CN116611274B - A visual numerical simulation method for groundwater pollution transport - Google Patents
A visual numerical simulation method for groundwater pollution transport Download PDFInfo
- Publication number
- CN116611274B CN116611274B CN202310901626.9A CN202310901626A CN116611274B CN 116611274 B CN116611274 B CN 116611274B CN 202310901626 A CN202310901626 A CN 202310901626A CN 116611274 B CN116611274 B CN 116611274B
- Authority
- CN
- China
- Prior art keywords
- model
- simulation
- dimensional
- data
- coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 104
- 238000000034 method Methods 0.000 title claims abstract description 78
- 238000003895 groundwater pollution Methods 0.000 title claims abstract description 43
- 230000000007 visual effect Effects 0.000 title abstract description 3
- 238000009792 diffusion process Methods 0.000 claims abstract description 29
- 230000008569 process Effects 0.000 claims abstract description 28
- 239000003344 environmental pollutant Substances 0.000 claims abstract description 19
- 231100000719 pollutant Toxicity 0.000 claims abstract description 19
- 238000013508 migration Methods 0.000 claims abstract description 18
- 230000005012 migration Effects 0.000 claims abstract description 18
- 238000012937 correction Methods 0.000 claims abstract description 17
- 238000004458 analytical method Methods 0.000 claims abstract description 8
- 230000006870 function Effects 0.000 claims description 44
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 39
- 239000003673 groundwater Substances 0.000 claims description 21
- 238000003860 storage Methods 0.000 claims description 17
- 230000035699 permeability Effects 0.000 claims description 15
- 230000008859 change Effects 0.000 claims description 12
- 230000008878 coupling Effects 0.000 claims description 12
- 238000010168 coupling process Methods 0.000 claims description 12
- 238000005859 coupling reaction Methods 0.000 claims description 12
- 238000009826 distribution Methods 0.000 claims description 11
- 238000001179 sorption measurement Methods 0.000 claims description 11
- 239000002156 adsorbate Substances 0.000 claims description 10
- 238000004422 calculation algorithm Methods 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000005086 pumping Methods 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 5
- 230000000903 blocking effect Effects 0.000 claims description 4
- 239000012530 fluid Substances 0.000 claims description 4
- 230000011218 segmentation Effects 0.000 claims description 4
- 238000005553 drilling Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 10
- 238000012545 processing Methods 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 13
- 238000012800 visualization Methods 0.000 description 9
- 238000004590 computer program Methods 0.000 description 7
- 230000001788 irregular Effects 0.000 description 6
- 238000007726 management method Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000006757 chemical reactions by type Methods 0.000 description 2
- 238000013523 data management Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000002939 conjugate gradient method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000011438 discrete method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/26—Government or public services
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/20—Finite element generation, e.g. wire-frame surface description, tesselation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/08—Fluids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/152—Water filtration
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Tourism & Hospitality (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Development Economics (AREA)
- Educational Administration (AREA)
- Computer Hardware Design (AREA)
- Computer Graphics (AREA)
- Economics (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明实施例中提供了一种地下水污染运移可视化数值模拟方法,属于数据处理技术领域,具体包括:获取目标区域的地下水污染数据;根据地下水污染数据构造概念模型;根据概念模型构造地质体结构模型;根据空间数据、概念模型和结构模型构造三维网格模型;根据三维网格模型建立属性场模型;根据三维网格模型和属性场模型建立多求解器类型的仿真数值模型,使用仿真数值模型进行流场模拟和污染物扩散模拟,并且在模拟过程中利用参数修正模块进行参数修正,构建可变参数模型;根据仿真数值模型和可变参数模型迭代进行仿真模拟,并生成分析结果和数据报告。通过本发明的方案,提高了预测效率、适应性和精准度。
The embodiment of the present invention provides a visual numerical simulation method for groundwater pollution migration, which belongs to the field of data processing technology and specifically includes: obtaining groundwater pollution data in the target area; constructing a conceptual model based on the groundwater pollution data; and constructing a geological body structure based on the conceptual model. Model; construct a three-dimensional grid model based on spatial data, conceptual model and structural model; establish an attribute field model based on the three-dimensional grid model; establish a multi-solver type simulation numerical model based on the three-dimensional grid model and attribute field model, and use the simulation numerical model Carry out flow field simulation and pollutant diffusion simulation, and use the parameter correction module to modify parameters during the simulation process to build a variable parameter model; conduct simulation iteratively based on the simulation numerical model and variable parameter model, and generate analysis results and data reports . Through the solution of the present invention, the prediction efficiency, adaptability and accuracy are improved.
Description
技术领域Technical Field
本发明实施例涉及数据处理技术领域,尤其涉及一种地下水污染运移可视化数值模拟方法。The embodiments of the present invention relate to the field of data processing technology, and in particular to a method for visualizing numerical simulation of groundwater pollution migration.
背景技术Background Art
目前,随着城市化的快速发展和工业生产的不断增加,地下水污染问题越来越受到重视。为了更好地理解和控制地下水污染,采用地下水污染可视化模拟技术,即通过三维可视化技术将地下水污染情况以及溶质运输规律形象地呈现出来。地下水污染可视化模拟技术是将地下水流动与地下水污染模型三维可视化相结合,将实际采集的水文地质数据与计算程序相结合,从而构建出完整的地下水流动和污染传输模型。通过这种模拟技术,可以实时观察到地下水的流动和污染程度,从而更好地预测和控制地下水的污染扩散。地下水污染可视化模拟技术需要采用一定的建模方法和算法,现有的技术存在数据输入繁琐,而且现有技术缺少水文地质基础数据管理系统,使得数据无法集中的保存,为后期的研究造成了不便,使得数据处理效率低、预测精度不高。At present, with the rapid development of urbanization and the continuous increase in industrial production, groundwater pollution has received more and more attention. In order to better understand and control groundwater pollution, groundwater pollution visualization simulation technology is used, that is, the groundwater pollution situation and solute transport law are vividly presented through three-dimensional visualization technology. Groundwater pollution visualization simulation technology combines groundwater flow with three-dimensional visualization of groundwater pollution model, and combines the actual collected hydrogeological data with the calculation program to construct a complete groundwater flow and pollution transmission model. Through this simulation technology, the flow and pollution degree of groundwater can be observed in real time, so as to better predict and control the spread of groundwater pollution. Groundwater pollution visualization simulation technology requires the use of certain modeling methods and algorithms. The existing technology has cumbersome data input, and the existing technology lacks a hydrogeological basic data management system, which makes it impossible to save data in a centralized manner, causing inconvenience for later research, resulting in low data processing efficiency and low prediction accuracy.
可见,亟需一种处理效率、适应性和精准度高的地下水污染运移可视化数值模拟方法。It can be seen that there is an urgent need for a visual numerical simulation method for groundwater pollution migration with high processing efficiency, adaptability and accuracy.
发明内容Summary of the invention
有鉴于此,本发明实施例提供一种地下水污染运移可视化数值模拟方法,至少部分解决现有技术中存在预测效率、适应性和精准度较差的问题。In view of this, an embodiment of the present invention provides a method for visualizing numerical simulation of groundwater pollution migration, which at least partially solves the problems of poor prediction efficiency, adaptability and accuracy in the prior art.
本发明实施例提供了一种预测效率、适应性和精准度方法,包括:The embodiment of the present invention provides a method for predicting efficiency, adaptability and accuracy, including:
步骤1,获取目标区域的地下水污染数据;Step 1, obtaining groundwater pollution data in the target area;
步骤2,根据地下水污染数据构造概念模型;Step 2, construct a conceptual model based on groundwater pollution data;
所述步骤2具体包括:The step 2 specifically includes:
根据地下水污染数据中的水文地质平面图和剖面图,推断后续构建场地三维模型的基础上框定模拟范围,建立概念模型;Based on the hydrogeological plan and profile in the groundwater pollution data, the simulation scope is framed and the conceptual model is established on the basis of the subsequent construction of the three-dimensional model of the site;
步骤3,根据概念模型构造地质体结构模型;Step 3, constructing a geological body structure model based on the conceptual model;
所述步骤3具体包括:The step 3 specifically includes:
基于概念模型,结合观测井分布表、钻孔岩性数据、地质剖面图建立地质体结构模型;Based on the conceptual model, the geological structure model is established by combining the observation well distribution table, drilling lithology data, and geological profiles;
步骤4,根据空间数据、概念模型和结构模型构造三维网格模型;Step 4, constructing a three-dimensional grid model based on the spatial data, the conceptual model and the structural model;
所述步骤4具体包括:The step 4 specifically includes:
基于空间数据、概念模型和结构模型,利用三维网格剖分算法将三维空间分割为单元体,所有单元体集合构成三维网格模型;Based on spatial data, conceptual model and structural model, the three-dimensional space is divided into unit bodies using a three-dimensional meshing algorithm, and all unit body collections constitute a three-dimensional mesh model;
步骤5,根据三维网格模型建立属性场模型;Step 5, establishing an attribute field model based on the three-dimensional grid model;
所述步骤5具体包括:The step 5 specifically includes:
采用插值方法为三维网格模型切割的每个网格分配初始属性形成属性场模型,其中,初始属性包括初始水位、初始污染物浓度、储水率、延迟因子、有效孔隙度、弥散系数、渗透系数和边界条件;An interpolation method is used to assign initial attributes to each grid cut from the three-dimensional grid model to form an attribute field model, wherein the initial attributes include initial water level, initial pollutant concentration, water storage rate, delay factor, effective porosity, diffusion coefficient, permeability coefficient and boundary conditions;
步骤6,根据三维网格模型和属性场模型建立多求解器类型的仿真数值模型,使用仿真数值模型进行流场模拟和污染物扩散模拟,并且在模拟过程中利用参数修正模块进行参数修正,构建可变参数模型;Step 6, establishing a multi-solver type simulation numerical model based on the three-dimensional grid model and the attribute field model, using the simulation numerical model to perform flow field simulation and pollutant diffusion simulation, and using the parameter correction module to perform parameter correction during the simulation process to construct a variable parameter model;
所述步骤6具体包括:The step 6 specifically includes:
根据三维网格模型和属性场模型,结合地下水流和溶质运移的影响因素,采用有限差分法在节点和单元上建立质量守恒方程和运动方程,建立使用多求解器类型的仿真数值模型,进行流场模拟和污染物扩散模拟,并且在模拟过程中利用参数修正模型进行参数修正,构建可变参数模型;Based on the three-dimensional grid model and attribute field model, combined with the influencing factors of groundwater flow and solute transport, the finite difference method is used to establish the mass conservation equation and motion equation at the nodes and units, and a simulation numerical model using multiple solver types is established to perform flow field simulation and pollutant diffusion simulation. In the simulation process, the parameter correction model is used to correct the parameters and construct a variable parameter model.
步骤7,根据仿真数值模型和可变参数模型迭代进行仿真模拟,并生成分析结果和数据报告。Step 7, iteratively perform simulation based on the simulation numerical model and the variable parameter model, and generate analysis results and data reports.
根据本发明实施例的一种具体实现方式,所述利用三维网格剖分算法将三维空间分割为单元体的步骤,包括:According to a specific implementation of an embodiment of the present invention, the step of dividing the three-dimensional space into unit cells using a three-dimensional mesh generation algorithm includes:
建立包围盒,在包围盒范围内划分立方体元,对于每个小立方体确定其八个顶点的函数值,其中,所述顶点的函数值的三元函数标量值 标识点与三元函数所定义的隐式曲面的空间位置关系为Create a bounding box, divide the cube elements within the bounding box, and determine the function values of the eight vertices of each small cube, where the function values of the vertices are The scalar value of the ternary function The spatial position relationship between the identification point and the implicit surface defined by the ternary function is:
; ;
选取对应的隐式函数表达式,剖分过程中根据等值面函数提取每两个地层面之间的立方体元的隐式函数值,作为其地层标识,形成单元体。The corresponding implicit function expression is selected, and during the segmentation process, the implicit function value of the cubic element between every two stratigraphic layers is extracted according to the isosurface function as its stratigraphic identifier to form a unit body.
根据本发明实施例的一种具体实现方式,所述初始属性的表达式为According to a specific implementation of the embodiment of the present invention, the expression of the initial attribute is:
其中,表示网格单元中心点处的插值函数,表示单元中心点处的属性值,所述插值函数以采用反距离权重法,以最大搜索半径和最大搜索点数为限制条件。in, Represents a grid cell The interpolation function at the center point, It represents the attribute value at the center point of the unit. The interpolation function adopts the inverse distance weighted method with the maximum search radius and the maximum number of search points as constraints.
根据本发明实施例的一种具体实现方式,所述求解器类型包括共轭梯度求解器、双稳定共轭梯度求解器和多重网格求解器。According to a specific implementation of an embodiment of the present invention, the solver types include a conjugate gradient solver, a bistable conjugate gradient solver and a multi-grid solver.
根据本发明实施例的一种具体实现方式,所述仿真数值模型的表达式为According to a specific implementation of the embodiment of the present invention, the expression of the simulation numerical model is:
其中,表示有限差分体元节点数,表示体元索引下标,表示时刻第个节点的水头值;in, represents the number of finite difference volume element nodes, represents the voxel index subscript, express Moment The water head value of each node;
系数为针对水头的水头变化率,表示为:coefficient For water head The head change rate is expressed as:
其中,为方向的渗透系数,为三维方向的集合,为当前节点的水头估计值,通过该式求解其方向上的变化率得到该节点总水头变化率;in, for The permeability coefficient of the direction, is a set of three-dimensional directions, For the current The estimated water head value of the node is solved by this formula The rate of change in direction is the total head change rate of the node;
系数为针对水头的渗流项,表示为:coefficient For water head The seepage term is expressed as:
其中,下标代表方程中节点的二维索引,为储水量,为时阶,为当前节点的水头估计值;Among them, the subscript represents the two-dimensional index of the node in the equation, is the water storage capacity, For the time stage, For the current Estimated hydraulic head at the node;
系数为源汇项,表示为:coefficient is the source-sink term, expressed as:
其中,为流体源汇项;in, is the fluid source and sink term;
可变参数模型的渗流耦合方程和对流-弥散耦合方程表示为:The seepage coupling equation and convection-diffusion coupling equation of the variable parameter model are expressed as:
其中,为渗透系数,为源汇项,为水头,为有效孔隙度,为阻滞因子,为弥散系数,为源汇项,为为吸附物密度,为各种化学反应,为吸附项速率常数,为动力吸附速率系数,为单位质量吸附物所吸附的化合物的质量,为溶质浓度。in, is the permeability coefficient, is the source-sink term, For water head, is the effective porosity, is the blocking factor, is the diffusion coefficient, is the source-sink term, is the density of the adsorbate, For various chemical reactions, is the adsorption rate constant, is the kinetic adsorption rate coefficient, is the mass of the compound adsorbed per unit mass of the adsorbate, is the solute concentration.
本发明实施例中的处理效率、适应性和精准度方案,包括:步骤1,获取目标区域的地下水污染数据;步骤2,根据地下水污染数据构造概念模型;步骤3,根据概念模型构造地质体结构模型;步骤4,根据空间数据、概念模型和结构模型构造三维网格模型;步骤5,根据三维网格模型建立属性场模型;步骤6,根据三维网格模型和属性场模型建立多求解器类型的仿真数值模型,使用仿真数值模型进行流场模拟和污染物扩散模拟,并且在模拟过程中利用参数修正模块进行参数修正,构建可变参数模型;步骤7,根据仿真数值模型和可变参数模型迭代进行仿真模拟,并生成分析结果和数据报告。The processing efficiency, adaptability and accuracy scheme in the embodiment of the present invention includes: step 1, obtaining groundwater pollution data of the target area; step 2, constructing a conceptual model based on the groundwater pollution data; step 3, constructing a geological body structure model based on the conceptual model; step 4, constructing a three-dimensional grid model based on the spatial data, the conceptual model and the structure model; step 5, establishing an attribute field model based on the three-dimensional grid model; step 6, establishing a multi-solver type simulation numerical model based on the three-dimensional grid model and the attribute field model, using the simulation numerical model to perform flow field simulation and pollutant diffusion simulation, and using the parameter correction module to perform parameter correction during the simulation process to construct a variable parameter model; step 7, iteratively performing simulation simulation based on the simulation numerical model and the variable parameter model, and generating analysis results and data reports.
本发明实施例的有益效果为:通过本发明的方案,通过建模过程中对数据的设置和管理查看不同时期的数据并分析,对模型进行查看和修改,针对不同情况下的污染运移采用不同模拟参数和求解器,并建立参数反馈模块,实时更新参数列表,提高地下水污染数值模拟的效率和精确性;将地下水污染监测、采集和模拟的数据及参数进行集成化、可视化,可直观了解模拟流程环节,提升场地污染的综合管理与评估预测能力。The beneficial effects of the embodiments of the present invention are as follows: through the scheme of the present invention, data of different periods can be viewed and analyzed by setting and managing data during the modeling process, the model can be viewed and modified, different simulation parameters and solvers can be used for pollution migration under different circumstances, and a parameter feedback module can be established to update the parameter list in real time, thereby improving the efficiency and accuracy of numerical simulation of groundwater pollution; the data and parameters of groundwater pollution monitoring, collection and simulation are integrated and visualized, the simulation process links can be intuitively understood, and the comprehensive management and evaluation and prediction capabilities of site pollution can be improved.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings required for use in the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without creative work.
图1为本发明实施例提供的一种地下水污染运移可视化数值模拟方法的流程示意图;FIG1 is a schematic diagram of a flow chart of a method for visualizing numerical simulation of groundwater pollution migration provided by an embodiment of the present invention;
图2为本发明实施例提供的一种地下水污染运移可视化数值模拟方法的具体实施过程示意图;FIG2 is a schematic diagram of a specific implementation process of a method for visualizing numerical simulation of groundwater pollution migration provided by an embodiment of the present invention;
图3为本发明实施例提供的一种地下水污染模拟方法应用实例中建立的污染场地概念模型示意图;FIG3 is a schematic diagram of a conceptual model of a contaminated site established in an application example of a groundwater contamination simulation method provided by an embodiment of the present invention;
图4为本发明实施例提供的一种地下水污染模拟方法应用实例中建立的地质体结构模型示意图;FIG4 is a schematic diagram of a geological body structure model established in an application example of a groundwater pollution simulation method provided by an embodiment of the present invention;
图5为本发明实施例提供的一种地下水污染模拟方法应用实例中网格剖分获取的三维网格模型示意图;FIG5 is a schematic diagram of a three-dimensional grid model obtained by gridding in an application example of a groundwater pollution simulation method provided by an embodiment of the present invention;
图6为本发明实施例提供的一种地下水污染模拟方法应用实例中的属性参数赋值和数值模拟求解流程示意图;6 is a schematic diagram of the attribute parameter assignment and numerical simulation solution process in an application example of a groundwater pollution simulation method provided by an embodiment of the present invention;
图7为本发明实施例提供的一种地下水污染模拟方法应用实例中集成化系统中的结构图及结果的三维展示示意图。7 is a schematic diagram showing a three-dimensional display of a structure diagram and results in an integrated system in an application example of a groundwater pollution simulation method provided by an embodiment of the present invention.
具体实施方式DETAILED DESCRIPTION
下面结合附图对本发明实施例进行详细描述。The embodiments of the present invention are described in detail below with reference to the accompanying drawings.
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following describes the embodiments of the present invention through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. The present invention can also be implemented or applied through other different specific embodiments, and the details in this specification can also be modified or changed in various ways based on different viewpoints and applications without departing from the spirit of the present invention. It should be noted that the following embodiments and features in the embodiments can be combined with each other without conflict. Based on the embodiments in the present invention, all other embodiments obtained by ordinary technicians in this field without making creative work belong to the scope of protection of the present invention.
需要说明的是,下文描述在所附权利要求书的范围内的实施例的各种方面。应显而易见,本文中所描述的方面可体现于广泛多种形式中,且本文中所描述的任何特定结构及/或功能仅为说明性的。基于本发明,所属领域的技术人员应了解,本文中所描述的一个方面可与任何其它方面独立地实施,且可以各种方式组合这些方面中的两者或两者以上。举例来说,可使用本文中所阐述的任何数目个方面来实施设备及/或实践方法。另外,可使用除了本文中所阐述的方面中的一或多者之外的其它结构及/或功能性实施此设备及/或实践此方法。It should be noted that various aspects of the embodiments within the scope of the appended claims are described below. It should be apparent that the aspects described herein can be embodied in a wide variety of forms, and any specific structure and/or function described herein is merely illustrative. Based on the present invention, it should be understood by those skilled in the art that an aspect described herein can be implemented independently of any other aspect, and two or more of these aspects can be combined in various ways. For example, any number of aspects described herein can be used to implement the device and/or practice the method. In addition, other structures and/or functionalities other than one or more of the aspects described herein can be used to implement this device and/or practice this method.
还需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。It should also be noted that the illustrations provided in the following embodiments are only schematic illustrations of the basic concept of the present invention. The drawings only show components related to the present invention rather than being drawn according to the number, shape and size of components in actual implementation. In actual implementation, the type, quantity and proportion of each component may be changed arbitrarily, and the component layout may also be more complicated.
另外,在以下描述中,提供具体细节是为了便于透彻理解实例。然而,所属领域的技术人员将理解,可在没有这些特定细节的情况下实践所述方面。Additionally, in the following description, specific details are provided to facilitate a thorough understanding of the examples. However, one skilled in the art will appreciate that the aspects described may be practiced without these specific details.
本发明实施例提供一种地下水污染运移可视化数值模拟方法,所述方法可以应用于地下水污染物迁移规律的分析过程中。An embodiment of the present invention provides a method for visualizing the numerical simulation of groundwater pollution migration, which can be applied to the analysis process of groundwater pollutant migration rules.
参见图1,为本发明实施例提供的一种地下水污染运移可视化数值模拟方法的流程示意图。如图1和图2所示,所述方法主要包括以下步骤:Referring to FIG1 , a flow chart of a method for visualizing the migration of groundwater pollution provided by an embodiment of the present invention is shown. As shown in FIG1 and FIG2 , the method mainly includes the following steps:
步骤1,获取目标区域的地下水污染数据;Step 1, obtaining groundwater pollution data in the target area;
具体实施时,通过多种数据采集方式获取地下水污染源、地下水污染物含量、地下水流速等相关数据,并且为模拟数据的输入做多数据源预处理。采集方式包括场地监测和样品实验,采集到的数据经过分析和预处理,根据数据类型和特点整理为多个数据集,以便后续处理和分析。设计支持源数据的包括标准格式及自定义格式的多种数据结构输入程序,保证数据读取的完整性。In the specific implementation, various data collection methods are used to obtain relevant data such as groundwater pollution sources, groundwater pollutant content, groundwater flow rate, etc., and multiple data sources are preprocessed for the input of simulation data. The collection methods include site monitoring and sample experiments. The collected data are analyzed and preprocessed, and organized into multiple data sets according to data types and characteristics for subsequent processing and analysis. Design a variety of data structure input programs that support source data, including standard formats and custom formats, to ensure the integrity of data reading.
例如,获取地质平面图、地质剖面图、观测井分布图:以某重金属污染场地为例,通过详细场地调查报告作为地图来源,并在平面图和剖面图地图上标记观测井坐标分布。For example, obtain geological plan maps, geological profile maps, and observation well distribution maps: Taking a heavy metal contaminated site as an example, use a detailed site investigation report as the map source, and mark the distribution of observation well coordinates on the plan map and profile map.
进一步地,对调查报告进行分析,将所获得的信息数据分类整理并规范化,具体地,空间数据规范为坐标加地层标记的形式并录入数据文件,非空间数据以顺序表格形式存储为通用文本或CSV表格文件,两种数据均建立总的索引查询表便于后续索引。Furthermore, the survey report was analyzed, and the information data obtained were classified, organized and standardized. Specifically, the spatial data was standardized in the form of coordinates plus stratigraphic marks and entered into data files, and the non-spatial data was stored in a sequential table format as a general text or CSV table file. A general index query table was established for both types of data to facilitate subsequent indexing.
步骤2,根据地下水污染数据构造概念模型;Step 2, construct a conceptual model based on groundwater pollution data;
进一步的,所述步骤2具体包括:Furthermore, the step 2 specifically includes:
根据地下水污染数据中的水文地质平面图和剖面图,推断后续构建场地三维模型的基础上框定模拟范围,建立概念模型。According to the hydrogeological plan and profile in the groundwater pollution data, the simulation scope is framed and the conceptual model is established on the basis of the subsequent construction of the three-dimensional model of the site.
具体实施时,构造概念模型需要定义建模的目标,包括空间坐标系和参数单位、地下水类型、溶质吸附类型、反应类型等;根据采集整理的地质、水文、工程、环境数据和信息,确定模型的空间和时间范围以及基本模型尺度;初步建立展示岩层分布、地下水流场和污染源扩散迁移趋势的概括全局的要素系统,包括边界概化和内部结构概化。During the specific implementation, the construction of the conceptual model requires defining the modeling objectives, including the spatial coordinate system and parameter units, groundwater type, solute adsorption type, reaction type, etc.; determining the spatial and temporal scope of the model and the basic model scale based on the collected and organized geological, hydrological, engineering, and environmental data and information; and preliminarily establishing a global element system that displays the distribution of rock formations, groundwater flow fields, and diffusion and migration trends of pollution sources, including boundary generalization and internal structure generalization.
例如,根据场地平面概况和调查报告中的水文地质平面图和剖面图,推断后续构建场地三维模型的基础上框定大致模拟范围,建立场地概念模型,如图3所示。在本实例中,如图3所示,从地表往下土壤性质大致分为杂填土、粉质黏土、圆砾、强风化泥岩和中风化泥岩,潜水层位于地表往下的第3层圆砾层,根据地下水流场特征,大致确定边界范围和污染源的相对位置以及在土壤地下水中的扩散迁移过程。For example, according to the site plan overview and the hydrogeological plan and profile in the investigation report, the approximate simulation range is framed on the basis of the subsequent construction of the site three-dimensional model, and the site conceptual model is established, as shown in Figure 3. In this example, as shown in Figure 3, the soil properties from the surface to the bottom are roughly divided into miscellaneous fill, silty clay, gravel, strongly weathered mudstone and moderately weathered mudstone. The groundwater layer is located in the third gravel layer below the surface. According to the characteristics of the groundwater flow field, the boundary range and the relative position of the pollution source and the diffusion and migration process in the soil and groundwater are roughly determined.
步骤3,根据概念模型构造地质体结构模型;Step 3, constructing a geological body structure model based on the conceptual model;
在上述实施例的基础上,所述步骤3具体包括:Based on the above embodiment, step 3 specifically includes:
基于概念模型,结合观测井分布表、钻孔岩性数据、地质剖面图建立地质体结构模型。Based on the conceptual model, the geological structure model is established by combining the observation well distribution table, drilling lithology data and geological profile.
具体实施时,基于前述概念模型,结合采集到的钻孔分布表、钻孔岩性数据、地质剖面图等建立地质体结构模型。该模型包括分层结构和实体对象的矢量模型,其中分层结构用来描述地层的空间分布规律,而实体对象的矢量模型则用来描述空间要素的实体形态和矢量属性。基于已知岩层信息和岩性数据,对每一垂向的所有上下地层交界处的地层面边界部分进行归属判断,构造更合理的结构模型,如图4所示为本实例中的地质体结构模型。In specific implementation, based on the aforementioned conceptual model, the geological body structure model is established in combination with the collected borehole distribution table, borehole lithology data, geological profile, etc. The model includes a hierarchical structure and a vector model of a physical object, wherein the hierarchical structure is used to describe the spatial distribution law of the strata, and the vector model of the physical object is used to describe the physical form and vector attributes of the spatial elements. Based on the known stratum information and lithology data, the boundary part of the stratigraphic surface at the junction of all upper and lower strata in each vertical direction is judged to belong to, and a more reasonable structural model is constructed. As shown in FIG4, the geological body structure model in this example.
进一步地,针对结构模型的垂向,分层结构一般用地层序列来表示,每个地层序列包括其编号、名称和含水层标记,设 层地层,第 层地层在平面上的空间范围为,在垂直方向上的厚度为,则地层的分层结构可以表示为:Furthermore, for the vertical structure of the structural model, the hierarchical structure is generally represented by stratigraphic sequences, each of which includes its number, name and aquifer label. Layer, The spatial range of the stratum on the plane is , the thickness in the vertical direction is , then the hierarchical structure of the stratum can be expressed as:
且满足:And satisfy:
。 .
步骤4,根据空间数据、概念模型和结构模型构造三维网格模型;Step 4, constructing a three-dimensional grid model based on the spatial data, the conceptual model and the structural model;
在上述实施例的基础上,所述步骤4具体包括:Based on the above embodiment, step 4 specifically includes:
基于空间数据、概念模型和结构模型,利用三维网格剖分算法将三维空间分割为单元体,所有单元体集合构成三维网格模型。Based on spatial data, conceptual model and structural model, the three-dimensional space is divided into unit cells using a three-dimensional meshing algorithm, and all unit cell collections constitute a three-dimensional mesh model.
进一步的,所述利用三维网格剖分算法将三维空间分割为单元体的步骤,包括:Furthermore, the step of dividing the three-dimensional space into unit cells using a three-dimensional meshing algorithm includes:
建立包围盒,在包围盒范围内划分立方体元,对于每个小立方体确定其八个顶点的函数值,其中,所述顶点的函数值的三元函数标量值 标识点与三元函数所定义的隐式曲面的空间位置关系为Create a bounding box, divide the cube elements within the bounding box, and determine the function values of the eight vertices of each small cube, where the function values of the vertices are The scalar value of the ternary function The spatial position relationship between the identification point and the implicit surface defined by the ternary function is:
; ;
选取对应的隐式函数表达式,剖分过程中根据等值面函数提取每两个地层面之间的立方体元的隐式函数值,作为其地层标识,形成单元体。The corresponding implicit function expression is selected, and during the segmentation process, the implicit function value of the cubic element between every two stratigraphic layers is extracted according to the isosurface function as its stratigraphic identifier to form a unit body.
具体实施时,在本实例中,对模型边界设置加密点并进行结构化网格剖分,进一步说明的是,在剖分过程中需要给每个得到的网格体元赋予地层标记,借助隐式函数实现,所述三维模型网格剖分包括结构化网格和非结构化网格。In the specific implementation, in this example, encryption points are set on the model boundary and structured grid division is performed. It is further explained that during the division process, each obtained grid element needs to be assigned a stratum label, which is achieved with the help of implicit functions. The three-dimensional model grid division includes structured grids and unstructured grids.
结构化网格剖分根据输入的场地概念模型及结构信息,建立包围盒空间模型,对该空间模型进行规则切割,即在空间三个方向按照一定的空间步长()控制三维点坐标,每一个三维点可抽象为一个立方体(长宽高分别为),使用规则格网数据表存储模型信息,包括空间地理位置和节点信息。Structured meshing is based on the input site concept model and structural information to establish a bounding box space model, and the space model is cut regularly. The three directions follow a certain spatial step size ( ) controls the coordinates of the 3D points. Each 3D point can be abstracted as a cube (length, width and height are ), using regular grid data tables to store model information, including spatial geographic location and node information.
非结构化网格剖分根据输入的场地概念模型及结构信息,对三维模型进行空间上不规则切割,即将三维模型分割为某种不规则体元的集合,每一个不规则体元都表示该体元区域的空间信息,体元之间的数据交互通过共同角点实现,使用不规则格网数据文件存储模型空间信息,包括三维点(不规则体元角点坐标)和三维体(不规则体元角点序号)。Unstructured grid subdivision performs spatial irregular cutting of the three-dimensional model according to the input site conceptual model and structural information, that is, dividing the three-dimensional model into a collection of irregular voxels. Each irregular voxel represents the spatial information of the voxel area. Data interaction between voxels is achieved through common corner points. Irregular grid data files are used to store model spatial information, including three-dimensional points (irregular voxel corner point coordinates) and three-dimensional bodies (irregular voxel corner point serial numbers).
本发明实施例以结构化网格剖分为例,具体地,首先建立包围盒,在包围盒范围内划分立方体元,对于每个小立方体确定其八个顶点的函数值,这些顶点函数的三元函数标量值 标识点与三元函数所定义的隐式曲面的空间位置关系(内部、面上、外部):The embodiment of the present invention takes structured mesh generation as an example. Specifically, a bounding box is first established, and cubic elements are divided within the bounding box. For each small cube, the function values of its eight vertices are determined. These vertex functions The scalar value of the ternary function The spatial position relationship between the identification point and the implicit surface defined by the ternary function (interior, surface, exterior):
进一步地,根据上述方式,选取合适的隐式函数表达式,剖分过程中根据等值面函数提取每两个地层面之间的立方体元的隐式函数值,作为其地层标识。在本实施例中,地层标识为3即标记为含水层。Further, according to the above method, a suitable implicit function expression is selected, and during the segmentation process, the implicit function value of the cubic element between each two stratigraphic layers is extracted according to the isosurface function as its stratigraphic identification. In this embodiment, the stratigraphic identification is 3, which is marked as an aquifer.
进一步地,在本发明中,建立三维网格模型可以通过指定结构化网格的边长或三维方向上的网格数得到符合需求的模拟精度,在本实施例中,剖分平面分辨率选定10m,垂向分辨率选定0.5m,如图5所示为建立的三维网格模型。Furthermore, in the present invention, the three-dimensional grid model can be established by specifying the side length of the structured grid or the number of grids in the three-dimensional direction to obtain the simulation accuracy that meets the requirements. In this embodiment, the subdivision plane resolution is selected as 10m and the vertical resolution is selected as 0.5m. FIG5 shows the established three-dimensional grid model.
步骤5,根据三维网格模型建立属性场模型;Step 5, establishing an attribute field model based on the three-dimensional grid model;
进一步的,所述步骤5具体包括:Furthermore, the step 5 specifically includes:
采用插值方法为三维网格模型切割的每个网格分配初始属性形成属性场模型,其中,初始属性包括初始水位、初始污染物浓度、储水率、延迟因子、有效孔隙度、弥散系数、渗透系数和边界条件。An interpolation method is used to assign initial attributes to each grid cut from the three-dimensional grid model to form an attribute field model, where the initial attributes include initial water level, initial pollutant concentration, water storage rate, delay factor, effective porosity, diffusion coefficient, permeability and boundary conditions.
进一步的,所述初始属性的表达式为Furthermore, the expression of the initial attribute is
其中,表示网格单元中心点处的插值函数,表示单元中心点处的属性值,所述插值函数以采用反距离权重法,以最大搜索半径和最大搜索点数为限制条件。in, Represents a grid cell The interpolation function at the center point, It represents the attribute value at the center point of the unit. The interpolation function adopts the inverse distance weighted method with the maximum search radius and the maximum number of search points as constraints.
具体实施时,所述初始属性包括初始水位、初始污染物浓度、储水率、延迟因子、有效孔隙度、弥散系数、渗透系数和边界条件。In a specific implementation, the initial properties include initial water level, initial pollutant concentration, water storage rate, delay factor, effective porosity, diffusion coefficient, permeability coefficient and boundary conditions.
进一步地,由于观测井数量限制,无法得到10m高精度网格的所有属性值,在本实例中,采用插值方法为每个体元提取参数值:Furthermore, due to the limited number of observation wells, it is impossible to obtain all the attribute values of the 10m high-precision grid. In this example, the interpolation method is used to extract the parameter value for each voxel:
进一步地,对于某一属性项,设该属性值为,则可以用离散的方式描述:Furthermore, for a certain attribute item, let the attribute value be , it can be described in a discrete way:
其中,表示网格单元中心点处的插值函数,表示单元中心点处的属性值。同理,渗透率、孔隙度、地下水位等水文指标也可用离散方法来描述。in, Represents a grid cell The interpolation function at the center point, represents the property value at the center of the unit. Similarly, the permeability , Porosity , groundwater level Hydrological indicators such as NH4+ and NH4+ can also be described using discrete methods.
进一步地,其中的插值函数以采用反距离权重法(IDW),以最大搜索半径和最大搜索点数为限制条件:Furthermore, The interpolation function uses the inverse distance weighted method (IDW) with the maximum search radius and the maximum number of search points For the restriction conditions:
其中,为第i个点的属性值,为第i个点和当前待插值点的距离,为当前待插值点空间坐标,为第i个插值点的空间坐标,为第i个插值点的反距离权重。in, is the attribute value of the i-th point, is the distance between the i-th point and the current point to be interpolated, is the spatial coordinate of the current point to be interpolated, is the spatial coordinate of the i-th interpolation point, is the inverse distance weight of the i-th interpolation point.
进一步地,经过上述步骤,建立带有地层标记、属性值和初始条件的三维网格模型,该模型可作为数值模拟的初始迭代输入源。Furthermore, after the above steps, a three-dimensional grid model with formation labels, attribute values and initial conditions is established, and the model can be used as an initial iterative input source for numerical simulation.
同时,边界条件按照类型区分为狄利克雷边界条件和诺依曼边界条件,边界条件的设置来源于场地真实检测数据,分为渗流场边界条件和浓度场边界条件。At the same time, boundary conditions are divided into Dirichlet boundary conditions and Neumann boundary conditions according to their types. The setting of boundary conditions is derived from the actual site detection data and is divided into seepage field boundary conditions and concentration field boundary conditions.
设模拟区域边界为,则边界类型参数可表示为:Assume that the boundary of the simulation area is , then the boundary type parameter can be expressed as:
其中为指定流量边界的区域集合,为指定水头边界的区域集合,为通过隔离和孔隙弹性作用影响水位变化的区域集合,为溢流区域集合。in is a set of regions that specify traffic boundaries, is the set of regions with specified head boundaries, is the set of regions that affect water level changes through isolation and poroelastic effects. Overflow area collection.
进一步地,上述四种类型的边界条件可以根据实际场地来指定。Furthermore, the above four types of boundary conditions can be specified according to the actual site.
步骤6,根据三维网格模型和属性场模型建立多求解器类型的仿真数值模型,使用仿真数值模型进行流场模拟和污染物扩散模拟,并且在模拟过程中利用参数修正模块进行参数修正,构建可变参数模型;Step 6, establishing a multi-solver type simulation numerical model based on the three-dimensional grid model and the attribute field model, using the simulation numerical model to perform flow field simulation and pollutant diffusion simulation, and using the parameter correction module to perform parameter correction during the simulation process to construct a variable parameter model;
在上述实施例的基础上,所述步骤6具体包括:Based on the above embodiment, step 6 specifically includes:
根据三维网格模型和属性场模型,结合地下水流和溶质运移的影响因素,采用有限差分法在节点和单元上建立质量守恒方程和运动方程,建立使用多求解器类型的仿真数值模型,进行流场模拟和污染物扩散模拟,并且在模拟过程中利用参数修正模型进行参数修正,构建可变参数模型。Based on the three-dimensional grid model and attribute field model, combined with the influencing factors of groundwater flow and solute migration, the finite difference method is used to establish the mass conservation equation and motion equation at the nodes and elements, and a simulation numerical model using multiple solver types is established to carry out flow field simulation and pollutant diffusion simulation. In the simulation process, the parameter correction model is used to correct the parameters and construct a variable parameter model.
可选的,所述求解器类型包括共轭梯度求解器、双稳定共轭梯度求解器和多重网格求解器。Optionally, the solver types include a conjugate gradient solver, a bistable conjugate gradient solver and a multi-grid solver.
进一步的,所述仿真数值模型的表达式为Furthermore, the expression of the simulation numerical model is:
其中,表示有限差分体元节点数,表示体元索引下标,表示时刻第个节点的水头值;in, represents the number of finite difference volume element nodes, represents the voxel index subscript, express Moment The water head value of each node;
系数为针对水头的水头变化率,表示为:coefficient For water head The head change rate is expressed as:
其中,为方向的渗透系数,为三维方向的集合,为当前节点的水头估计值,通过该式求解其方向上的变化率得到该节点总水头变化率;in, for The permeability coefficient of the direction, is a set of three-dimensional directions, For the current The estimated water head value of the node is solved by this formula The rate of change in direction is the total head change rate of the node;
系数为针对水头的渗流项,表示为:coefficient For water head The seepage term is expressed as:
其中,下标代表方程中节点的二维索引,为储水量,为时阶,为当前节点的水头估计值;Among them, the subscript represents the two-dimensional index of the node in the equation, is the water storage capacity, For the time stage, For the current Estimated hydraulic head at the node;
系数为源汇项,表示为:coefficient is the source-sink term, expressed as:
其中,为流体源汇项;in, is the fluid source and sink term;
可变参数模型的渗流耦合方程和对流-弥散耦合方程表示为:The seepage coupling equation and convection-diffusion coupling equation of the variable parameter model are expressed as:
其中,为渗透系数,为源汇项,为水头,为有效孔隙度,为阻滞因子,为弥散系数,为源汇项,为为吸附物密度,为各种化学反应,为吸附项速率常数,为动力吸附速率系数,为单位质量吸附物所吸附的化合物的质量,为溶质浓度。in, is the permeability coefficient, is the source-sink term, For water head, is the effective porosity, is the blocking factor, is the diffusion coefficient, is the source-sink term, is the density of the adsorbate, For various chemical reactions, is the adsorption rate constant, is the kinetic adsorption rate coefficient, is the mass of the compound adsorbed per unit mass of the adsorbate, is the solute concentration.
具体实施时,如图6所示为根据本发明实施方案的应用实例中的属性参数赋值和数值模拟求解流程示意图。有限差分模拟器采用一种规则格网空间离散和时间近似方法处理场模型,形成大规模稀疏线性方程组,以水头为例,求解方案如下:In specific implementation, as shown in Figure 6, it is a schematic diagram of the attribute parameter assignment and numerical simulation solution process in the application example according to the implementation scheme of the present invention. The finite difference simulator uses a regular grid space discretization and time approximation method to process the field model to form a large-scale sparse linear equation group. Taking the water head as an example, the solution is as follows:
设为渗流场模型狄利克雷问题的解,根据三维有限差分方法,基于隐式差分法将所有水头取t时阶的值,则满足:set up is the solution of the Dirichlet problem of the seepage field model. According to the three-dimensional finite difference method, all water heads are taken as the value of the time order t based on the implicit difference method, then satisfy:
其中,表示第t+1时阶有限差分格网中心点处的水头值,表示第t-1时阶有限差分格网中心点的水头值,表示单位体元的储水量,与水头相关。考虑所有有限差分网格节点得到整体的渗流场模型,可近似为:in, represents the water head value at the center point of the finite difference grid at time t+1, represents the water head value at the center point of the finite difference grid at time t-1, Indicates the water storage capacity per unit volume, and the water head Considering all finite difference grid nodes, the overall seepage field model can be approximated as:
其中,表示有限差分体元节点数,表示体元索引下标,表示时刻第个节点的水头值;in, represents the number of finite difference volume element nodes, represents the voxel index subscript, express Moment The water head value of each node;
进一步地,系数为针对水头的水头变化率,表示为:Furthermore, the coefficient For water head The head change rate is expressed as:
其中,为方向的渗透系数,为三维方向的集合,为当前节点的水头估计值,通过该式求解其方向上的变化率得到该节点总水头变化率;in, for The permeability coefficient of the direction, is a set of three-dimensional directions, For the current The estimated water head value of the node is solved by this formula The rate of change in direction is the total head change rate of the node;
系数为针对水头的渗流项,表示为:coefficient For water head The seepage term is expressed as:
其中,下标代表方程中节点的二维索引,为储水量,为时阶,为当前节点的水头估计值;Among them, the subscript represents the two-dimensional index of the node in the equation, is the water storage capacity, For the time stage, For the current Estimated hydraulic head at the node;
系数为源汇项,表示为:coefficient is the source-sink term, expressed as:
其中,为流体源汇项;in, is the fluid source and sink term;
进一步地,即可得到稀疏线性方程组的最终形式,该方程的隐式解为:Furthermore, the final form of the sparse linear equations can be obtained, and the implicit solution of the equation is:
其中,为线性系数,为子区域的线性系统矩阵,进一步地,有限差分体元结果集合可表示为:in, is the linear coefficient, for The linear system matrix of the sub-region, further, the finite difference volume element result set can be expressed as:
其中,为第时阶有限差分格网中心点处的水头值。in, For the The hydraulic head value at the center point of the time-order finite difference grid.
作为本发明进一步的技术方案,针对上述数值模型形成的大型稀疏线性方程组求解问题,可以选择采用共轭梯度、双稳定共轭梯度、多重网格等多种求解类型进行数值运算:As a further technical solution of the present invention, for solving the large sparse linear equations formed by the above numerical model, multiple solution types such as conjugate gradient, bistable conjugate gradient, and multi-grid can be selected for numerical calculation:
可选地,共轭梯度法求解可以求解离散化后的水流方程,求解关键数值模型如下:Alternatively, the conjugate gradient method can be used to solve the discretized water flow equations. The key numerical model is as follows:
对于矩阵和向量,为时刻的估计水头或污染浓度值,该时刻满足残差向量和,则满足关系:For the matrix and vector , for The estimated head or pollution concentration value at time t, which satisfies the residual vector and , then the relationship is satisfied :
对于下一次迭代值与初始迭代值的差值,有:For the next iteration value With the initial iteration value The difference is:
; ;
其中,为第次迭代的步长,为次迭代的共轭方向,继续求解,有;in, For the The step size of the iteration, for The conjugate direction of the iteration continues to solve ,have;
重复以上步骤,直到收敛或达到最大迭代次数。Repeat the above steps until convergence or the maximum number of iterations is reached.
可选地,稳定双共轭梯度法对于分辨率为的系数矩阵和向量,初始化方程组及参数,计算新的残差向量和左偏共轭向量有:Alternatively, the stable biconjugate gradient method can be used for a resolution of The coefficient matrix of and vector , initialize the system of equations and parameters, calculate the new residual vector and the left-biased conjugate vector have:
其中,为迭代停止条件,为松弛系数,为次迭代的共轭方向,为以为共轭方向计算的向量;in, is the iteration stop condition, is the relaxation coefficient, for The conjugate direction of the iteration, For The vector calculated for the conjugate direction;
继续计算新的向量:Continue to calculate the new vector:
; ;
其中,为迭代步长,利用该步长更新向量和残差向量:in, is the iteration step size, and the vector is updated using this step size and the residual vector :
同时计算迭代条件和松弛系数:Compute the iteration condition and relaxation coefficient simultaneously:
; ;
满足模拟迭代条件即返回解。The solution is returned when the simulation iteration conditions are met .
可选地,多重网格法在多个不同粒度的网格上进行迭代求解,从而获得更好的求解速度和精度。基本数学方程表现为:Optionally, the multigrid method performs iterative solutions on multiple grids of different granularity to achieve better solution speed and accuracy. The basic mathematical equation is expressed as:
其中,是平滑操作算子,为残差向量,表示迭代次数,表示第次迭代的解向量,表示上一次迭代的解向量。in, is the smoothing operator, is the residual vector, represents the number of iterations, Indicates The solution vector of the iteration, Represents the solution vector of the previous iteration.
进一步地,将网格限制到父网格:Furthermore, constrain the grid to its parent grid:
其中,表示父网格的分辨率,表示当前网格的分辨率,表示限制算子,表示限制操作后得到的父网格的残差向量,表示原始网格的残差向量。in, Indicates the resolution of the parent grid, Indicates the resolution of the current grid. represents the restriction operator, represents the residual vector of the parent grid after the restriction operation, Represents the residual vector of the original grid.
作为本发明进一步的技术方案,在数值求解迭代过程中利用参数修正模块构建可变参数模型,读取参数修正模块可变参数数据集与模型可变参数标识,修正模拟可变参数,更新后的模型可变参数参与下一时间步的模拟,表示为:As a further technical solution of the present invention, a variable parameter model is constructed by using a parameter correction module in the iterative process of numerical solution, a variable parameter data set of the parameter correction module and a model variable parameter identifier are read, and the simulation variable parameters are corrected. The updated model variable parameters participate in the simulation of the next time step, which is expressed as:
式中,为参数修正状态,表示未实行参数校正,表示实行;为模型可变参数数据集,为模型可变参数唯一标识符集,为模型可变参数总个数,为模型可变参数矩阵, 为模型可变参数唯一标识符。In the formula, is the parameter correction state, Indicates that parameter calibration has not been performed. To express implementation; is the model variable parameter dataset, is a unique identifier set of model variable parameters, is the total number of variable parameters of the model, is the model variable parameter matrix, A unique identifier for a model variable parameter.
具体地,在本实例中,模拟参数设置为模拟时长2年,迭代步长15天,溶质吸附类型选定Frenchque 平衡吸附,化学反应类型选定Dissolve 化学平衡,分别选择不同线性方程组求解器进行数值运算以进行对比,并根据迭代过程设置合理绝对误差限和相对误差限。Specifically, in this example, the simulation parameters are set to a simulation duration of 2 years, an iteration step of 15 days, Frenchque equilibrium adsorption as the solute adsorption type, Dissolve chemical equilibrium as the chemical reaction type, and different linear equation solvers are selected for numerical calculations for comparison. Reasonable absolute and relative error limits are set according to the iteration process.
进一步地,本发明建立可变参数模型,包括渗透反应墙和抽水井:Furthermore, the present invention establishes a variable parameter model, including a permeable reaction wall and a pumping well:
渗透反应墙模型渗流耦合方程和对流—弥散耦合方程如下:The seepage coupling equation and convection-diffusion coupling equation of the permeable reaction wall model are as follows:
其中,分别表示方向上的渗透系数,qs为源汇项,h为水头,为有效孔隙度,为阻滞因子,为弥散系数,为源汇项,为为吸附物密度,为各种化学反应,为吸附项速率常数,为动力吸附速率系数,为单位质量吸附物所吸附的化合物的质量,C为溶质浓度。in, Respectively The permeability coefficient in the direction, qs is the source and sink term, h is the hydraulic head, is the effective porosity, is the blocking factor, is the diffusion coefficient, is the source-sink term, is the density of the adsorbate, For various chemical reactions, is the adsorption rate constant, is the kinetic adsorption rate coefficient, is the mass of the compound adsorbed per unit mass of the adsorbate, and C is the solute concentration.
抽水井模型渗流耦合方程和对流—弥散耦合方程如下:The seepage coupling equation and convection-diffusion coupling equation of the pumping well model are as follows:
其中,为抽水速率,分别表示方向上的渗透系数,分别表示单位体元在方向上的边长,为弥散系数,为单位质量吸附物所吸附的化合物的质量,C为溶质浓度。in, is the pumping rate, Respectively The permeability coefficient in the direction, Respectively represent the unit cell in The length of the side in the direction, is the diffusion coefficient, is the mass of the compound adsorbed per unit mass of the adsorbate, and C is the solute concentration.
进一步地,在上所述的两种可变参数模型中:Furthermore, in the two variable parameter models described above:
进一步地,在本实例中,为模拟求解器设置状态机管理,只有当前步骤顺利完成才可进入下一步骤,否则模拟求解结束。Furthermore, in this example, a state machine management is set for the simulation solver, and the next step can be entered only when the current step is successfully completed, otherwise the simulation solution ends.
步骤7,根据仿真数值模型和可变参数模型迭代进行仿真模拟,并生成分析结果和数据报告。Step 7, iteratively perform simulation based on the simulation numerical model and the variable parameter model, and generate analysis results and data reports.
具体实施时,以上所述模型构造完成、参数设置完成后进行数值模拟,通过建模技术将仿真模拟过程及结果以图形化方式展现,包括污染扩散分布、地下水位、三维地形的静态及动态演示。针对污染物特性和地下水流动特点,实现污染扩散的模拟,并分析污染物迁移途径和风险,所述仿真模拟过程及结果的可视化与分析包括三维模型的场景交互、三视平面图、模型纵横向剖切、地层筛选剖切、等值线、属性分级展示和动态变化等效果。In specific implementation, after the above-mentioned model is constructed and the parameters are set, numerical simulation is carried out, and the simulation process and results are presented in a graphical manner through modeling technology, including static and dynamic demonstrations of pollution diffusion distribution, groundwater level, and three-dimensional terrain. According to the characteristics of pollutants and groundwater flow, the simulation of pollution diffusion is realized, and the migration path and risk of pollutants are analyzed. The visualization and analysis of the simulation process and results include scene interaction of three-dimensional models, three-view planes, vertical and horizontal sections of the model, stratum screening sections, contour lines, attribute classification display and dynamic changes.
同时,对模拟结果进行定量分析评估即精度检验,针对稀疏线性方程组求解的精度检验方案为,将稀疏矩阵与求解结果向量的乘积和向量做误差检验,当向量相对误差、向量绝对误差、向量和相对误差都满足阈值限制时,认为求解结果正确。At the same time, the simulation results are quantitatively analyzed and evaluated, that is, the accuracy test is performed on the sparse linear equations. The accuracy test scheme for the solution is to convert the sparse matrix and the solution vector The product and vector Do error check, when the vector relative error , vector absolute error , vector and relative error When all of them meet the threshold limit, the solution is considered correct.
当以上条件均满足时,返回0,即当前时间步下求解正确。When all the above conditions are met, Returns 0, which means the solution is correct at the current time step.
作为本发明进一步的技术方案,对模型输出为网格组织形式的数据文件,对各属性项参数或地下水位、污染物浓度结果输出为规范化或格式化的数据文件。As a further technical solution of the present invention, the model is output as a data file in a grid organization form, and each attribute parameter or groundwater level and pollutant concentration result is output as a normalized or formatted data file.
下面将结合一个具体实施例对本方案进行具体说明,本发明还提供一种应用于所述地下水污染运移可视化数值模拟方法的地下水污染可视化模拟系统,结构如图7的(a)所示,通过集成数据管理、模型管理、建模过程图形化、场景可视化、参数设置线性流程化于一体的模拟系统,直观高效地提升场地污染评估和预测能力。如图7的(b)和图7的(c)所示,模拟系统中地下水位和污染物浓度分布的模拟结果可视化,在本具体实施例中,可以明显看出污染物的分布及扩散趋势,且与地下水位具有强相关性。The present solution will be specifically described below in conjunction with a specific embodiment. The present invention also provides a groundwater pollution visualization simulation system applied to the groundwater pollution migration visualization numerical simulation method, the structure of which is shown in FIG7 (a). By integrating data management, model management, modeling process graphics, scene visualization, and parameter setting linear flow in a simulation system, the site pollution assessment and prediction capabilities are intuitively and efficiently improved. As shown in FIG7 (b) and FIG7 (c), the simulation results of the groundwater level and pollutant concentration distribution in the simulation system are visualized. In this specific embodiment, the distribution and diffusion trend of pollutants can be clearly seen, and they have a strong correlation with the groundwater level.
本实施例提供的地下水污染运移可视化数值模拟方法,通过建模过程中对数据的设置和管理查看不同时期的数据并分析,对模型进行查看和修改,针对不同情况下的污染运移采用不同模拟参数和求解器,并建立参数反馈模块,实时更新参数列表,提高地下水污染数值模拟的效率和精确性;将地下水污染监测、采集和模拟的数据及参数进行集成化、可视化,可直观了解模拟流程环节,提升场地污染的综合管理与评估预测能力。The method for visualizing numerical simulation of groundwater pollution migration provided in this embodiment checks and analyzes data of different periods through setting and management of data in the modeling process, checks and modifies the model, adopts different simulation parameters and solvers for pollution migration under different circumstances, establishes a parameter feedback module, updates the parameter list in real time, and improves the efficiency and accuracy of numerical simulation of groundwater pollution; integrates and visualizes the data and parameters of groundwater pollution monitoring, collection and simulation, can intuitively understand the simulation process links, and improve the comprehensive management and evaluation and prediction capabilities of site pollution.
特别地,根据本发明的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本发明的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置从网络上被下载和安装,或者从存储装置被安装,或者从ROM 被安装。在该计算机程序被处理装置执行时,执行本发明实施例的方法中限定的上述功能。In particular, according to an embodiment of the present invention, the process described above with reference to the flowchart can be implemented as a computer software program. For example, an embodiment of the present invention includes a computer program product, which includes a computer program carried on a computer-readable medium, and the computer program contains program code for executing the method shown in the flowchart. In such an embodiment, the computer program can be downloaded and installed from a network through a communication device, or installed from a storage device, or installed from a ROM. When the computer program is executed by a processing device, the above-mentioned functions defined in the method of the embodiment of the present invention are executed.
需要说明的是,本发明上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本发明中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本发明中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。It should be noted that the computer-readable medium of the present invention may be a computer-readable signal medium or a computer-readable storage medium or any combination of the two. The computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination of the above. More specific examples of computer-readable storage media may include, but are not limited to: an electrical connection with one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the above. In the present invention, a computer-readable storage medium may be any tangible medium containing or storing a program that can be used by or in combination with an instruction execution system, device or device. In the present invention, a computer-readable signal medium may include a data signal propagated in a baseband or as part of a carrier wave, which carries a computer-readable program code. This propagated data signal may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above. Computer readable signal media may also be any computer readable medium other than computer readable storage media, which may send, propagate or transmit a program for use by or in conjunction with an instruction execution system, apparatus or device. The program code contained on the computer readable medium may be transmitted using any appropriate medium, including but not limited to: wires, optical cables, RF (radio frequency), etc., or any suitable combination of the above.
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。The computer-readable medium may be included in the electronic device, or may exist independently without being installed in the electronic device.
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备可以执行上述方法实施例的相关步骤。The computer-readable medium carries one or more programs. When the one or more programs are executed by the electronic device, the electronic device can execute the relevant steps of the method embodiment.
或者,上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备可以执行上述方法实施例的相关步骤。Alternatively, the computer-readable medium carries one or more programs, and when the one or more programs are executed by the electronic device, the electronic device can perform the relevant steps of the method embodiment.
可以以一种或多种程序设计语言或其组合来编写用于执行本发明的操作的计算机程序代码,上述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。Computer program code for performing the operations of the present invention may be written in one or more programming languages or a combination thereof, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional procedural programming languages such as "C" or similar programming languages. The program code may be executed entirely on the user's computer, partially on the user's computer, as a separate software package, partially on the user's computer and partially on a remote computer, or entirely on a remote computer or server. In the case of a remote computer, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (e.g., via the Internet using an Internet service provider).
附图中的流程图和框图,图示了按照本发明各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flow chart and block diagram in the accompanying drawings illustrate the possible architecture, function and operation of the system, method and computer program product according to various embodiments of the present invention. In this regard, each square box in the flow chart or block diagram can represent a module, a program segment or a part of a code, and the module, the program segment or a part of the code contains one or more executable instructions for realizing the specified logical function. It should also be noted that in some alternative implementations, the functions marked in the square box can also occur in a sequence different from that marked in the accompanying drawings. For example, two square boxes represented in succession can actually be executed substantially in parallel, and they can sometimes be executed in the opposite order, depending on the functions involved. It should also be noted that each square box in the block diagram and/or flow chart, and the combination of the square boxes in the block diagram and/or flow chart can be implemented with a dedicated hardware-based system that performs the specified function or operation, or can be implemented with a combination of dedicated hardware and computer instructions.
描述于本发明实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。The units involved in the embodiments of the present invention may be implemented in software or hardware.
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。It should be understood that various parts of the present invention can be implemented by hardware, software, firmware or a combination thereof.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the protection scope of the present invention is not limited thereto. Any changes or substitutions that can be easily thought of by a person skilled in the art within the technical scope disclosed by the present invention should be included in the protection scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the protection scope of the claims.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310901626.9A CN116611274B (en) | 2023-07-21 | 2023-07-21 | A visual numerical simulation method for groundwater pollution transport |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310901626.9A CN116611274B (en) | 2023-07-21 | 2023-07-21 | A visual numerical simulation method for groundwater pollution transport |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116611274A CN116611274A (en) | 2023-08-18 |
CN116611274B true CN116611274B (en) | 2023-09-29 |
Family
ID=87685776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310901626.9A Active CN116611274B (en) | 2023-07-21 | 2023-07-21 | A visual numerical simulation method for groundwater pollution transport |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116611274B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118710805A (en) * | 2024-06-06 | 2024-09-27 | 吉三优信息科技(厦门)有限公司 | A method for constructing a three-dimensional model of rapids training waters |
CN118940521A (en) * | 2024-07-26 | 2024-11-12 | 苏州中源广科信息科技有限公司 | Accelerated iterative simulation method for HVAC airflow organization based on multi-grid method |
CN118935632B (en) * | 2024-09-24 | 2024-12-31 | 广州奥揽达节能科技有限公司 | Numerical simulation-based clean air conditioning unit operation parameter optimization method and system |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007072753A (en) * | 2005-09-07 | 2007-03-22 | Geosphere Environmental Technology Corp | Land/water pollution risk calculation method |
JP2010064002A (en) * | 2008-09-10 | 2010-03-25 | Kokusai Environmental Solutions Co Ltd | Method for estimating risk of groundwater contamination |
CN101908100A (en) * | 2010-07-26 | 2010-12-08 | 中国科学院生态环境研究中心 | A Modeling and Numerical Simulation Method for Groundwater Environment |
JP2014037677A (en) * | 2012-08-10 | 2014-02-27 | Japan River Front Research Center | Four-dimensional water circulation reproduction/analysis/prediction/visualization simulation system |
CN109190280A (en) * | 2018-09-18 | 2019-01-11 | 东北农业大学 | A kind of pollution source of groundwater inverting recognition methods based on core extreme learning machine alternative model |
WO2019076078A1 (en) * | 2017-10-16 | 2019-04-25 | 中国环境科学研究院 | Multi-objective optimization method for groundwater pollution monitoring network |
CN109871648A (en) * | 2019-03-11 | 2019-06-11 | 山东科技大学 | Construction method of three-dimensional visual dynamic monitoring structural model of groundwater resources |
CN111825222A (en) * | 2020-07-21 | 2020-10-27 | 东华理工大学 | A tube simulation in situ bioremediation device and method thereof |
AU2020102747A4 (en) * | 2020-10-16 | 2020-12-03 | North China Electric Power University | A decision-making method for in-situ remediation of petroleum-contaminated groundwater |
CN113536644A (en) * | 2021-07-30 | 2021-10-22 | 江苏南京地质工程勘察院 | Simulation and optimization method of deep foundation pit dewatering scheme with suspended water-stop curtain |
CN114861502A (en) * | 2022-05-27 | 2022-08-05 | 北京林业大学 | Safe drinking water area determination method based on three-dimensional dynamic groundwater pollution simulation of Modflow model |
CN114996977A (en) * | 2022-08-03 | 2022-09-02 | 浙江远算科技有限公司 | Water pollution restoration simulation method and system based on hydrodynamic coupling water quality model |
CN115329607A (en) * | 2022-10-14 | 2022-11-11 | 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) | System and method for evaluating underground water pollution |
CN115587439A (en) * | 2022-10-09 | 2023-01-10 | 中南大学 | Correction method and platform for variable parameters of heavy metal pollutant migration model |
CN115830252A (en) * | 2022-11-09 | 2023-03-21 | 河海大学 | B/S framework site underground water organic pollution simulation system and online simulation method |
CN115828704A (en) * | 2022-12-22 | 2023-03-21 | 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) | Rapid prediction method for underground water pollution |
CN116151154A (en) * | 2023-04-18 | 2023-05-23 | 中南大学 | Soil groundwater pollutant migration simulation method and related equipment |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2762648A1 (en) * | 2009-05-18 | 2010-11-25 | Schlumberger Canada Limited | Method, apparatus and system for improved groundwater modeling |
US20150294050A1 (en) * | 2012-04-25 | 2015-10-15 | Nova Metrix Ground Monitoring (Canada) Ltd. | Method, Apparatus and System for Improved Groundwater Modeling |
US20210216681A1 (en) * | 2020-01-15 | 2021-07-15 | Technical Centre for Soil, Agricultural&Rural Ecology&Environment, Ministry of Ecology&Environment | Method for designing sve process parameters in petroleum-type polluted field |
-
2023
- 2023-07-21 CN CN202310901626.9A patent/CN116611274B/en active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007072753A (en) * | 2005-09-07 | 2007-03-22 | Geosphere Environmental Technology Corp | Land/water pollution risk calculation method |
JP2010064002A (en) * | 2008-09-10 | 2010-03-25 | Kokusai Environmental Solutions Co Ltd | Method for estimating risk of groundwater contamination |
CN101908100A (en) * | 2010-07-26 | 2010-12-08 | 中国科学院生态环境研究中心 | A Modeling and Numerical Simulation Method for Groundwater Environment |
JP2014037677A (en) * | 2012-08-10 | 2014-02-27 | Japan River Front Research Center | Four-dimensional water circulation reproduction/analysis/prediction/visualization simulation system |
WO2019076078A1 (en) * | 2017-10-16 | 2019-04-25 | 中国环境科学研究院 | Multi-objective optimization method for groundwater pollution monitoring network |
CN109190280A (en) * | 2018-09-18 | 2019-01-11 | 东北农业大学 | A kind of pollution source of groundwater inverting recognition methods based on core extreme learning machine alternative model |
CN109871648A (en) * | 2019-03-11 | 2019-06-11 | 山东科技大学 | Construction method of three-dimensional visual dynamic monitoring structural model of groundwater resources |
CN111825222A (en) * | 2020-07-21 | 2020-10-27 | 东华理工大学 | A tube simulation in situ bioremediation device and method thereof |
AU2020102747A4 (en) * | 2020-10-16 | 2020-12-03 | North China Electric Power University | A decision-making method for in-situ remediation of petroleum-contaminated groundwater |
CN113536644A (en) * | 2021-07-30 | 2021-10-22 | 江苏南京地质工程勘察院 | Simulation and optimization method of deep foundation pit dewatering scheme with suspended water-stop curtain |
CN114861502A (en) * | 2022-05-27 | 2022-08-05 | 北京林业大学 | Safe drinking water area determination method based on three-dimensional dynamic groundwater pollution simulation of Modflow model |
CN114996977A (en) * | 2022-08-03 | 2022-09-02 | 浙江远算科技有限公司 | Water pollution restoration simulation method and system based on hydrodynamic coupling water quality model |
CN115587439A (en) * | 2022-10-09 | 2023-01-10 | 中南大学 | Correction method and platform for variable parameters of heavy metal pollutant migration model |
CN115329607A (en) * | 2022-10-14 | 2022-11-11 | 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) | System and method for evaluating underground water pollution |
CN115830252A (en) * | 2022-11-09 | 2023-03-21 | 河海大学 | B/S framework site underground water organic pollution simulation system and online simulation method |
CN115828704A (en) * | 2022-12-22 | 2023-03-21 | 山东省地质矿产勘查开发局八〇一水文地质工程地质大队(山东省地矿工程勘察院) | Rapid prediction method for underground water pollution |
CN116151154A (en) * | 2023-04-18 | 2023-05-23 | 中南大学 | Soil groundwater pollutant migration simulation method and related equipment |
Non-Patent Citations (9)
Title |
---|
Research on groundwater solute transport forecast based on analytical method;Liu Ting; Xiao ChangLai et al.;《Water Saving Irrigation》(第2期);第47-49页 * |
地下水污染物运移数值模拟研究及应用综述;金云龙;邱锦安;刘远锋;邱耿彪;曾凡龙;;地下水(第03期);全文 * |
地下水流场三维可视化研究进展与前景;宫辉力;潘云;李小娟;赵文吉;;吉林大学学报(地球科学版)(第02期);全文 * |
垃圾填埋场渗滤液地下迁移的数值模拟及其模型参数的敏感性分析;冯兆洋;张辉;董少刚;;长江科学院院报(第12期);全文 * |
基于GMS应用的化工区地下水污染模拟与分析;孙丽凤;王闯;;科技导报(第18期);全文 * |
基于GMS的数值模拟在某化工园地下水环境影响评价中的应用;吴鹏飞;彭展;陈小婷;;资源环境与工程(第06期);全文 * |
基于TOUGHREACT的成矿过程化学反应数值模拟――以虎头崖铅锌多金属矿床为例;张婉秋;邹艳红;;地质找矿论丛(第03期);全文 * |
基于隐函数曲面的三维断层网络建模与 不确定性分析;邹艳红等;《地质论评》;第66卷(第5期);第1349-1360页 * |
宫辉力 ; 潘云 ; 李小娟 ; 赵文吉 ; .地下水流场三维可视化研究进展与前景.吉林大学学报(地球科学版).2007,(第02期),全文. * |
Also Published As
Publication number | Publication date |
---|---|
CN116611274A (en) | 2023-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116611274B (en) | A visual numerical simulation method for groundwater pollution transport | |
USRE49507E1 (en) | Faulted geological structures having unconformities | |
Matthäi et al. | Numerical simulation of multi-phase fluid flow in structurally complex reservoirs | |
Wu et al. | Multi-level voxel representations for digital twin models of tunnel geological environment | |
Xiong et al. | A 3D multi-scale geology modeling method for tunnel engineering risk assessment | |
US11175434B2 (en) | Geologic stratigraphy via implicit and jump functions | |
CN112381937A (en) | Multi-source geological data coupling modeling method based on drilling and complex geological profile | |
US11042676B2 (en) | Representing structural uncertainty in a mesh representing a geological environment | |
US20130218538A1 (en) | Simulation model optimization | |
EP2920619A1 (en) | Unstructured grids for modeling reservoirs | |
CN102156779A (en) | Subsurface flow simulating and predictive analysis method | |
Aldrich et al. | Analysis and visualization of discrete fracture networks using a flow topology graph | |
BRPI0714028A2 (en) | methods for refining a physical property and producing hydrocarbons from an underground region | |
CN101303414A (en) | A Level Set-Based Method for Generating Strata and Geological Bodies | |
CN116486025A (en) | Urban geological data processing platform based on big data cloud computing technology | |
CN109376209A (en) | Contaminated site database 3D model display system | |
Li et al. | 3D geological implicit modeling method of regular voxel splitting based on layered interpolation data | |
Cao et al. | Three-Dimensional Geological Modelling in Earth Science Research: An In-Depth Review and Perspective Analysis | |
Liu et al. | Multiple-point statistical prediction on fracture networks at Yucca Mountain | |
CN117237578A (en) | Three-dimensional geological body sectioning method based on Markov chain and Monte Carlo simulation | |
CN115375867B (en) | Method, system, equipment and medium for calculating geothermal resource quantity by using grid model | |
CN118071945A (en) | Flow-type automatic coupling modeling method for railway engineering structure and geological environment | |
CN115758792A (en) | Geological disaster assessment method and device based on digital numerical integration | |
McCarthy | Reservoir characterization: Efficient random-walk methods for upscaling and image selection | |
CN114492093A (en) | City visualization method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |