CN116617547B - Segmented microcatheter for vascular intervention - Google Patents

Segmented microcatheter for vascular intervention Download PDF

Info

Publication number
CN116617547B
CN116617547B CN202310826047.2A CN202310826047A CN116617547B CN 116617547 B CN116617547 B CN 116617547B CN 202310826047 A CN202310826047 A CN 202310826047A CN 116617547 B CN116617547 B CN 116617547B
Authority
CN
China
Prior art keywords
catheter
guide wire
block
sliding
catheter handle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310826047.2A
Other languages
Chinese (zh)
Other versions
CN116617547A (en
Inventor
刘玉江
吴林
罗浩
周波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Puli Youchuang Technology Co ltd
Original Assignee
Jiangsu Puli Youchuang Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Puli Youchuang Technology Co ltd filed Critical Jiangsu Puli Youchuang Technology Co ltd
Priority to CN202310826047.2A priority Critical patent/CN116617547B/en
Publication of CN116617547A publication Critical patent/CN116617547A/en
Application granted granted Critical
Publication of CN116617547B publication Critical patent/CN116617547B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M2025/0042Microcatheters, cannula or the like having outside diameters around 1 mm or less
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09116Design of handles or shafts or gripping surfaces thereof for manipulating guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/32General characteristics of the apparatus with radio-opaque indicia

Abstract

The invention discloses a segmented microcatheter for vascular interventions, comprising: the catheter comprises a catheter handle, a diffusion stress tube and a catheter tube body which are sequentially connected, wherein the catheter tube body comprises a plurality of catheter sections, each catheter section is made of flexible materials with different strengths, the end part of the catheter tube body, which is far away from the catheter handle, is connected with a developing ring, and cavities for a guide wire to pass through are formed in the catheter handle, the diffusion stress tube and the catheter tube body; the guide wire clamping ring is connected in the cavity of the catheter handle and used for limiting the guide wire. The invention sets the catheter body as a plurality of catheter sections, and the strength of each catheter section is different, so that the better pushing performance, the retracting performance, the bending performance and the torsion performance can be realized in a tortuous blood vessel, the catheter body can smoothly enter the target position of a target, and the effective and safe treatment and the transportation of the therapeutic apparatus to a patient are realized; after the guide wire reaches the focus, the guide wire clamping ring is moved to enable the guide wire clamping ring to be misplaced with the inner wall of the cavity of the catheter handle, and the guide wire is clamped and fixed.

Description

Segmented microcatheter for vascular intervention
Technical Field
The present invention relates to the technical field of microcatheters, and more particularly to segmented microcatheters for vascular interventions.
Background
Interventional radiology is an emerging minimally invasive diagnosis and treatment, and along with the development of materials, processes and biotechnology, great progress is made in many clinical fields in recent years, so that clinical diagnosis and treatment technologies tend to be minimally invasive, rapid, safe and effective. In particular, rapid progress has been made in the fields of heart, cerebral vessels, peripheral vessels, tumors and the like, and microcatheters play a vital role in the field of vascular intervention.
In the aspect of peripheral vascular intervention, for example, in vascular intervention operation of diseases such as digestive tract hemorrhage, hemoptysis and the like under hepatic arterial chemoembolization of liver tumor, the intubation is an important link.
In cardiovascular interventions, microcatheters play an indispensable role in the interventional treatment of coronary atherosclerotic heart disease (coronary heart disease), in particular chronic occlusive lesions. When treating complicated coronary artery lesions such as chronic total occlusion lesions and bifurcation lesions, a cardiac interventional doctor often needs to adjust the shape of the head end of a guide wire by means of a microcatheter to improve the operability of the guide wire, and improve the supporting force, the trafficability of the guide wire, the rapid exchange guide wire and the super-selective radiography of the guide wire.
In the field of cerebral vascular interventions, microcatheters are used as new medical devices for cardiovascular and cerebrovascular diseases where surgery is not possible due to high risk. The continuous development of neurointerventional radiology and the appearance of high polymer catheters with excellent performance open up a new era of endovascular treatment of intracranial aneurysms. Currently, clinically, neuro-mediated microcatheters are used primarily for the infusion of diagnostic agents (contrast agents) and therapeutic devices (e.g., coils) within neurovascular vessels.
In interventional procedures, it is often necessary to pre-establish an external passageway to the target site using a microcatheter to provide access for subsequent guidewires or other instruments to enter the diagnosis and treatment, and for the guidewires or other instruments to pass through the passageway and reach the lesion.
In the prior art, as in the chinese patent of application number 202123020940.1, a microcatheter capable of being inserted into brain and peripheral blood vessel is disclosed, a sectional connection structure is adopted, the tube body adopts an inner layer, an intermediate layer and an outer tube layer respectively, the outer tube layer adopts materials with different hardness, the hardness gradually becomes smaller from the proximal end to the distal end, the tube body along the tube body, the proximal end part and the distal end part of the catheter becomes soft gradually, the curved blood vessel is convenient to enter, the intermediate layer is a metal wire winding layer, different wire diameters or screw pitches per inch are adopted at different parts of the tube body, the flexibility of the distal end is satisfied, the support of the proximal end is realized, the better twistability is realized during use, and the safety in the interventional operation is improved. When the microcatheter is used for supporting a guide wire, the device cannot fix the guide wire, and the stability is poor.
Therefore, there is a need to propose segmented microcatheters for vascular interventions to at least partially solve the problems of the prior art.
Disclosure of Invention
In the summary, a series of concepts in a simplified form are introduced, which will be further described in detail in the detailed description. The summary of the invention is not intended to define the key features and essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
To at least partially solve the above problems, the present invention provides a segmented microcatheter for vascular interventions comprising:
the catheter comprises a catheter handle, a diffusion stress tube and a catheter tube body which are sequentially connected, wherein the catheter tube body comprises a plurality of catheter sections, each catheter section is made of flexible materials with different strengths, the end part of the catheter tube body, which is far away from the catheter handle, is connected with a developing ring, and cavities for a guide wire to pass through are formed in the catheter handle, the diffusion stress tube and the catheter tube body;
the guide wire clamping ring is connected in the cavity of the catheter handle and used for limiting the guide wire.
Preferably, the catheter segment is made of either a nylon block copolymer or a block copolymer of nylon and polyethylene oxide.
Preferably, the number of catheter sections is set to 8-9 sections.
Preferably, the catheter segment is coated with a hydrophilic coating.
Preferably, a catheter adapter is connected between adjacent catheter segments, the catheter adapter being provided as a luer adapter.
Preferably, an adjusting unit is connected in the catheter handle, and the adjusting unit comprises:
the sliding rod is vertically and slidably connected to the center of the catheter handle, the sliding rod is connected with the bottom end of the guide wire clamping ring, the bottom end of the sliding rod penetrates through the catheter handle to be arranged, and a groove for the guide wire clamping ring to move up and down is formed in the catheter handle;
the pressing plate is connected to the bottom end of the sliding rod and is connected with a first spring between the pressing plate and the catheter handle;
the limit box is connected to the inner wall of the cavity of the catheter handle and is arranged at two sides of the slide bar;
the first limiting block is connected to the inner wall of the limiting box in a sliding mode, a second spring is connected between one end of the first limiting block and the limiting box, and the other end of the first limiting block is provided with a wedge surface and penetrates out of the limiting box to be close to the sliding rod.
Preferably, the slide bar comprises: the diameter of the first rod section is smaller than that of the second rod section to form a stepped surface, the first rod section is connected with the guide wire clamping ring, the second rod section is connected with the pressing plate, and the spring is sleeved on the second rod section; the second pole section is connected with a clamping plate and a sliding plate, the clamping plate is fixedly connected to the second pole section, and the sliding plate is slidably connected between the clamping plate and the step surface.
Preferably, the top end of the sliding plate is provided with a clamping plate groove for accommodating the clamping plate, and the bottom end of the sliding plate is provided with an arc-shaped surface.
Preferably, the catheter handle is connected with a limiting unit therein, and the limiting unit comprises:
the two ejector rods are vertically and slidably connected in the catheter handle and are arranged at two sides of the sliding rod, the bottom ends of the ejector rods are connected with ejector blocks, the ejector blocks are arranged above the pressing plate, the side ends of the ejector rods are connected with a sliding block and a clamping block, and a spring III is connected between the sliding block and the inner wall of the catheter handle;
the second limiting block is connected in the through hole on one side of the catheter handle in a sliding manner, one end of the second limiting block is clamped below the clamping block, and the other end of the second limiting block is connected with a magnetic block;
the trigger block is connected to the side end of the catheter handle, an electromagnetic block is connected to the inner side of the trigger block, a spring IV is connected between the electromagnetic block and the second limiting block, and the electromagnetic block is attracted to the magnetic block after being electrified.
Preferably, the limiting unit further includes:
the rack is connected to the side end of the guide wire clamping ring;
the gear is rotationally connected to the inner wall of the catheter handle and is meshed with the rack;
the third limiting block is connected to the support plate on the inner wall of the catheter handle in a sliding manner, a baffle is connected to the third limiting block, and a fourth spring is connected between the baffle and the support plate;
the side sliding groove is formed in the side end of the ejector rod, comprises a first sliding section, a wedge-shaped section and a second sliding section which are sequentially connected from bottom to top, the depth of the first sliding section is larger than that of the second sliding section, and one end of the third limiting block is slidably connected in the side sliding groove.
Compared with the prior art, the invention at least comprises the following beneficial effects:
the sectional microcatheter for vascular intervention provided by the invention has the advantages that the catheter body is arranged into the plurality of catheter sections, the strength of each catheter section is different, and the better pushing performance, the withdrawing performance, the bending performance and the torsion performance can be realized in a tortuous blood vessel, so that the catheter body can smoothly enter the target position, and the effective and safe treatment and the transportation of a therapeutic apparatus to a patient are realized; after the guide wire reaches the focus, the guide wire clamping ring is moved to enable the guide wire clamping ring to be misplaced with the inner wall of the cavity of the catheter handle, the guide wire is clamped and fixed, and the stability of the guide wire is improved.
Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention.
Drawings
The accompanying drawings are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate the invention and together with the embodiments of the invention, serve to explain the invention. In the drawings:
FIG. 1 is a schematic diagram of a segmented microcatheter for vascular intervention according to the present invention;
FIG. 2 is a schematic view of the structure of a catheter shaft in a segmented microcatheter for vascular intervention according to the present invention;
FIG. 3 is a side view of a catheter handle in a segmented microcatheter for vascular intervention in accordance with the present invention;
FIG. 4 is a schematic cross-sectional view showing a catheter handle pressing active state in a segmented microcatheter for vascular intervention according to the present invention;
FIG. 5 is a schematic cross-sectional view showing a catheter handle pressed and positioned in a segmented microcatheter for vascular intervention according to the present invention;
FIG. 6 is a schematic cross-sectional view showing a catheter handle in a catheter ejection limit state in a segmented microcatheter for vascular intervention according to the present invention;
FIG. 7 is a schematic view showing the partial structure of a slide bar in a segmented microcatheter for vascular intervention according to the present invention;
FIG. 8 is a schematic view of the partial structure of the ejector pin in the segmented microcatheter for vascular intervention according to the present invention;
FIG. 9 is a schematic view of the segmented microcatheter for vascular intervention of the present invention shown in partial enlarged configuration at A in FIG. 4;
FIG. 10 is a schematic view of the segmented microcatheter for vascular intervention of the present invention shown in partial enlarged configuration at B in FIG. 4.
In the figure: 1. a catheter handle; 2. a diffusion stress tube; 3. a catheter shaft; 4. a hydrophilic coating; 5. a developing ring; 6. a catheter segment; 7. a guide wire; 8. a guidewire clasp; 11. a slide bar; 111. a first pole segment; 112. a second pole segment; 12. a pressing plate; 13. a limit box; 14. a first limiting block; 15. a clamping plate; 16. a slide plate; 17. a groove; 18. a card plate groove; 19. a push rod; 20. a top block; 21. a slide block; 22. a clamping block; 23. a second limiting block; 24. a magnetic block; 25. a trigger block; 26. an electromagnetic block; 27. a rack; 28. a gear; 29. a third limiting block; 30. a support plate; 31. a side chute; 311. a sliding section I; 312. a sliding section II; 313. a wedge section; 32. a side pressure plate; 33. a protective film.
Detailed Description
The present invention is described in further detail below with reference to the drawings and examples to enable those skilled in the art to practice the invention by referring to the description.
It will be understood that terms, such as "having," "including," and "comprising," as used herein, do not preclude the presence or addition of one or more other elements or groups thereof.
Example 1:
as shown in fig. 1-4, the present invention provides a segmented microcatheter for vascular interventions comprising:
the catheter comprises a catheter handle 1, a diffusion stress tube 2 and a catheter tube 3 which are sequentially connected, wherein the catheter tube 3 comprises a plurality of catheter sections 6, each catheter section 6 is made of flexible materials with different strengths, the end part of the catheter tube 3, which is far away from the catheter handle 1, is connected with a developing ring 5, and cavities for a guide wire 7 to pass through are formed in the catheter handle 1, the diffusion stress tube 2 and the catheter tube 3;
the guide wire clamping ring 8, the guide wire clamping ring 8 is connected in the cavity of the catheter handle 1 and is used for limiting the guide wire 7.
The catheter segment 6 is made of either one of a nylon block copolymer and a block copolymer of nylon and polyethylene oxide.
The number of catheter sections 6 is set to 8-9 sections.
The catheter section 6 is coated with a hydrophilic coating 4.
Connected between adjacent catheter segments 6 is a catheter adapter, which is provided as a luer adapter.
The working principle and the beneficial effects of the technical scheme are as follows:
when the sectional type microcatheter for vascular intervention is used, medical staff holds the catheter handle 1, stretches the catheter tube 3 into a blood vessel, the guide wire 7 is inserted from the end part of the catheter handle 1, sequentially passes through the catheter handle 1, the diffusion stress tube 2 and the cavity in the catheter tube 3 to reach a focus, the catheter tube 3 comprises a plurality of catheter sections 6, the strength of each catheter section 6 is different, the catheter handle has better torsion bending performance, and the catheter is pushed in the tortuous blood vessel to quickly and accurately reach the focus position. The developing ring 5 at the end of the catheter tube 3 can display the position of the end of the catheter tube 3, so that the positioning of the end of the micro catheter is facilitated during treatment. The diffusion stress pipe 2 is a soft injection molding part with a conical shape, so that stress generated when the pipe body 3 of the catheter is bent can be relieved or diffused, and bending of the joint of the pipe body 3 of the catheter and the handle 1 of the catheter is avoided.
The catheter sections 6 are arranged into 8-9 sections, the lengths of the catheter sections 6 are different, the total length of the catheter tube 3 is ensured to reach a focus, the mechanical property of the catheter tube 3 is ensured, and the situation that the length of the catheter tube 3 is too long to control trend is avoided.
A guide wire clamping ring 8 is arranged in the catheter handle 1, the guide wire clamping ring 8 can move up and down in the catheter handle 1, the guide wire 7 passes through the guide wire clamping ring 8, and after the guide wire 7 reaches a focus, the guide wire clamping ring 8 is moved to enable the guide wire clamping ring 8 to be misplaced with the inner wall of the cavity of the catheter handle 1, so that the guide wire 7 is clamped and fixed.
The invention provides a sectional microcatheter for vascular intervention, which is characterized in that a catheter tube 3 is arranged into a plurality of catheter sections 6, the strength of each catheter section 6 is different, and the requirements of better pushing performance, withdrawing performance, bending performance and torsion performance in tortuous vessels can be met, so that the catheter tube 3 can smoothly enter target sites of a target, effective and safe treatment and therapeutic instrument delivery to a patient are realized, after a guide wire 7 reaches a focus, a guide wire clasp 8 is moved to enable the guide wire clasp 8 to be misplaced with the inner wall of a cavity of a catheter handle 1, the guide wire 7 is clamped and fixed, and the stability of the guide wire 7 is improved.
Example 2:
