CN116523884A - 一种遥感影像数据智能解译方法 - Google Patents
一种遥感影像数据智能解译方法 Download PDFInfo
- Publication number
- CN116523884A CN116523884A CN202310501982.1A CN202310501982A CN116523884A CN 116523884 A CN116523884 A CN 116523884A CN 202310501982 A CN202310501982 A CN 202310501982A CN 116523884 A CN116523884 A CN 116523884A
- Authority
- CN
- China
- Prior art keywords
- value
- remote sensing
- images
- rem
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 59
- 238000003384 imaging method Methods 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 17
- 238000007781 pre-processing Methods 0.000 claims description 14
- 230000001965 increasing effect Effects 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 12
- 101150077194 CAP1 gene Proteins 0.000 claims description 9
- 101150014715 CAP2 gene Proteins 0.000 claims description 9
- 101100135641 Caenorhabditis elegans par-3 gene Proteins 0.000 claims description 9
- 101100438378 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) fac-1 gene Proteins 0.000 claims description 9
- 101100326803 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) fac-2 gene Proteins 0.000 claims description 9
- 101100406879 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) par-2 gene Proteins 0.000 claims description 9
- 102100040853 PRKC apoptosis WT1 regulator protein Human genes 0.000 claims description 9
- 101710162991 PRKC apoptosis WT1 regulator protein Proteins 0.000 claims description 9
- 101100361282 Schizosaccharomyces pombe (strain 972 / ATCC 24843) rpm1 gene Proteins 0.000 claims description 9
- 101150071218 cap3 gene Proteins 0.000 claims description 9
- 101150009194 cap4 gene Proteins 0.000 claims description 9
- 101150002095 capB gene Proteins 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 8
- 101100246985 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) exaA gene Proteins 0.000 claims description 6
- 101100061872 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) exaB gene Proteins 0.000 claims description 6
- 238000012937 correction Methods 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 6
- 238000009499 grossing Methods 0.000 claims description 6
- 230000002708 enhancing effect Effects 0.000 claims description 5
- 101000869664 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) FAD-dependent catabolic D-arginine dehydrogenase DauA Proteins 0.000 claims description 3
- 238000009825 accumulation Methods 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 238000005457 optimization Methods 0.000 abstract description 4
- 230000006870 function Effects 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
- G06T7/33—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
- G06T7/337—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods involving reference images or patches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/40—Control techniques providing energy savings, e.g. smart controller or presence detection
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Quality & Reliability (AREA)
- Image Processing (AREA)
Abstract
本发明涉及遥感技术领域,本发明提供了一种遥感影像数据智能解译方法及系统,通过遥感平台采集N张遥感影像,将N张遥感影像进行预处理,得到N张第一图像,将N张第一图像进行数位增强,得到N张第二图像,对N张第二图像进行影像解译。所述方法能够对遥感影像中的关键像素进行针对性优化,无需人工干预,大幅提高了解译效率和准确性,还能够有效地缩短遥感影像解译的时间,避免解译信息错误或解译失败,同时提高遥感影像的细节度和局部质量,为影像解译的工作提供更可靠的数据基础。
Description
技术领域
本发明涉及遥感技术领域,特别涉及一种遥感影像数据智能解译方法。
背景技术
遥感影像是指利用卫星、航空器、无人机等载具搭载的遥感传感器获取地球表面信息,以数字影像形式记录下来的图像数据。遥感影像在地球科学、农业、城市规划、环境保护等领域有着广泛的应用。通过对遥感影像进行解译,可以获取地表覆盖类型、植被状况、土地利用、水资源等信息,在解译后建立影像和目标地物的对应关系,或用符号、颜色、轮廓圈线为其赋予属性和编号。
随着卫星遥感技术的不断发展和应用,获取到的遥感影像数据的数量呈现爆炸式增长,如何高效准确地解译遥感影像数据已成为目前主流的研究热点。在遥感影像的解译过程中,遥感影像的质量对解译后的精度和可靠性起决定作用,遥感影像在成像的实际过程中存在许多因素会影响遥感影像的质量,如云、雾、阴影等天气,同时,如成像后的分辨率、光谱范围、时间间隔等因素也会对解译结果产生较大的影响。
遥感影像往往具有复杂的空间和光谱特征,包括不同类型的地物和地貌、光谱混合和光谱变化等。这些特征使得遥感影像解译具有一定的难度。传统的遥感影像解译方法往往需要大量的人工干预和专业知识,效率较低,解译结果也很难达到精度要求。因此,通过有效的自然图像处理方法,对遥感影像进行合适的预处理,能够充分提高解译工作的精度、可靠性和效率。
发明内容
本发明的目的在于提出一种遥感影像数据智能解译方法,以解决现有技术中所存在的一个或多个技术问题,至少提供一种有益的选择或创造条件。
本发明提供了一种遥感影像数据智能解译方法,通过遥感平台采集N张遥感影像,将N张遥感影像进行预处理,得到N张第一图像,将N张第一图像进行数位增强,得到N张第二图像,对N张第二图像进行影像解译。所述方法能够对遥感影像中的关键像素进行针对性优化,无需人工干预,大幅提高了解译效率和准确性,还能够有效地缩短遥感影像解译的时间,避免解译信息错误或解译失败,同时提高遥感影像的细节度和局部质量,为影像解译的工作提供更可靠的数据基础。
为了实现上述目的,根据本发明的一方面,提供一种遥感影像数据智能解译方法,所述方法包括以下步骤:
S100,通过遥感平台采集N张遥感影像;
S200,将N张遥感影像进行预处理,得到N张第一图像;
S300,将N张第一图像进行数位增强,得到N张第二图像;
S400,对N张第二图像进行影像解译。
进一步地,步骤S100中,所述遥感平台为地面遥感平台、航空遥感平台、太空遥感平台中的任意一种或多种,所述地面遥感平台至少包括固定的遥感塔、可移动的遥感车、舰船中的任意一种,所述航空遥感平台至少包括飞机、系留气球、自由气球、探空火箭中的任意一种,所述太空遥感平台至少包括人造地球卫星、宇宙飞船、航天站或航天飞机中的任意一种。
进一步地,步骤S100中,通过遥感平台采集N张遥感影像的方法具体为:通过遥感平台内搭载的传感器,对目标进行成像扫描,得到多张遥感影像,记所述多张遥感影像的数量为N张;所述成像扫描的方式为摄影成像、扫描成像、雷达成像中的一种或多种。
进一步地,步骤S200中,将N张遥感影像进行预处理,得到N张第一图像的方法具体为:对N张遥感图像依次进行预处理,将预处理后的N张遥感图像保存为N张第一图像;其中,预处理至少包括降噪处理、摩尔纹处理、图像配准、几何校正、辐射校正、直方图变换中的任意一种。
进一步地,步骤S300中,将N张第一图像进行数位增强,得到N张第二图像的方法具体为:
S301,以rem(i)表示N张第一图像中的第i张第一图像,i=1,2,…,N,初始化一个整数变量j1,变量j1的初始值为1,变量j1的取值范围为[1,N],从j1=1开始遍历j1,并创建一个空白的集合lan{},转至S302;
S302,记当前的rem(j1)内的所有像素点的数量为Mj1,以alr(j)表示当前的rem(j1)中第j个像素点的亮度值,j=1,2,…,Mj1,以tha(j1)表示当前的rem(j1)中所有像素点的亮度值的平均值,将当前tha(j1)的值加入到集合lan{}中,转至S303;
S303,如果当前j1的值小于N,则将当前j1的值增加1,转至S302;如果当前j1的值等于或大于N,则转至S304;
S304,以lan(i)表示集合lan{}中的第i个元素,i=1,2,…,N,记集合lan{}中值最大的元素为lan(M1),记集合lan{}中值最小的元素为lan(M2),创建一个空白的集合mis{},将集合lan{}中剔除了元素lan(M1)和lan(M2)后所余下的所有元素加入到集合mis{}中,记tow=mis_A/(lan(M1)-lan(M2)),mis_A代表集合mis{}中所有元素的总和;重置变量j1的值为1,创建一个空白的集合und{},转至S305;
S305,如果当前lan(j1)的值大于roundup(tow)的值,则将当前变量j1的值加入到集合und{}中;如果当前lan(j1)的值小于或等于roundup(tow)的值,则转至S306;其中,roundup(tow)为对tow的值进行向上取整后得到的值;
S306,如果当前j1的值小于N,则将当前j1的值增加1,转至S305;如果当前j1的值等于或大于N,则转至S307;
S307,记集合und{}中所有元素的数量为N1,以und(i1)表示集合und{}中的第i1个元素,i1=1,2,…,N1,初始化整数变量k1,变量k1的初始值为1,变量k1的取值范围为[1,N1],N1为集合und{}中所有元素的数量,转至S308;
S308,记rem(und(k1))内左上角的像素点为par1,记rem(und(k1))内右上角的像素点为par2,记rem(und(k1))内左下角的像素点为par3,记rem(und(k1))内右下角的像素点为par4,连接像素点par1和par2得到直线cap1,连接像素点par2和par3得到直线cap2,连接像素点par3和par4得到直线cap3,连接像素点par4和par1得到直线cap4,转至S309;
S309,在当前的rem(und(k1))中,选取亮度值最小的像素点并记为soc,在直线cap1、cap2、cap3、cap4中选取出一条与像素点soc的距离最短的直线并记为capA,在直线cap1、cap2、cap3、cap4中选取出两条与直线capA具有垂直关系的直线并分别记为capC1,capC2,在直线capC1、capC2中选取出与像素点soc的距离最短的直线并记为capB,转至S310;
S310,过像素点soc作垂线于直线capA从而得到垂足exaA,过像素点soc作垂线于直线capB从而得到垂足exaB,记直线capA和直线capB的交点为dau,依次连接soc、exaA、dau、exaB得到正方形区域gro,记当前的rem(und(k1))内所有落在正方形区域gro内的像素点为几何像素点,创建一个空白的集合fut{},将所有几何像素点对应的亮度值依次全部加入到集合fut{}中(每个像素点都对应着一个亮度值),记M2为集合fut{}中所有元素的数量,以fut(k2)表示集合fut{}中的第k2个元素,k2=1,2,…,M2;剔除掉当前rem(und(k1))中所有的几何像素点,将余下的像素点记为第一像素点;通过下式计算Geo_Re(rem(und(k1))):
式中,fut_A为集合fut{}中值最小的元素,soc_B为所有第一像素点中亮度值最小的像素点的亮度值,k3为累加变量,fut(k3)为集合fut{}中的第k3个元素,hav为所有第一像素点的亮度值的平均值,min{}代表对{}内的数取最小值,max{}代表对{}内的数取最大值,转至S311;
S311,如果当前变量k1的值小于N1,则将k1的值增加1,转至S308;如果当前变量k1的值等于或大于N1,则转至S312;
S312,创建一个空白的集合Geo{},依次将Geo_Re(rem(und(1))),Geo_Re(rem(und(2))),…,Geo_Re(rem(und(N1)))加入到集合Geo{}中,记集合Geo{}中所有元素的平均值为GeoA,转至S313;
S313,初始化一个整数变量j2,变量j2的初始值为1,变量j2的取值范围为[1,N],从j2=1开始遍历j2,转至S314;
S314,记当前rem(j2)中亮度值最大的像素点为pag(j2),将rem(j2)中的亮度值大于cla的临界像素点标记为第二像素点,转到S315;其中,cla=GeoA*pag(j2),rem(j2)中的临界像素点的定义为:与rem(j2)的边缘的距离小于T的像素点(即,临界像素点是与rem(j2)的边缘的距离小于T的像素点);T为[3,50]个像素点的距离;
S315,如果当前变量j2的值小于N,则将变量j2的值增加1并转到S314。
本步骤的有益效果为:由于遥感影像中存在着光谱信息和空间信息,而遥感影像中像素点的亮度值最能反映目标地段的地理空间信息,同时,对于同一地段的多张遥感影像,当影像的捕捉角度较为相似时,其影像中所有像素点的平均亮度值都较为接近,而当影像的捕捉角度相差较大时,其影像内所有像素点的亮度值呈现出较大幅度的波动,因此,本步骤的方法通过筛选出多张遥感影像中的关键样张(即rem(und(1)),rem(und(2)),…,rem(und(N1))),利用关键样张对图像进行处理是数位增强中的核心步骤,这些样张往往是具有代表性的样本,能够用来计算不同影像之间的在几何层面上的匹配度。这些几何层面上的匹配度可以指出不同遥感影像之间不同空间位置的匹配程度,并可以用于确定高匹配度的融合位置。而关键样张内的像素点的亮度值变化能够反映出目标地段的关键信息,同时筛选出临界像素点中的第二像素点,第二像素点的周边像素较高程度地还原出了目标地段中的几何形态信息,通过对第二像素点进行局部的像素级处理,不仅能够提高目标地段的整体特征反映的完整度,更能提高遥感影像中地物的辨识度和可靠性,还能提高遥感图像的细节度和局部质量,准确地提取出目标地段的关键信息,为后续的地理信息分析和应用提供更可靠的数据基础。
进一步地,步骤S300中,将N张第一图像进行数位增强,得到N张第二图像,还包括:将N张第一图像中的第二像素点使用邻域均值法进行滤波平滑预处理,将N张经过滤波平滑预处理后的第一图像保存为第二图像。
本发明还提供了一种遥感影像数据智能解译系统,所述一种遥感影像数据智能解译系统包括:处理器、存储器及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现一种遥感影像数据智能解译方法中的步骤,所述遥感影像数据智能解译系统可以运行于桌上型计算机、笔记本电脑、移动电话、手提电话、平板电脑、掌上电脑及云端数据中心等计算设备中,可运行的系统可包括,但不仅限于,处理器、存储器、服务器集群,所述处理器执行所述计算机程序运行在以下系统的单元中:
影像采集单元,用于通过遥感平台采集N张遥感影像;
图像处理单元,用于将N张遥感影像进行预处理,得到N张第一图像;
图像增强单元,用于将N张第一图像进行数位增强,得到N张第二图像;
图像解译单元,用于对N张第二图像进行影像解译。
本发明的有益效果为:所述方法能够对遥感影像中的关键像素进行针对性优化,无需人工干预,大幅提高了解译效率和准确性,还能够有效地缩短遥感影像解译的时间,避免解译信息错误或解译失败,同时提高遥感影像的细节度和局部质量,为影像解译的工作提供更可靠的数据基础。
附图说明
通过对结合附图所示出的实施方式进行详细说明,本发明的上述以及其他特征将更加明显,本发明附图中相同的参考标号表示相同或相似的元素,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,在附图中:
图1所示为一种遥感影像数据智能解译方法的流程图;
图2所示为一种遥感影像数据智能解译系统的系统结构图。
具体实施方式
以下将结合实施例和附图对本发明的构思、具体结构及产生的技术效果进行清楚、完整的描述,以充分地理解本发明的目的、方案和效果。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本发明的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
如图1所示为根据本发明的一种遥感影像数据智能解译方法的流程图,下面结合图1来阐述根据本发明的实施方式的一种遥感影像数据智能解译方法。
本发明提出一种遥感影像数据智能解译方法,所述方法包括以下步骤:
S100,通过遥感平台采集N张遥感影像;
S200,将N张遥感影像进行预处理,得到N张第一图像;
S300,将N张第一图像进行数位增强,得到N张第二图像;
S400,对N张第二图像进行影像解译。
进一步地,步骤S100中,所述遥感平台为地面遥感平台、航空遥感平台、太空遥感平台中的任意一种或多种,所述地面遥感平台至少包括固定的遥感塔、可移动的遥感车、舰船中的任意一种,所述航空遥感平台至少包括飞机、系留气球、自由气球、探空火箭中的任意一种,所述太空遥感平台至少包括人造地球卫星、宇宙飞船、航天站或航天飞机中的任意一种。
进一步地,步骤S100中,通过遥感平台采集N张遥感影像的方法具体为:通过遥感平台内搭载的传感器,对目标进行成像扫描,得到多张遥感影像,记所述多张遥感影像的数量为N张;所述成像扫描的方式为摄影成像、扫描成像、雷达成像中的一种或多种。
进一步地,步骤S200中,将N张遥感影像进行预处理,得到N张第一图像的方法具体为:对N张遥感图像依次进行预处理,将预处理后的N张遥感图像保存为N张第一图像;其中,预处理至少包括降噪处理、摩尔纹处理、图像配准、几何校正、辐射校正、直方图变换中的任意一种。
进一步地,步骤S300中,将N张第一图像进行数位增强,得到N张第二图像的方法具体为:
S301,以rem(i)表示N张第一图像中的第i张第一图像,i=1,2,…,N,初始化一个整数变量j1,变量j1的初始值为1,变量j1的取值范围为[1,N],从j1=1开始遍历j1,并创建一个空白的集合lan{},转至S302;
S302,记当前的rem(j1)内的所有像素点的数量为Mj1,以alr(j)表示当前的rem(j1)中第j个像素点的亮度值,j=1,2,…,Mj1,以tha(j1)表示当前的rem(j1)中所有像素点的亮度值的平均值,将当前tha(j1)的值加入到集合lan{}中,转至S303;
S303,如果当前j1的值小于N,则将当前j1的值增加1,转至S302;如果当前j1的值等于或大于N,则转至S304;
S304,以lan(i)表示集合lan{}中的第i个元素,i=1,2,…,N,记集合lan{}中值最大的元素为lan(M1),记集合lan{}中值最小的元素为lan(M2),创建一个空白的集合mis{},将集合lan{}中剔除了元素lan(M1)和lan(M2)后所余下的所有元素加入到集合mis{}中,记tow=mis_A/(lan(M1)-lan(M2)),mis_A代表集合mis{}中所有元素的总和;重置变量j1的值为1,创建一个空白的集合und{},转至S305;
S305,如果当前lan(j1)的值大于roundup(tow)的值,则将当前变量j1的值加入到集合und{}中;如果当前lan(j1)的值小于或等于roundup(tow)的值,则转至S306;其中,roundup(tow)为对tow的值进行向上取整后得到的值;
S306,如果当前j1的值小于N,则将当前j1的值增加1,转至S305;如果当前j1的值等于或大于N,则转至S307;
S307,记集合und{}中所有元素的数量为N1,以und(i1)表示集合und{}中的第i1个元素,i1=1,2,…,N1,初始化整数变量k1,变量k1的初始值为1,变量k1的取值范围为[1,N1],N1为集合und{}中所有元素的数量,转至S308;
S308,记rem(und(k1))内左上角的像素点为par1,记rem(und(k1))内右上角的像素点为par2,记rem(und(k1))内左下角的像素点为par3,记rem(und(k1))内右下角的像素点为par4,连接像素点par1和par2得到直线cap1,连接像素点par2和par3得到直线cap2,连接像素点par3和par4得到直线cap3,连接像素点par4和par1得到直线cap4,转至S309;
S309,在当前的rem(und(k1))中,选取亮度值最小的像素点并记为soc,在直线cap1、cap2、cap3、cap4中选取出一条与像素点soc的距离最短的直线并记为capA,在直线cap1、cap2、cap3、cap4中选取出两条与直线capA具有垂直关系的直线并分别记为capC1,capC2,在直线capC1、capC2中选取出与像素点soc的距离最短的直线并记为capB,转至S310;
S310,过像素点soc作垂线于直线capA从而得到垂足exaA,过像素点soc作垂线于直线capB从而得到垂足exaB,记直线capA和直线capB的交点为dau,依次连接soc、exaA、dau、exaB得到正方形区域gro,记当前的rem(und(k1))内所有落在正方形区域gro内的像素点为几何像素点,创建一个空白的集合fut{},将所有几何像素点对应的亮度值依次全部加入到集合fut{}中(每个像素点都对应着一个亮度值),记M2为集合fut{}中所有元素的数量,以fut(k2)表示集合fut{}中的第k2个元素,k2=1,2,…,M2;剔除掉当前rem(und(k1))中所有的几何像素点,将余下的像素点记为第一像素点;通过下式计算Geo_Re(rem(und(k1))):
式中,fut_A为集合fut{}中值最小的元素,soc_B为所有第一像素点中亮度值最小的像素点的亮度值,k3为累加变量,fut(k3)为集合fut{}中的第k3个元素,hav为所有第一像素点的亮度值的平均值,min{}代表对{}内的数取最小值,max{}代表对{}内的数取最大值,转至S311;
S311,如果当前变量k1的值小于N1,则将k1的值增加1,转至S308;如果当前变量k1的值等于或大于N1,则转至S312;
S312,创建一个空白的集合Geo{},依次将Geo_Re(rem(und(1))),Geo_Re(rem(und(2))),…,Geo_Re(rem(und(N1)))加入到集合Geo{}中,记集合Geo{}中所有元素的平均值为GeoA,转至S313;
S313,初始化一个整数变量j2,变量j2的初始值为1,变量j2的取值范围为[1,N],从j2=1开始遍历j2,转至S314;
S314,记当前rem(j2)中亮度值最大的像素点为pag(j2),将rem(j2)中的亮度值大于cla的临界像素点标记为第二像素点,转到S315;其中,cla=GeoA*pag(j2),rem(j2)中的临界像素点的定义为:与rem(j2)的边缘的距离小于T的像素点(即,临界像素点是与rem(j2)的边缘的距离小于T的像素点);T为[3,50]个像素点的距离;
S315,如果当前变量j2的值小于N,则将变量j2的值增加1并转到S314。
进一步地,步骤S300中,将N张第一图像进行数位增强,得到N张第二图像,还包括:将N张第一图像中的第二像素点使用邻域均值法进行滤波平滑预处理,将N张经过滤波平滑预处理后的第一图像保存为第二图像。
所述一种遥感影像数据智能解译系统包括:处理器、存储器及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述一种遥感影像数据智能解译方法实施例中的步骤,所述一种遥感影像数据智能解译系统可以运行于桌上型计算机、笔记本电脑、移动电话、手提电话、平板电脑、掌上电脑及云端数据中心等计算设备中,可运行的系统可包括,但不仅限于,处理器、存储器、服务器集群。
本发明的实施例提供的一种遥感影像数据智能解译系统,如图2所示,该实施例的一种遥感影像数据智能解译系统包括:处理器、存储器及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述一种遥感影像数据智能解译方法实施例中的步骤,所述处理器执行所述计算机程序运行在以下系统的单元中:
影像采集单元,用于通过遥感平台采集N张遥感影像;
图像处理单元,用于将N张遥感影像进行预处理,得到N张第一图像;
图像增强单元,用于将N张第一图像进行数位增强,得到N张第二图像;
图像解译单元,用于对N张第二图像进行影像解译。
所述一种遥感影像数据智能解译系统可以运行于桌上型计算机、笔记本电脑、掌上电脑及云端数据中心等计算设备中。所述一种遥感影像数据智能解译系统包括,但不仅限于,处理器、存储器。本领域技术人员可以理解,所述例子仅仅是一种遥感影像数据智能解译方法及系统的示例,并不构成对一种遥感影像数据智能解译方法及系统的限定,可以包括比例子更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述一种遥感影像数据智能解译系统还可以包括输入输出设备、网络接入设备、总线等。
所称处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立元器件门电路或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,所述处理器是所述一种遥感影像数据智能解译系统的控制中心,利用各种接口和线路连接整个一种遥感影像数据智能解译系统的各个分区域。
所述存储器可用于存储所述计算机程序和/或模块,所述处理器通过运行或执行存储在所述存储器内的计算机程序和/或模块,以及调用存储在存储器内的数据,实现所述一种遥感影像数据智能解译方法及系统的各种功能。所述存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
本发明提供了一种遥感影像数据智能解译方法,通过遥感平台采集N张遥感影像,将N张遥感影像进行预处理,得到N张第一图像,将N张第一图像进行数位增强,得到N张第二图像,对N张第二图像进行影像解译。所述方法能够对遥感影像中的关键像素进行针对性优化,无需人工干预,大幅提高了解译效率和准确性,还能够有效地缩短遥感影像解译的时间,避免解译信息错误或解译失败,同时提高遥感影像的细节度和局部质量,为影像解译的工作提供更可靠的数据基础。尽管本发明的描述已经相当详尽且特别对几个所述实施例进行了描述,但其并非旨在局限于任何这些细节或实施例或任何特殊实施例,从而有效地涵盖本发明的预定范围。此外,上文以发明人可预见的实施例对本发明进行描述,其目的是为了提供有用的描述,而那些目前尚未预见的对本发明的非实质性改动仍可代表本发明的等效改动。
Claims (7)
1.一种遥感影像数据智能解译方法,其特征在于,所述方法包括以下步骤:
S100,通过遥感平台采集N张遥感影像;
S200,将N张遥感影像进行预处理,得到N张第一图像;
S300,将N张第一图像进行数位增强,得到N张第二图像;
S400,对N张第二图像进行影像解译。
2.根据权利要求1所述的一种遥感影像数据智能解译方法,其特征在于,步骤S100中,所述遥感平台为地面遥感平台、航空遥感平台、太空遥感平台中的任意一种或多种,所述地面遥感平台至少包括固定的遥感塔、可移动的遥感车、舰船中的任意一种,所述航空遥感平台至少包括飞机、系留气球、自由气球、探空火箭中的任意一种,所述太空遥感平台至少包括人造地球卫星、宇宙飞船、航天站或航天飞机中的任意一种。
3.根据权利要求1所述的一种遥感影像数据智能解译方法,其特征在于,步骤S100中,通过遥感平台采集N张遥感影像的方法具体为:通过遥感平台内搭载的传感器,对目标进行成像扫描,得到多张遥感影像,记所述多张遥感影像的数量为N张;所述成像扫描的方式为摄影成像、扫描成像、雷达成像中的一种或多种。
4.根据权利要求1所述的一种遥感影像数据智能解译方法,其特征在于,步骤S200中,将N张遥感影像进行预处理,得到N张第一图像的方法具体为:对N张遥感图像依次进行预处理,将预处理后的N张遥感图像保存为N张第一图像;其中,预处理至少包括降噪处理、摩尔纹处理、图像配准、几何校正、辐射校正、直方图变换中的任意一种。
5.根据权利要求1所述的一种遥感影像数据智能解译方法,其特征在于,步骤S300中,将N张第一图像进行数位增强,得到N张第二图像的方法具体为:
S301,以rem(i)表示N张第一图像中的第i张第一图像,i=1,2,…,N,初始化一个整数变量j1,变量j1的初始值为1,变量j1的取值范围为[1,N],从j1=1开始遍历j1,并创建一个空白的集合lan{},转至S302;
S302,记当前的rem(j1)内的所有像素点的数量为Mj1,以alr(j)表示当前的rem(j1)中第j个像素点的亮度值,j=1,2,…,Mj1,以tha(j1)表示当前的rem(j1)中所有像素点的亮度值的平均值,将当前tha(j1)的值加入到集合lan{}中,转至S303;
S303,如果当前j1的值小于N,则将当前j1的值增加1,转至S302;如果当前j1的值等于或大于N,则转至S304;
S304,以lan(i)表示集合lan{}中的第i个元素,i=1,2,…,N,记集合lan{}中值最大的元素为lan(M1),记集合lan{}中值最小的元素为lan(M2),创建一个空白的集合mis{},将集合lan{}中剔除了元素lan(M1)和lan(M2)后所余下的所有元素加入到集合mis{}中,记tow=mis_A/(lan(M1)-lan(M2)),mis_A代表集合mis{}中所有元素的总和;重置变量j1的值为1,创建一个空白的集合und{},转至S305;
S305,如果当前lan(j1)的值大于roundup(tow)的值,则将当前变量j1的值加入到集合und{}中;如果当前lan(j1)的值小于或等于roundup(tow)的值,则转至S306;其中,roundup(tow)为对tow的值进行向上取整后得到的值;
S306,如果当前j1的值小于N,则将当前j1的值增加1,转至S305;如果当前j1的值等于或大于N,则转至S307;
S307,记集合und{}中所有元素的数量为N1,以und(i1)表示集合und{}中的第i1个元素,i1=1,2,…,N1,初始化整数变量k1,变量k1的初始值为1,变量k1的取值范围为[1,N1],N1为集合und{}中所有元素的数量,转至S308;
S308,记rem(und(k1))内左上角的像素点为par1,记rem(und(k1))内右上角的像素点为par2,记rem(und(k1))内左下角的像素点为par3,记rem(und(k1))内右下角的像素点为par4,连接像素点par1和par2得到直线cap1,连接像素点par2和par3得到直线cap2,连接像素点par3和par4得到直线cap3,连接像素点par4和par1得到直线cap4,转至S309;
S309,在当前的rem(und(k1))中,选取亮度值最小的像素点并记为soc,在直线cap1、cap2、cap3、cap4中选取出一条与像素点soc的距离最短的直线并记为capA,在直线cap1、cap2、cap3、cap4中选取出两条与直线capA具有垂直关系的直线并分别记为capC1,capC2,在直线capC1、capC2中选取出与像素点soc的距离最短的直线并记为capB,转至S310;
S310,过像素点soc作垂线于直线capA从而得到垂足exaA,过像素点soc作垂线于直线capB从而得到垂足exaB,记直线capA和直线capB的交点为dau,依次连接soc、exaA、dau、exaB得到正方形区域gro,记当前的rem(und(k1))内所有落在正方形区域gro内的像素点为几何像素点,创建一个空白的集合fut{},将所有几何像素点对应的亮度值依次全部加入到集合fut{}中,记M2为集合fut{}中所有元素的数量,以fut(k2)表示集合fut{}中的第k2个元素,k2=1,2,…,M2;剔除掉当前rem(und(k1))中所有的几何像素点,将余下的像素点记为第一像素点;通过下式计算Geo_Re(rem(und(k1))):
式中,fut_A为集合fut{}中值最小的元素,soc_B为所有第一像素点中亮度值最小的像素点的亮度值,k3为累加变量,fut(k3)为集合fut{}中的第k3个元素,hav为所有第一像素点的亮度值的平均值,min{}代表对{}内的数取最小值,max{}代表对{}内的数取最大值,转至S311;
S311,如果当前变量k1的值小于N1,则将k1的值增加1,转至S308;如果当前变量k1的值等于或大于N1,则转至S312;
S312,创建一个空白的集合Geo{},依次将Geo_Re(rem(und(1))),Geo_Re(rem(und(2))),…,Geo_Re(rem(und(N1)))加入到集合Geo{}中,记集合Geo{}中所有元素的平均值为GeoA,转至S313;
S313,初始化一个整数变量j2,变量j2的初始值为1,变量j2的取值范围为[1,N],从j2=1开始遍历j2,转至S314;
S314,记当前rem(j2)中亮度值最大的像素点为pag(j2),将rem(j2)中的亮度值大于cla的临界像素点标记为第二像素点,转到S315;其中,cla=GeoA*pag(j2),rem(j2)中的临界像素点的定义为:与rem(j2)的边缘的距离小于T的像素点;T为[3,50]个像素点的距离;
S315,如果当前变量j2的值小于N,则将变量j2的值增加1并转到S314。
6.根据权利要求5所述的一种遥感影像数据智能解译方法,其特征在于,步骤S300中,将N张第一图像进行数位增强,得到N张第二图像,还包括:将N张第一图像中的第二像素点使用邻域均值法进行滤波平滑预处理,将N张经过滤波平滑预处理后的第一图像保存为第二图像。
7.一种遥感影像数据智能解译系统,其特征在于,所述一种遥感影像数据智能解译系统包括:处理器、存储器及存储在所述存储器中并在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现权利要求1-6中任一项所述的一种遥感影像数据智能解译方法中的步骤,所述一种遥感影像数据智能解译系统运行于桌上型计算机、笔记本电脑、掌上电脑或云端数据中心的计算设备中。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310501982.1A CN116523884B (zh) | 2023-05-06 | 2023-05-06 | 一种遥感影像数据智能解译方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310501982.1A CN116523884B (zh) | 2023-05-06 | 2023-05-06 | 一种遥感影像数据智能解译方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116523884A true CN116523884A (zh) | 2023-08-01 |
CN116523884B CN116523884B (zh) | 2023-11-14 |
Family
ID=87402694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310501982.1A Active CN116523884B (zh) | 2023-05-06 | 2023-05-06 | 一种遥感影像数据智能解译方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116523884B (zh) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5592571A (en) * | 1994-03-08 | 1997-01-07 | The University Of Connecticut | Digital pixel-accurate intensity processing method for image information enhancement |
US20050111754A1 (en) * | 2003-11-05 | 2005-05-26 | Cakir Halil I. | Methods, systems and computer program products for fusion of high spatial resolution imagery with lower spatial resolution imagery using a multiresolution approach |
US20160292626A1 (en) * | 2013-11-25 | 2016-10-06 | First Resource Management Group Inc. | Apparatus for and method of forest-inventory management |
CN109872389A (zh) * | 2017-12-01 | 2019-06-11 | 核工业北京地质研究院 | 一种基于三维地表模型的遥感地质构造解译方法 |
US20210149929A1 (en) * | 2019-11-20 | 2021-05-20 | University Of Connecticut | Systems and methods to generate high resolution flood maps in near real time |
CN112883839A (zh) * | 2021-02-02 | 2021-06-01 | 重庆市地理信息和遥感应用中心 | 基于自适应样本集构造与深度学习的遥感影像解译方法 |
CN113378924A (zh) * | 2021-06-09 | 2021-09-10 | 西安理工大学 | 一种基于空-谱特征联合的遥感影像监督分类方法 |
US20210348966A1 (en) * | 2020-05-08 | 2021-11-11 | Raytheon BBN Technologies, Corp. | Systems, Devices, and Methods for Hyperspectral Imaging |
CN113762070A (zh) * | 2021-07-26 | 2021-12-07 | 中国测绘科学研究院 | 用于深度学习的地表覆盖分类样本采集方法 |
CN114022783A (zh) * | 2021-11-08 | 2022-02-08 | 刘冰 | 基于卫星图像的水土保持生态功能遥感监测方法和装置 |
CN114494898A (zh) * | 2021-12-24 | 2022-05-13 | 山东土地集团数字科技有限公司 | 一种用于耕地保护的遥感解译方法及设备 |
-
2023
- 2023-05-06 CN CN202310501982.1A patent/CN116523884B/zh active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5592571A (en) * | 1994-03-08 | 1997-01-07 | The University Of Connecticut | Digital pixel-accurate intensity processing method for image information enhancement |
US20050111754A1 (en) * | 2003-11-05 | 2005-05-26 | Cakir Halil I. | Methods, systems and computer program products for fusion of high spatial resolution imagery with lower spatial resolution imagery using a multiresolution approach |
US20160292626A1 (en) * | 2013-11-25 | 2016-10-06 | First Resource Management Group Inc. | Apparatus for and method of forest-inventory management |
CN109872389A (zh) * | 2017-12-01 | 2019-06-11 | 核工业北京地质研究院 | 一种基于三维地表模型的遥感地质构造解译方法 |
US20210149929A1 (en) * | 2019-11-20 | 2021-05-20 | University Of Connecticut | Systems and methods to generate high resolution flood maps in near real time |
US20210348966A1 (en) * | 2020-05-08 | 2021-11-11 | Raytheon BBN Technologies, Corp. | Systems, Devices, and Methods for Hyperspectral Imaging |
CN112883839A (zh) * | 2021-02-02 | 2021-06-01 | 重庆市地理信息和遥感应用中心 | 基于自适应样本集构造与深度学习的遥感影像解译方法 |
CN113378924A (zh) * | 2021-06-09 | 2021-09-10 | 西安理工大学 | 一种基于空-谱特征联合的遥感影像监督分类方法 |
CN113762070A (zh) * | 2021-07-26 | 2021-12-07 | 中国测绘科学研究院 | 用于深度学习的地表覆盖分类样本采集方法 |
CN114022783A (zh) * | 2021-11-08 | 2022-02-08 | 刘冰 | 基于卫星图像的水土保持生态功能遥感监测方法和装置 |
CN114494898A (zh) * | 2021-12-24 | 2022-05-13 | 山东土地集团数字科技有限公司 | 一种用于耕地保护的遥感解译方法及设备 |
Non-Patent Citations (2)
Title |
---|
李丹;梁欣;孙丽娜;刘洋;宋以健;: "基于多时相遥感影像的耕地利用信息提取研究", 现代测绘, no. 04 * |
袁金国, 王卫: "多源遥感数据融合应用研究", 地球信息科学, no. 03 * |
Also Published As
Publication number | Publication date |
---|---|
CN116523884B (zh) | 2023-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11568639B2 (en) | Systems and methods for analyzing remote sensing imagery | |
CN112348885B (zh) | 视觉特征库的构建方法、视觉定位方法、装置和存储介质 | |
CN111899323B (zh) | 三维地球的绘制方法及装置 | |
US11763488B2 (en) | Location determination in a GPS-denied environment with user annotation | |
US20190286875A1 (en) | Cloud detection in aerial imagery | |
CN112989469A (zh) | 建筑物屋顶模型的构建方法、装置、电子设备及存储介质 | |
CN118254761A (zh) | 一种车辆增程器功率优化控制方法、装置、设备以及介质 | |
CN112215186B (zh) | 沼泽湿地植被分类方法、装置、计算机设备及存储介质 | |
CN113869133A (zh) | 遥感影像变化检测方法、装置、设备及存储介质 | |
CN116523884B (zh) | 一种遥感影像数据智能解译方法 | |
CN115527187A (zh) | 一种障碍物的分类方法以及装置 | |
CN114241313A (zh) | 用于提取道路边界的方法、设备、介质和程序产品 | |
CN116579960B (zh) | 一种地理空间数据融合方法 | |
CN118196214B (zh) | 基于三维场景模拟的野外摄像机布控方法以及设备 | |
CN110490069A (zh) | 一种基于降采样局部差分二进制的遥感图像目标识别方法 | |
US12136236B2 (en) | Location determination in a GPS-denied environment with user annotation | |
Brüstle et al. | Object extraction in the context of an image registration workflow | |
CN117935045A (zh) | 一种遥感影像的地物识别方法、电子设备和存储介质 | |
Li et al. | Real time vision-based auxiliary positioning method for UAV airborne processor | |
Liu et al. | A novel UAV target detection method based on the improved YOLOv4-tiny network | |
CN114897986A (zh) | 色彩处理方法、装置、电子设备及存储介质 | |
CN116310756A (zh) | 遗迹识别方法、装置、电子设备及计算机存储介质 | |
CN115082799A (zh) | 背景点云的确定方法、装置、设备、介质和程序产品 | |
Mukhina et al. | Analysis of visual correlation-extreme methods of UAV navigation | |
CN117911434A (zh) | 山脊线提取方法、装置以及存储介质、电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |