CN116613528A - 5G base station capable of adjusting radiation angle - Google Patents

5G base station capable of adjusting radiation angle Download PDF

Info

Publication number
CN116613528A
CN116613528A CN202310894983.7A CN202310894983A CN116613528A CN 116613528 A CN116613528 A CN 116613528A CN 202310894983 A CN202310894983 A CN 202310894983A CN 116613528 A CN116613528 A CN 116613528A
Authority
CN
China
Prior art keywords
base
cylinder
radiation
worm
base station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310894983.7A
Other languages
Chinese (zh)
Other versions
CN116613528B (en
Inventor
杨博宇
薛剩杰
王帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Anfi Technology Development Co ltd
Original Assignee
Harbin Anfi Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Anfi Technology Development Co ltd filed Critical Harbin Anfi Technology Development Co ltd
Priority to CN202310894983.7A priority Critical patent/CN116613528B/en
Publication of CN116613528A publication Critical patent/CN116613528A/en
Application granted granted Critical
Publication of CN116613528B publication Critical patent/CN116613528B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

The application relates to a 5G base station capable of adjusting radiation angle, which comprises a base, wherein the base is rotationally connected with a supporting cylinder, the outer side of the supporting cylinder is sleeved with a mounting cylinder fixedly connected with the supporting cylinder, the front side of the mounting cylinder is hinged with an active antenna, the active antenna is connected with a radiation inclination angle adjusting mechanism arranged in the mounting cylinder, the supporting cylinder is connected with a radiation orientation angle adjusting mechanism, and the radiation inclination angle adjusting mechanism comprising a first ratchet mechanism and the radiation orientation angle adjusting mechanism comprising a second ratchet mechanism are used for carrying out forward rotation and reverse rotation on a driving motor, and respectively and independently starting one of the radiation inclination angle adjusting mechanism or the radiation orientation angle adjusting mechanism so as to realize the rapid adjustment of the active antenna.