as shown in fig. 4 to 7, on the basis of the above embodiment 1, an adjusting unit is connected to the inside of the catheter handle 1, the adjusting unit including:
the slide bar 11 is vertically and slidably connected to the center of the catheter handle 1, the slide bar 11 is connected with the bottom end of the guide wire clamping ring 8, the bottom end of the slide bar 11 penetrates through the catheter handle 1 to be arranged, and a groove 17 for the guide wire clamping ring 8 to move up and down is formed in the catheter handle 1;
the pressing plate 12 is connected to the bottom end of the sliding rod 11, and a first spring is connected between the pressing plate 12 and the catheter handle 1;
the limit box 13 is connected to the inner wall of the cavity of the catheter handle 1 and is arranged at two sides of the slide bar 11;
the first limiting block 14 is slidably connected to the inner wall of the limiting box 13, a second spring is connected between one end of the first limiting block 14 and the limiting box 13, and a wedge-shaped surface is arranged at the other end of the first limiting block 14 and penetrates out of the limiting box 13 to be close to the sliding rod 11.
The working principle and the beneficial effects of the technical scheme are as follows:
when the guide wire 7 moves in the microcatheter, the guide wire 7 moves along the catheter handle 1, the diffusion stress tube 2 and the cavity in the catheter tube 3, a gap is arranged between the guide wire 7 and the cavity so that the guide wire 7 can move, and as the catheter tube 3 is bent, the guide wire 7 can be blocked when moving in the cavity. Through setting up the adjusting unit, press clamp plate 12 during the use, clamp plate 12 drives slide bar 11 and vertically slides in catheter handle 1, and slide bar 11 drives seal wire snap ring 8 and reciprocates, makes seal wire 7 can reciprocate, drives seal wire 7 wholly and takes place to remove or twist reverse, makes seal wire 7 can move to the bending state with the adaptation of catheter tube 3, continues to slide after eliminating the card. Through the above-mentioned structural design, when the seal wire 7 takes place to block the time, can make its crooked state that adapts to pipe shaft 3 of movable seal wire 7 through pressing the clamp plate 12, help the propulsion of seal wire 7, avoid the condition that takes place to shift by a wide margin when medical personnel moves seal wire 7 by hand, improve seal wire 7 and remove smoothness and controllability.
Example 3:
as shown in fig. 7, on the basis of the above embodiment 2, the slide bar 11 includes: the first rod section 111 and the second rod section 112, the diameter of the first rod section 111 is smaller than that of the second rod section 112 to form a stepped surface, the first rod section 111 is connected with the wire guide clamping ring 8, the second rod section 112 is connected with the pressing plate 12, and the first spring is sleeved on the second rod section 112; the second pole segment 112 is connected with a clamping plate 15 and a sliding plate 16, the clamping plate 15 is fixedly connected to the second pole segment 112, and the sliding plate 16 is connected between the clamping plate 15 and the step surface in a sliding manner.
The top of the sliding plate 16 is provided with a clamping plate groove 18 for accommodating the clamping plate 15, and the bottom of the sliding plate 16 is provided with an arc-shaped surface.
The working principle and the beneficial effects of the technical scheme are as follows:
when the pressing plate 12 is pressed, the clamping plate 15 is positioned above the first limiting block 14, a pressing movable state can be realized by pressing the pressing plate 12, the pressing plate 12 drives the clamping plate 15 to move above the first limiting block 14 and drive the guide wire 7 to move up and down, at the moment, the two side ends of the sliding plate 16 slide upwards in the wedge-shaped surface of the first limiting block 14 and do not break away from each other, the ladder faces the bottom end of the sliding plate 16 to limit, and the sliding plate 16 extrudes the first limiting block 14 to slide in the limiting box 13; after the pressing and clamping on disappears, the pressing plate 12 is continuously pressed to realize a pressing and positioning state, the pressing plate 12 drives the sliding plate 16 to slide upwards, the sliding plate 16 extrudes the first limiting block 14 into the limiting box 13, when the sliding plate 16 moves to the upper side of the first limiting block 14, the first limiting block 14 resets under the action of the second spring to limit the bottom of the sliding plate 16, at the moment, the sliding plate 16 and the clamping plate 15 are both positioned above the first limiting block 14, the sliding rod 11 slides downwards under the action of the first spring, and the sliding plate 16 slides relatively with the sliding rod 11 under the blocking of the first limiting block 14 until the clamping plate 15 is clamped in the clamping plate groove 18 above the sliding plate 16. At this time, the guide wire clasp 8 is positioned at the center of the cavity of the catheter handle 1 and is concentrically arranged with the cavity of the diffusion stress tube 2 and the cavity inlet of the catheter tube body 3.
Through the structural design, when the guide wire 7 is blocked, the guide wire 7 can be quickly moved by pressing the pressing plate 12, and the guide wire 7 is ensured to be in a small-amplitude moving range by limiting the clamping plate 15 through the first limiting block 14, so that the bending and extrusion of the guide wire 7 are reduced; when the guide wire 7 is blocked and disappears or the microcatheter integrally moves, the guide wire 7 is positioned by pressing the pressing plate 12, so that the guide wire 7 is positioned at the center of the cavity of the catheter handle 1, the inner wall of the guide wire clamping ring 8 is aligned with the cavity of the diffusion stress tube 2 and the cavity inlet of the catheter tube body 3, and the guide wire 7 is prevented from being bent due to dislocation of the guide wire clamping ring 8, so that the guide wire 7 moves more smoothly.
Example 4:
as shown in fig. 4 to 10, on the basis of the above embodiment 3, a stopper unit is connected to the inside of the catheter handle 1, the stopper unit including:
the two ejector rods 19 are vertically and slidably connected in the catheter handle 1 and are arranged at two sides of the sliding rod 11, the bottom ends of the ejector rods 19 are connected with ejector blocks 20, the ejector blocks 20 are arranged above the pressing plate 12, the side ends of the ejector rods 19 are connected with a sliding block 21 and a clamping block 22, and a spring III is connected between the sliding block 21 and the inner wall of the catheter handle 1;
the second limiting block 23 is connected in the through hole on one side of the catheter handle 1 in a sliding manner, one end of the second limiting block 23 is clamped below the clamping block 22, and the other end of the second limiting block 23 is connected with the magnetic block 24;
the trigger block 25, trigger block 25 is connected in catheter handle 1 side end, and trigger block 25 inboard is connected with electromagnetic block 26, is connected with the spring IV between electromagnetic block 26 and stopper two 23, and electromagnetic block 26 attracts with magnetic block 24 after the circular telegram.
The working principle and the beneficial effects of the technical scheme are as follows:
after the end part of the guide wire 7 moves to the focus position, medical staff presses the trigger block 25, so that the electromagnetic block 26 is electrified to generate magnetism, the magnetic block 24 is attracted, the limit block II 23 is driven to move into the through hole and separate from the clamping block 22, the limit block 19 is released, the push rod 19 is rapidly and downwards ejected under the action of the spring III, then the electromagnetic block 26 is powered off, the limit block II 23 is reset, the sliding block 21 is in sliding connection with the inner wall of the cavity of the catheter handle 1, the guide rod 19 is guided, the push rod 19 drives the top block 20 to be in contact with the pressing plate 12 and downwards pushes the pressing plate 12, the pressing plate 12 drives the sliding rod 11 to downwards slide, the bottom end of the sliding plate 16 is provided with an arc-shaped surface, the sliding plate 16 downwards moves to press the limit block I14 to slide into the limit box 13 simultaneously until the clamping plate 15 of the sliding plate 16 and the top plate thereof are completely separated from the limit block I14, the sliding plate 11 drives the guide wire clamping ring 8 to downwards move into the groove 17, the guide wire clamping ring 8 and the inner wall of the cavity of the catheter handle 1 is slightly misplaced, and the guide wire 7 is pressed by the edge of the groove 17, namely the guide wire 7 is not pressed and does not move any more, and limit bending of the guide wire 7 is realized. A vibration sensor is arranged in the catheter handle 1 of the micro catheter, and when the micro catheter is subjected to large-amplitude continuous vibration, the electromagnetic block 26 is automatically electrified to limit the guide wire 7.
Through above-mentioned structural design, after the tip of seal wire 7 moves in place, make clamp plate 12 switch to pop out spacing state through pressing trigger piece 25, realize seal wire 7's locking spacing fast, can avoid seal wire 7 to take place the aversion in the course of treatment, seal wire snap ring 8 joint is in recess 17, it is fixed to have guaranteed seal wire snap ring 8 the distance that removes when locking spacing, does not receive medical personnel's operation influence, receives the extrusion force controllable when guaranteeing that seal wire 7 is spacing, has reduced the operation degree of difficulty.
The bottom end of the catheter handle 1 is provided with a distance sensor for detecting the distance between the bottom end of the catheter handle 1 and the pressing plate 12, and when the detected distance range is between a first preset distance value and a second preset distance value, the catheter handle 1 is in a pressing active state; when the detected distance is smaller than a first preset distance value, the catheter handle 1 is in a pressing and positioning state; when the detected distance is larger than a second preset distance value, the catheter handle 1 is in an ejecting limit state; the catheter handle 1 is provided with an indicator light for indicating different position states of the pressing plate 12 and providing operation prompts for medical staff.
Example 5:
as shown in fig. 4 to 10, on the basis of embodiment 4 above, the limiting unit further includes:
the rack 27 is connected to the side end of the guide wire clamping ring 8;
the gear 28 is rotatably connected to the inner wall of the catheter handle 1 and is meshed with the rack 27;
the third limiting block 29 is connected onto the support plate 30 on the inner wall of the catheter handle 1 in a sliding manner, a baffle is connected onto the third limiting block 29, and a fourth spring is connected between the baffle and the support plate 30;
the side sliding groove 31, the side sliding groove 31 is arranged at the side end of the ejector rod 19, the side sliding groove 31 comprises a first sliding section 311, a wedge-shaped section 313 and a second sliding section 312 which are sequentially connected from bottom to top, the depth of the first sliding section 311 is greater than that of the second sliding section 312, and one end of the third limiting block 29 is slidably connected in the side sliding groove 31.
The two sliding blocks 21 are connected and synchronously move, a side pressing plate 32 is hinged on the pressing plate 12, a coil spring is connected at a hinge point, the side pressing plate 32 is positioned below one of the jacking blocks 20, the bottom end of the pressing plate 12 is connected with a stop block for limiting the side pressing plate 32, the side pressing plate 32 rotates upwards in a unidirectional manner, and a protective film 33 is connected between the edge of the pressing plate 12 and the outer side wall of the catheter handle 1.
The working principle and the beneficial effects of the technical scheme are as follows:
when the limiting unit is used, the guide wire clamping ring 8 drives the rack 27 to slide downwards when moving downwards, and the rack 27 is meshed with the gear 28 for transmission to drive the gear 28 to rotate; in the initial position, the third limiting block 29 is located in the first sliding section 311 of the side sliding groove 31, then the third limiting block 29 enters the second sliding section 312 along the first sliding section 211 and the wedge-shaped section 313 along with the downward sliding of the ejector rod 19, the third limiting block 29 is ejected out due to the fact that the depth of the first sliding section 311 is larger than that of the second sliding section 312, the other end of the third limiting block 29 is in contact and clamping connection with the gear 28, and the gear 28 is limited, namely the guide wire clamping ring 8 is limited, so that after the guide wire clamping ring 8 limits the guide wire 7, the guide wire clamping ring 8 is locked by the third limiting block 29, and the situation that a user unlocks the guide wire 7 when the user touches the pressing plate 12 by mistake is avoided.
When the guide wire 7 needs to be unlocked, the side pressing plate 32 is pressed first, the side pressing plate 32 rotates upwards to press the top block 20, the top rod 19 slides upwards, the third limiting block 29 slides into the first sliding section 211 from the fourth sliding section 312 under the action of the spring, the third limiting block 29 is separated from the gear 28, the guide wire clamping ring 8 releases the limiting, then the pressing plate 12 is pressed, and the pressing plate 12 drives the sliding rod 11 to slide upwards to clamp the clamping plate 15 to press and pass through the first limiting block 14, and then is clamped above the first limiting block 14. The pressing plate 12 pushes the ejector rod 19 to slide upwards, then the side pressing plate 32 is pressed to push the ejector rod 19 to move continuously, so that the ejector rod 19 is extruded and passes through the second limiting block 23, then is clamped above the second limiting block 23, and reset of each component is completed.
The protective film 33 protects the structure inside the catheter handle 1, and the protective film 33 is made of an elastic material.
Through above-mentioned structural design, can be after guide wire snap ring 8 is spacing with guide wire 7, with guide wire snap ring 8 self locking, the condition of guide wire 7 unblock when avoiding the user to touch clamp plate 12 by mistake improves the security of microcatheter, adopts the mode of push type unblock simultaneously when the unblock, realizes the reset of each part fast. The locking and unlocking of the microcatheter are carried out in a pressing mode, and the microcatheter can be completed by pressing with one hand, and the anti-misoperation structure is arranged, so that the operation difficulty of medical staff is reduced, and the safety and convenience of an operation process are improved.
In the description of the present invention, it should be understood that the terms "center", "longitudinal", "lateral", "length", "width", "thickness", "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top", "bottom", "inner", "outer", "clockwise", "counterclockwise", "axial", "radial", "circumferential", etc. indicate orientations or positional relationships based on the orientations or positional relationships shown in the drawings are merely for convenience in describing the present invention and simplifying the description, and do not indicate or imply that the device or element being referred to must have a specific orientation, be configured and operated in a specific orientation, and therefore should not be construed as limiting the present invention.
In the present invention, unless explicitly specified and limited otherwise, the terms "mounted," "connected," "secured," and the like are to be construed broadly, and may be, for example, fixedly connected, detachably connected, or integrally formed; may be mechanically connected, may be electrically connected or may be in communication with each other; either directly or indirectly, through intermediaries, or both, may be in communication with each other or in interaction with each other, unless expressly defined otherwise. The specific meaning of the above terms in the present invention can be understood by those of ordinary skill in the art according to the specific circumstances.
Although embodiments of the present invention have been disclosed above, it is not limited to the details and embodiments shown and described, it is well suited to various fields of use for which the invention would be readily apparent to those skilled in the art, and accordingly, the invention is not limited to the specific details and illustrations shown and described herein, without departing from the general concepts defined in the claims and their equivalents.

Claims (7)

1. A segmented microcatheter for vascular intervention comprising:
the catheter comprises a catheter handle (1), a diffusion stress tube (2) and a catheter tube (3) which are sequentially connected, wherein the catheter tube (3) comprises a plurality of catheter sections (6), each catheter section (6) is made of flexible materials with different strengths, the end part, far away from the catheter handle (1), of the catheter tube (3) is connected with a developing ring (5), and cavities for a guide wire (7) to pass through are formed in the catheter handle (1), the diffusion stress tube (2) and the catheter tube (3);
the guide wire clamping ring (8), the guide wire clamping ring (8) is connected in the cavity of the catheter handle (1) and used for limiting the guide wire (7);
an adjusting unit is connected with the catheter handle (1), and the adjusting unit comprises:
the sliding rod (11) is vertically and slidably connected to the center of the catheter handle (1), the sliding rod (11) is connected with the bottom end of the guide wire clamping ring (8), the bottom end of the sliding rod (11) penetrates through the catheter handle (1) to be arranged, and a groove (17) for the guide wire clamping ring (8) to move up and down is formed in the catheter handle (1);
the pressing plate (12), the pressing plate (12) is connected to the bottom end of the slide bar (11) and is connected with a first spring between the catheter handle (1);
the limit box (13), the limit box (13) is connected to the inner wall of the cavity of the catheter handle (1) and is arranged at two sides of the slide bar (11);
the first limiting block (14) is connected to the inner wall of the limiting box (13) in a sliding manner, a second spring is connected between one end of the first limiting block (14) and the limiting box (13), and the other end of the first limiting block (14) is provided with a wedge-shaped surface and penetrates out of the limiting box (13) to be arranged close to the sliding rod (11);
the slide bar (11) comprises: the device comprises a first rod section (111) and a second rod section (112), wherein the diameter of the first rod section (111) is smaller than that of the second rod section (112) to form a stepped surface, the first rod section (111) is connected with a guide wire clamping ring (8), the second rod section (112) is connected with a pressing plate (12), and a spring is sleeved on the second rod section (112); the second rod section (112) is connected with a clamping plate (15) and a sliding plate (16), the clamping plate (15) is fixedly connected to the second rod section (112), and the sliding plate (16) is slidably connected between the clamping plate (15) and the step surface;
a clamping plate groove (18) for accommodating the clamping plate (15) is formed in the top end of the sliding plate (16), and the bottom end of the sliding plate (16) is provided with an arc-shaped surface.
2. Segmented microcatheter for vascular interventions according to claim 1, characterized in that the catheter segment (6) is made of either of nylon block copolymer and block copolymer of nylon and polyethylene oxide.
3. Segmented microcatheter for vascular interventions according to claim 1, characterized in that the number of catheter segments (6) is set to 8-9 segments.
4. Segmented microcatheter for vascular interventions according to claim 1, characterized in that the catheter segment (6) is coated with a hydrophilic coating (4).
5. A segmented microcatheter for vascular interventions according to claim 1, characterized in that a catheter adapter is connected between adjacent catheter segments (6), which catheter adapter is provided as a luer adapter.
6. The segmented microcatheter for vascular interventions according to claim 1, characterized in that a limiting unit is connected to the catheter handle (1), the limiting unit comprising:
the two ejector rods (19) are vertically and slidably connected in the catheter handle (1) and are arranged on two sides of the sliding rod (11), the bottom ends of the ejector rods (19) are connected with ejector blocks (20), the ejector blocks (20) are arranged above the pressing plate (12), the side ends of the ejector rods (19) are connected with a sliding block (21) and a clamping block (22), and a spring III is connected between the sliding block (21) and the inner wall of the catheter handle (1);
the second limiting block (23), the second limiting block (23) is connected in the through hole on one side of the catheter handle (1) in a sliding manner, one end of the second limiting block (23) is clamped below the clamping block (22), and the other end of the second limiting block (23) is connected with the magnetic block (24);
the trigger block (25), trigger block (25) are connected in pipe handle (1) side, and trigger block (25) inboard is connected with electromagnetic block (26), is connected with the spring IV between electromagnetic block (26) and stopper two (23), and electromagnetic block (26) are attracted with magnetic block (24) after the circular telegram.
7. The segmented microcatheter for vascular interventions according to claim 6, wherein the limiting unit further comprises:
the rack (27) is connected to the side end of the guide wire clamping ring (8);
the gear (28) is rotationally connected to the inner wall of the catheter handle (1) and is meshed with the rack (27);
the third limiting block (29), the third limiting block (29) is connected to a support plate (30) on the inner wall of the catheter handle (1) in a sliding manner, a baffle is connected to the third limiting block (29), and a fourth spring is connected between the baffle and the support plate (30);
the side sliding groove (31), side sliding groove (31) are offered in ejector pin (19) side, and side sliding groove (31) are including from supreme slip section one (311), wedge section (313) and the slip section two (312) that connect gradually down, and the degree of depth of slip section one (311) is greater than the degree of depth of slip section two (312), and the one end sliding connection of stopper three (29) is in side sliding groove (31).
CN202310826047.2A 2023-07-07 2023-07-07 Segmented microcatheter for vascular intervention Active CN116617547B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310826047.2A CN116617547B (en) 2023-07-07 2023-07-07 Segmented microcatheter for vascular intervention

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310826047.2A CN116617547B (en) 2023-07-07 2023-07-07 Segmented microcatheter for vascular intervention

Publications (2)

Publication Number Publication Date
CN116617547A CN116617547A (en) 2023-08-22
CN116617547B true CN116617547B (en) 2024-01-30

Family

ID=87636781

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310826047.2A Active CN116617547B (en) 2023-07-07 2023-07-07 Segmented microcatheter for vascular intervention

Country Status (1)

Country Link
CN (1) CN116617547B (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108853685A (en) * 2017-05-08 2018-11-23 靳志涛 Trans-radial interposing catheter assistor
CN208447730U (en) * 2017-09-13 2019-02-01 随州市中心医院 A kind of therapeutic device for cardiovascular interventional operation
CN109966623A (en) * 2019-04-16 2019-07-05 尹春辉 A kind of adjustable type microtubular for cerebrovascular intervention
CN209996987U (en) * 2018-02-05 2020-01-31 河南省职工医院 guide wire introducing cannula for cardiovascular interventional therapy
CN110898311A (en) * 2019-12-18 2020-03-24 苏州恒瑞迪生医疗科技有限公司 Microcatheter system and methods of packaging and using same
CN211751701U (en) * 2020-01-08 2020-10-27 普利瑞医疗科技(苏州)有限公司 Adjustable positioning guide catheter
CN112169135A (en) * 2018-10-08 2021-01-05 万海伟 Adjustable microcatheter for cerebrovascular intervention and method of use
CN214912357U (en) * 2020-12-25 2021-11-30 重庆市第九人民医院 Guide wire catheter fixer for interventional operation
CN113855999A (en) * 2021-09-30 2021-12-31 河北医科大学第二医院 Positioning guide wire control device for interventional operation treatment
CN114082077A (en) * 2021-11-25 2022-02-25 南阳市第二人民医院 Adjustable micro catheter for cerebrovascular intervention and using method thereof
CN217041059U (en) * 2021-11-24 2022-07-26 苏州莱诺医疗器械有限公司 Nasal sinus sacculus pipe that near-end slope changes slowly
CN217567084U (en) * 2021-12-03 2022-10-14 业聚医疗器械(深圳)有限公司 Micro-catheter capable of being inserted into brain and peripheral blood vessel
WO2023015657A1 (en) * 2021-08-11 2023-02-16 介若医疗科技(上海)有限公司 Vascular intervention navigation surgical system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6524299B1 (en) * 1997-04-09 2003-02-25 Target Therapeutics, Inc. Flow-directed catheter
JP2003534056A (en) * 2000-05-19 2003-11-18 シー・アール・バード・インク Guide wire with observation function
US20040039372A1 (en) * 2002-08-21 2004-02-26 Carmody Patrick J. Over-the-wire catheter having a slidable instrument for gripping a guidewire
US7323006B2 (en) * 2004-03-30 2008-01-29 Xtent, Inc. Rapid exchange interventional devices and methods
US7959608B2 (en) * 2004-04-27 2011-06-14 The Spectranetics Corporation Thrombectomy and soft debris removal device
WO2008049088A2 (en) * 2006-10-21 2008-04-24 Rollins Aaron M D Guidewire manipulation device
US10238845B2 (en) * 2014-09-19 2019-03-26 Acclarent, Inc. Balloon catheter assembly
EP4008389A1 (en) * 2014-11-04 2022-06-08 OrbusNeich Medical Pte. Ltd. Progressive flexibility catheter support frame
CN106730246B (en) * 2017-01-16 2019-08-09 杭州唯强医疗科技有限公司 It is suitble to the adjustable bent catheter of left-handed operation
EP3508172B1 (en) * 2018-01-03 2020-08-19 Cook Medical Technologies LLC Pre-loaded multiport delivery device
KR20240012421A (en) * 2021-05-27 2024-01-29 벡톤 디킨슨 앤드 컴퍼니 Venous catheter device having a guidewire for actively repositioning the catheter tip
CN113332563B (en) * 2021-06-25 2022-11-11 四川艾迈思生物医疗科技股份有限公司 Medical adjustable microcatheter
CN114082075B (en) * 2021-09-28 2023-07-18 四川大学华西医院 Auxiliary control bending sheath tube

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108853685A (en) * 2017-05-08 2018-11-23 靳志涛 Trans-radial interposing catheter assistor
CN208447730U (en) * 2017-09-13 2019-02-01 随州市中心医院 A kind of therapeutic device for cardiovascular interventional operation
CN209996987U (en) * 2018-02-05 2020-01-31 河南省职工医院 guide wire introducing cannula for cardiovascular interventional therapy
CN112169135A (en) * 2018-10-08 2021-01-05 万海伟 Adjustable microcatheter for cerebrovascular intervention and method of use
CN112169137A (en) * 2018-10-08 2021-01-05 万海伟 Adjustable microcatheter for cerebrovascular intervention and method of use
CN109966623A (en) * 2019-04-16 2019-07-05 尹春辉 A kind of adjustable type microtubular for cerebrovascular intervention
CN110898311A (en) * 2019-12-18 2020-03-24 苏州恒瑞迪生医疗科技有限公司 Microcatheter system and methods of packaging and using same
CN211751701U (en) * 2020-01-08 2020-10-27 普利瑞医疗科技(苏州)有限公司 Adjustable positioning guide catheter
CN214912357U (en) * 2020-12-25 2021-11-30 重庆市第九人民医院 Guide wire catheter fixer for interventional operation
WO2023015657A1 (en) * 2021-08-11 2023-02-16 介若医疗科技(上海)有限公司 Vascular intervention navigation surgical system
CN113855999A (en) * 2021-09-30 2021-12-31 河北医科大学第二医院 Positioning guide wire control device for interventional operation treatment
CN217041059U (en) * 2021-11-24 2022-07-26 苏州莱诺医疗器械有限公司 Nasal sinus sacculus pipe that near-end slope changes slowly
CN114082077A (en) * 2021-11-25 2022-02-25 南阳市第二人民医院 Adjustable micro catheter for cerebrovascular intervention and using method thereof
CN217567084U (en) * 2021-12-03 2022-10-14 业聚医疗器械(深圳)有限公司 Micro-catheter capable of being inserted into brain and peripheral blood vessel

Also Published As

Publication number Publication date
CN116617547A (en) 2023-08-22

Similar Documents

Publication Publication Date Title
US10617846B2 (en) Guidewire advancing device and method
US8092483B2 (en) Steerable device having a corewire within a tube and combination with a functional medical component
US10065025B2 (en) Over-the-needle guidewire vascular access systems and methods
EP2456503B1 (en) Endoventricular injection catheter system with integrated echocardiographic capabilities
US20050182386A1 (en) Catheter with stiffening element
JP3349151B2 (en) Catheter with internal mandrel and method of use
CA2002445C (en) External guidewire
EP2296743B1 (en) Injection device
US6494846B1 (en) Dual-mode catheter
US20060264907A1 (en) Catheters having stiffening mechanisms
US11191931B2 (en) Methods for manually injecting/aspirating fluids through small diameter catheters and needles and manual injection/aspiration systems including small diameter catheters and needles
US7399291B2 (en) Catheter for treatment of total occlusions and methods for manufacture and use of the catheter
EP1962936A1 (en) Method and apparatus for controlled vessel occlusion
CN112755363B (en) Micro-catheter system
WO2023006073A1 (en) Puncture instrument
CN116617547B (en) Segmented microcatheter for vascular intervention
CN113395940A (en) Thrombus retrieval catheter
JPH1128249A (en) Catheter device
WO2017035365A1 (en) Sleeve for delivery of embolic coil
CN216148814U (en) Butt micro-catheter guide wire exchanger
CN215424825U (en) Intervention device
CN215384327U (en) Inclined wedge releasing mechanism
CN111182933B (en) Injection device and system and method of use thereof
CN219835931U (en) Aortic cannula of extracorporeal circulation system
CN219306724U (en) Fluid transfer device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant