CN116628535B - 一种小直径随钻伽马能谱数据处理方法 - Google Patents

一种小直径随钻伽马能谱数据处理方法 Download PDF

Info

Publication number
CN116628535B
CN116628535B CN202310904190.9A CN202310904190A CN116628535B CN 116628535 B CN116628535 B CN 116628535B CN 202310904190 A CN202310904190 A CN 202310904190A CN 116628535 B CN116628535 B CN 116628535B
Authority
CN
China
Prior art keywords
point
spectrum data
energy spectrum
gamma
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310904190.9A
Other languages
English (en)
Other versions
CN116628535A (zh
Inventor
王德庆
陈作玉
赵志敏
方艳
刘佳琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Wan Yang Petroleum Technology Co ltd
Original Assignee
Shandong Wan Yang Petroleum Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Wan Yang Petroleum Technology Co ltd filed Critical Shandong Wan Yang Petroleum Technology Co ltd
Priority to CN202310904190.9A priority Critical patent/CN116628535B/zh
Publication of CN116628535A publication Critical patent/CN116628535A/zh
Application granted granted Critical
Publication of CN116628535B publication Critical patent/CN116628535B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2415Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Artificial Intelligence (AREA)
  • Probability & Statistics with Applications (AREA)
  • Agronomy & Crop Science (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Animal Husbandry (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明涉及电数据处理技术领域,具体涉及一种小直径随钻伽马能谱数据处理方法,包括:采集伽马能谱数据,构建初始样本空间;根据构建的初始样本空间,计算各个伽马能谱数据点处于目标矿物区间的可能性参数,并获取各个目标矿物区间的范围;对多源传感器的待检测数据集进行Kmeans聚类处理,并对聚类结果进行评估,获取最优的Kmeans聚类次数,并对经过最优聚类次数的聚类结果进行矫正;获取最终的聚类结果。本发明通过对所有伽马能谱数据点进行矫正,得到校正后的聚类结果,从而保障了聚类结果中簇类的信息完整性,以提高识别目标矿物区间范围的准确性。