Description

5G base station capable of adjusting radiation angle
Technical Field
The application relates to a base station, in particular to a 5G base station with an adjustable radiation angle, which is applied to the field of 5G base stations.
Background
A base station site includes base station equipment and companion equipment. The base station equipment comprises a baseband unit, a wireless radio frequency unit and an antenna; the supporting equipment comprises transmission equipment, a power supply, a standby battery, an air conditioner, a monitoring system, an iron tower (holding pole) and the like, wherein the 4G base station equipment consists of a BBU (baseband unit) and an RRU (radio remote unit), the RRU is usually pulled to a place close to an antenna, the BBU and the RRU are connected through an optical fiber, the RRU and the antenna are connected through a feeder line, and the 5G base station equipment divides the BBU into a CU (central unit) and a DU (distributed unit) and is connected with an AAU (active antenna unit) through the optical fiber. The AAU includes RRU and antenna functions, i.e., the active radio frequency part is integral with the passive antenna.
In the active antenna installation process of the 5G base station, a traditional base station installation frame fixes an active antenna in a bolt fixing mode, the adjustment of the radiation angle of the active antenna is realized through adjusting bolt fixing points, and in the processes of debugging the radiation angle of the antenna and overhauling and maintaining, the active antenna installation frame can only rely on manual adjustment, and bolts are frequently detached, so that the operation is complex.
Disclosure of Invention
Aiming at the prior art, the application aims to solve the technical problem that the traditional active antenna radiation angle adjustment depends on manual complicated operation.
In order to solve the problems, the application provides a G base station with adjustable radiation angle, which comprises a base, wherein a supporting cylinder is rotatably connected to the base, an installation cylinder fixedly connected with the supporting cylinder is sleeved outside the supporting cylinder, an active antenna is hinged to the front side of the installation cylinder, a radiation inclination angle adjusting mechanism arranged in the installation cylinder is connected to the active antenna, the radiation inclination angle adjusting mechanism comprises a traction rod hinged to the inner wall of the active antenna, a lifting cover is hinged to the upper end of the traction rod, an eccentric disc clamped with the lifting cover is nested in the lifting cover, the eccentric disc is fixedly connected with a penetrating shaft penetrating through the supporting cylinder, a first worm wheel is sleeved on the inner side part of the supporting cylinder of the penetrating shaft, a first worm wheel is meshed with a first worm, the first worm extends into the base and is connected with a first ratchet mechanism, and the first ratchet mechanism is connected with a driving motor arranged in the base through a prism shaft;
the radiation direction angle adjusting mechanism is arranged in the base and comprises a driven gear ring fixed at the lower end of the supporting cylinder, a driving gear is meshed with the driven gear ring, a radial shaft is fixedly connected with the driving gear, a second worm wheel is sleeved on the radial shaft and meshed with a second worm, the second worm is connected with a second ratchet mechanism through a transmission gear, and the second ratchet mechanism is sleeved on the prism shaft and is clamped with the prism shaft.
In the above-mentioned 5G base station with adjustable radiation angle, the active antenna is rapidly adjusted in inclination angle and orientation angle by controlling the driving motor to forward and reverse rotation.
As a further improvement of the application, the base and the mounting cylinder are both in cylindrical structures, the front end of the active antenna is fixedly connected with the guide cover, the mounting cylinder is provided with a notch for accommodating the active antenna, the guide cover is an arc-shaped cover, and the guide cover is matched with the notch on the surface of the mounting cylinder.
As a further development of the application, the transmission directions of both the first ratchet mechanism and the second ratchet mechanism are opposite.
As a further improvement of the application, the first ratchet mechanism comprises a first groove drum which is rotationally connected with the inner wall of the supporting drum, and a first pawl disc which is clamped with the first groove drum is nested in the first groove drum; the first groove drum is fixedly connected with the lower end of the first worm, and the lower end of the first pawl disc is fixedly connected with the prismatic shaft.
As a further improvement of the application, the second ratchet mechanism comprises a second grooved drum, and a second pawl disc clamped with the second grooved drum is nested in the second grooved drum; the second pawl disc is fixedly connected with a prismatic cylinder penetrating through the second groove cylinder, and the prismatic shaft penetrates through the prismatic cylinder and is connected with the prismatic cylinder in a clamping way.
As a further improvement of the application, the second groove drum is rotationally connected with a supporting plate fixedly connected with the inner wall of the base, the radial shaft is rotationally connected with the supporting plate through a bearing seat, the extension line of the radial shaft is intersected with the central axis of the supporting drum, and the second worm is rotationally connected with the inner wall of the base through the bearing seat.
As a further improvement of the application, the lifting cover is a rectangular cylinder with openings at the upper end and the lower end, the outer wall of the eccentric disc is fixedly connected with an eccentric column integrally formed with the eccentric disc, and the inner wall of the lifting cover is provided with a horizontal chute for the eccentric column to slide.
As a further improvement of the application, the base is of a hollow cylindrical structure, and the front end of the base is hinged with an arc-shaped door plate.
In summary, the present application realizes fast adjustment of the active antenna by the radiation tilt angle adjustment mechanism including the first ratchet mechanism and the radiation orientation angle adjustment mechanism including the second ratchet mechanism, and by driving the motor to perform forward rotation and reverse rotation, respectively starting one of the radiation tilt angle adjustment mechanism or the radiation orientation angle adjustment mechanism individually.
Drawings
Fig. 1 is a schematic perspective view of the present application in embodiment 1 of the present application;
fig. 2 is a schematic view showing the mounting structure of a support cylinder according to embodiment 1 of the present application;
FIG. 3 is a schematic cross-sectional view of the present application in embodiment 1 of the present application;
FIG. 4 is an enlarged schematic view of the structure shown at A in FIG. 3;
FIG. 5 is a schematic view showing an assembled structure of a first ratchet mechanism according to embodiment 1 of the present application;
FIG. 6 is a schematic diagram showing an assembled structure of a second ratchet mechanism according to embodiment 1 of the present application;
FIG. 7 is a schematic view showing a longitudinal sectional structure of the present application in embodiment 1 of the present application;
fig. 8 is a schematic diagram showing an assembled structure of an eccentric disc according to embodiment 1 of the present application;
fig. 9 is a schematic perspective view of a lifting cover according to embodiment 1 of the present application;
fig. 10 is a schematic view showing an assembly structure of a base in embodiment 2 of the present application;
fig. 11 is a schematic diagram showing an assembled structure of a mounting cylinder according to embodiment 2 of the present application.
The reference numerals in the figures illustrate:
1. a base; 101. arc door panels; 2. a mounting cylinder; 3. a support cylinder; 4. an active antenna; 5. a hinge base; 6. a traction rod; 7. a lifting cover; 701. a horizontal chute; 8. an eccentric disc; 9. a through shaft; 10. a first worm wheel; 11. a first worm; 12. a first ratchet mechanism; 1201. a first slot cylinder; 1202. a first detent disc; 13. a prismatic shaft; 14. a driving motor; 15. a passive gear ring; 16. a drive gear; 17. a radial shaft; 18. a second worm wheel; 19. a second worm; 20. a transmission gear; 21. a second ratchet mechanism; 2101. a second grooved drum; 2102. a second detent disc; 2103. a prismatic barrel; 22. a support plate; 23. a guide cover.
Detailed Description
2 embodiments of the present application will be described in detail with reference to the accompanying drawings.
Embodiment 1:
fig. 1-9 show a 5G base station with adjustable radiation angle, which comprises a base 1, the base 1 is rotatably connected with a supporting cylinder 3, the outer side of the supporting cylinder 3 is sleeved with a mounting cylinder 2 fixedly connected with the supporting cylinder, the front side of the mounting cylinder 2 is hinged with an active antenna 4, the active antenna 4 is connected with a radiation dip angle adjusting mechanism installed in the mounting cylinder 2, the radiation dip angle adjusting mechanism comprises a traction rod 6 hinged with the inner wall of the active antenna 4, the upper end of the traction rod 6 is hinged with a lifting cover 7, an eccentric disc 8 clamped with the lifting cover 7 is nested in the lifting cover 7, the eccentric disc 8 is fixedly connected with a penetrating shaft 9 penetrating through the supporting cylinder 3, the inner side part of the penetrating shaft 9 positioned in the supporting cylinder 3 is sleeved with a first worm wheel 10, the first worm wheel 10 is meshed with a first worm 11, the first worm 11 extends into the base 1 and is connected with a first ratchet mechanism 12, and the first ratchet mechanism 12 is connected with a driving motor 14 installed in the base 1 through a prism shaft 13;
referring to fig. 4, a radiation orientation angle adjusting mechanism is installed in the base 1, the radiation orientation angle adjusting mechanism includes a driven gear ring 15 fixed at the lower end of the supporting cylinder 3, the driven gear ring 15 is meshed with a driving gear 16, the driving gear 16 is fixedly connected with a radial shaft 17, the radial shaft 17 is sleeved with a second worm wheel 18, the second worm wheel 18 is meshed with a second worm 19, the second worm 19 is connected with a second ratchet mechanism 21 through a transmission gear 20, and the second ratchet mechanism 21 is sleeved on the prismatic shaft 13 and is clamped with the prismatic shaft 13.
Specifically, when the radiation inclination angle of the active antenna 4 needs to be adjusted, the driving motor 14 is started, the driving motor 14 drives the first worm 11 to rotate through the prismatic shaft 13 and the first ratchet mechanism 12, the first worm 11 drives the through shaft 9 to rotate through the first worm wheel 10, the through shaft 9 drives the lifting cover 7 to move up and down through the eccentric disc 8, and the lifting cover 7 drives the active antenna 4 to rotate through the traction rod 6, so that the radiation inclination angle of the active antenna 4 is adjusted;
when the horizontal orientation angle of the active antenna 4 needs to be adjusted, the driving motor 14 is started to rotate reversely, the driving motor 14 drives the transmission gear 20 to rotate through the prismatic shaft 13 and the second ratchet mechanism 21, the transmission gear 20 drives the radial shaft 17 to rotate through the second worm 19 and the second worm wheel 18, the radial shaft 17 drives the driven gear ring 15 and the supporting cylinder 3 to rotate through the driving gear 16, the supporting cylinder 3 drives the mounting cylinder 2 to rotate, and then the active antenna 4 is driven to rotate horizontally, so that the radiation orientation angle of the active antenna is adjusted.
Compared with the traditional 5G base station, manual adjustment is needed on the site of the base station, the technical scheme of the application realizes the rapid adjustment of the radiation orientation angle and the radiation inclination angle respectively through the forward rotation and the reverse rotation of the driving motor 14, and the remote adjustment is convenient, and the explanation is that the monitoring sensors for remotely adjusting the forward rotation and the reverse rotation of the driving motor 14 and detecting the rotation angle of the driving motor 14 are all in the prior art, and the application is not repeated, and mainly protects the physical structure of the adjusting mechanism.
Referring to fig. 4-6, in the present embodiment, the transmission directions of the first ratchet mechanism 12 and the second ratchet mechanism 21 are opposite.
Specifically, when the driving motor 14 is rotated forward and backward, only one of the first ratchet mechanism 12 and the second ratchet mechanism 21 realizes transmission, that is, only one of the radiation inclination angle adjusting mechanism and the radiation orientation angle adjusting mechanism is adjusted in operation.
In the embodiment, the first ratchet mechanism 12 comprises a first groove barrel 1201 rotationally connected with the inner wall of the supporting barrel 3, and a first pawl disc 1202 clamped with the first groove barrel 1201 is nested in the first groove barrel 1201; the first groove drum 1201 is fixedly connected with the lower end of the first worm 11, and the lower end of the first pawl plate 1202 is fixedly connected with the prism shaft 13.
Specifically, the prism shaft 13 drives the first worm 11 to rotate through the first ratchet mechanism 12.
In this embodiment, the second ratchet mechanism 21 includes a second slot 2101, and a second pawl disc 2102 engaged with the second slot 2101 is nested in the second slot 2101; the second click disc 2102 is fixedly connected with a prismatic cylinder 2103 penetrating through the second groove cylinder 2101, and the prismatic shaft 13 penetrates through the prismatic cylinder 2103 and is connected with the prismatic cylinder in a clamping mode.
Referring to fig. 4, in the present embodiment, a second groove drum 2101 is rotatably connected with a support plate 22 fixedly connected with an inner wall of the base 1, a radial shaft 17 is rotatably connected with the support plate 22 through a bearing block, an extension line of the radial shaft 17 intersects with a central axis of the support drum 3, and a second worm 19 is rotatably connected with the inner wall of the base 1 through the bearing block.
Specifically, the prism shaft 13 rotates the second worm 19 via the second ratchet mechanism 21.
Referring to fig. 9, in the present embodiment, the lifting cover 7 is a rectangular cylinder with openings at the upper and lower ends, an eccentric column integrally formed with the eccentric disc 8 is fixedly connected to the outer wall of the eccentric disc, and a horizontal chute 701 for sliding the eccentric column is provided on the inner wall of the lifting cover 7.
Specifically, when the eccentric disc 8 rotates, the eccentric column drives the lifting cover 7 to move up and down.
In this embodiment, the lower end of the active antenna 4 is hinged to the mounting cylinder 2 through a hinge base 5.
Embodiment 2:
fig. 10-11 show a 5G base station with adjustable radiation angle, on the basis of the embodiment in fig. 1, both a base 1 and a mounting cylinder 2 are in cylindrical structures, the front end of an active antenna 4 is fixedly connected with a guide cover 23, and the lower end of the base 1 is fixedly connected with a bolt mounting seat.
Specifically, the cylindrical base 1 and the mounting cylinder 2 enable the whole 5G base station to be in a cylindrical structure, and have good wind resistance and rain and snow resistance effects.
In this embodiment, the installation cylinder 2 is provided with a notch for accommodating the active antenna 4, the air guide sleeve 23 is an arc-shaped sleeve, and the air guide sleeve 23 is matched with the notch on the surface of the installation cylinder 2.
Specifically, after the active antenna 4 is recovered into the installation cylinder 2, the air guide sleeve 23 is attached to the surface of the installation cylinder 2 to form a finished cylindrical structure, so that the wind resistance and the rain and snow resistance are improved.
In this embodiment, the base 1 is a hollow cylindrical structure, and an arc door panel 101 is hinged to the front end of the base.
Specifically, the box is convenient to install and overhaul equipment.
The present application is not limited to the above-described embodiments, which are adopted in connection with the actual demands, and various changes made by the person skilled in the art without departing from the spirit of the present application are still within the scope of the present application.

Claims (8)

1. The utility model provides a but 5G basic station of angle of radiation is adjusted, a serial communication port, including base (1), base (1) rotate and are connected with support section of thick bamboo (3), support section of thick bamboo (3) outside cup joint rather than fixed connection's installation section of thick bamboo (2), installation section of thick bamboo (2) front side articulates has active antenna (4), active antenna (4) are connected with the radiation inclination adjustment mechanism of installing in installation section of thick bamboo (2), radiation inclination adjustment mechanism includes with active antenna (4) inner wall articulated traction lever (6), traction lever (6) upper end articulates has lift cap (7), lift cap (7) are nested have with eccentric disc (8) rather than the joint, eccentric disc (8) fixedly connected with runs through support section of thick bamboo (3) through axle (9), first worm wheel (10) have been cup jointed in the inboard part of running through axle (9) in support section of thick bamboo (3), first worm wheel (10) meshing has first worm (11), first worm (11) extend to base (1) and are connected with first ratchet (12), first ratchet (12) are connected with in base (1) through motor (13) drive post (14);
install radiation orientation angle adjustment mechanism in base (1), radiation orientation angle adjustment mechanism is including fixing driven gear ring (15) at support section of thick bamboo (3) lower extreme, driven gear ring (15) meshing has driving gear (16), driving gear (16) fixedly connected with radial axle (17), radial axle (17) have cup jointed second worm wheel (18), second worm wheel (18) meshing has second worm (19), second worm (19) are connected with second ratchet (21) through drive gear (20), second ratchet (21) cup joint on prismatic axle (13) and with its joint.
2. The 5G base station with the adjustable radiation angle according to claim 1, wherein the base (1) and the mounting cylinder (2) are of cylindrical structures, the front end of the active antenna (4) is fixedly connected with the guide cover (23), the mounting cylinder (2) is provided with a notch for accommodating the active antenna (4), the guide cover (23) is an arc-shaped cover, and the guide cover (23) is matched with the notch on the surface of the mounting cylinder (2).
3. A 5G base station with adjustable radiation angle according to claim 1, characterized in that the transmission directions of the first ratchet mechanism (12) and the second ratchet mechanism (21) are opposite.
4. A 5G base station with adjustable radiation angle according to claim 3, wherein the first ratchet mechanism (12) comprises a first slot cylinder (1201) rotatably connected with the inner wall of the support cylinder (3), and a first pawl disc (1202) clamped with the first slot cylinder (1201) is nested in the first slot cylinder; the first groove drum (1201) is fixedly connected with the lower end of the first worm (11), and the lower end of the first pawl disc (1202) is fixedly connected with the prismatic shaft (13).
5. The adjustable radiation angle 5G base station of claim 4, wherein the second ratchet mechanism (21) comprises a second slot (2101), and a second pawl disc (2102) is nested in the second slot (2101); the second pawl disc (2102) is fixedly connected with a prismatic cylinder (2103) penetrating through the second groove cylinder (2101), and the prismatic shaft (13) penetrates through the prismatic cylinder (2103) and is connected with the prismatic cylinder in a clamping mode.
6. The 5G base station with adjustable radiation angle according to claim 5, wherein the second grooved drum (2101) is rotatably connected with a support plate (22) fixedly connected with the inner wall of the base (1), the radial shaft (17) is rotatably connected with the support plate (22) through a bearing seat, an extension line of the radial shaft (17) intersects with the central axis of the support drum (3), and the second worm (19) is rotatably connected with the inner wall of the base (1) through the bearing seat.
7. The 5G base station of claim 1, wherein the lifting cover (7) is a rectangular cylinder with openings at the upper end and the lower end, an eccentric column integrally formed with the eccentric column is fixedly connected to the outer wall of the eccentric disc (8), and a horizontal chute (701) for sliding the eccentric column is formed in the inner wall of the lifting cover (7).
8. A 5G base station with adjustable radiation angle according to claim 2, wherein the base (1) is a hollow cylindrical structure, and the front end of the base is hinged with an arc door plate (101).
CN202310894983.7A 2023-07-20 2023-07-20 5G base station capable of adjusting radiation angle Active CN116613528B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310894983.7A CN116613528B (en) 2023-07-20 2023-07-20 5G base station capable of adjusting radiation angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310894983.7A CN116613528B (en) 2023-07-20 2023-07-20 5G base station capable of adjusting radiation angle

Publications (2)

Publication Number Publication Date
CN116613528A true CN116613528A (en) 2023-08-18
CN116613528B CN116613528B (en) 2023-10-20

Family

ID=87685802

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310894983.7A Active CN116613528B (en) 2023-07-20 2023-07-20 5G base station capable of adjusting radiation angle

Country Status (1)

Country Link
CN (1) CN116613528B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117096605A (en) * 2023-10-17 2023-11-21 西安千鱼网络科技有限公司 Wireless communication transmission device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590825A (en) * 1991-09-30 1993-04-09 Nec Corp Antenna angle adjusting device
WO2018049838A1 (en) * 2016-09-18 2018-03-22 京信通信技术(广州)有限公司 Antenna angle adjusting device
KR20190143784A (en) * 2018-06-21 2019-12-31 김문규 Antenna support apparatus for base stations
CN112117543A (en) * 2020-10-10 2020-12-22 王盛 5G communication base station with independent adjusting antenna
CN215933829U (en) * 2021-10-25 2022-03-01 中国联合网络通信集团有限公司 Antenna adjusting assembly and antenna device
CN215989254U (en) * 2021-08-26 2022-03-08 陈朝珠 Antenna steering control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590825A (en) * 1991-09-30 1993-04-09 Nec Corp Antenna angle adjusting device
WO2018049838A1 (en) * 2016-09-18 2018-03-22 京信通信技术(广州)有限公司 Antenna angle adjusting device
KR20190143784A (en) * 2018-06-21 2019-12-31 김문규 Antenna support apparatus for base stations
CN112117543A (en) * 2020-10-10 2020-12-22 王盛 5G communication base station with independent adjusting antenna
CN215989254U (en) * 2021-08-26 2022-03-08 陈朝珠 Antenna steering control device
CN215933829U (en) * 2021-10-25 2022-03-01 中国联合网络通信集团有限公司 Antenna adjusting assembly and antenna device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117096605A (en) * 2023-10-17 2023-11-21 西安千鱼网络科技有限公司 Wireless communication transmission device
CN117096605B (en) * 2023-10-17 2024-02-02 西安千鱼网络科技有限公司 Wireless communication transmission device

Also Published As

Publication number Publication date
CN116613528B (en) 2023-10-20

Similar Documents

Publication Publication Date Title
CN116613528B (en) 5G base station capable of adjusting radiation angle
CN201349050Y (en) Vehicle-mounted mobile communication base station antenna seat
CN114007279A (en) Mountain is with fixed 5G basic station with adjustable
CN212627777U (en) Photovoltaic mounting bracket convenient to angle regulation
CN208842543U (en) A kind of lifting electric vehicle sunshade
CN210029877U (en) Lifting frame for automobile maintenance
CN111994806A (en) Aerial working platform car for glass installation
CN218153474U (en) Monitoring equipment mounting bracket
CN220798165U (en) Stable-structure solar panel fixing support
CN215807599U (en) Support for receiver of internet
CN220744939U (en) Wire winding device for wire production
CN219689228U (en) Auxiliary supporting device for street lamp installation
CN215798293U (en) Sun-proof solar protection devices with adjustable angle for fork truck
CN220891695U (en) Monitoring device
CN220653593U (en) X-ray tube rotating mechanism
CN220106895U (en) Adjustable base station antenna
CN219802487U (en) Outdoor monitoring signal relay station
CN219797098U (en) Telescopic street lamp pole
CN213366773U (en) Electronic communication antenna support
CN220336594U (en) Integrated high-cover tent for sojourn
CN217054075U (en) Sunshine room solar protection devices with adjustable
CN219825002U (en) Luminous signpost of road traffic facilities
CN115333454B (en) Telescopic rod for photovoltaic support frame based on roller rack transmission
CN219365606U (en) Engineering communication tower
CN220535976U (en) Surveying instrument mount for unmanned aerial vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant