 0.000 abstract description 14
- 238000012545 processing Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 238000013519 translation Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000011514 reflex Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002921 genetic algorithm search Methods 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002308 calcification Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0475—Generative networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/20—Natural language analysis
- G06F40/205—Parsing
- G06F40/216—Parsing using statistical methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
- G06N3/0455—Auto-encoder networks; Encoder-decoder networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/086—Learning methods using evolutionary algorithms, e.g. genetic algorithms or genetic programming
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/094—Adversarial learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/096—Transfer learning
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Physiology (AREA)
- Probability & Statistics with Applications (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Machine Translation (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310919239.8A CN116629324B (zh) | 2023-07-26 | 2023-07-26 | 一种面向模型生成文本重复退化现象的优化生成方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310919239.8A CN116629324B (zh) | 2023-07-26 | 2023-07-26 | 一种面向模型生成文本重复退化现象的优化生成方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116629324A true CN116629324A (zh) | 2023-08-22 |
CN116629324B CN116629324B (zh) | 2023-10-03 |
Family
ID=87613888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310919239.8A Active CN116629324B (zh) | 2023-07-26 | 2023-07-26 | 一种面向模型生成文本重复退化现象的优化生成方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116629324B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117690178A (zh) * | 2024-01-31 | 2024-03-12 | 江西科技学院 | 一种基于计算机视觉的人脸图像识别方法与系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109344391A (zh) * | 2018-08-23 | 2019-02-15 | 昆明理工大学 | 基于神经网络的多特征融合中文新闻文本摘要生成方法 |
CN114357154A (zh) * | 2021-11-26 | 2022-04-15 | 上海师范大学 | 一种基于双编码指针混合网络的中文摘要生成方法 |
CN114691858A (zh) * | 2022-03-15 | 2022-07-01 | 电子科技大学 | 一种基于改进的unilm摘要生成方法 |
CN115952291A (zh) * | 2023-03-14 | 2023-04-11 | 山东大学 | 基于多头自注意力及lstm的金融舆情分类方法及系统 |
US20230154222A1 (en) * | 2021-11-15 | 2023-05-18 | Accenture Global Solutions Limited | Artificial intelligence (ai) based document processing and validation |
-
2023
- 2023-07-26 CN CN202310919239.8A patent/CN116629324B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109344391A (zh) * | 2018-08-23 | 2019-02-15 | 昆明理工大学 | 基于神经网络的多特征融合中文新闻文本摘要生成方法 |
US20230154222A1 (en) * | 2021-11-15 | 2023-05-18 | Accenture Global Solutions Limited | Artificial intelligence (ai) based document processing and validation |
CN114357154A (zh) * | 2021-11-26 | 2022-04-15 | 上海师范大学 | 一种基于双编码指针混合网络的中文摘要生成方法 |
CN114691858A (zh) * | 2022-03-15 | 2022-07-01 | 电子科技大学 | 一种基于改进的unilm摘要生成方法 |
CN115952291A (zh) * | 2023-03-14 | 2023-04-11 | 山东大学 | 基于多头自注意力及lstm的金融舆情分类方法及系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117690178A (zh) * | 2024-01-31 | 2024-03-12 | 江西科技学院 | 一种基于计算机视觉的人脸图像识别方法与系统 |
CN117690178B (zh) * | 2024-01-31 | 2024-04-05 | 江西科技学院 | 一种基于计算机视觉的人脸图像识别方法与系统 |
Also Published As
Publication number | Publication date |
---|---|
CN116629324B (zh) | 2023-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI846942B (zh) | 用以針對目標性質生成結構的機器學習系統以及方法 | |
CN110134782B (zh) | 一种基于改进的选择机制和lstm变体的文本摘要模型及自动文本摘要方法 | |
CN109165720A (zh) | 神经网络模型压缩方法、装置和计算机设备 | |
CN116629324B (zh) | 一种面向模型生成文本重复退化现象的优化生成方法 | |
CN111563160B (zh) | 基于全局语义的文本自动摘要方法、装置、介质及设备 | |
US8019593B2 (en) | Method and apparatus for generating features through logical and functional operations | |
CN111476038A (zh) | 长文本生成方法、装置、计算机设备和存储介质 | |
JP7186591B2 (ja) | テキスト分類装置、学習装置、およびプログラム | |
CN107579816A (zh) | 基于递归神经网络的密码字典生成方法 | |
CN109086463B (zh) | 一种基于区域卷积神经网络的问答社区标签推荐方法 | |
Huai et al. | Zerobn: Learning compact neural networks for latency-critical edge systems | |
CN112560456A (zh) | 一种基于改进神经网络的生成式摘要生成方法和系统 | |
Irissappane et al. | Leveraging GPT-2 for classifying spam reviews with limited labeled data via adversarial training | |
CN114626529A (zh) | 一种自然语言推理微调方法、系统、装置及存储介质 | |
CN118210706A (zh) | 一种基于深度学习的测试用例过滤方法和装置 | |
CN116662901A (zh) | 一种基于深度强化学习的图结构学习算法 | |
CN114925658B (zh) | 开放性文本生成方法以及存储介质 | |
CN115495578A (zh) | 基于最大熵损失的文本预训练模型后门消除方法、系统及介质 | |
Mozes et al. | Speeding up HMM decoding and training by exploiting sequence repetitions | |
CN115409078A (zh) | 一种基于集成重建机制的对抗样本攻击的防御方法 | |
Luo et al. | Content-adaptive adversarial embedding for image steganography using deep reinforcement learning | |
CN111666772A (zh) | 一种基于深度图神经网络的关键词抽取方法 | |
Shem-Tov et al. | Deep Neural Crossover | |
Kang et al. | Graph Attention Based Variational Adversarial Graph Generation Method | |
CN117436457B (zh) | 反讽识别方法、装置、计算设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder |
Address after: No. 401-1, 4th floor, podium, building 3 and 4, No. 11, Changchun Bridge Road, Haidian District, Beijing 100089 Patentee after: Beijing Zhiguagua Technology Co.,Ltd. Patentee after: Zhiguagua (Tianjin) Big Data Technology Co.,Ltd. Address before: No. 401-1, 4th floor, podium, building 3 and 4, No. 11, Changchun Bridge Road, Haidian District, Beijing 100089 Patentee before: Beijing Zhiguquan Technology Service Co.,Ltd. Patentee before: Zhiguagua (Tianjin) Big Data Technology Co.,Ltd. |
|
CP01 | Change in the name or title of a patent holder | ||
CP03 | Change of name, title or address |
Address after: No. 401-1, 4th floor, podium, building 3 and 4, No. 11, Changchun Bridge Road, Haidian District, Beijing 100089 Patentee after: Beijing Xinghe Zhiyuan Technology Co.,Ltd. Country or region after: China Patentee after: Zhiguagua (Tianjin) Big Data Technology Co.,Ltd. Address before: No. 401-1, 4th floor, podium, building 3 and 4, No. 11, Changchun Bridge Road, Haidian District, Beijing 100089 Patentee before: Beijing Zhiguagua Technology Co.,Ltd. Country or region before: China Patentee before: Zhiguagua (Tianjin) Big Data Technology Co.,Ltd. |
|
CP03 | Change of name, title or address | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240517 Address after: No. 401-1, 4th floor, podium, building 3 and 4, No. 11, Changchun Bridge Road, Haidian District, Beijing 100089 Patentee after: Beijing Xinghe Zhiyuan Technology Co.,Ltd. Country or region after: China Address before: No. 401-1, 4th floor, podium, building 3 and 4, No. 11, Changchun Bridge Road, Haidian District, Beijing 100089 Patentee before: Beijing Xinghe Zhiyuan Technology Co.,Ltd. Country or region before: China Patentee before: Zhiguagua (Tianjin) Big Data Technology Co.,Ltd. |
|
TR01 | Transfer of patent right |