Description

一种小直径随钻伽马能谱数据处理方法
技术领域
本发明涉及电数据处理技术领域,具体涉及一种小直径随钻伽马能谱数据处理方法。
背景技术
小直径随钻是指利用较小的钻孔直径进行油气勘探和开采的钻井技术。传统的钻井通常使用大直径的钻井管和钻头,在钻探过程中需要在井身中留下较大的直径,造成社会、经济和环境等多种问题。相比之下,小直径随钻使用较小直径的钻井管和钻头进行钻探,井身留下的孔径更小,能够减轻采油过程中对环境和物质资源的影响。
伽马能谱数据被广泛应用于地质和油气资源勘探。在小直径随钻中,伽马能谱数据通常与核心样品和其它物理测试数据一起进行分析,以确定含矿物的带区域的位置和分布。由于伽马能谱数据能够跨越不同岩石类型,从而提供实时的地质信息,因此可以用于导向钻井和优化井位底部位置。由于通常用多个传感器采集得到多个伽马能谱数据,对采集的多个伽马能谱数据进行聚类分析,从而获取目标矿物区域;但在传统的对小直径随钻伽马能谱数据进行聚类时,多源传感器的多数据源会由于各单独数据源采集的数据特点造成聚类过程中部分簇类之间对多源覆盖的程度降低,导致最终根据聚类进行分析的样本分析的准确度下降,无法保证聚类结果中簇类的信息完整性。
发明内容
本发明提供一种小直径随钻伽马能谱数据处理方法,以解决现有的问题。
本发明的一种小直径随钻伽马能谱数据处理方法采用如下技术方案:
本发明一个实施例提供了一种小直径随钻伽马能谱数据处理方法,该方法包括以下步骤:
获取所有数据源的伽马能谱数据,构建所有数据源的伽马能谱数据初始样本空间,所述所有数据源的伽马能谱数据初始样本空间包含所有数据源的伽马能谱伽马能谱数据点;
根据构建的初始样本空间,获取各个目标矿物区间;根据各个目标矿物区间,结合所有伽马能谱数据点的伽马强度,获取各个伽马能谱数据点处于目标矿物区间的可能性参数,根据各个伽马能谱数据点处于目标矿物区间的可能性参数,获取各个目标矿物区间的范围,与各个目标矿物区间的数量;
以各个数据源的各个目标矿物区间的数量的均值作为Kmeans聚类中的值,对各数据源中的所有目标矿物的区间范围内的伽马能谱数据点进行Kmeans聚类,获得各数据源中的所有目标矿物的区间范围内的伽马能谱数据点的Kmeans聚类结果;根据各数据源中的所有目标矿物的区间范围内的伽马能谱数据点的Kmeans聚类结果,获取最优的Kmeans聚类次数;
以最优的Kmeans聚类次数对各数据源中的所有目标矿物的区间范围内的伽马能谱数据点进行聚类,获取第二聚类结果,根据第二聚类结果中伽马能谱数据点与所有簇类中心点的距离,获取所有伽马能谱数据点的矫正权值;根据所有伽马能谱数据点的矫正权值与对应的伽马能谱数据点的乘积,得到最终的聚类结果。
优选的,所述获取各个伽马能谱数据点处于目标矿物区间的可能性参数,包括的具体计算公式如下:
式中,表示在第/>个起始点前/>个伽马能谱数据点处于第/>个目标矿物的可能性参数;/>表示第/>个起始点的伽马强度值;/>表示在第/>个起始点前/>个伽马能谱数据点的伽马强度值;/>表示在数据中的伽马强度值的众数;/>表示第/>个起始点与第/>个伽马能谱数据点之间数据的数量;/>表示第/>个起始点与第/>个伽马能谱数据点之间数据的均值;/>表示第/>个起始点与第/>个伽马能谱数据点之间数据的标准差;/>表示第/>个起始点与第/>个伽马能谱数据点的伽马强度值;/>表示第/>个起始点与第/>个伽马能谱数据点之间的距离; />为Softmax归一化函数。
优选的,所述获取各个目标矿物区间的范围,包括的具体步骤如下:
选取数据源中伽马强度值最大点为第一起始点,从第一起始点开始,遍历起始点之后的每个伽马能谱数据点,若遍历到第个点在第/>个目标矿物区间的可能性参数的大于预设阈值/>,则停止遍历,并将起始点之后的第/>个点记为第一起始点的停止点1;
同理,从起始点开始,遍历起始点之前的每个伽马能谱数据点,若遍历到第个点在第/>个目标矿物区间的可能性参数的大于/>,则停止遍历,并将起始点之前的第/>个点记为第一起始点的停止点2,将第一起始点的停止点1与第一起始点的停止点2之间的区域作为第/>个目标矿物区间范围;
并将第一停止点与第二停止点之间的范围作为第一目标矿物区间范围;
同时选取出第一目标矿物区间范围外的最大点作为第二起始点,同理获取第二起始点的停止点1与第二起始点的停止点2,并将第二起始点的停止点1与第二起始点的停止点2之间的范围作为第二目标矿物区间范围;
以此类推,得到第三目标矿物区间范围……直至剩余的伽马强度数据占数据源中数据小于20%时,停止区间截取,得到各个目标矿物区间的范围。
优选的,所述获取最优的Kmeans聚类次数,包括的具体步骤如下:
在进行Kmeans聚类的过程中,记录每次迭代的Kmeans聚类所有簇类中的最大值和最小值,通过所有簇类中的最大值和最小值,计算所有簇类的极差值,通过将所有簇类的极差值相加的和除以全程的钻探距离记为,若所计算的/>大于或等于1,则回滚至上次的聚类结果,并将上次的聚类结果的次数记为最优的Kmeans聚类次数,反之则继续进行Kmeans聚类迭代直至/>大于或等于1。
优选的,所述获取所有伽马能谱数据点的矫正权值,包括的计算公式如下:
式中,表示第/>个簇类中最大的伽马能谱数据点的钻探距离,表示第/>个簇类中最小的伽马能谱数据点的钻探距离;/>表示第/>个簇类中最大的伽马能谱数据点的钻探距离,/>表示第/>个簇类中最小的伽马能谱数据点的钻探距离,/>表示第/>个簇类采集的钻探距离范围,/>表示第/>个簇类采集的钻探距离范围,/>表示取最大值函数,所计算的/>表示任意一个伽马能谱数据点/>的权值。
本发明的技术方案的有益效果是:传统的对小直径随钻伽马能谱数据进行聚类时,多源传感器的多数据源会由于各单独数据源采集的数据特点造成聚类过程中部分簇类之间对多源覆盖的程度降低,导致最终根据聚类进行分析的样本分析的准确度下降。
而本发明能够根据多源传感器在采集数据时的多源鲁棒特点进行类别值确定并依照聚类过程中伽马能谱数据点对于不同形态簇类的归属影响进行分析,减轻了Kmeans算法在聚类时可能产生簇类之间交错导致簇类不能够对于伽马能谱多数据源传感器的参数利用,从而保障了聚类结果中簇类的信息完整性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一种小直径随钻伽马能谱数据处理方法的步骤流程图。
具体实施方式
为了更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的一种小直径随钻伽马能谱数据处理方法,其具体实施方式、结构、特征及其功效,详细说明如下。在下述说明中,不同的“一个实施例”或“另一个实施例”指的不一定是同一实施例。此外,一或多个实施例中的特定特征、结构或特点可由任何合适形式组合。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。
下面结合附图具体的说明本发明所提供的一种小直径随钻伽马能谱数据处理方法的具体方案。
请参阅图1,其示出了本发明一个实施例提供的一种小直径随钻伽马能谱数据处理方法的步骤流程图,该方法包括以下步骤:
步骤S001:通过传感器采集伽马能谱数据,构建初始样本空间。
本发明所针对的具体场景为:对小直径随钻伽马能谱数据进行聚类时,多源传感器的多数据源会由于各单独数据源采集的数据特点造成聚类过程中部分簇类之间对多源覆盖的程度降低,导致最终根据聚类进行分析的样本分析的准确度下降。
为避免上述根据聚类进行分析的样本分析的准确度下降,所以根据簇类在多数据源的覆盖特点筛选簇类之间对多数据源的鲁棒优势在单源数据量占比过大的簇类中不能被较好体现的簇类进行纠正。
需要说明的是,由于钻孔的长度通常较长,因此通过随钻的伽马传感器采集的数据更加贴近钻头附近样本伽马环境。
具体的,通过记录多源传感器中每个单数据源采集对应的伽马能谱数据,将每一采集时刻记为,在/>时刻下钻头所在深度记为/>,在/>时刻下伽马射线的单位强度记为/>
然后,通过钻头的所在深度与钻头附近的伽马传感器所采集的伽马射线的单位强度/>,构建/>初始数据集,作为单数据源的数据集,并进行迭代获得多源传感器的待检测数据集。
步骤S002:根据初始样本空间得到目标矿物的区间范围。
需要说明的是,多源传感器能够提供时空重复的丰富监测数据,而伽马能谱的监测特点即为检测地质中的放射性同位素释放出的伽马射线强度进而根据随钻前进深度对目标物质进行定位分析,因此钻头不断前进中,传感器不断接收到不同强度的伽马射线,最终构建起伽马能谱。但K-means聚类的类别作为在时序上,相似伽马强度的分划,K值过多会导致一部分完整的伽马强度区域被不同的类别值进行分割,导致通过簇类分析的样本特征存在误差。所以通过多源传感器中存在多个数据源,首先对单数据源进行的类别值识别后,再联系多数据源确定类别值。
由于地质自然存在有放射性同位素,因此数据集中,钻探到目标范围时射线强度更高,因此钻探贯穿目标的截取长度越长,样本释放的射线强度会增高并在曲线中形成一部分强度高台,因此强度高台应当纳入划分目标矿物区间的因素,在聚类过程中进行体现。
具体的,在数据集中表现为,将部分伽马能谱数据点的强度值相似的伽马能谱数据点归为一相似强度集合,通过对多数据源中的数据源的数据集中。
首先选取数据源中伽马强度值最大点为第一起始点,从第一起始点开始,遍历起始点之后的每个伽马能谱数据点,若遍历到第个点在第/>个目标矿物区间的可能性参数的大于/>,其中/>为本实施例预设的可能性参数阈值,/>的取值可根据具体情况自行设置,本实施例不做要求,在本实施例中以/>进行叙述,则停止遍历,并将起始点之后的第/>个点记为第一起始点的停止点1;
同理,从起始点开始,遍历起始点之前的每个伽马能谱数据点,若遍历到第个点在第/>个目标矿物区间的可能性参数的大于/>,则停止遍历,并将起始点之前的第/>个点记为第一起始点的停止点2。将第一起始点的停止点1与第一起始点的停止点2之间的区域作为第/>个目标矿物区间范围。即第/>个点在第/>个目标矿物区间的可能性参数的大于0.6,则停止遍历。
并将第一停止点与第二停止点之间的范围作为第一目标矿物区间范围。
同时选取出第一目标矿物区间范围外的最大点作为第二起始点,同理获取第二起始点的停止点1与第二起始点的停止点2,并将第二起始点的停止点1与第二起始点的停止点2之间的范围作为第二目标矿物区间范围。
以此类推,得到第三目标矿物区间范围……直至剩余的伽马强度数据占数据源中数据小于20%时,停止区间截取,并将所截取的区间数量记为
其中计算起始点之前伽马能谱数据点处于目标矿物可能性参数的具体计算公式为:
式中,表示在第/>个起始点前/>个伽马能谱数据点处于第/>个目标矿物的可能性参数;/>表示第/>个起始点的伽马强度值;/>表示在第/>个起始点前/>个伽马能谱数据点的伽马强度值;/>表示在数据中的伽马强度值的众数;/>表示第/>个起始点与第/>个伽马能谱数据点之间数据的数量;/>表示第/>个起始点与第/>个伽马能谱数据点之间数据的均值;/>表示第/>个起始点与第/>个伽马能谱数据点之间数据的标准差;/>表示第/>个起始点与第/>个伽马能谱数据点的伽马强度值;/>表示第/>个起始点与第/>个伽马能谱数据点之间的距离; />为Softmax归一化函数。
需要进一步说明的是,作为目标点的伽马强度与数据源中的伽马强度值的众数的差值与起始点的伽马强度与目标点的伽马强度差值的比值,作为衡量目标点与起始点之间的差异,其中/>的值越小,则目标点与起始点就越处于同一伽马强度水平;
表示/>选取的集合范围内伽马强度值的数据峰值,所计算出的数值越小说明集合中含有偏离均值的极端值越少,即集合的平台形态越平滑;
当所计算的的值越大时,则代表第/>个起始点前/>个伽马能谱数据点处于第/>个目标矿物的可能性越大。
至此,得到了第个目标矿物的区间范围。
同理得到所有数据源中的各个目标矿物的区间范围。
步骤S003:对所有数据源中的所有目标矿物的区间范围内的伽马能谱数据点进行聚类,获取最佳聚类次数。
将所有数据源中的所有目标矿物区间范围内的伽马能谱数据点进行Kmeans聚类,需要说明的是,所选取Kmeans聚类的值为各个数据源中的目标矿物的区间范围数量均值的最接近整数部分,具体的计算公式为:
式中,表示进行Kmeans聚类中的/>个类别,/>表示共有/>个数据源,/>表示第/>个数据源所采集的目标矿物的区间范围数量,/>表示返回数值函数,在本式中表示四舍五入取整数部分。
需要说明的是,当聚类进行到一定进程时,需要对簇类中对多源以及单源的数据利用特性进行识别,由于部分数据源中数据变化特性不相同,产生局部极小变化带离簇类选取方向。由于聚类过程会产生簇类扩张的移动方向变化,可能导致簇类间同时对单源数据范围产生重复特征提取;单源影响范围过大会导致簇类最终进行样本分析时的物质评价不准确,进而对本次钻探的样本价值产生浪费。
聚类进行到一定时间时需要分析本簇类中是否产生了多源以及单源的影响范围偏差,此时需要及时纠正以避免产生簇类过大的影响范围。
具体的,在进行Kmeans聚类的过程中,记录每次迭代的Kmeans聚类所有簇类中的最大值和最小值,将最大值与最小值的差值记为极差值,通过所有簇类中的极差值,计算所有簇类的极差值,通过将所有簇类的极差值相加的和除以全程的钻探距离记为,将/>作为各个簇类之间是否存在重叠范围的依据,即Kmeans聚类次数的评估依据,若所计算的大于或等于1,则回滚至上次的聚类结果,并将上次的聚类结果的次数记为最优的Kmeans聚类次数,反之则继续进行Kmeans聚类迭代,具体计算公式如下:
式中,表示第/>个簇类的极差值,/>表示第/>个簇类的极差值,/>表示第/>个簇类的极差值且/>同时也表示簇类的数量,/>为全程的钻探距离,/>作为判断簇类与簇类之间是否存在重叠范围的依据;
时说明有簇类出现影响范围重叠,回滚至上次聚类的结果,并将上次的聚类次数作为最佳聚类次数。
步骤S004:对经过最佳聚类次数的聚类结果进行矫正,得到最终聚类结果。
需要说明的是,若直接将各个数据源的目标矿物区间的聚类结果作为最终的聚类结果,则会使有限的值在钻测开始的地面附近产生浪费,为保证数据聚类的结果对于所代表的地质检测结果对应准确度更加充分。所以依仗多数据源进行判断,避免因个别数据源收到干扰可能分析出的类别值偏离较大,即通过多源进行综合判断对类别值进行确定,提高聚类分析结果的准确性。
因为K-means算法会计算伽马能谱数据点距各个簇类中心点的距离,优质的簇类结果影响范围较小,代表在其影响范围内能够充分表述钻探距离区间中伽马强度的变化特点。簇类对于单个数据源的占有比率越高,多个数据源之间的占有比率越接近,代表簇类囊括多源以及单源数据的信息完整性越高,添加该伽马能谱数据点对本簇类产生的信息完整性提升高于另一簇类时,伽马能谱数据点到本簇类的距离权值更大。
具体的,选取目标矿物区间范围内任意伽马能谱数据点记为伽马能谱数据点,统计伽马能谱数据点/>与所有簇类中心点的距离,选取伽马能谱数据点/>与所有簇类中心点距离最小的两个簇类,并分别记为簇类/>和簇类/>。具体的计算公式为:
式中,表示第/>个簇类中伽马强度值最大的伽马能谱数据点的钻探距离,/>表示第/>个簇类中伽马强度值最小的伽马能谱数据点的钻探距离;表示第/>个簇类中伽马强度值最大的伽马能谱数据点的钻探距离,/>表示第/>个簇类中伽马强度值最小的伽马能谱数据点的钻探距离,/>表示第/>个簇类采集的钻探距离范围,/>表示第/>个簇类采集的钻探距离范围,/>表示取最大值函数,所计算的/>表示伽马能谱数据点/>的权值。
最后将伽马能谱数据点与伽马能谱数据点/>的权值/>相乘,得到伽马能谱数据点/>矫正后的数据值。
同理对所有伽马能谱数据点进行矫正,得到校正后的聚类结果,减轻了Kmeans算法在聚类时可能产生簇类之间交错所导致的簇类不能够对于伽马能谱多数据源传感器的参数利用,从而保障了聚类结果中簇类的信息完整性,以提高识别目标矿物区间范围的准确性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种小直径随钻伽马能谱数据处理方法,其特征在于,该方法包括以下步骤:
获取所有数据源的伽马能谱数据,构建所有数据源的伽马能谱数据初始样本空间,所述所有数据源的伽马能谱数据初始样本空间包含所有数据源的伽马能谱数据点;
根据构建的伽马能谱数据初始样本空间,获取目标矿物区间;根据目标矿物区间,结合所有数据点的伽马强度,获取各个伽马能谱数据点处于目标矿物区间的可能性参数,根据各个伽马能谱数据点处于目标矿物区间的可能性参数获取各个目标矿物区间的范围与各个目标矿物区间的数量;
以各个数据源的各个目标矿物区间的数量的均值作为Kmeans聚类中的值,根据/>值对各数据源中的所有目标矿物的区间范围内的伽马能谱数据点进行Kmeans聚类,获得各数据源中的所有目标矿物的区间范围内的伽马能谱数据点的Kmeans聚类结果;根据各数据源中的所有目标矿物的区间范围内的伽马能谱数据点的Kmeans聚类结果,获取最优的Kmeans聚类次数;
以最优的Kmeans聚类次数对各数据源中的所有目标矿物的区间范围内的伽马能谱数据点进行聚类,获取第二聚类结果,根据第二聚类结果中伽马能谱数据点与所有簇类中心点的距离获取所有伽马能谱数据点的矫正权值,用以矫正所有伽马能谱数据点;根据所有伽马能谱数据点的矫正权值与对应的伽马能谱数据点的乘积,得到最终的聚类结果;
所述获取各个伽马能谱数据点处于目标矿物区间的可能性参数,包括的具体计算公式如下:
式中,表示在第/>个起始点前/>个伽马能谱数据点处于第/>个目标矿物的可能性参数;/>表示第/>个起始点的伽马强度值;/>表示在第/>个起始点前/>个伽马能谱数据点的伽马强度值;/>表示在数据中的伽马强度值的众数;/>表示第/>个起始点与第/>个伽马能谱数据点之间数据的数量;/>表示第/>个起始点与第/>个伽马能谱数据点之间数据的均值;/>表示第/>个起始点与第/>个伽马能谱数据点之间数据的标准差;/>表示第/>个起始点与第/>个伽马能谱数据点的伽马强度值;/>表示第/>个起始点与第/>个伽马能谱数据点之间的距离;/>为Softmax归一化函数;
所述获取各个目标矿物区间的范围,包括的具体步骤如下:
选取数据源中伽马强度值最大点为第一起始点,从第一起始点开始,遍历起始点之后的每个伽马能谱数据点,若遍历到第个点在第/>个目标矿物区间的可能性参数的大于预设阈值/>,则停止遍历,并将起始点之后的第/>个点记为第一起始点的停止点1;
同理,从起始点开始,遍历起始点之前的每个伽马能谱数据点,若遍历到第个点在第/>个目标矿物区间的可能性参数的大于/>,则停止遍历,并将起始点之前的第/>个点记为第一起始点的停止点2,将第一起始点的停止点1与第一起始点的停止点2之间的区域作为第/>个目标矿物区间范围;
并将第一停止点与第二停止点之间的范围作为第一目标矿物区间范围;
同时选取出第一目标矿物区间范围外的最大点作为第二起始点,同理获取第二起始点的停止点1与第二起始点的停止点2,并将第二起始点的停止点1与第二起始点的停止点2之间的范围作为第二目标矿物区间范围;
以此类推,得到第三目标矿物区间范围……直至剩余的伽马强度数据占数据源中数据小于20%时,停止区间截取,得到各个目标矿物区间的范围。
2.根据权利要求1所述一种小直径随钻伽马能谱数据处理方法,其特征在于,所述获取最优的Kmeans聚类次数,包括的具体步骤如下:
在进行Kmeans聚类的过程中,记录每次迭代的Kmeans聚类所有簇类中的最大值和最小值,通过所有簇类中的最大值和最小值,计算所有簇类的极差值,通过将所有簇类的极差值相加的和除以全程的钻探距离记为,若所计算的/>大于或等于1,则回滚至上次的聚类结果,并将上次的聚类结果的次数记为最优的Kmeans聚类次数,反之则继续进行Kmeans聚类迭代直至/>大于或等于1。
3.根据权利要求1所述一种小直径随钻伽马能谱数据处理方法,其特征在于,所述获取所有伽马能谱数据点的矫正权值,包括的计算公式如下:
式中,表示第/>个簇类中最大的伽马能谱数据点的钻探距离,/>表示第/>个簇类中最小的伽马能谱数据点的钻探距离;/>表示第/>个簇类中最大的伽马能谱数据点的钻探距离,/>表示第/>个簇类中最小的伽马能谱数据点的钻探距离,表示第/>个簇类采集的钻探距离范围,/>表示第/>个簇类采集的钻探距离范围,/>表示取最大值函数,所计算的/>表示任意一个伽马能谱数据点/>的权值。
CN202310904190.9A 2023-07-24 2023-07-24 一种小直径随钻伽马能谱数据处理方法 Active CN116628535B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310904190.9A CN116628535B (zh) 2023-07-24 2023-07-24 一种小直径随钻伽马能谱数据处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310904190.9A CN116628535B (zh) 2023-07-24 2023-07-24 一种小直径随钻伽马能谱数据处理方法

Publications (2)

Publication Number Publication Date
CN116628535A CN116628535A (zh) 2023-08-22
CN116628535B true CN116628535B (zh) 2023-09-22

Family

ID=87638592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310904190.9A Active CN116628535B (zh) 2023-07-24 2023-07-24 一种小直径随钻伽马能谱数据处理方法

Country Status (1)

Country Link
CN (1) CN116628535B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077471A (en) * 1990-09-10 1991-12-31 Halliburton Logging Services, Inc. Method and apparatus for measuring horizontal fluid flow in downhole formations using injected radioactive tracer monitoring
RU1807439C (ru) * 1991-03-11 1993-04-07 Научно-производственное объединение "Рудгеофизика" Способ аэрогамма - спектрометрической съемки
RU2159451C2 (ru) * 1997-03-26 2000-11-20 Казанская геофизическая экспедиция Способ гамма-спектрометрии
CN102565845A (zh) * 2010-12-31 2012-07-11 同方威视技术股份有限公司 利用多个探测器的伽马能谱核素识别方法
CN104278991A (zh) * 2013-07-09 2015-01-14 中国石油化工股份有限公司 盐湖相烃源岩有机碳和生烃潜量的多元测井计算方法
CN105807330A (zh) * 2016-03-17 2016-07-27 成都创源油气技术开发有限公司 一种快速识别页岩地层矿物体积含量的方法
WO2016200290A1 (ru) * 2015-06-10 2016-12-15 Общество с ограниченной ответственностью "РатэкЛаб" Способ обнаружения взрывчатого вещества в контролируемом предмете
CN207934885U (zh) * 2017-12-29 2018-10-02 中国船舶重工集团公司第七一八研究所 一种泵出式小直径伽马能谱测井仪一体化探头
CN114240807A (zh) * 2022-02-28 2022-03-25 山东慧丰花生食品股份有限公司 一种基于机器视觉的花生黄曲霉素检测方法及系统
CN115267928A (zh) * 2022-09-28 2022-11-01 中石化经纬有限公司 一种用于随钻元素测井的能谱智能处理方法
CN115311484A (zh) * 2022-10-12 2022-11-08 南通虎神金属制品有限公司 一种焊缝数据的优化聚类分割方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT2499514T (lt) * 2009-11-11 2021-10-11 Australian Nuclear Science And Technology Organisation Radiologinių žymių anomalijų aptikimas
CN108457644B (zh) * 2017-12-26 2020-04-10 中国石油天然气股份有限公司 一种元素俘获能谱测井的伽马能谱解谱方法及装置
US11994647B2 (en) * 2021-12-14 2024-05-28 Halliburton Energy Services, Inc. Compensated formation saturation using assisted physics and neural networks

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077471A (en) * 1990-09-10 1991-12-31 Halliburton Logging Services, Inc. Method and apparatus for measuring horizontal fluid flow in downhole formations using injected radioactive tracer monitoring
RU1807439C (ru) * 1991-03-11 1993-04-07 Научно-производственное объединение "Рудгеофизика" Способ аэрогамма - спектрометрической съемки
RU2159451C2 (ru) * 1997-03-26 2000-11-20 Казанская геофизическая экспедиция Способ гамма-спектрометрии
CN102565845A (zh) * 2010-12-31 2012-07-11 同方威视技术股份有限公司 利用多个探测器的伽马能谱核素识别方法
CN104278991A (zh) * 2013-07-09 2015-01-14 中国石油化工股份有限公司 盐湖相烃源岩有机碳和生烃潜量的多元测井计算方法
WO2016200290A1 (ru) * 2015-06-10 2016-12-15 Общество с ограниченной ответственностью "РатэкЛаб" Способ обнаружения взрывчатого вещества в контролируемом предмете
CN105807330A (zh) * 2016-03-17 2016-07-27 成都创源油气技术开发有限公司 一种快速识别页岩地层矿物体积含量的方法
CN207934885U (zh) * 2017-12-29 2018-10-02 中国船舶重工集团公司第七一八研究所 一种泵出式小直径伽马能谱测井仪一体化探头
CN114240807A (zh) * 2022-02-28 2022-03-25 山东慧丰花生食品股份有限公司 一种基于机器视觉的花生黄曲霉素检测方法及系统
CN115267928A (zh) * 2022-09-28 2022-11-01 中石化经纬有限公司 一种用于随钻元素测井的能谱智能处理方法
CN115311484A (zh) * 2022-10-12 2022-11-08 南通虎神金属制品有限公司 一种焊缝数据的优化聚类分割方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
周海岩 ; 白晓林 ; .基于图的K-均值聚类法中初始聚类中心选择.计算机测量与控制.2010,(09),全文. *
基于非参数核密度估计的密度峰值聚类算法;谢国伟;钱雪忠;周世兵;;计算机应用研究(10);全文 *
用测井资料评价上古生界砂岩储层敏感性;赵大华, 李保民, 赵会涛;天然气工业(第06期);全文 *
自然伽马能谱测井识别低阻油层的一个实例;夏竹;梁卫;凌云;郭建明;李熙盛;张胜;郭向宇;贺维胜;;石油地球物理勘探(第S1期);全文 *

Also Published As

Publication number Publication date
CN116628535A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
US10324229B2 (en) System and method of pore type classification for petrophysical rock typing
US11802985B2 (en) Method and system for analyzing filling for karst reservoir based on spectrum decomposition and machine learning
CN113759425A (zh) 井震联合评价深层古岩溶储层充填特征的方法与系统
CN115267928B (zh) 一种用于随钻元素测井的能谱智能处理方法
US11880776B2 (en) Graph neural network (GNN)-based prediction system for total organic carbon (TOC) in shale
CN103678778B (zh) 一种放射性物化探信息综合方法
CN115327616B (zh) 一种海量数据驱动的矿山微震震源自动定位方法
CN115061219A (zh) 基于石油天然气探测的裂缝型储层预测识别方法及系统
Yu et al. Combining K‐Means Clustering and Random Forest to Evaluate the Gas Content of Coalbed Bed Methane Reservoirs
US11892591B2 (en) Method for predicting cased wellbore characteristics using machine learning
CN117251802B (zh) 一种基于迁移学习的非均质储层参数预测方法及系统
CN116628535B (zh) 一种小直径随钻伽马能谱数据处理方法
AU2017279838B1 (en) Method for classifying deep rock geofacies based on data mining
CN115809411A (zh) 一种基于测井数据的改进型决策树岩性识别方法
CN116641702A (zh) 一种页岩气藏甜点区识别方法
CN110847887A (zh) 一种细粒沉积陆相页岩裂缝识别评价方法
CN110579797A (zh) 一种泥页岩储层含气量地球物理定量预测方法
CN109283577B (zh) 一种地震层位标定方法
CN113050168B (zh) 基于阵列声波测井和声波远探测测井资料的裂缝有效性评价方法
CN110399649B (zh) 一种基于成岩指示元素的变质岩量化识别方法
CN112987091A (zh) 储层检测方法、装置、电子设备和存储介质
CN112147676A (zh) 一种煤层及夹矸厚度预测方法
CN113869613B (zh) 一种基于能谱信号的油井产量测量方法及设备
WO2024087800A1 (zh) 基于常规测井资料的高频旋回碳酸盐岩识别方法
US11668851B2 (en) Systems and methods for determining tubing deviations

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A Small Diameter Gamma Energy Spectrum Data Processing Method While Drilling

Effective date of registration: 20231115

Granted publication date: 20230922

Pledgee: China Construction Bank Corporation Dongying nonggao District sub branch

Pledgor: Shandong Wan Yang Petroleum Technology Co.,Ltd.

Registration number: Y2023980065946