CN116560359A - Improved robot trapezoidal speed curve planning method and system - Google Patents
Improved robot trapezoidal speed curve planning method and system Download PDFInfo
- Publication number
- CN116560359A CN116560359A CN202310420166.8A CN202310420166A CN116560359A CN 116560359 A CN116560359 A CN 116560359A CN 202310420166 A CN202310420166 A CN 202310420166A CN 116560359 A CN116560359 A CN 116560359A
- Authority
- CN
- China
- Prior art keywords
- acceleration
- robot
- speed
- deceleration
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000001133 acceleration Effects 0.000 claims abstract description 81
- 230000015654 memory Effects 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 6
- 230000006870 function Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 7
- 238000004422 calculation algorithm Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0223—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
Abstract
Description
技术领域technical field
本发明属于机器人运动规划相关技术领域,尤其涉及一种改进的机器人梯形速度曲线规划方法及系统。The invention belongs to the technical field related to robot motion planning, and in particular relates to an improved robot trapezoidal velocity curve planning method and system.
背景技术Background technique
本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。The statements in this section merely provide background information related to the present invention and do not necessarily constitute prior art.
梯形速度曲线是机械臂控制中最常用的速度规划方式之一,它具有简单、易实现的特点,同时也可以实现快速进给运动。但是,这种速度规划方式也存在一些缺点,其中之一就是梯形速度曲线存在不连续的加速度,这可能会在快速进给运动中对机械系统上产生冲击和压力。当机械臂从静止状态加速到最大速度时,加速度会突然变化,这会导致机械臂的部件和结构产生冲击和压力。这种冲击和压力可能会对机械臂的部件和结构造成损伤,导致机械臂的寿命缩短。此外,不连续的加速度还可能导致机械臂产生不良的振动效应,这些振动效应会影响机械臂的精度和性能。Trapezoidal speed curve is one of the most commonly used speed planning methods in manipulator control. It is simple and easy to implement, and it can also achieve fast feed motion. However, there are some disadvantages in this speed planning method, one of which is that there is a discontinuous acceleration in the trapezoidal speed profile, which may cause shock and stress on the mechanical system during the rapid feed motion. When the arm accelerates from rest to its maximum velocity, there is a sudden change in acceleration, which causes shock and stress to the arm's components and structure. This impact and pressure may cause damage to the components and structure of the robot arm, resulting in a shortened life of the robot arm. In addition, discontinuous acceleration can also cause undesirable vibration effects in the robotic arm, which can affect the accuracy and performance of the robotic arm.
发明内容Contents of the invention
为克服上述现有技术的不足,本发明提供了一种改进的机器人梯形速度曲线规划方法及系统,通过抛物线的光滑性改善梯形速度曲线的不连续性,实现机器人速度曲线更加平滑。In order to overcome the deficiencies of the prior art above, the present invention provides an improved robot trapezoidal speed curve planning method and system, which improves the discontinuity of the trapezoidal speed curve through the smoothness of the parabola and achieves a smoother robot speed curve.
为实现上述目的,本发明的第一个方面提供一种改进的机器人梯形速度曲线规划方法,包括:To achieve the above object, the first aspect of the present invention provides an improved robot trapezoidal speed curve planning method, including:
基于机器人运动规划中的初始速度、终止速度、最大速度确定速度曲线的加速阶段和减速阶段;Determine the acceleration phase and deceleration phase of the speed curve based on the initial speed, termination speed, and maximum speed in robot motion planning;
在所述加速阶段,加速度随加速时间变化而变化的方式控制机器人的运动;In the acceleration phase, the motion of the robot is controlled in a way that the acceleration changes with the acceleration time;
在所述减速阶段,加速度随减速时间变化而变化的方式控制机器人的运动。In the deceleration phase, the motion of the robot is controlled in a way that the acceleration changes with the deceleration time.
本发明的第二个方面提供一种改进的机器人梯形速度曲线规划系统,包括:A second aspect of the present invention provides an improved robot trapezoidal velocity curve planning system, comprising:
确定模块:基于机器人运动规划中的初始速度、终止速度、最大速度确定速度曲线的加速阶段和减速阶段;Determination module: determine the acceleration phase and deceleration phase of the speed curve based on the initial speed, termination speed, and maximum speed in robot motion planning;
加速控制模块:加速度随加速时间变化而变化的方式控制机器人的运动;Acceleration control module: control the movement of the robot in a way that the acceleration changes with the acceleration time;
减速控制模块:加速度随减速时间变化而变化的方式控制机器人的运动。Deceleration control module: Control the movement of the robot by changing the acceleration with the deceleration time.
本发明的第三个方面提供一种计算机设备,包括:处理器、存储器和总线,所述存储器存储有所述处理器可执行的机器可读指令,当计算机设备运行时,所述处理器与所述存储器之间通过总线通信,所述机器可读指令被所述处理器执行时执行一种改进的机器人梯形速度曲线规划方法。A third aspect of the present invention provides a computer device, including: a processor, a memory, and a bus, the memory stores machine-readable instructions executable by the processor, and when the computer device is running, the processor communicates with The memories communicate with each other through the bus, and when the machine-readable instructions are executed by the processor, an improved robot trapezoidal speed curve planning method is executed.
本发明的第四个方面提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器运行时执行一种改进的机器人梯形速度曲线规划方法。A fourth aspect of the present invention provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, an improved trapezoidal velocity curve planning method for a robot is executed.
以上一个或多个技术方案存在以下有益效果:The above one or more technical solutions have the following beneficial effects:
在本发明中,对梯形速度曲线的加速阶段和减速阶段进行改进,随加速时间、减速时间的变化在加速阶段的加速度、减速阶段的加速度不断的变化,从而改善梯形速度曲线的不连续性,实现机器人速度曲线更加平滑,实现简单,具有较好的实际应用价值。In the present invention, the acceleration phase and the deceleration phase of the trapezoidal speed curve are improved, and the acceleration in the acceleration phase and the acceleration in the deceleration phase are constantly changed with the change of the acceleration time and the deceleration time, thereby improving the discontinuity of the trapezoidal speed curve, The speed curve of the robot is smoother, the realization is simple, and it has good practical application value.
本发明附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Advantages of additional aspects of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.
附图说明Description of drawings
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。The accompanying drawings constituting a part of the present invention are used to provide a further understanding of the present invention, and the schematic embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute improper limitations to the present invention.
图1为本发明实施例一中改进的梯形速度曲线示意图;1 is a schematic diagram of an improved trapezoidal speed curve in Embodiment 1 of the present invention;
图2(a)为本发明实施例一中q0=0,q1=5时位置、速度和加速度曲线规划示意图;Fig. 2(a) is a schematic diagram of position, velocity and acceleration curve planning when q 0 =0, q 1 =5 in Embodiment 1 of the present invention;
图2(b)为本发明实施例一中q0=0,q1=-5时位置、速度和加速度曲线规划示意图;Fig. 2(b) is a schematic diagram of position, velocity and acceleration curve planning when q 0 =0, q 1 =-5 in Embodiment 1 of the present invention;
图2(c)为本发明实施例一中q0=5,q1=0时位置、速度和加速度曲线规划示意图;Fig. 2(c) is a schematic diagram of position, velocity and acceleration curve planning when q 0 =5, q 1 =0 in Embodiment 1 of the present invention;
图2(d)为本发明实施例一中q0=5,q1=-5时位置、速度和加速度曲线规划示意图;Fig. 2(d) is a schematic diagram of position, velocity and acceleration curve planning when q 0 =5, q 1 =-5 in Embodiment 1 of the present invention;
图2(e)为本发明实施例一中q0=-5,q1=0时位置、速度和加速度曲线规划示意图;Figure 2(e) is a schematic diagram of position, velocity and acceleration curve planning when q 0 =-5, q 1 =0 in Embodiment 1 of the present invention;
图2(f)为本发明实施例一中q0=-5,q1=5时位置、速度和加速度曲线规划示意图.Figure 2(f) is a schematic diagram of position, velocity and acceleration curve planning when q 0 =-5, q 1 =5 in Embodiment 1 of the present invention.
具体实施方式Detailed ways
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the present invention. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。It should be noted that the terminology used here is only for describing specific embodiments, and is not intended to limit exemplary embodiments according to the present invention.
在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。In the case of no conflict, the embodiments and the features in the embodiments of the present invention can be combined with each other.
实施例一Embodiment one
本实施例公开了一种改进的机器人梯形速度曲线规划方法,包括:This embodiment discloses an improved robot trapezoidal speed curve planning method, including:
基于机器人运动规划中的初始速度、终止速度、最大速度确定速度曲线的加速阶段和减速阶段;Determine the acceleration phase and deceleration phase of the speed curve based on the initial speed, termination speed, and maximum speed in robot motion planning;
在所述加速阶段,加速度随加速时间变化而变化的方式控制机器人的运动;In the acceleration phase, the motion of the robot is controlled in a way that the acceleration changes with the acceleration time;
在所述减速阶段,加速度随减速时间变化而变化的方式控制机器人的运动。In the deceleration phase, the motion of the robot is controlled in a way that the acceleration changes with the deceleration time.
梯形速度曲线是机器人运动规划中常用的一种速度曲线,如图1中梯形曲线所示。梯形速度曲线基于初始/终止速度、最大加/减速度、最大速度以及起始/终止的位移来计算加速段(Ta)、匀速段(Tv)以及减速段(Td)所需的时间,并根据位移、速度以及加速度公式计算期望的轨迹。然而,梯形速度曲线存在不连续的加速度,这可能会在快速的进给运动中对机械系统上产生冲击和压力,甚至导致机械臂损伤或不良的振动效应。为解决这个问题,本实施例提出基于抛物线的梯形速度曲线优化策略,如图1虚线所示,该方法通过使用抛物线的光滑性改善梯形速度曲线的不连续性。The trapezoidal speed curve is a speed curve commonly used in robot motion planning, as shown in the trapezoidal curve in Figure 1. The trapezoidal velocity profile calculates the time required for acceleration (T a ), constant velocity (T v ) and deceleration (T d ) based on the initial/end speed, maximum acceleration/deceleration, maximum speed, and start/end displacement , and calculate the expected trajectory according to the displacement, velocity and acceleration formulas. However, there are discontinuous accelerations in the trapezoidal velocity profile, which may cause shock and stress on the mechanical system during the fast feed motion, and even cause damage to the robotic arm or undesirable vibration effects. In order to solve this problem, this embodiment proposes a parabola-based trapezoidal speed curve optimization strategy, as shown by the dotted line in FIG. 1 , this method improves the discontinuity of the trapezoidal speed curve by using the smoothness of the parabola.
本实施例中改进的梯形速度曲线仍采用三段式:加速段、匀速段和减速段,在加速和减速段中采用抛物线来改善不连续性。The improved trapezoidal speed curve in this embodiment still adopts three sections: an acceleration section, a constant velocity section and a deceleration section, and a parabola is used in the acceleration and deceleration sections to improve the discontinuity.
改进后的梯形速度曲线表达式为:The expression of the improved trapezoidal velocity curve is:
其中,am为最大加速度,vm为最大速度,τ1,τ2,τ3分别为加速阶段、匀速阶段和减速阶段的运行时间,A为待求参数,其大小决定了曲线的形状与大小。Among them, a m is the maximum acceleration, v m is the maximum speed, τ 1 , τ 2 , τ 3 are the running time of the acceleration phase, the constant speed phase and the deceleration phase respectively, A is the parameter to be obtained, and its size determines the shape of the curve and size.
假设机器人运动在最大速度可以能达到的前提下,根据公式(2)最大速度曲线表达式可得:Assuming that the robot can move at the maximum speed, according to the formula (2) the maximum speed curve expression Available:
求解上述方程可得:Solving the above equations gives:
假设Ta有解,由方程(5)可得:Assuming that T a has a solution, it can be obtained from equation (5):
取得:Pick have to:
在本实施例中,通过上述公式(3)可获得最终的轨迹表达式为:In this embodiment, the final trajectory expression can be obtained by the above formula (3):
根据梯形曲线对称原理,假设加速度段和减速段的时间相同,考虑临界状态即无匀速段,即Tv=0,轨迹可以简化为:According to the principle of trapezoidal curve symmetry, assuming that the time of the acceleration section and the deceleration section are the same, considering the critical state that is, there is no constant velocity section, that is, T v = 0, the trajectory can be simplified as:
将和/>代入上式可得:Will and /> Substitute into the above formula to get:
整理可得临界速度为:The available critical speed is:
其中,vtemp表示临界速度。Among them, v temp represents the critical speed.
若有均速阶段,此时在公式(10)基础上,可得:If there is a constant speed stage, then on the basis of formula (10), it can be obtained:
解上述方程可得匀速段的时间TV,Solve the above equation to get the time T V of the constant velocity section,
系统能否达到最大速度判别式为:The discriminant formula for whether the system can reach the maximum speed is:
vlim即为最终的匀速段的速度值,即vm=vlim用于最终的位移,速度和加速度的计算(即公式(1),(2),(3))。v lim is the velocity value of the final constant velocity section, that is, v m =v lim is used for the calculation of the final displacement, velocity and acceleration (ie formulas (1), (2), (3)).
在本实施例中,对于预先给定的起始位置q0和终点位置q1需进行如下两种情况的讨论:In this embodiment, the following two situations need to be discussed for the predetermined start position q0 and end position q1 :
若q1≥q0的情况,根据上述公式(1)(2)(3)即可求出相应的曲线轨迹、速度和加速度曲线。If q 1 ≥ q 0 , according to the above formulas (1)(2)(3), the corresponding curve trajectory, velocity and acceleration curves can be obtained.
若q1<q0,即初始位置大于终点位置时,上述的求解过程会出现复数求开平方的情况而导致计算失败,引入系数σ=sign(q1-q0),其中sign为符号函数:If q 1 <q 0 , that is, when the initial position is greater than the end position, the above-mentioned solution process will cause the complex number to find the square root and cause the calculation to fail. The coefficient σ=sign(q 1 -q 0 ) is introduced, where sign is a sign function :
对预先给定的起始和终点位置、速度和加速通过系数进行取反操作,即,然后将其作为已知参数代入公式(1),(2),(3)中求解相应的轨迹、速度和加速度,再对曲线再次取反,最终完成轨迹的输出。Inverts the predetermined start and end position, velocity and acceleration through the coefficients, i.e., Then substitute it into formulas (1), (2), and (3) as known parameters to solve the corresponding trajectory, velocity and acceleration, and then invert the curve again, and finally complete the output of the trajectory.
本实施例对改进梯形速度曲线算法进行了测试,假设最大速度vm=2,最大加速度am=10,初始速度v0=0,终点速度v1=0,通过改变起始位置q0和终点位置q1对算法进行测试,即分别考虑q0和q1的相对大小。实验设置6种状态,分别为:In this embodiment, the improved trapezoidal velocity curve algorithm is tested, assuming that the maximum velocity v m =2, the maximum acceleration am =10, the initial velocity v 0 =0, and the terminal velocity v 1 =0, by changing the initial position q 0 and The end position q 1 tests the algorithm, ie considers the relative sizes of q 0 and q 1 respectively. The experiment sets 6 states, namely:
q0=0,q1>0;q0=0,q1<0;q 0 =0, q 1 >0; q 0 =0, q 1 <0;
q0>0,q1=0;q0<0,q1=0;q 0 >0, q 1 =0; q 0 <0, q 1 =0;
q0>0,q1<0;q0<0,q1>0;q 0 >0, q 1 <0; q 0 <0, q 1 >0;
基于上述改进算法针对上述不同情况的位置、速度和加速度曲线规划如图2(a)-图2(f)所示。Based on the above improved algorithm, the position, velocity and acceleration curve planning for the above different situations are shown in Figure 2(a)-Figure 2(f).
根据图2(a)-图2(f)可以看出,经过改进后的梯形速度曲线算法可以实现不同情况下机械臂关节的运动轨迹、速度曲线和加速度曲线的规划,并表现出良好的性能,实现了平滑的曲线轨迹和较短的运动时间。结果表明,所提出的优化曲线算法可以有效地提高机械臂关节控制性能,具有实际应用价值。According to Figure 2(a)-Figure 2(f), it can be seen that the improved trapezoidal velocity curve algorithm can realize the planning of the motion trajectory, velocity curve and acceleration curve of the manipulator joint in different situations, and shows good performance , to achieve a smooth curve trajectory and a shorter movement time. The results show that the proposed optimization curve algorithm can effectively improve the joint control performance of the manipulator, and has practical application value.
实施例二Embodiment two
本实施例的目的是提供一种计算装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述方法的步骤。The purpose of this embodiment is to provide a computing device, which includes a memory, a processor, and a computer program stored in the memory and operable on the processor. The processor implements the steps of the above method when executing the program.
实施例三Embodiment three
本实施例的目的是提供一种计算机可读存储介质。The purpose of this embodiment is to provide a computer-readable storage medium.
一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时执行上述方法的步骤。A computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the steps of the above-mentioned method are executed.
实施例四Embodiment four
本实施例的目的是提供一种改进的机器人梯形速度曲线规划系统,包括:The purpose of this embodiment is to provide an improved robot trapezoidal speed curve planning system, including:
确定模块:基于机器人运动规划中的初始速度、终止速度、最大速度确定速度曲线的加速阶段和减速阶段;Determination module: determine the acceleration phase and deceleration phase of the speed curve based on the initial speed, termination speed, and maximum speed in robot motion planning;
加速控制模块:加速度随加速时间变化而变化的方式控制机器人的运动;Acceleration control module: control the movement of the robot in a way that the acceleration changes with the acceleration time;
减速控制模块:加速度随减速时间变化而变化的方式控制机器人的运动。Deceleration control module: Control the movement of the robot by changing the acceleration with the deceleration time.
以上实施例二、三和四的装置中涉及的各步骤与方法实施例一相对应,具体实施方式可参见实施例一的相关说明部分。术语“计算机可读存储介质”应该理解为包括一个或多个指令集的单个介质或多个介质;还应当被理解为包括任何介质,所述任何介质能够存储、编码或承载用于由处理器执行的指令集并使处理器执行本发明中的任一方法。The steps involved in the devices of the above embodiments 2, 3 and 4 correspond to the method embodiment 1, and for specific implementation, please refer to the relevant description of the embodiment 1. The term "computer-readable storage medium" shall be construed to include a single medium or multiple media including one or more sets of instructions; and shall also be construed to include any medium capable of storing, encoding, or carrying A set of instructions to execute and cause the processor to execute any method in the present invention.
本领域技术人员应该明白,上述本发明的各模块或各步骤可以用通用的计算机装置来实现,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。本发明不限制于任何特定的硬件和软件的结合。Those skilled in the art should understand that each module or each step of the present invention described above can be realized by a general-purpose computer device, optionally, they can be realized by a program code executable by the computing device, thereby, they can be stored in a memory The device is executed by a computing device, or they are made into individual integrated circuit modules, or multiple modules or steps among them are made into a single integrated circuit module for realization. The invention is not limited to any specific combination of hardware and software.
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。Although the specific implementation of the present invention has been described above in conjunction with the accompanying drawings, it is not a limitation to the protection scope of the present invention. Those skilled in the art should understand that on the basis of the technical solution of the present invention, those skilled in the art do not need to pay creative work Various modifications or variations that can be made are still within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310420166.8A CN116560359A (en) | 2023-04-14 | 2023-04-14 | Improved robot trapezoidal speed curve planning method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310420166.8A CN116560359A (en) | 2023-04-14 | 2023-04-14 | Improved robot trapezoidal speed curve planning method and system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116560359A true CN116560359A (en) | 2023-08-08 |
Family
ID=87497369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310420166.8A Pending CN116560359A (en) | 2023-04-14 | 2023-04-14 | Improved robot trapezoidal speed curve planning method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116560359A (en) |
-
2023
- 2023-04-14 CN CN202310420166.8A patent/CN116560359A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105159096B (en) | A kind of redundancy space manipulator joint moment optimization method based on particle cluster algorithm | |
CN111158318B (en) | Flexible acceleration and deceleration planning method for asymmetric quartic curve | |
CN106168790B (en) | S-shaped acceleration and deceleration control method for changing target speed and position on line | |
CN114952868B (en) | 7-degree-of-freedom SRS (sounding reference Signal) type mechanical arm control method and device and piano playing robot | |
WO2019041657A1 (en) | Quintic polynomial trajectory planning method for industrial robot | |
CN113119111A (en) | Mechanical arm and track planning method and device thereof | |
CN112338912A (en) | A finite-time stable control method and system for a flexible single-chain manipulator | |
WO2020093253A1 (en) | Robot motion control method, control system and storage device | |
CN114690767B (en) | Robot track planning method and system and robot | |
CN109683615A (en) | The speed look-ahead approach and robot controller in the path that robot continuously moves | |
CN116560359A (en) | Improved robot trapezoidal speed curve planning method and system | |
CN114879609A (en) | Trigonometric function type curve planning method and system with continuous acceleration and chip mounter | |
CN115042178A (en) | Robot reinforcement learning method, device, equipment and medium for ensuring contact safety | |
CN113843789A (en) | A method for mitigating the rigid impact of a robotic arm | |
CN117945271A (en) | Seven-degree-of-freedom tower crane self-adaptive sliding mode control method and system | |
CN118848960A (en) | A fault-tolerant tracking control method for a robotic arm based on adaptive event triggering | |
WO2020093254A1 (en) | Motion control method for robot, control system, and storage device | |
CN117193173A (en) | Point motion implementation method and system | |
CN117215340A (en) | Robot real-time speed planning method based on FPGA | |
CN117077490A (en) | An optimized design method, device and electronic equipment for automobile frame | |
CN117001672A (en) | An energy-optimal trajectory planning method for robotic arms based on SMA algorithm | |
CN115488898A (en) | Trajectory planning method and device, robot and computer readable storage medium | |
CN110625617B (en) | A trajectory planning method for an intelligent robot | |
CN112157661B (en) | Joint motion track optimization method based on robot dynamics | |
CN114995282A (en) | Control method and system for continuous track instruction and related components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |