CN116611265A - Method and device for predicting stress and strain of deep anisotropic rock - Google Patents

Method and device for predicting stress and strain of deep anisotropic rock Download PDF

Info

Publication number
CN116611265A
CN116611265A CN202310876718.6A CN202310876718A CN116611265A CN 116611265 A CN116611265 A CN 116611265A CN 202310876718 A CN202310876718 A CN 202310876718A CN 116611265 A CN116611265 A CN 116611265A
Authority
CN
China
Prior art keywords
rock
deep
stress
micro
anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310876718.6A
Other languages
Chinese (zh)
Other versions
CN116611265B (en
Inventor
戚承志
王泽帆
李卓璇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Civil Engineering and Architecture
Original Assignee
Beijing University of Civil Engineering and Architecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Civil Engineering and Architecture filed Critical Beijing University of Civil Engineering and Architecture
Priority to CN202310876718.6A priority Critical patent/CN116611265B/en
Publication of CN116611265A publication Critical patent/CN116611265A/en
Application granted granted Critical
Publication of CN116611265B publication Critical patent/CN116611265B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0256Triaxial, i.e. the forces being applied along three normal axes of the specimen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Medicinal Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本申请提供了一种深部各向异性岩石的应力和应变的预测方法及装置,包括:将获取的岩石弹性模量、岩石泊松比、深部岩石微元强度、第一微元强度随机分布参数、第二微元强度随机分布参数、深部岩石的最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值代入高围压下各向异性岩石的目标统计损伤模型中,对深部各向异性岩石变形过程中的应力或应变进行预测,其中,所述待预测项为应力或应变中的一者,对应的参考项为应力或应变中的另一者。这样,本发明通过引入与深部各向异性岩石变形过程相关的影响参数,从而可更加准确的预测深部各向异性岩石的应力和应变。

This application provides a method and device for predicting the stress and strain of deep anisotropic rocks, including: the obtained rock elastic modulus, rock Poisson's ratio, deep rock micro-element strength, and first micro-element strength random distribution parameters , the random distribution parameter of the second microelement strength, the minimum principal stress or confining pressure of deep rock, the residual stress of deep rock, and the value of the reference item corresponding to the item to be predicted are substituted into the target statistical damage model of anisotropic rock under high confining pressure , to predict the stress or strain in the deep anisotropic rock deformation process, wherein the item to be predicted is one of stress or strain, and the corresponding reference item is the other of stress or strain. In this way, the present invention can more accurately predict the stress and strain of the deep anisotropic rock by introducing the influencing parameters related to the deformation process of the deep anisotropic rock.

Description

一种深部各向异性岩石的应力和应变的预测方法及装置A method and device for predicting stress and strain of deep anisotropic rock

技术领域Technical Field

本申请涉及岩石力学技术领域,尤其是涉及一种深部各向异性岩石的应力和应变的预测方法及装置。The present application relates to the technical field of rock mechanics, and in particular to a method and device for predicting stress and strain of deep anisotropic rocks.

背景技术Background Art

随着我国社会经济的高速发展,中西部高山峡谷区水电和交通等工程的建设也随之蓬勃发展。与之相关的地下工程多呈现出超长、大埋深、高地应力、高外水压等特点,由此引发对深部岩石工程的岩石力学特性及应力应变等科学问题的重视。With the rapid development of my country's social economy, the construction of hydropower and transportation projects in the high mountain valleys of central and western China has also flourished. The underground projects related to them are mostly characterized by super-long, deep burial, high ground stress, and high external water pressure, which has aroused the attention to scientific issues such as rock mechanics characteristics and stress-strain of deep rock engineering.

现如今,曹文贵等学者基于统计损伤理论提出了多种预测岩石应力和应变的方法。其中,曹文贵学者以Mohr-Coulomb强度准则为研究对象,假定该强度准则的曲线形式为抛物线,通过数学方法推导建立岩石微元强度度量表达式,通过考虑损伤力学理论,即考虑学者J. Lemaitre提出的应变等价性理论,对上述建立的微元强度度量表达式通过数学推导方法,获得了能够反映岩石应力状态对微元强度有着密切影响的度量表达式,再通过数学推导方式确定了均质岩石的微元强度随机分布参数m和F0,最终获得了一种均质岩石统计损伤预测应力和应变的数学模型。Nowadays, Cao Wengui and other scholars have proposed a variety of methods for predicting rock stress and strain based on statistical damage theory. Among them, Cao Wengui took the Mohr-Coulomb strength criterion as the research object, assuming that the curve form of the strength criterion is a parabola, and established a rock micro-element strength measurement expression through mathematical derivation. By considering the damage mechanics theory, that is, considering the strain equivalence theory proposed by scholar J. Lemaitre, the above-established micro-element strength measurement expression was mathematically deduced to obtain a measurement expression that can reflect the close influence of rock stress state on micro-element strength. Then, the micro-element strength random distribution parameters m and F 0 of homogeneous rock were determined through mathematical derivation, and finally a mathematical model for predicting stress and strain of homogeneous rock statistical damage was obtained.

但是,深部岩石除了包括均质类型岩石,还包括有各向异性类型岩石,而上述方法仅能对均质类型岩石的应力和应变进行预测。However, deep rocks include not only homogeneous rocks but also anisotropic rocks, and the above method can only predict the stress and strain of homogeneous rocks.

发明内容Summary of the invention

有鉴于此,本申请的目的在于提供一种深部各向异性岩石的应力和应变的预测方法及装置,可对非均质深部岩石的应力和应变进行预测,从而更好的辅助涉及深部岩石开发工程的实施。In view of this, the purpose of the present application is to provide a method and device for predicting the stress and strain of deep anisotropic rocks, which can predict the stress and strain of heterogeneous deep rocks, thereby better assisting the implementation of deep rock development projects.

本申请实施例提供了一种深部各向异性岩石的应力和应变的预测方法,所述预测方法包括:The present application embodiment provides a method for predicting stress and strain of deep anisotropic rock, the prediction method comprising:

获取待预测深部各向异性岩石的岩石弹性模量和岩石泊松比;Obtain the rock elastic modulus and rock Poisson's ratio of the deep anisotropic rock to be predicted;

获取基于深部各向异性岩石的微元强度的度量公式确定的深部岩石微元强度;Obtaining the deep rock micro-element strength determined based on the measurement formula of the micro-element strength of deep anisotropic rock;

获取高围压下各向异性岩石变形过程的统计损伤模型的第一微元强度随机分布参数和第二微元强度随机分布参数;Obtain the first microelement strength random distribution parameter and the second microelement strength random distribution parameter of the statistical damage model of anisotropic rock deformation process under high confining pressure;

获取深部岩石的最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值;其中,所述待预测项为应力或应变中的一者,对应的参考项为应力或应变中的另一者;Obtaining the minimum principal stress or confining pressure of deep rock, the residual stress of deep rock, and the value of the reference item corresponding to the item to be predicted; wherein the item to be predicted is one of stress or strain, and the corresponding reference item is the other of stress or strain;

根据所述岩石弹性模量、岩石泊松比、深部岩石微元强度、第一微元强度随机分布参数、第二微元强度随机分布参数、深部岩石的最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值,对深部各向异性岩石变形过程中的应力或应变进行预测。The stress or strain in the deformation process of deep anisotropic rock is predicted based on the rock elastic modulus, rock Poisson's ratio, deep rock micro-element strength, first micro-element strength random distribution parameter, second micro-element strength random distribution parameter, minimum principal stress or confining pressure of deep rock, residual stress of deep rock and the value of reference item corresponding to the item to be predicted.

可选的,通过以下方式构建所述深部各向异性岩石的微元强度的度量公式:Optionally, a measurement formula for the micro-element strength of the deep anisotropic rock is constructed in the following manner:

基于Hoek-Brown强度准则和各向异性岩石的应力影响参数,构建未损伤岩石的最大主应力计算公式;Based on the Hoek-Brown strength criterion and the stress influencing parameters of anisotropic rocks, the maximum principal stress calculation formula of undamaged rocks is constructed.

获取基于Lemaitre应变等价性理论所确定的岩土体材料的初始损伤模型的数学表达式;Obtain the mathematical expression of the initial damage model of the rock and soil material determined based on the Lemaitre strain equivalence theory;

将所述最大主应力计算公式与所述初始损伤模型的数学表达式融合,确定出所述深部各向异性岩石的微元强度的初始度量公式;The maximum principal stress calculation formula is integrated with the mathematical expression of the initial damage model to determine the initial measurement formula of the micro-element strength of the deep anisotropic rock;

获取深部各向异性岩石的损伤变量计算公式;Obtain the damage variable calculation formula for deep anisotropic rock;

将所述损伤变量计算公式代入所述初始度量公式中,确定出所述深部各向异性岩石的微元强度的度量公式。The damage variable calculation formula is substituted into the initial measurement formula to determine the measurement formula of the micro-element strength of the deep anisotropic rock.

可选的,所述未损伤岩石的最大主应力计算公式为:Optionally, the maximum principal stress calculation formula of the undamaged rock is:

其中,为未损伤岩石最大主应力,为未损伤岩石最小主应力或围压,为岩石最小主应力或围压,为各向异性岩石单轴抗压强度,为各向异性参数,为各向异性岩石单轴抗压强度试验测得的最大单轴抗压强度值,为各向异性岩石单轴抗压强度试验测得的最小单轴抗压强度值,为岩石无量纲经验常数,为误差系数,为临界围压系数,为深部岩石受高围压条件影响的误差项。in, is the maximum principal stress of undamaged rock, is the minimum principal stress or confining pressure of undamaged rock, is the minimum principal stress or confining pressure of rock, is the uniaxial compressive strength of anisotropic rock, is the anisotropy parameter, , is the maximum uniaxial compressive strength value measured by the uniaxial compressive strength test of anisotropic rock, is the minimum uniaxial compressive strength value measured by the uniaxial compressive strength test of anisotropic rock, is the dimensionless empirical constant of rock, is the error coefficient, is the critical confining pressure coefficient, , is the error term caused by the high confining pressure condition on deep rocks.

可选的,所述深部各向异性岩石的微元强度的度量公式为:Optionally, the measurement formula of the micro-element strength of the deep anisotropic rock is:

其中,F为深部岩石微元强度,为岩石的最大主应力,为岩石的残余应力。in, , , F is the micro-element strength of deep rock, is the maximum principal stress of the rock, is the residual stress of rock.

可选的,所述根据所述岩石弹性模量、岩石泊松比、深部岩石微元强度、第一微元强度随机分布参数、第二微元强度随机分布参数、深部岩石最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值,对深部各向异性岩石变形过程中的应力或应变进行预测,包括:Optionally, the stress or strain in the deformation process of deep anisotropic rock is predicted according to the rock elastic modulus, rock Poisson's ratio, deep rock micro-element strength, first micro-element strength random distribution parameter, second micro-element strength random distribution parameter, deep rock minimum principal stress or confining pressure, deep rock residual stress and the value of the reference item corresponding to the item to be predicted, including:

将所述岩石弹性模量、岩石泊松比、深部岩石微元强度、第一微元强度随机分布参数、第二微元强度随机分布参数、深部岩石的最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值,代入高围压下各向异性岩石的目标统计损伤模型中,进行深部各向异性岩石变形过程中的应力或应变预测;Substituting the rock elastic modulus, rock Poisson's ratio, deep rock micro-element strength, first micro-element strength random distribution parameter, second micro-element strength random distribution parameter, minimum principal stress or confining pressure of deep rock, residual stress of deep rock and the numerical value of the reference item corresponding to the item to be predicted into the target statistical damage model of anisotropic rock under high confining pressure, the stress or strain prediction of deep anisotropic rock in the deformation process is performed;

其中,所述目标统计损伤模型为:Wherein, the target statistical damage model is:

其中,E为岩石弹性模量,为岩石泊松比,为深部岩石微元强度,为第一微元强度随机分布参数,为第二微元强度随机分布参数,深部岩石的最小主应力或围压,深部岩石的残余应力,为深部岩石的最大主应力,为深部岩石的应变。Where, E is the elastic modulus of rock, is the rock Poisson's ratio, is the micro-element strength of deep rock, is the random distribution parameter of the first microelement intensity, is the random distribution parameter of the second microelement intensity, The minimum principal stress or confining pressure of deep rock, Residual stress in deep rock, is the maximum principal stress of deep rock, is the strain of deep rock.

可选的,通过以下方式确定所述第一微元强度随机分布参数的计算公式和所述第二微元强度随机分布参数的计算公式:Optionally, the calculation formula of the first micro-element intensity random distribution parameter and the calculation formula of the second micro-element intensity random distribution parameter are determined in the following manner:

获取高围压下各向异性岩石应力-应变曲线的极值特性表达式,和峰值处的应力和应变的对应关系式;Obtain the extreme characteristic expression of the anisotropic rock stress-strain curve under high confining pressure, and the corresponding relationship between the stress and strain at the peak;

将所述目标统计损伤模型的数学表达式分别代入所述极值特性表达式和所述峰值处的应力和应变的对应关系式中,确定出所述第一微元强度随机分布参数的计算公式和所述第二微元强度随机分布参数的计算公式。Substitute the mathematical expression of the target statistical damage model into the extreme value characteristic expression and the corresponding relationship between the stress and strain at the peak value, and determine the calculation formula of the first microelement strength random distribution parameter and the calculation formula of the second microelement strength random distribution parameter.

可选的,通过以下方式确定所述深部各向异性岩石的损伤变量计算公式:Optionally, the damage variable calculation formula of the deep anisotropic rock is determined by the following method:

基于所述初始损伤模型引入深部各向异性岩石残余强度特征,构建三轴压缩条件下深部各向异性岩石变形过程中的第一损伤模型;Based on the initial damage model, the residual strength characteristics of deep anisotropic rock are introduced to construct the first damage model of deep anisotropic rock deformation process under triaxial compression conditions;

将根据广义虎克定律确定未损伤岩石的变形关系式代入所述第一损伤模型中,确定所述深部各向异性岩石变形过程中的第二损伤模型;Substituting the deformation relation of undamaged rock determined according to the generalized Hooke's law into the first damage model to determine a second damage model in the deep anisotropic rock deformation process;

基于常规三轴压缩条件和所述第二损伤模型的数学表达式进行公式推导,确定出所述深部各向异性岩石的损伤变量计算公式。A formula is derived based on conventional triaxial compression conditions and the mathematical expression of the second damage model to determine a damage variable calculation formula for the deep anisotropic rock.

本申请实施例还提供了一种深部各向异性岩石的应力和应变的预测装置,所述预测装置包括:The embodiment of the present application also provides a device for predicting stress and strain of deep anisotropic rock, the prediction device comprising:

第一获取模块,用于获取待预测深部各向异性岩石的岩石弹性模量和岩石泊松比;The first acquisition module is used to obtain the rock elastic modulus and rock Poisson's ratio of the deep anisotropic rock to be predicted;

第二获取模块,用于获取基于深部各向异性岩石的微元强度的度量公式确定的深部岩石微元强度;A second acquisition module is used to acquire the deep rock micro-element strength determined based on a measurement formula of the micro-element strength of deep anisotropic rock;

第三获取模块,用于获取高围压下各向异性岩石变形过程的统计损伤模型的第一微元强度随机分布参数和第二微元强度随机分布参数;The third acquisition module is used to obtain the first microelement strength random distribution parameter and the second microelement strength random distribution parameter of the statistical damage model of the anisotropic rock deformation process under high confining pressure;

第四获取模块,用于获取深部岩石的最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值;其中,所述待预测项为应力或应变中的一者,对应的参考项为应力或应变中的另一者;The fourth acquisition module is used to obtain the minimum principal stress or confining pressure of deep rock, the residual stress of deep rock and the value of the reference item corresponding to the item to be predicted; wherein the item to be predicted is one of stress or strain, and the corresponding reference item is the other of stress or strain;

预测模块,用于根据所述岩石弹性模量、岩石泊松比、深部岩石微元强度、第一微元强度随机分布参数、第二微元强度随机分布参数、深部岩石的最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值,对深部各向异性岩石变形过程中的应力或应变进行预测。The prediction module is used to predict the stress or strain in the deformation process of deep anisotropic rock according to the rock elastic modulus, rock Poisson's ratio, deep rock micro-element strength, first micro-element strength random distribution parameter, second micro-element strength random distribution parameter, minimum principal stress or confining pressure of deep rock, residual stress of deep rock and the value of reference item corresponding to the item to be predicted.

可选的,所述预测装置还包括构建模块,所述构建模块用于:Optionally, the prediction device further includes a construction module, and the construction module is used to:

基于Hoek-Brown强度准则和各向异性岩石的应力影响参数,构建未损伤岩石的最大主应力计算公式;Based on the Hoek-Brown strength criterion and the stress influencing parameters of anisotropic rocks, the maximum principal stress calculation formula of undamaged rocks is constructed.

获取基于Lemaitre应变等价性理论所确定的岩土体材料的初始损伤模型的数学表达式;Obtain the mathematical expression of the initial damage model of the rock and soil material determined based on the Lemaitre strain equivalence theory;

将所述最大主应力计算公式与所述初始损伤模型的数学表达式融合,确定出所述深部各向异性岩石的微元强度的初始度量公式;The maximum principal stress calculation formula is integrated with the mathematical expression of the initial damage model to determine the initial measurement formula of the micro-element strength of the deep anisotropic rock;

获取深部各向异性岩石的损伤变量计算公式;Obtain the damage variable calculation formula for deep anisotropic rock;

将所述损伤变量计算公式代入所述初始度量公式中,确定出所述深部各向异性岩石的微元强度的度量公式。The damage variable calculation formula is substituted into the initial measurement formula to determine the measurement formula of the micro-element strength of the deep anisotropic rock.

可选的,所述未损伤岩石的最大主应力计算公式为:Optionally, the maximum principal stress calculation formula of the undamaged rock is:

其中,为未损伤岩石最大主应力,为未损伤岩石最小主应力或围压,为岩石最小主应力或围压,为各向异性岩石单轴抗压强度,为各向异性参数,为各向异性岩石单轴抗压强度试验测得的最大单轴抗压强度值,为各向异性岩石单轴抗压强度试验测得的最小单轴抗压强度值,为岩石无量纲经验常数,为误差系数,为临界围压系数,为深部岩石受高围压条件影响的误差项。in, is the maximum principal stress of undamaged rock, is the minimum principal stress or confining pressure of undamaged rock, is the minimum principal stress or confining pressure of rock, is the uniaxial compressive strength of anisotropic rock, is the anisotropy parameter, , is the maximum uniaxial compressive strength value measured by the uniaxial compressive strength test of anisotropic rock, is the minimum uniaxial compressive strength value measured by the uniaxial compressive strength test of anisotropic rock, is the dimensionless empirical constant of rock, is the error coefficient, is the critical confining pressure coefficient, , is the error term caused by the high confining pressure condition on deep rocks.

可选的,所述深部各向异性岩石的微元强度的度量公式为:Optionally, the measurement formula of the micro-element strength of the deep anisotropic rock is:

其中,F为深部岩石微元强度,为岩石的最大主应力,为岩石的残余应力。in, , , F is the micro-element strength of deep rock, is the maximum principal stress of the rock, is the residual stress of rock.

可选的,所述预测模块在用于根据所述岩石弹性模量、岩石泊松比、深部岩石微元强度、第一微元强度随机分布参数、第二微元强度随机分布参数、深部岩石最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值,对深部各向异性岩石变形过程中的应力或应变进行预测时,所述预测模块用于:Optionally, when the prediction module is used to predict the stress or strain in the deformation process of deep anisotropic rock according to the rock elastic modulus, rock Poisson's ratio, deep rock micro-element strength, first micro-element strength random distribution parameter, second micro-element strength random distribution parameter, deep rock minimum principal stress or confining pressure, deep rock residual stress and the value of the reference item corresponding to the item to be predicted, the prediction module is used to:

将所述岩石弹性模量、岩石泊松比、深部岩石微元强度、第一微元强度随机分布参数、第二微元强度随机分布参数、深部岩石的最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值,代入高围压下各向异性岩石的目标统计损伤模型中,进行深部各向异性岩石变形过程中的应力或应变进行预测;Substituting the rock elastic modulus, rock Poisson's ratio, deep rock micro-element strength, first micro-element strength random distribution parameter, second micro-element strength random distribution parameter, minimum principal stress or confining pressure of deep rock, residual stress of deep rock and the numerical value of the reference item corresponding to the item to be predicted into the target statistical damage model of anisotropic rock under high confining pressure, the stress or strain in the deformation process of deep anisotropic rock is predicted;

其中,所述目标统计损伤模型为:Wherein, the target statistical damage model is:

其中,E为岩石弹性模量,为岩石泊松比,为深部岩石微元强度,为第一微元强度随机分布参数,为第二微元强度随机分布参数,深部岩石的最小主应力或围压,深部岩石的残余应力,为深部岩石的最大主应力,为深部岩石的应变。Where, E is the elastic modulus of rock, is the rock Poisson's ratio, is the micro-element strength of deep rock, is the random distribution parameter of the first microelement intensity, is the random distribution parameter of the second microelement intensity, The minimum principal stress or confining pressure of deep rock, Residual stress in deep rock, is the maximum principal stress of deep rock, is the strain of deep rock.

可选的,所述预测装置还包括第一确定模块,所述第一确定模块用于通过以下方式确定所述第一微元强度随机分布参数的计算公式和所述第二微元强度随机分布参数的计算公式:Optionally, the prediction device further includes a first determination module, and the first determination module is used to determine the calculation formula of the first micro-element intensity random distribution parameter and the calculation formula of the second micro-element intensity random distribution parameter in the following manner:

获取高围压下各向异性岩石应力-应变曲线的极值特性表达式,和峰值处的应力和应变的对应关系式;Obtain the extreme characteristic expression of the anisotropic rock stress-strain curve under high confining pressure, and the corresponding relationship between the stress and strain at the peak;

将所述目标统计损伤模型的数学表达式分别代入所述极值特性表达式和所述峰值处的应力和应变的对应关系式中,确定出所述第一微元强度随机分布参数的计算公式和所述第二微元强度随机分布参数的计算公式。Substitute the mathematical expression of the target statistical damage model into the extreme value characteristic expression and the corresponding relationship between the stress and strain at the peak value, and determine the calculation formula of the first microelement strength random distribution parameter and the calculation formula of the second microelement strength random distribution parameter.

可选的,所述预测装置还包括第二确定模块,所述第二确定模块用于:Optionally, the prediction device further includes a second determination module, wherein the second determination module is configured to:

基于所述初始损伤模型引入深部各向异性岩石残余强度特征,构建三轴压缩条件下深部各向异性岩石变形过程中的第一损伤模型;Based on the initial damage model, the residual strength characteristics of deep anisotropic rock are introduced to construct the first damage model of deep anisotropic rock deformation process under triaxial compression conditions;

将根据广义虎克定律确定未损伤岩石的变形关系式代入所述第一损伤模型中,确定所述深部各向异性岩石变形过程中的第二损伤模型;Substituting the deformation relation of undamaged rock determined according to the generalized Hooke's law into the first damage model to determine a second damage model in the deep anisotropic rock deformation process;

基于常规三轴压缩条件和所述第二损伤模型的数学表达式进行公式推导,确定出所述深部各向异性岩石的损伤变量计算公式。A formula is derived based on conventional triaxial compression conditions and the mathematical expression of the second damage model to determine a damage variable calculation formula for the deep anisotropic rock.

本申请实施例还提供一种电子设备,包括:处理器、存储器和总线,所述存储器存储有所述处理器可执行的机器可读指令,当电子设备运行时,所述处理器与所述存储器之间通过总线通信,所述机器可读指令被所述处理器执行时执行如上述的预测方法的步骤。An embodiment of the present application also provides an electronic device, comprising: a processor, a memory and a bus, wherein the memory stores machine-readable instructions executable by the processor, and when the electronic device is running, the processor and the memory communicate via the bus, and when the machine-readable instructions are executed by the processor, the steps of the prediction method as described above are performed.

本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行如上述的预测方法的步骤。An embodiment of the present application further provides a computer-readable storage medium, on which a computer program is stored. When the computer program is executed by a processor, the steps of the prediction method described above are executed.

这样,本发明首先以Hoek-Brown强度准则为研究对象,具有使用简便,贴合实际工程的优点,且被多数工程人员所接受和应用;其次,本发明通过引入高围压条件影响的误差项,建立深部岩石微元强度的度量公式,该表达式和参数都具有物理意义,且误差项中的参数考虑了岩石各向异性参数k α,使得建立的表达式能够考虑各向异性岩石的应力和应变预测;再其次,本发明引入了岩石临界围压概念,考虑了各向异性岩石高围压下岩石由脆性转化延性状态的力学行为,使建立的岩石微元强度度量表达式更具有物理依据和说服力;最后,本发明通过上述建立的深部各向异性岩石微元强度的度量公式,采用数学推导方法,确定了新的各向异性岩石的微元强度随机分布参数mF 0,从而更好的进行深部各向异性岩石的应力和应变预测。Thus, the present invention firstly takes the Hoek-Brown strength criterion as the research object, which has the advantages of being easy to use and suitable for actual engineering, and is accepted and applied by most engineers; secondly, the present invention introduces the error term affected by high confining pressure conditions , establish a measurement formula for deep rock micro-element strength, the expression and parameters have physical meanings, and the parameters in the error term The rock anisotropy parameter k α is taken into account, so that the established expression can consider the stress and strain prediction of anisotropic rock; secondly, the present invention introduces the concept of critical confining pressure of rock, considers the mechanical behavior of the anisotropic rock transforming from brittle to ductile state under high confining pressure, so that the established rock micro-element strength measurement expression has more physical basis and persuasiveness; finally, the present invention determines the new random distribution parameters m and F 0 of the micro-element strength of anisotropic rock through the measurement formula of the deep anisotropic rock micro-element strength established above, using a mathematical derivation method, so as to better predict the stress and strain of deep anisotropic rock.

为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。In order to make the above-mentioned objects, features and advantages of the present application more obvious and easy to understand, preferred embodiments are specifically cited below and described in detail with reference to the attached drawings.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present application, the drawings required for use in the embodiments will be briefly introduced below. It should be understood that the following drawings only show certain embodiments of the present application and therefore should not be regarded as limiting the scope. For ordinary technicians in this field, other related drawings can be obtained based on these drawings without paying creative work.

图1为本申请实施例所提供的一种深部各向异性岩石的应力和应变的预测方法的流程图;FIG1 is a flow chart of a method for predicting stress and strain of deep anisotropic rock provided in an embodiment of the present application;

图2为本申请实施例所提供的一种深部各向异性岩石的应力和应变的预测装置的结构示意图之一;FIG2 is a schematic diagram of a structure of a device for predicting stress and strain of deep anisotropic rock provided in an embodiment of the present application;

图3为本申请实施例所提供的一种深部各向异性岩石的应力和应变的预测装置的结构示意图之二;FIG3 is a second schematic diagram of the structure of a device for predicting stress and strain of deep anisotropic rock provided in an embodiment of the present application;

图4为本申请实施例所提供的一种电子设备的结构示意图。FIG. 4 is a schematic diagram of the structure of an electronic device provided in an embodiment of the present application.

具体实施方式DETAILED DESCRIPTION

为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的每个其他实施例,都属于本申请保护的范围。To make the purpose, technical scheme and advantages of the embodiments of the present application clearer, the technical scheme in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application. Obviously, the described embodiments are only a part of the embodiments of the present application, rather than all of the embodiments. The components of the embodiments of the present application usually described and shown in the drawings here can be arranged and designed in various different configurations. Therefore, the following detailed description of the embodiments of the present application provided in the drawings is not intended to limit the scope of the application claimed for protection, but merely represents the selected embodiments of the present application. Based on the embodiments of the present application, each other embodiment obtained by those skilled in the art without making creative work belongs to the scope of protection of the present application.

随着我国社会经济的高速发展,中西部高山峡谷区水电和交通等工程的建设也随之蓬勃发展。与之相关的地下工程多呈现出超长、大埋深、高地应力、高外水压等特点,由此引发对深部岩石工程的岩石力学特性及应力应变等科学问题的重视。With the rapid development of my country's social economy, the construction of hydropower and transportation projects in the high mountain valleys of central and western China has also flourished. The underground projects related to them are mostly characterized by super-long, deep burial, high ground stress, and high external water pressure, which has aroused the attention to scientific issues such as rock mechanics characteristics and stress-strain of deep rock engineering.

现如今,曹文贵等学者基于统计损伤理论提出了多种预测岩石应力和应变的方法。其中,曹文贵学者以Mohr-Coulomb强度准则为研究对象,假定该强度准则的曲线形式为抛物线,通过数学方法推导建立岩石微元强度度量表达式,通过考虑损伤力学理论,即考虑学者J. Lemaitre提出的应变等价性理论,对上述建立的微元强度度量表达式通过数学推导方法,获得了能够反映岩石应力状态对微元强度有着密切影响的度量表达式,再通过数学推导方式确定了均质岩石的微元强度随机分布参数m和F0,最终获得了一种均质岩石统计损伤预测应力和应变的数学模型。Nowadays, Cao Wengui and other scholars have proposed a variety of methods for predicting rock stress and strain based on statistical damage theory. Among them, Cao Wengui took the Mohr-Coulomb strength criterion as the research object, assuming that the curve form of the strength criterion is a parabola, and established a rock micro-element strength measurement expression through mathematical derivation. By considering the damage mechanics theory, that is, considering the strain equivalence theory proposed by scholar J. Lemaitre, the above-established micro-element strength measurement expression was mathematically deduced to obtain a measurement expression that can reflect the close influence of rock stress state on micro-element strength. Then, the micro-element strength random distribution parameters m and F 0 of homogeneous rock were determined through mathematical derivation, and finally a mathematical model for predicting stress and strain of homogeneous rock statistical damage was obtained.

但是,深部岩石除了包括均质类型岩石,还包括有各向异性类型岩石,而上述方法仅能对均质类型岩石的应力和应变进行预测。However, deep rocks include not only homogeneous rocks but also anisotropic rocks, and the above method can only predict the stress and strain of homogeneous rocks.

基于此,本申请实施例提供了一种深部各向异性岩石的应力和应变的预测方法及装置,可对非均质深部岩石的应力和应变进行预测,从而更好的辅助涉及深部岩石开发工程的实施。Based on this, the embodiments of the present application provide a method and device for predicting the stress and strain of deep anisotropic rocks, which can predict the stress and strain of heterogeneous deep rocks, thereby better assisting the implementation of deep rock development projects.

请参阅图1,图1为本申请实施例所提供的一种深部各向异性岩石的应力和应变的预测方法的流程图。如图1中所示,本申请实施例提供的预测方法,包括:Please refer to Figure 1, which is a flow chart of a method for predicting stress and strain of deep anisotropic rock provided in an embodiment of the present application. As shown in Figure 1, the prediction method provided in an embodiment of the present application includes:

S101、获取待预测深部各向异性岩石的岩石弹性模量和岩石泊松比。S101. Obtain rock elastic modulus and rock Poisson's ratio of deep anisotropic rock to be predicted.

这里,深部岩石为距地表较深处的岩石,一般将距地表3KM处的岩石称为深部岩石。岩石各向异性-岩石物理力学性质之一,指岩石在不同的方向上具有不同的物理力学性质的现象。Here, deep rock refers to the rock at a relatively deep depth from the surface. Generally, the rock 3 km from the surface is called deep rock. Rock anisotropy - one of the physical and mechanical properties of rock, refers to the phenomenon that rock has different physical and mechanical properties in different directions.

其中,所述岩石弹性模量和所述岩石泊松比的取值与岩石的类型和属性有关,具体可通过三轴围压试验确定出。The values of the rock elastic modulus and the rock Poisson's ratio are related to the type and properties of the rock, and can be specifically determined through a triaxial confining pressure test.

S102、获取基于深部各向异性岩石的微元强度的度量公式确定的深部岩石微元强度。S102. Obtaining the deep rock micro-element strength determined based on a measurement formula of the micro-element strength of deep anisotropic rock.

这里,所述深部各向异性岩石的微元强度的度量公式用于确定深部岩石微元强度的取值,所述深部各向异性岩石的微元强度的度量公式也为高围压各向异性岩石微元强度的度量公式。Here, the measurement formula of the microelement strength of deep anisotropic rock is used to determine the value of the microelement strength of deep rock, and the measurement formula of the microelement strength of deep anisotropic rock is also the measurement formula of the microelement strength of high confining pressure anisotropic rock.

所述深部各向异性岩石的微元强度的度量公式为:The measurement formula of the micro-element strength of deep anisotropic rock is:

(1) (1)

这里,F为深部岩石微元强度,为岩石的最大主应力,为深部岩石的最小主应力或围压,为岩石无量纲经验常数,为各向异性参数,为各向异性岩石单轴抗压强度,为临界围压系数,为岩石的残余应力,E为岩石弹性模量,为岩石泊松比。here, , , F is the micro-element strength of deep rock, is the maximum principal stress of the rock, is the minimum principal stress or confining pressure of deep rock, is the dimensionless empirical constant of rock, is the anisotropy parameter, is the uniaxial compressive strength of anisotropic rock, is the critical confining pressure coefficient, , is the residual stress of rock, E is the elastic modulus of rock, is the Poisson's ratio of rock.

其中,各向异性岩石单轴抗压强度可由岩石单轴抗压强度试验确定,各向异性参数根据各向异性岩石单轴抗压强度试验测得的最大单轴抗压强度值和最小单轴抗压强度值确定,岩石的残余应力根据岩石三轴围压试验测得,岩石无量纲经验常数可根据经验预先指定。Among them, the uniaxial compressive strength of anisotropic rock It can be determined by the uniaxial compressive strength test of rock, and the anisotropic parameter The residual stress of rock is determined according to the maximum uniaxial compressive strength and the minimum uniaxial compressive strength measured by the anisotropic rock uniaxial compressive strength test. According to the triaxial confining pressure test of rock, the dimensionless empirical constant of rock Can be pre-specified based on experience.

在一种实施方式中,通过以下方式构建所述深部各向异性岩石的微元强度的度量公式:In one embodiment, the measurement formula of the micro-element strength of the deep anisotropic rock is constructed in the following manner:

步骤1、基于Hoek-Brown强度准则和各向异性岩石的应力影响参数,构建未损伤岩石的最大主应力计算公式。Step 1: Based on the Hoek-Brown strength criterion and the stress influencing parameters of anisotropic rocks, a calculation formula for the maximum principal stress of undamaged rocks is constructed.

所述未损伤岩石的最大主应力计算公式为:The maximum principal stress calculation formula of the undamaged rock is:

(2) (2)

其中,为未损伤岩石最大主应力,为未损伤岩石最小主应力或围压,为岩石最小主应力或围压,为各向异性岩石单轴抗压强度,为各向异性参数,为各向异性岩石单轴抗压强度试验测得的最大单轴抗压强度值,为各向异性岩石单轴抗压强度试验测得的最小单轴抗压强度值,为岩石无量纲经验常数,为误差系数,为岩石受高围压条件影响的误差项,为临界围压系数,in, is the maximum principal stress of undamaged rock, is the minimum principal stress or confining pressure of undamaged rock, is the minimum principal stress or confining pressure of rock, is the uniaxial compressive strength of anisotropic rock, is the anisotropy parameter, , is the maximum uniaxial compressive strength value measured by the uniaxial compressive strength test of anisotropic rock, is the minimum uniaxial compressive strength value measured by the uniaxial compressive strength test of anisotropic rock, is the dimensionless empirical constant of rock, is the error coefficient, is the error term caused by the high confining pressure on rock, is the critical confining pressure coefficient, .

步骤2、获取基于Lemaitre应变等价性理论所确定的岩土体材料的初始损伤模型的数学表达式。Step 2: Obtain the mathematical expression of the initial damage model of the rock and soil material determined based on the Lemaitre strain equivalence theory.

所述初始损伤模型的数学表达式为:The mathematical expression of the initial damage model is:

(3) (3)

其中,为岩石应力,为未损伤岩石所受应力,为损伤变量,i=1、2、3。in, is the rock stress, is the stress on undamaged rock, is the damage variable, i = 1, 2, 3.

需要说明的是,为了建立与实际情况更为相符的考虑岩石统计损伤的数学模型,即构建更准确的损伤模型,需满足以下条件:It should be noted that in order to establish a mathematical model that considers rock statistical damage that is more consistent with the actual situation, that is, to build a more accurate damage model, the following conditions must be met:

(1)认为岩石是由无数个微小的单元所构成,并将承受荷载的岩石单元抽象为未损伤部分和已损伤部分。(1) It is believed that rock is composed of countless tiny units, and the rock units that bear the load are abstracted into undamaged parts and damaged parts.

(2)仅考虑岩石三轴压缩状态,岩石仅在产生损伤而不会在径向产生,因而对于常规三轴试验可有:(2) Considering only the triaxial compression state of rock, the rock will only be damaged in the radial direction but not in the radial direction. Therefore, for conventional triaxial tests, the following can be obtained:

(4) (4)

式中:分别为岩石的主应力和最小主应力或围压;分别为未损伤岩石所受的主应力和最小主应力或围压,其中,的数值可由相关人员预先设定。Where: , are the principal stress and minimum principal stress or confining pressure of rock respectively; , are the principal stress and minimum principal stress or confining pressure of undamaged rock, respectively, where: The value can be preset by relevant personnel.

(3)岩石各部分材料混杂在一起,故在变形过程中应变须协调一致,故在岩石变形过程中应变、未损伤部分的应变以及损伤部分的应变均满足下式:(3) The materials of various parts of the rock are mixed together, so the strains must be coordinated during the deformation process. Therefore, during the deformation process of the rock, the strain of the undamaged part and the strain of the damaged part all satisfy the following formula:

(5) (5)

式中:为岩石的应变,为未损伤部分的应变,为损伤部分的应变,i=1、2和3。Where: is the strain of the rock, is the strain of the undamaged part, is the strain of the damaged part, i=1, 2 and 3.

步骤3、将所述最大主应力计算公式与所述初始损伤模型的数学表达式融合,确定出所述深部各向异性岩石的微元强度的初始度量公式。Step 3: The maximum principal stress calculation formula is integrated with the mathematical expression of the initial damage model to determine the initial measurement formula of the micro-element strength of the deep anisotropic rock.

这里,基于式(2)所确定的度量公式为:Here, the measurement formula determined based on formula (2) is:

(6) (6)

其中,F为深部岩石微元强度。Where F is the micro-element strength of deep rock.

将将所述最大主应力计算公式与所述初始损伤模型的数学表达式融合,也就是将式(3)代入式(6)中,所确定的初始度量公式为:The maximum principal stress calculation formula is integrated with the mathematical expression of the initial damage model, that is, formula (3) is substituted into formula (6), and the determined initial metric formula is:

(7) (7)

步骤4、获取深部各向异性岩石的损伤变量计算公式。Step 4: Obtain the damage variable calculation formula for deep anisotropic rock.

在本申请提供的一种实施方式中,通过以下方式确定所述深部各向异性岩石的损伤变量计算公式:In one embodiment provided in the present application, the damage variable calculation formula of the deep anisotropic rock is determined in the following manner:

步骤4.1、基于所述初始损伤模型引入深部各向异性岩石残余强度特征,构建三轴压缩条件下深部各向异性岩石变形过程中的第一损伤模型。Step 4.1: Based on the initial damage model, the residual strength characteristics of deep anisotropic rock are introduced to construct the first damage model of deep anisotropic rock deformation process under triaxial compression conditions.

这里,所述第一损伤模型为反映三轴压缩条件下岩石脆性延性力学行为损伤的模型,所述第一损伤模型的数学表达式如下:Here, the first damage model is a model that reflects the brittle ductile mechanical behavior damage of rock under triaxial compression conditions. The mathematical expression of the first damage model is as follows:

(8) (8)

其中,为岩石的残余应力,可由岩石三轴围压试验测得;D为损伤变量,反映岩石的损伤程度。in, is the residual stress of rock, which can be measured by triaxial confining pressure test of rock; D is the damage variable, which reflects the degree of rock damage.

步骤4.2、将根据广义虎克定律确定未损伤岩石的变形关系式代入所述第一损伤模型中,确定所述深部各向异性岩石变形过程中的第二损伤模型。Step 4.2: Substitute the deformation relationship of undamaged rock determined according to the generalized Hooke's law into the first damage model to determine the second damage model in the deep anisotropic rock deformation process.

这里,再将根据广义虎克定律确定未损伤岩石的变形关系式代入所述第一损伤模型中,确定所述深部各向异性岩石变形过程中的第二损伤模型时,还需考虑岩石变形过程中应变一致性,也就是还需结合式(5)。Here, the deformation relationship of undamaged rock determined by the generalized Hooke's law is substituted into the first damage model to determine the second damage model in the deep anisotropic rock deformation process. It is also necessary to consider the strain consistency in the rock deformation process, that is, it is necessary to combine formula (5).

这里,根据广义虎克定律确定未损伤岩石的变形关系式为:Here, the deformation relationship of undamaged rock is determined according to the generalized Hooke's law:

(9) (9)

为岩石弹性模量,为岩石泊松比,为损伤岩石的应变,i、j、k=1,2,3。 is the elastic modulus of rock, is the rock Poisson's ratio, is the strain of damaged rock, i, j, k = 1, 2, 3.

这样,将式(9)代入式(8),并结合式(5),得到式(10),如下所示:Thus, by substituting equation (9) into equation (8) and combining it with equation (5), we get equation (10), as shown below:

(10) (10)

所述式(10)为所述深部各向异性岩石变形过程中的第二损伤模型的数学表达式。The formula (10) is a mathematical expression of the second damage model in the deep anisotropic rock deformation process.

步骤4.3、基于常规三轴压缩条件和所述第二损伤模型的数学表达式进行公式推导,确定出所述深部各向异性岩石的损伤变量计算公式。Step 4.3: Derivation of a formula based on conventional triaxial compression conditions and the mathematical expression of the second damage model to determine a damage variable calculation formula for the deep anisotropic rock.

这里,所述常规三轴压缩条件为式(4)所规定的条件,所述基于常规三轴压缩条件和所述第二损伤模型的数学表达式进行公式推导,实际为基于式(10)和式(4),确定出所述深部各向异性岩石的损伤变量计算公式:Here, the conventional triaxial compression condition is the condition specified by formula (4). The formula derivation based on the conventional triaxial compression condition and the mathematical expression of the second damage model is actually based on formula (10) and formula (4) to determine the damage variable calculation formula of the deep anisotropic rock:

(11) (11)

步骤5、将所述损伤变量计算公式代入所述初始度量公式中,确定出所述深部各向异性岩石的微元强度的度量公式。Step 5: Substitute the damage variable calculation formula into the initial measurement formula to determine the measurement formula for the micro-element strength of the deep anisotropic rock.

这里,将所述损伤变量计算公式代入所述初始度量公式中,是将式(11)代入式(7)中,这样,即可确定出所述深部各向异性岩石的微元强度的度量公式,即式(1)。Here, substituting the damage variable calculation formula into the initial measurement formula is to substitute formula (11) into formula (7). In this way, the measurement formula of the micro-element strength of the deep anisotropic rock can be determined, namely, formula (1).

S103、获取高围压下各向异性岩石变形过程的统计损伤模型的第一微元强度随机分布参数和第二微元强度随机分布参数。S103, obtaining the first microelement strength random distribution parameter and the second microelement strength random distribution parameter of the statistical damage model of the anisotropic rock deformation process under high confining pressure.

这里,所述第一微元强度分布参数基于峰值微元强度、岩石的残余应力、岩石的应变、岩石弹性模量、岩石泊松比、岩石的最大主应力、岩石的最小主应力或围压、各向异性岩石单轴抗压强度、各向异性参数、岩石无量纲经验常数、以及峰值损伤变量确定。Here, the first microelement strength distribution parameter is determined based on the peak microelement strength, residual stress of rock, strain of rock, elastic modulus of rock, Poisson's ratio of rock, maximum principal stress of rock, minimum principal stress or confining pressure of rock, anisotropic rock uniaxial compressive strength, anisotropy parameter, dimensionless empirical constant of rock, and peak damage variable.

所述第二微元强度随机分布参数是基于第一微元强度分布参数、峰值微元强度以及峰值损伤变量确定。The second micro-element strength random distribution parameter is determined based on the first micro-element strength distribution parameter, the peak micro-element strength and the peak damage variable.

S104、获取深部岩石的最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值。S104. Obtain the minimum principal stress or confining pressure of the deep rock, the residual stress of the deep rock, and the numerical value of the reference item corresponding to the item to be predicted.

这里,所述深部岩石的最小主应力或围压为相关人员预先设定。所述待预测项为应力或应变中的一者,对应的参考项为应力或应变中的另一者。Here, the minimum principal stress or confining pressure of the deep rock is preset by relevant personnel. The item to be predicted is one of the stress or strain, and the corresponding reference item is the other of the stress or strain.

示例的,当待预测项为应力时,对应的参考项为应变;当待预测项为应变时,对应的参考项为应力项。For example, when the item to be predicted is stress, the corresponding reference item is strain; when the item to be predicted is strain, the corresponding reference item is stress.

其中,参考项的数值可通过试验确定。Among them, the numerical value of the reference item can be determined through experiments.

S105、根据所述岩石弹性模量、岩石泊松比、深部岩石微元强度、第一微元强度随机分布参数、第二微元强度随机分布参数、深部岩石的最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值,对深部各向异性岩石变形过程中的应力或应变进行预测。S105. Predict the stress or strain in the deep anisotropic rock deformation process based on the rock elastic modulus, rock Poisson's ratio, deep rock micro-element strength, first micro-element strength random distribution parameter, second micro-element strength random distribution parameter, minimum principal stress or confining pressure of deep rock, residual stress of deep rock and the value of the reference item corresponding to the item to be predicted.

在本申请提供的一种实施方式中,根据所述岩石弹性模量、岩石泊松比、深部岩石微元强度、第一微元强度随机分布参数、第二微元强度随机分布参数、小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值,对深部各向异性岩石变形过程中的应力或应变进行预测,包括:In one embodiment provided in the present application, according to the rock elastic modulus, rock Poisson's ratio, deep rock micro-element strength, first micro-element strength random distribution parameter, second micro-element strength random distribution parameter, minor principal stress or confining pressure, deep rock residual stress and the value of the reference item corresponding to the item to be predicted, the stress or strain in the deep anisotropic rock deformation process is predicted, including:

将所述岩石弹性模量、岩石泊松比、深部岩石微元强度、第一微元强度随机分布参数、第二微元强度随机分布参数、最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值,代入高围压下各向异性岩石的目标统计损伤模型中,进行深部各向异性岩石变形过程中的应力或应变进行预测;Substituting the rock elastic modulus, rock Poisson's ratio, deep rock micro-element strength, first micro-element strength random distribution parameter, second micro-element strength random distribution parameter, minimum principal stress or confining pressure, deep rock residual stress and the numerical value of the reference item corresponding to the item to be predicted into the target statistical damage model of anisotropic rock under high confining pressure, the stress or strain in the deformation process of deep anisotropic rock is predicted;

其中,所述目标统计损伤模型为:Wherein, the target statistical damage model is:

(12) (12)

其中,E为岩石弹性模量,为岩石泊松比,为深部岩石微元强度,为第一微元强度随机分布参数,为第二微元强度随机分布参数,深部岩石的最小主应力或围压,深部岩石的残余应力,为深部岩石的最大主应力,为深部岩石的应变。Where, E is the elastic modulus of rock, is the rock Poisson's ratio, is the micro-element strength of deep rock, is the random distribution parameter of the first microelement intensity, is the random distribution parameter of the second microelement intensity, The minimum principal stress or confining pressure of deep rock, Residual stress in deep rock, is the maximum principal stress of deep rock, is the strain of deep rock.

这里,目标统计损伤模型的数学表达式(12)是基于式(1)和式(10)确定的,确定过程如下。Here, the mathematical expression (12) of the target statistical damage model is determined based on equations (1) and (10), and the determination process is as follows.

在确定出深部各向异性岩石的微元强度的度量公式(1)后,假设微元强度服从Weibull分布,并考虑损伤变量对损伤度量的影响,于是,高围压下各向异性岩石损伤演化模型可建立为:After determining the measurement formula (1) of the micro-element strength of deep anisotropic rock, assuming that the micro-element strength obeys the Weibull distribution and considering the influence of damage variables on the damage measurement, the damage evolution model of anisotropic rock under high confining pressure can be established as follows:

(13) (13)

由式(13)可知,除了参数mF 0能够影响岩石材料损伤演化规律以外,强度F的确定方法是损伤演化模型的关键。其中,式(7)可得考虑损伤阈值影响的各向异性岩石高围压下强度F表达式。From formula (13), it can be seen that in addition to the parameters m and F0 that can affect the damage evolution law of rock materials, the determination method of strength F is the key to the damage evolution model. Among them, formula (7) can obtain the expression of strength F of anisotropic rock under high confining pressure considering the influence of damage threshold.

将式(13)代入式(10)中,可得高围压下各向异性岩石的目标统计损伤模型,即确定出式(12),所述目标统计损伤模型为高围压下各向异性岩石考虑脆延力学行为统计损伤三维数学模型。Substituting formula (13) into formula (10), the target statistical damage model of anisotropic rock under high confining pressure can be obtained, that is, formula (12) is determined. The target statistical damage model is a three-dimensional mathematical model of statistical damage of anisotropic rock under high confining pressure considering brittle-ductile mechanical behavior.

这样,确定出式(12)后,可基于式确定出所述第一微元强度随机分布参数的计算公式和所述第二微元强度随机分布参数的计算公式。In this way, after formula (12) is determined, the calculation formula for the first micro-element intensity random distribution parameter and the calculation formula for the second micro-element intensity random distribution parameter can be determined based on the formula.

在本申请提供的一种实施方式中,通过以下方式确定所述第一微元强度随机分布参数的计算公式和所述第二微元强度随机分布参数的计算公式:获取高围压下各向异性岩石应力-应变曲线的极值特性表达式,和峰值处的应力和应变的对应关系式;将所述目标统计损伤模型的数学表达式分别代入所述极值特性表达式和所述峰值处的应力和应变的对应关系式中,确定出所述第一微元强度随机分布参数的计算公式和所述第二微元强度随机分布参数的计算公式。In one embodiment provided in the present application, the calculation formula for the first micro-element strength random distribution parameter and the calculation formula for the second micro-element strength random distribution parameter are determined in the following manner: an extreme characteristic expression of the anisotropic rock stress-strain curve under high confining pressure and a corresponding relationship between the stress and strain at the peak are obtained; the mathematical expression of the target statistical damage model is substituted into the extreme characteristic expression and the corresponding relationship between the stress and strain at the peak, respectively, to determine the calculation formula for the first micro-element strength random distribution parameter and the calculation formula for the second micro-element strength random distribution parameter.

这里,通过下述公式推导,对所述第一微元强度随机分布参数的计算公式和所述第二微元强度随机分布参数的计算公式的确定过程进行说明。Here, the process of determining the calculation formula of the first micro-element intensity random distribution parameter and the calculation formula of the second micro-element intensity random distribution parameter is explained by deducing the following formula.

首先,设定高围压下各向异性岩石应力-应变曲线峰值点处的应力为σ p,应变为ε p,则根据曲线的极值特性,可得:First, assume that the stress at the peak point of the anisotropic rock stress-strain curve under high confining pressure is σ p and the strain is ε p . According to the extreme value characteristics of the curve, we can obtain:

(14) (14)

其中,在峰值处的应力和应变还需满足下式:Among them, the stress and strain at the peak value must also satisfy the following formula:

(15) (15)

然后,当各向异性岩石达到峰值应力时处于损伤状态,将式(12)分别代入式(14)和(15),通过数学推导联立两个方程可求得第一微元强度随机分布参数m的计算公式和所述第二微元强度随机分布参数的计算公式,即:Then, when the anisotropic rock reaches the peak stress, it is in a damaged state. Substituting equation (12) into equations (14) and (15) respectively, the calculation formula of the first microelement strength random distribution parameter m and the calculation formula of the second microelement strength random distribution parameter m can be obtained by mathematically deriving the two equations simultaneously. The calculation formula is:

(16) (16)

(17) (17)

式中:χ=m p k α σ 3F pD p分别为峰值应力特征值高围压条件下各向异性岩石材料强度F和损伤变量D的数值,即为F p峰值微元强度,D p峰值损伤变量。Where: χ = m p k α σ 3 , F p and D p are the values of the anisotropic rock material strength F and damage variable D under high confining pressure conditions of peak stress characteristic value, that is, F p is the peak micro-element strength, and D p is the peak damage variable.

其中,峰值微元强度F p可由式(1)和式(15)确定,峰值损伤变量参数D p可由下式求得:Among them, the peak micro-element strength Fp can be determined by equation (1) and equation (15), and the peak damage variable parameter Dp can be obtained by the following equation:

(18) (18)

式中:为损伤岩石截面积,为岩石单元总截面积。Where: is the cross-sectional area of the damaged rock, is the total cross-sectional area of the rock unit.

这样,即确定了新的各向异性岩石的微元强度随机分布参数mF 0In this way, the random distribution parameters m and F 0 of the new micro-element strength of anisotropic rock are determined.

这样,本发明首先以Hoek-Brown强度准则为研究对象,具有使用简便,贴合实际工程的优点,且被多数工程人员所接受和应用;其次,本发明通过引入高围压条件影响的误差项,建立深部岩石微元强度的度量公式,该表达式和参数都具有物理意义,且误差项中的参数考虑了岩石各向异性参数k α,使得建立的表达式能够考虑各向异性岩石的应力和应变预测;再其次,本发明引入了岩石临界围压概念,考虑了各向异性岩石高围压下岩石由脆性转化延性状态的力学行为,使建立的岩石微元强度度量表达式更具有物理依据和说服力;最后,本发明通过上述建立的深部各向异性岩石微元强度的度量公式,采用数学推导方法,确定了新的各向异性岩石的微元强度随机分布参数mF 0,从而更好的进行深部各向异性岩石的应力和应变预测。Thus, the present invention firstly takes the Hoek-Brown strength criterion as the research object, which has the advantages of being easy to use and suitable for actual engineering, and is accepted and applied by most engineers; secondly, the present invention introduces the error term affected by high confining pressure conditions , establish a measurement formula for deep rock micro-element strength, the expression and parameters have physical meanings, and the parameters in the error term The rock anisotropy parameter k α is taken into account, so that the established expression can consider the stress and strain prediction of anisotropic rock; secondly, the present invention introduces the concept of critical confining pressure of rock, considers the mechanical behavior of the anisotropic rock transforming from brittle to ductile state under high confining pressure, so that the established rock micro-element strength measurement expression has more physical basis and persuasiveness; finally, the present invention determines the new random distribution parameters m and F 0 of the micro-element strength of anisotropic rock through the measurement formula of the deep anisotropic rock micro-element strength established above, using a mathematical derivation method, so as to better predict the stress and strain of deep anisotropic rock.

请参阅图2、图3,图2为本申请实施例所提供的一种深部各向异性岩石的应力和应变的预测装置的结构示意图之一,图2为本申请实施例所提供的一种深部各向异性岩石的应力和应变的预测装置的结构示意图之二。如图2中所示,所述预测装置200包括:Please refer to Figures 2 and 3. Figure 2 is a schematic diagram of the structure of a device for predicting stress and strain of deep anisotropic rock provided in an embodiment of the present application. Figure 2 is a schematic diagram of the structure of a device for predicting stress and strain of deep anisotropic rock provided in an embodiment of the present application. As shown in Figure 2, the prediction device 200 includes:

第一获取模块210,用于获取待预测深部各向异性岩石的岩石弹性模量和岩石泊松比;The first acquisition module 210 is used to acquire the rock elastic modulus and rock Poisson's ratio of the deep anisotropic rock to be predicted;

第二获取模块220,用于获取基于深部各向异性岩石的微元强度的度量公式确定的深部岩石微元强度;A second acquisition module 220 is used to acquire the deep rock micro-element strength determined based on a measurement formula of the micro-element strength of deep anisotropic rock;

第三获取模块230,用于获取高围压下各向异性岩石变形过程的统计损伤模型的第一微元强度随机分布参数和第二微元强度随机分布参数;The third acquisition module 230 is used to obtain the first microelement strength random distribution parameter and the second microelement strength random distribution parameter of the statistical damage model of the anisotropic rock deformation process under high confining pressure;

第四获取模块240,用于获取深部岩石的最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值;其中,所述待预测项为应力或应变中的一者,对应的参考项为应力或应变中的另一者;The fourth acquisition module 240 is used to obtain the minimum principal stress or confining pressure of the deep rock, the residual stress of the deep rock, and the value of the reference item corresponding to the item to be predicted; wherein the item to be predicted is one of stress or strain, and the corresponding reference item is the other of stress or strain;

预测模块250,用于根据所述岩石弹性模量、岩石泊松比、深部岩石微元强度、第一微元强度随机分布参数、第二微元强度随机分布参数、深部岩石的最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值,对深部各向异性岩石变形过程中的应力或应变进行预测。The prediction module 250 is used to predict the stress or strain in the deep anisotropic rock deformation process based on the rock elastic modulus, rock Poisson's ratio, deep rock micro-element strength, first micro-element strength random distribution parameter, second micro-element strength random distribution parameter, minimum principal stress or confining pressure of deep rock, residual stress of deep rock and the value of the reference item corresponding to the item to be predicted.

可选的,如图3所示,所述预测装置200还包括构建模块260,所述构建模块260用于:Optionally, as shown in FIG3 , the prediction device 200 further includes a construction module 260, and the construction module 260 is used to:

基于Hoek-Brown强度准则和各向异性岩石的应力影响参数,构建未损伤岩石的最大主应力计算公式;Based on the Hoek-Brown strength criterion and the stress influencing parameters of anisotropic rocks, the maximum principal stress calculation formula of undamaged rocks is constructed.

获取基于Lemaitre应变等价性理论所确定的岩土体材料的初始损伤模型的数学表达式;Obtain the mathematical expression of the initial damage model of the rock and soil material determined based on the Lemaitre strain equivalence theory;

将所述最大主应力计算公式与所述初始损伤模型的数学表达式融合,确定出所述深部各向异性岩石的微元强度的初始度量公式;The maximum principal stress calculation formula is integrated with the mathematical expression of the initial damage model to determine the initial measurement formula of the micro-element strength of the deep anisotropic rock;

获取深部各向异性岩石的损伤变量计算公式;Obtain the damage variable calculation formula for deep anisotropic rock;

将所述损伤变量计算公式代入所述初始度量公式中,确定出所述深部各向异性岩石的微元强度的度量公式。The damage variable calculation formula is substituted into the initial measurement formula to determine the measurement formula of the micro-element strength of the deep anisotropic rock.

可选的,所述未损伤岩石的最大主应力计算公式为:Optionally, the maximum principal stress calculation formula of the undamaged rock is:

其中,为未损伤岩石最大主应力,为未损伤岩石最小主应力或围压,为岩石最小主应力或围压,为各向异性岩石单轴抗压强度,为各向异性参数,为各向异性岩石单轴抗压强度试验测得的最大单轴抗压强度值,为各向异性岩石单轴抗压强度试验测得的最小单轴抗压强度值,为岩石无量纲经验常数,为误差系数,为临界围压系数,为深部岩石受高围压条件影响的误差项。in, is the maximum principal stress of undamaged rock, is the minimum principal stress or confining pressure of undamaged rock, is the minimum principal stress or confining pressure of rock, is the uniaxial compressive strength of anisotropic rock, is the anisotropy parameter, , is the maximum uniaxial compressive strength value measured by the uniaxial compressive strength test of anisotropic rock, is the minimum uniaxial compressive strength value measured by the uniaxial compressive strength test of anisotropic rock, is the dimensionless empirical constant of rock, is the error coefficient, is the critical confining pressure coefficient, , is the error term caused by the high confining pressure condition on deep rocks.

可选的,所述深部各向异性岩石的微元强度的度量公式为:Optionally, the measurement formula of the micro-element strength of the deep anisotropic rock is:

其中,F为深部岩石微元强度,为岩石的最大主应力,为岩石的残余应力。in, , , F is the micro-element strength of deep rock, is the maximum principal stress of rock, is the residual stress of rock.

可选的,所述预测模块250在用于根据所述岩石弹性模量、岩石泊松比、深部岩石微元强度、第一微元强度随机分布参数、第二微元强度随机分布参数、深部岩石最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值,对深部各向异性岩石变形过程中的应力或应变进行预测时,所述预测模块250用于:Optionally, when the prediction module 250 is used to predict the stress or strain in the deformation process of deep anisotropic rock according to the rock elastic modulus, rock Poisson's ratio, deep rock micro-element strength, first micro-element strength random distribution parameter, second micro-element strength random distribution parameter, deep rock minimum principal stress or confining pressure, deep rock residual stress and the value of the reference item corresponding to the item to be predicted, the prediction module 250 is used to:

将所述岩石弹性模量、岩石泊松比、深部岩石微元强度、第一微元强度随机分布参数、第二微元强度随机分布参数、深部岩石的最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值,代入高围压下各向异性岩石的目标统计损伤模型中,进行深部各向异性岩石变形过程中的应力或应变进行预测;Substituting the rock elastic modulus, rock Poisson's ratio, deep rock micro-element strength, first micro-element strength random distribution parameter, second micro-element strength random distribution parameter, minimum principal stress or confining pressure of deep rock, residual stress of deep rock and the numerical value of the reference item corresponding to the item to be predicted into the target statistical damage model of anisotropic rock under high confining pressure, the stress or strain in the deformation process of deep anisotropic rock is predicted;

其中,所述目标统计损伤模型为:Wherein, the target statistical damage model is:

其中,E为岩石弹性模量,为岩石泊松比,为深部岩石微元强度,为第一微元强度随机分布参数,为第二微元强度随机分布参数,深部岩石的最小主应力或围压,深部岩石的残余应力,为深部岩石的最大主应力,为深部岩石的应变。Where, E is the elastic modulus of rock, is the rock Poisson's ratio, is the micro-element strength of deep rock, is the random distribution parameter of the first microelement intensity, is the random distribution parameter of the second microelement intensity, The minimum principal stress or confining pressure of deep rock, Residual stress in deep rock, is the maximum principal stress of deep rock, is the strain of deep rock.

可选的,所述预测装置200还包括第一确定模块270,所述第一确定模块270用于通过以下方式确定所述第一微元强度随机分布参数的计算公式和所述第二微元强度随机分布参数的计算公式:Optionally, the prediction device 200 further includes a first determination module 270, and the first determination module 270 is used to determine the calculation formula of the first micro-element intensity random distribution parameter and the calculation formula of the second micro-element intensity random distribution parameter in the following manner:

获取高围压下各向异性岩石应力-应变曲线的极值特性表达式,和峰值处的应力和应变的对应关系式;Obtain the extreme characteristic expression of the anisotropic rock stress-strain curve under high confining pressure, and the corresponding relationship between the stress and strain at the peak;

将所述目标统计损伤模型的数学表达式分别代入所述极值特性表达式和所述峰值处的应力和应变的对应关系式中,确定出所述第一微元强度随机分布参数的计算公式和所述第二微元强度随机分布参数的计算公式。Substitute the mathematical expression of the target statistical damage model into the extreme value characteristic expression and the corresponding relationship between the stress and strain at the peak value, and determine the calculation formula of the first microelement strength random distribution parameter and the calculation formula of the second microelement strength random distribution parameter.

可选的,所述预测装置200还包括第二确定模块280,所述第二确定模块280用于:Optionally, the prediction device 200 further includes a second determination module 280, and the second determination module 280 is used to:

基于所述初始损伤模型引入深部各向异性岩石残余强度特征,构建三轴压缩条件下深部各向异性岩石变形过程中的第一损伤模型;Based on the initial damage model, the residual strength characteristics of deep anisotropic rock are introduced to construct the first damage model of deep anisotropic rock deformation process under triaxial compression conditions;

将根据广义虎克定律确定未损伤岩石的变形关系式代入所述第一损伤模型中,确定所述深部各向异性岩石变形过程中的第二损伤模型;Substituting the deformation relation of undamaged rock determined according to the generalized Hooke's law into the first damage model to determine a second damage model in the deep anisotropic rock deformation process;

基于常规三轴压缩条件和所述第二损伤模型的数学表达式进行公式推导,确定出所述深部各向异性岩石的损伤变量计算公式。A formula is derived based on conventional triaxial compression conditions and the mathematical expression of the second damage model to determine a damage variable calculation formula for the deep anisotropic rock.

请参阅图4,图4为本申请实施例所提供的一种电子设备的结构示意图。如图4中所示,所述电子设备400包括处理器410、存储器420和总线430。Please refer to Fig. 4, which is a schematic diagram of the structure of an electronic device provided in an embodiment of the present application. As shown in Fig. 4, the electronic device 400 includes a processor 410, a memory 420 and a bus 430.

所述存储器420存储有所述处理器410可执行的机器可读指令,当电子设备400运行时,所述处理器410与所述存储器420之间通过总线430通信,所述机器可读指令被所述处理器410执行时,可以执行如上述图1所示方法实施例中的预测方法的步骤,具体实现方式可参见方法实施例,在此不再赘述。The memory 420 stores machine-readable instructions executable by the processor 410. When the electronic device 400 is running, the processor 410 communicates with the memory 420 through the bus 430. When the machine-readable instructions are executed by the processor 410, the steps of the prediction method in the method embodiment shown in Figure 1 above can be executed. The specific implementation method can be found in the method embodiment, which will not be repeated here.

本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时可以执行如上述图1所示方法实施例中的预测方法的步骤,具体实现方式可参见方法实施例,在此不再赘述。An embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored. When the computer program is executed by a processor, the steps of the prediction method in the method embodiment shown in FIG. 1 can be executed. The specific implementation method can be found in the method embodiment, which will not be repeated here.

所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and brevity of description, the specific working processes of the systems, devices and units described above can refer to the corresponding processes in the aforementioned method embodiments and will not be repeated here.

在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided in the present application, it should be understood that the disclosed systems, devices and methods can be implemented in other ways. The device embodiments described above are merely schematic. For example, the division of the units is only a logical function division. There may be other division methods in actual implementation. For example, multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed. Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some communication interfaces, and the indirect coupling or communication connection of devices or units can be electrical, mechanical or other forms.

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.

另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。In addition, each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可执行的非易失的计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-OnlyMemory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。If the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a non-volatile computer-readable storage medium that can be executed by a processor. Based on this understanding, the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art. The computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present application. The aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

最后应说明的是:以上所述实施例,仅为本申请的具体实施方式,用以说明本申请的技术方案,而非对其限制,本申请的保护范围并不局限于此,尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本申请实施例技术方案的精神和范围,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。Finally, it should be noted that the above-described embodiments are only specific implementation methods of the present application, which are used to illustrate the technical solutions of the present application, rather than to limit them. The protection scope of the present application is not limited thereto. Although the present application is described in detail with reference to the above-mentioned embodiments, ordinary technicians in the field should understand that any technician familiar with the technical field can still modify the technical solutions recorded in the above-mentioned embodiments within the technical scope disclosed in the present application, or can easily think of changes, or make equivalent replacements for some of the technical features therein; and these modifications, changes or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the present application, and should be included in the protection scope of the present application. Therefore, the protection scope of the present application shall be based on the protection scope of the claims.

Claims (10)

1.一种深部各向异性岩石的应力和应变的预测方法,其特征在于,所述预测方法包括:1. A method for predicting stress and strain of deep anisotropic rock, characterized in that the prediction method comprises: 获取待预测深部各向异性岩石的岩石弹性模量和岩石泊松比;Obtain the rock elastic modulus and rock Poisson's ratio of the deep anisotropic rock to be predicted; 获取基于深部各向异性岩石的微元强度的度量公式确定的深部岩石微元强度;Obtaining the deep rock micro-element strength determined based on the measurement formula of the micro-element strength of deep anisotropic rock; 获取高围压下各向异性岩石变形过程的统计损伤模型的第一微元强度随机分布参数和第二微元强度随机分布参数;Obtain the first microelement strength random distribution parameter and the second microelement strength random distribution parameter of the statistical damage model of anisotropic rock deformation process under high confining pressure; 获取深部岩石的最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值;其中,所述待预测项为应力或应变中的一者,对应的参考项为应力或应变中的另一者;Obtaining the minimum principal stress or confining pressure of deep rock, the residual stress of deep rock, and the value of the reference item corresponding to the item to be predicted; wherein the item to be predicted is one of stress or strain, and the corresponding reference item is the other of stress or strain; 根据所述岩石弹性模量、岩石泊松比、深部岩石微元强度、第一微元强度随机分布参数、第二微元强度随机分布参数、深部岩石的最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值,对深部各向异性岩石变形过程中的应力或应变进行预测。The stress or strain in the deformation process of deep anisotropic rock is predicted based on the rock elastic modulus, rock Poisson's ratio, deep rock micro-element strength, first micro-element strength random distribution parameter, second micro-element strength random distribution parameter, minimum principal stress or confining pressure of deep rock, residual stress of deep rock and the value of reference item corresponding to the item to be predicted. 2.根据权利要求1所述的预测方法,其特征在于,通过以下方式构建所述深部各向异性岩石的微元强度的度量公式:2. The prediction method according to claim 1 is characterized in that the measurement formula of the micro-element strength of the deep anisotropic rock is constructed in the following manner: 基于Hoek-Brown强度准则和各向异性岩石的应力影响参数,构建未损伤岩石的最大主应力计算公式;Based on the Hoek-Brown strength criterion and the stress influencing parameters of anisotropic rocks, the maximum principal stress calculation formula of undamaged rocks is constructed. 获取基于Lemaitre应变等价性理论所确定的岩土体材料的初始损伤模型的数学表达式;Obtain the mathematical expression of the initial damage model of the rock and soil material determined based on the Lemaitre strain equivalence theory; 将所述最大主应力计算公式与所述初始损伤模型的数学表达式融合,确定出所述深部各向异性岩石的微元强度的初始度量公式;The maximum principal stress calculation formula is integrated with the mathematical expression of the initial damage model to determine the initial measurement formula of the micro-element strength of the deep anisotropic rock; 获取深部各向异性岩石的损伤变量计算公式;Obtain the damage variable calculation formula for deep anisotropic rock; 将所述损伤变量计算公式代入所述初始度量公式中,确定出所述深部各向异性岩石的微元强度的度量公式。The damage variable calculation formula is substituted into the initial measurement formula to determine the measurement formula of the micro-element strength of the deep anisotropic rock. 3.根据权利要求2所述的预测方法,其特征在于,所述未损伤岩石的最大主应力计算公式为:3. The prediction method according to claim 2, characterized in that the maximum principal stress calculation formula of the undamaged rock is: 其中,为未损伤岩石最大主应力,为未损伤岩石最小主应力或围压,为岩石最小主应力或围压,为各向异性岩石单轴抗压强度,为各向异性参数,为各向异性岩石单轴抗压强度试验测得的最大单轴抗压强度值,为各向异性岩石单轴抗压强度试验测得的最小单轴抗压强度值,为岩石无量纲经验常数,为误差系数,为临界围压系数,为深部岩石受高围压条件影响的误差项。in, is the maximum principal stress of undamaged rock, is the minimum principal stress or confining pressure of undamaged rock, is the minimum principal stress or confining pressure of rock, is the uniaxial compressive strength of anisotropic rock, is the anisotropy parameter, , is the maximum uniaxial compressive strength value measured by the uniaxial compressive strength test of anisotropic rock, is the minimum uniaxial compressive strength value measured by the uniaxial compressive strength test of anisotropic rock, is the dimensionless empirical constant of rock, is the error coefficient, is the critical confining pressure coefficient, , is the error term caused by the high confining pressure condition on deep rocks. 4.根据权利要求2所述的预测方法,其特征在于,所述深部各向异性岩石的微元强度的度量公式为:4. The prediction method according to claim 2, characterized in that the measurement formula of the micro-element strength of the deep anisotropic rock is: 其中,F为深部岩石微元强度,为岩石的最大主应力,为岩石的残余应力。in, , , F is the micro-element strength of deep rock, is the maximum principal stress of the rock, is the residual stress of rock. 5.根据权利要求1所述的预测方法,其特征在于,所述根据所述岩石弹性模量、岩石泊松比、深部岩石微元强度、第一微元强度随机分布参数、第二微元强度随机分布参数、深部岩石最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值,对深部各向异性岩石变形过程中的应力或应变进行预测,包括:5. The prediction method according to claim 1 is characterized in that the stress or strain in the deformation process of deep anisotropic rock is predicted according to the rock elastic modulus, rock Poisson's ratio, deep rock micro-element strength, first micro-element strength random distribution parameter, second micro-element strength random distribution parameter, deep rock minimum principal stress or confining pressure, deep rock residual stress and the value of the reference item corresponding to the item to be predicted, comprising: 将所述岩石弹性模量、岩石泊松比、深部岩石微元强度、第一微元强度随机分布参数、第二微元强度随机分布参数、深部岩石的最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值,代入高围压下各向异性岩石的目标统计损伤模型中,进行深部各向异性岩石变形过程中的应力或应变预测;Substituting the rock elastic modulus, rock Poisson's ratio, deep rock micro-element strength, first micro-element strength random distribution parameter, second micro-element strength random distribution parameter, minimum principal stress or confining pressure of deep rock, residual stress of deep rock and numerical values of reference items corresponding to the items to be predicted into the target statistical damage model of anisotropic rock under high confining pressure, the stress or strain prediction of deep anisotropic rock during deformation is performed; 其中,所述目标统计损伤模型为:Wherein, the target statistical damage model is: 其中,E为岩石弹性模量,为岩石泊松比,为深部岩石微元强度,为第一微元强度随机分布参数,为第二微元强度随机分布参数,深部岩石的最小主应力或围压,深部岩石的残余应力,为深部岩石的最大主应力,为深部岩石的应变。Where, E is the elastic modulus of rock, is the rock Poisson's ratio, is the micro-element strength of deep rock, is the random distribution parameter of the first microelement intensity, is the random distribution parameter of the second microelement intensity, The minimum principal stress or confining pressure of deep rock, Residual stress in deep rock, is the maximum principal stress of deep rock, is the strain of deep rock. 6.根据权利要求5所述的预测方法,其特征在于,通过以下方式确定所述第一微元强度随机分布参数的计算公式和所述第二微元强度随机分布参数的计算公式:6. The prediction method according to claim 5, characterized in that the calculation formula of the first micro-element intensity random distribution parameter and the calculation formula of the second micro-element intensity random distribution parameter are determined by the following method: 获取高围压下各向异性岩石应力-应变曲线的极值特性表达式,和峰值处的应力和应变的对应关系式;Obtain the extreme characteristic expression of the anisotropic rock stress-strain curve under high confining pressure, and the corresponding relationship between the stress and strain at the peak; 将所述目标统计损伤模型的数学表达式分别代入所述极值特性表达式和所述峰值处的应力和应变的对应关系式中,确定出所述第一微元强度随机分布参数的计算公式和所述第二微元强度随机分布参数的计算公式。Substitute the mathematical expression of the target statistical damage model into the extreme value characteristic expression and the corresponding relationship between the stress and strain at the peak value, and determine the calculation formula of the first microelement strength random distribution parameter and the calculation formula of the second microelement strength random distribution parameter. 7.根据权利要求2所述的预测方法,其特征在于,通过以下方式确定所述深部各向异性岩石的损伤变量计算公式:7. The prediction method according to claim 2, characterized in that the damage variable calculation formula of the deep anisotropic rock is determined by the following method: 基于所述初始损伤模型引入深部各向异性岩石残余强度特征,构建三轴压缩条件下深部各向异性岩石变形过程中的第一损伤模型;Based on the initial damage model, the residual strength characteristics of deep anisotropic rock are introduced to construct the first damage model of deep anisotropic rock deformation process under triaxial compression conditions; 将根据广义虎克定律确定未损伤岩石的变形关系式代入所述第一损伤模型中,确定所述深部各向异性岩石变形过程中的第二损伤模型;Substituting the deformation relation of undamaged rock determined according to the generalized Hooke's law into the first damage model to determine a second damage model in the deep anisotropic rock deformation process; 基于常规三轴压缩条件和所述第二损伤模型的数学表达式进行公式推导,确定出所述深部各向异性岩石的损伤变量计算公式。A formula is derived based on conventional triaxial compression conditions and the mathematical expression of the second damage model to determine a damage variable calculation formula for the deep anisotropic rock. 8.一种深部各向异性岩石的应力和应变的预测装置,其特征在于,所述预测装置包括:8. A prediction device for stress and strain of deep anisotropic rock, characterized in that the prediction device comprises: 第一获取模块,用于获取待预测深部各向异性岩石的岩石弹性模量和岩石泊松比;The first acquisition module is used to obtain the rock elastic modulus and rock Poisson's ratio of the deep anisotropic rock to be predicted; 第二获取模块,用于获取基于深部各向异性岩石的微元强度的度量公式确定的深部岩石微元强度;A second acquisition module is used to acquire the deep rock micro-element strength determined based on a measurement formula of the micro-element strength of deep anisotropic rock; 第三获取模块,用于获取高围压下各向异性岩石变形过程的统计损伤模型的第一微元强度随机分布参数和第二微元强度随机分布参数;The third acquisition module is used to obtain the first microelement strength random distribution parameter and the second microelement strength random distribution parameter of the statistical damage model of the anisotropic rock deformation process under high confining pressure; 第四获取模块,用于获取深部岩石的最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值;其中,所述待预测项为应力或应变中的一者,对应的参考项为应力或应变中的另一者;The fourth acquisition module is used to obtain the minimum principal stress or confining pressure of deep rock, the residual stress of deep rock and the value of the reference item corresponding to the item to be predicted; wherein the item to be predicted is one of stress or strain, and the corresponding reference item is the other of stress or strain; 预测模块,用于根据所述岩石弹性模量、岩石泊松比、深部岩石微元强度、第一微元强度随机分布参数、第二微元强度随机分布参数、深部岩石的最小主应力或围压、深部岩石的残余应力以及待预测项对应的参考项的数值,对深部各向异性岩石变形过程中的应力或应变进行预测。The prediction module is used to predict the stress or strain in the deformation process of deep anisotropic rock according to the rock elastic modulus, rock Poisson's ratio, deep rock micro-element strength, first micro-element strength random distribution parameter, second micro-element strength random distribution parameter, minimum principal stress or confining pressure of deep rock, residual stress of deep rock and the value of reference item corresponding to the item to be predicted. 9.一种电子设备,其特征在于,包括:处理器、存储器和总线,所述存储器存储有所述处理器可执行的机器可读指令,当电子设备运行时,所述处理器与所述存储器之间通过所述总线进行通信,所述机器可读指令被所述处理器运行时执行如权利要求1至7任一所述的预测方法的步骤。9. An electronic device, characterized in that it comprises: a processor, a memory and a bus, wherein the memory stores machine-readable instructions executable by the processor, and when the electronic device is running, the processor and the memory communicate through the bus, and the machine-readable instructions are executed by the processor to execute the steps of the prediction method as described in any one of claims 1 to 7. 10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器运行时执行如权利要求1至7任一所述的预测方法的步骤。10. A computer-readable storage medium, characterized in that a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the prediction method according to any one of claims 1 to 7 are executed.
CN202310876718.6A 2023-07-18 2023-07-18 Method and device for predicting stress and strain of deep anisotropic rock Active CN116611265B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310876718.6A CN116611265B (en) 2023-07-18 2023-07-18 Method and device for predicting stress and strain of deep anisotropic rock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310876718.6A CN116611265B (en) 2023-07-18 2023-07-18 Method and device for predicting stress and strain of deep anisotropic rock

Publications (2)

Publication Number Publication Date
CN116611265A true CN116611265A (en) 2023-08-18
CN116611265B CN116611265B (en) 2023-09-22

Family

ID=87675048

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310876718.6A Active CN116611265B (en) 2023-07-18 2023-07-18 Method and device for predicting stress and strain of deep anisotropic rock

Country Status (1)

Country Link
CN (1) CN116611265B (en)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110182144A1 (en) * 2010-01-25 2011-07-28 Gray Frederick D Methods and systems for estimating stress using seismic data
CN102998180A (en) * 2012-11-30 2013-03-27 北京交通大学 Method for establishing damaged rock constitutive relation by utilizing residual strength
CN104361211A (en) * 2014-10-24 2015-02-18 中冶长天国际工程有限责任公司 Construction and application method of statistical damage constitutive model of rock
CN107505204A (en) * 2017-07-12 2017-12-22 河海大学 A kind of method that damage constructive model of rock mass is established based on least energy consumption principle
CN108287112A (en) * 2018-01-31 2018-07-17 成都理工大学 A method of damage of rock parameter is measured based on triaxial compression test
CN108535121A (en) * 2018-03-07 2018-09-14 华能澜沧江水电股份有限公司 Novel rock statistical damage constitutive model construction method
CN109522611A (en) * 2018-10-25 2019-03-26 长江大学 Novel Rock Damage constitutive model construction method and device
CN111366464A (en) * 2020-04-19 2020-07-03 长江大学 Method for determining mechanical parameters of fractured formation rock
CN113029795A (en) * 2021-03-08 2021-06-25 中国矿业大学 Method for establishing coal-bearing rock mass and filling body damage constitutive model after mine water soaking
CN113063661A (en) * 2021-03-11 2021-07-02 北京科技大学 A method for establishing a constitutive model of deep hard rock damage evolution
CN113868897A (en) * 2021-11-19 2021-12-31 大连海事大学 Method for calculating statistical damage of layered rock under heat-force coupling condition
CN115014975A (en) * 2022-05-16 2022-09-06 中国矿业大学 A method for constructing elastic-plastic mechanics constitutive model of rock material under deep disturbance
CN115221738A (en) * 2022-09-21 2022-10-21 北京建筑大学 Method, device, electronic device and storage medium for predicting rock strain energy release rate
CN115493934A (en) * 2022-09-26 2022-12-20 内蒙古科技大学 Method for calculating damage depth of mining water guide damage of bottom plate
CN115630533A (en) * 2022-12-19 2023-01-20 北京建筑大学 Method, device and electronic equipment for strength prediction of three-dimensional anisotropic rock
US20230031116A1 (en) * 2022-09-27 2023-02-02 Chengdu University Of Technology Method of quantitative evaluation on structural disturbance characteristics of present in-situ geo-stress in deep shale gas reservoirs
CN115774089A (en) * 2022-11-22 2023-03-10 西安理工大学 Establishment Method of Statistical Damage Constitutive Model of Coal and Rock Under Gas Pressure
CN115855639A (en) * 2022-11-22 2023-03-28 西安理工大学 Brittleness evaluation method of gassy coal rock based on constitutive relation and energy evolution

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110182144A1 (en) * 2010-01-25 2011-07-28 Gray Frederick D Methods and systems for estimating stress using seismic data
CN102998180A (en) * 2012-11-30 2013-03-27 北京交通大学 Method for establishing damaged rock constitutive relation by utilizing residual strength
CN104361211A (en) * 2014-10-24 2015-02-18 中冶长天国际工程有限责任公司 Construction and application method of statistical damage constitutive model of rock
CN107505204A (en) * 2017-07-12 2017-12-22 河海大学 A kind of method that damage constructive model of rock mass is established based on least energy consumption principle
CN108287112A (en) * 2018-01-31 2018-07-17 成都理工大学 A method of damage of rock parameter is measured based on triaxial compression test
CN108535121A (en) * 2018-03-07 2018-09-14 华能澜沧江水电股份有限公司 Novel rock statistical damage constitutive model construction method
CN109522611A (en) * 2018-10-25 2019-03-26 长江大学 Novel Rock Damage constitutive model construction method and device
CN111366464A (en) * 2020-04-19 2020-07-03 长江大学 Method for determining mechanical parameters of fractured formation rock
CN113029795A (en) * 2021-03-08 2021-06-25 中国矿业大学 Method for establishing coal-bearing rock mass and filling body damage constitutive model after mine water soaking
CN113063661A (en) * 2021-03-11 2021-07-02 北京科技大学 A method for establishing a constitutive model of deep hard rock damage evolution
CN113868897A (en) * 2021-11-19 2021-12-31 大连海事大学 Method for calculating statistical damage of layered rock under heat-force coupling condition
CN115014975A (en) * 2022-05-16 2022-09-06 中国矿业大学 A method for constructing elastic-plastic mechanics constitutive model of rock material under deep disturbance
CN115221738A (en) * 2022-09-21 2022-10-21 北京建筑大学 Method, device, electronic device and storage medium for predicting rock strain energy release rate
CN115493934A (en) * 2022-09-26 2022-12-20 内蒙古科技大学 Method for calculating damage depth of mining water guide damage of bottom plate
US20230031116A1 (en) * 2022-09-27 2023-02-02 Chengdu University Of Technology Method of quantitative evaluation on structural disturbance characteristics of present in-situ geo-stress in deep shale gas reservoirs
CN115774089A (en) * 2022-11-22 2023-03-10 西安理工大学 Establishment Method of Statistical Damage Constitutive Model of Coal and Rock Under Gas Pressure
CN115855639A (en) * 2022-11-22 2023-03-28 西安理工大学 Brittleness evaluation method of gassy coal rock based on constitutive relation and energy evolution
CN115630533A (en) * 2022-12-19 2023-01-20 北京建筑大学 Method, device and electronic equipment for strength prediction of three-dimensional anisotropic rock

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
曹文贵等: "深部岩石统计损伤本构模型研究", 《水文地质工程地质》, vol. 43, no. 4, pages 60 - 65 *
李文成: "基于Hoek-Brown强度准则岩石损伤本构研究", 《中国优秀硕士学位论文全文数据库 基础科学辑》, pages 23 - 53 *

Also Published As

Publication number Publication date
CN116611265B (en) 2023-09-22

Similar Documents

Publication Publication Date Title
Chen et al. Unified elastoplastic model based on a strain energy equivalence principle
CN108519281B (en) Method, device and system for determining brittleness index of rock
CN110377980B (en) BP neural network-based rock joint surface peak shear strength prediction method
CN107907409A (en) A kind of method, equipment and the storage device of definite rock crack initiation stress
CN208206682U (en) A kind of system that rock crack initiation stress is determined based on opposite compression strain
CN111539142A (en) Method and system for calculating crack propagation driving force of pipeline
CN113221371B (en) Method and device for determining critical sliding surface of side slope and terminal equipment
CN115659738A (en) Method, system, equipment and medium for predicting fatigue life of wind turbine blade
CN112948944B (en) Calculation method of pipeline strain under general continuous surface displacement
CN115795612A (en) Highway tunnel reinforcement bearing capacity calculation method based on rigidity analysis
CN116611265B (en) Method and device for predicting stress and strain of deep anisotropic rock
Wu et al. Analysis of ductile damage changes of pipelines with unconstrained dents in rebound process
CN116011191B (en) A model construction method for characterizing the initiation and acceleration of rock creep under true triaxial conditions
CN115688514B (en) Digital twin body construction method, system and equipment for fully-mechanized mining face surrounding rock
CN118111841A (en) Method and device for determining stress threshold of cyclic impact damage based on energy dissipation
CN114398805B (en) Method and system for constructing creep model of fractured rock under water-rock coupling effect
CN116882021A (en) Fatigue damage assessment methods, devices, equipment and storage media
CN116451003A (en) A Dispersion Curve Solving Method and Related Equipment
CN115659107A (en) Method and system for calculating compressive strength of light ceramsite concrete
CN111177842B (en) Method and device for determining dynamic characteristics of shield tunnel segment contact surface and storage medium
CN115575212A (en) Young's modulus of elasticity determination method for deformable material
CN109492261B (en) A method, device and controller for controlling dam body deformation in alpine regions
CN119397874B (en) Rock-soil mechanics characterization method and controller based on particle flow discrete element numerical simulation
CN119106571B (en) Method and system for constructing rock constitutive model
CN117250259B (en) A rock mass instability mutation early warning method, system and electronic equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant