CN116507131A - Memory based on magnetic substream effect - Google Patents
Memory based on magnetic substream effect Download PDFInfo
- Publication number
- CN116507131A CN116507131A CN202310436009.6A CN202310436009A CN116507131A CN 116507131 A CN116507131 A CN 116507131A CN 202310436009 A CN202310436009 A CN 202310436009A CN 116507131 A CN116507131 A CN 116507131A
- Authority
- CN
- China
- Prior art keywords
- layer
- insulator layer
- ferromagnetic
- junction
- magnon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 66
- 230000015654 memory Effects 0.000 title claims abstract description 27
- 230000000694 effects Effects 0.000 title claims abstract description 13
- 239000012212 insulator Substances 0.000 claims abstract description 163
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 85
- 230000005284 excitation Effects 0.000 claims abstract description 36
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 26
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 230000005290 antiferromagnetic effect Effects 0.000 claims abstract description 17
- 230000005355 Hall effect Effects 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims description 47
- 239000002184 metal Substances 0.000 claims description 47
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 19
- 230000009471 action Effects 0.000 claims description 12
- 238000005566 electron beam evaporation Methods 0.000 claims description 12
- 238000002207 thermal evaporation Methods 0.000 claims description 12
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 229910003321 CoFe Inorganic materials 0.000 claims description 4
- 229910021591 Copper(I) chloride Inorganic materials 0.000 claims description 4
- 229910015475 FeF 2 Inorganic materials 0.000 claims description 4
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims description 4
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 claims description 4
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 4
- 238000000206 photolithography Methods 0.000 claims description 4
- 239000002033 PVDF binder Substances 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 238000007747 plating Methods 0.000 claims 8
- 238000000059 patterning Methods 0.000 claims 2
- 238000000151 deposition Methods 0.000 claims 1
- 230000008021 deposition Effects 0.000 claims 1
- 238000001259 photo etching Methods 0.000 claims 1
- 230000005418 spin wave Effects 0.000 abstract description 45
- 238000003860 storage Methods 0.000 abstract description 10
- 230000003993 interaction Effects 0.000 abstract description 2
- 238000000576 coating method Methods 0.000 description 16
- 239000000463 material Substances 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229910052741 iridium Inorganic materials 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 229910052702 rhenium Inorganic materials 0.000 description 4
- 229910052703 rhodium Inorganic materials 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- -1 Cr Cu Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Semiconductor Memories (AREA)
Abstract
本发明提供了一种基于磁子流效应的存储器,属于存储器领域,包括衬底、拓扑绝缘体单元、磁子结单元和声体波激励单元;其中磁子结单元由下至上依次包括:第一铁磁绝缘体层、反铁磁层、第二铁磁绝缘体层以及重金属层;声体波激励单元用于向磁子结单元提供声体波激励,借助声子‑磁子相互作用以激发磁子结单元中磁子流,磁子结单元中的重金属层可以将磁子流以逆自旋霍尔效应电压的形式体现,拓扑绝缘体改变磁子结单元中第一铁磁绝缘体层的磁矩排列方向,进而调节磁子结单元中磁子流的大小,从而实现该磁子结单元的高电平与低电平。本发明利用拓扑绝缘体翻转磁子结单元磁矩,以声体波激励驱动磁子结,是一种新型存储器件结构。
The invention provides a memory based on the magnon current effect, which belongs to the field of memory, and includes a substrate, a topological insulator unit, a magnon junction unit and a bulk acoustic wave excitation unit; wherein the magnon junction unit includes from bottom to top: the first Ferromagnetic insulator layer, antiferromagnetic layer, second ferromagnetic insulator layer and heavy metal layer; bulk acoustic wave excitation unit is used to provide bulk acoustic wave excitation to the magneton junction unit to excite magnetons by means of phonon-magnon interactions The magnon flow in the junction unit, the heavy metal layer in the magnon junction unit can embody the magnon flow in the form of an inverse spin Hall effect voltage, and the topological insulator changes the magnetic moment arrangement of the first ferromagnetic insulator layer in the magnon junction unit Direction, and then adjust the magnitude of the magnetic flow in the magnetic sub-junction unit, so as to realize the high level and low level of the magnetic sub-junction unit. The invention utilizes the topological insulator to flip the magnetic moment of the magneton junction unit, and drives the magneton junction with bulk acoustic wave excitation, which is a novel storage device structure.
Description
技术领域technical field
本发明属于存储器领域,更具体地,涉及一种基于磁子流效应的存储器。The invention belongs to the field of memory, and more specifically relates to a memory based on the magnon current effect.
背景技术Background technique
5G通讯设施是实现人机物互联的网络基础设施,5G通讯的要求包括峰值速率达到10Gbps,频谱效率比IMT-A提升3倍,移动性达500公里/小时,时延低至1毫秒,用户体验数据率达到100Mbps,连接密度每平方公里达到106个,能效比IMT-A提升100倍,流量密度每平方米达到10Mbps。在5G通讯日益普及的今天,6G技术的研发已经提上日程,在如此巨大的数据量下,对快速稳定的存储和数据处理技术提出了新的挑战。根据信息存储介质和方法,目前的存储技术主要有三种,分别是半导体存储、磁存储和光存储。其中,磁存储技术相对于其它两种技术具有数据存储密度高和非易失性等优势,是目前广泛关注的存储技术之一。5G communication facilities are the network infrastructure that realizes the interconnection of humans, machines and things. The requirements of 5G communication include a peak rate of 10Gbps, a spectrum efficiency that is three times higher than that of IMT-A, a mobility of 500 km/h, and a delay as low as 1 millisecond. The experience data rate reaches 100Mbps, the connection density reaches 10 6 per square kilometer, the energy efficiency is 100 times higher than that of IMT-A, and the traffic density reaches 10Mbps per square kilometer. Today, with the increasing popularity of 5G communication, the research and development of 6G technology has been put on the agenda. With such a huge amount of data, it poses new challenges to fast and stable storage and data processing technology. According to information storage media and methods, there are three main storage technologies at present, namely semiconductor storage, magnetic storage and optical storage. Among them, compared with the other two technologies, magnetic storage technology has the advantages of high data storage density and non-volatility, and is one of the storage technologies that are widely concerned at present.
基于巨磁阻效应(Giant Magneto Resistance,GMR)和隧穿磁电阻效应(TunnelMagneto Resistance,TMR)的自旋阀是目前主流的磁存储结构。自旋阀的成功之处在于相较于传统的电子器件,更多的利用到了电子自旋属性,但未能摆脱电子器件高功耗、易发热的缺点。自旋属性的传输可以不依赖于电子的移动,为了进一步减少电荷移动产生的能量损耗,磁子结被提出。磁子结主体架构采用了绝缘体材料,需要采用重金属才能表征磁子流大小,极大减少了了电子传输引起的热效应和能量损失,通过改变两层磁性绝缘层的相对磁化方向的取向以调控内部磁子流的大小。基于GMR和TMR效应的自旋阀通过电阻值变化反映开关状态,而基于磁子流的磁子结主要通过逆自旋霍尔效应电压变化表征。Spin valves based on giant magnetoresistance (Giant Magneto Resistance, GMR) and tunneling magnetoresistance (Tunnel Magneto Resistance, TMR) are currently mainstream magnetic memory structures. The success of the spin valve is that compared with traditional electronic devices, more electron spin properties are used, but it cannot get rid of the shortcomings of high power consumption and heat generation of electronic devices. The transmission of spin properties can be independent of the movement of electrons. In order to further reduce the energy loss caused by charge movement, magneton junctions are proposed. The main structure of the magnon junction uses insulator materials, and heavy metals are required to characterize the magnitude of the magnon flow, which greatly reduces the thermal effect and energy loss caused by electron transmission. By changing the orientation of the relative magnetization direction of the two magnetic insulating layers to regulate the internal The magnitude of the magnon current. The spin valves based on the GMR and TMR effects reflect the switching state through the change of resistance value, while the magnon junction based on the magnon flow is mainly characterized by the voltage change of the inverse spin Hall effect.
采用自旋轨道力矩(Spin Orbit Torque,SOT)翻转磁矩是利用与铁磁层相邻的材料中流过的电流在Rashba-Edelstein效应和自旋霍尔效应的共同作用下,会在二者界面处自旋极化产生净自旋流,净自旋流将角动量传递至铁磁层,从而翻转铁磁层的磁矩。专利文献CN109585644A提出了一种在自旋轨道转矩耦合层上设置有磁阻隧道结,当在自旋轨道转矩耦合层中通入电流时,在电流方向上,磁阻隧道结的一侧与另一侧存在温度差,在该温度差作用下实现SOT-MRAM磁矩的定向翻转。目前磁子结中磁子流的激发方式为温度梯度激励,温度梯度激励是指当在磁体中存在温度差时,在磁体中沿着温度梯度方向会产生磁子流。采用温度差用于磁矩翻转或者作为磁子结的动力源,易引起器件发热,提高能量损失。而声体波(Bulk Acoustic Wave,BAW)同样可以高效节能的进行磁子流激励,替代温度梯度激励作为磁子结动力源。The use of spin-orbit torque (Spin Orbit Torque, SOT) to flip the magnetic moment is to use the current flowing in the material adjacent to the ferromagnetic layer. The spin polarization at λ generates a net spin current, which transfers angular momentum to the ferromagnetic layer, thereby flipping the magnetic moment of the ferromagnetic layer. Patent document CN109585644A proposes a magnetoresistive tunnel junction provided on the spin-orbit torque coupling layer. There is a temperature difference with the other side, and under the action of the temperature difference, the directional flip of the SOT-MRAM magnetic moment is realized. At present, the excitation mode of the magnon flow in the magnon junction is temperature gradient excitation. The temperature gradient excitation means that when there is a temperature difference in the magnet, the magnon flow will be generated in the magnet along the direction of the temperature gradient. The use of temperature difference for magnetic moment reversal or as a power source for the magnetic subjunction is likely to cause heating of the device and increase energy loss. The bulk acoustic wave (Bulk Acoustic Wave, BAW) can also perform magnon current excitation with high efficiency and energy saving, replacing the temperature gradient excitation as the power source of the magnon junction.
发明内容Contents of the invention
针对现有技术的缺陷,本发明的目的在于提供一种基于磁子流效应的存储器,旨在解决现有的基于自旋阀结构和温度差磁子结的存储器均存在高功耗和易发热的问题。Aiming at the defects of the prior art, the purpose of the present invention is to provide a memory based on the magnon current effect, which aims to solve the problem of high power consumption and heat generation in the existing memories based on the spin valve structure and the temperature difference magnon junction. The problem.
为实现上述目的,本发明提供了一种基于磁子流效应的存储器,包括:拓扑绝缘体单元、磁子结单元和声体波激励单元;拓扑绝缘体单元、磁子结单元和声体波激励单元从下到上依次位于衬底上;To achieve the above object, the present invention provides a memory based on the magnon current effect, comprising: a topological insulator unit, a magnon junction unit and a bulk acoustic wave excitation unit; a topological insulator unit, a magnon junction unit and a bulk acoustic wave excitation unit on the substrate from bottom to top;
拓扑绝缘体单元包括拓扑绝缘体层和电极层;电极层为在拓扑绝缘体层通入电流的电极;拓扑绝缘体层用于当通入电流时利用自旋轨道力矩翻转邻近的铁磁层;The topological insulator unit includes a topological insulator layer and an electrode layer; the electrode layer is an electrode that passes current through the topological insulator layer; the topological insulator layer is used to flip the adjacent ferromagnetic layer by spin-orbit torque when the current is passed through;
磁子结单元由下至上包括第一铁磁绝缘体层、反铁磁绝缘体层、第二铁磁绝缘体层和重金属层;第一铁磁绝缘体层用于在拓扑绝缘体层产生的自旋轨道力矩的作用下改变磁矩朝向;第二铁磁绝缘体层的磁矩保持不变;重金属层用于将第二铁磁绝缘体层中传输过来的磁子流以磁子结的逆自旋霍尔效应电压的形式表现;反铁磁绝缘体层用于将第一铁磁绝缘体层和第二铁磁绝缘体层隔开;The magnetic sub-junction unit includes a first ferromagnetic insulator layer, an antiferromagnetic insulator layer, a second ferromagnetic insulator layer and a heavy metal layer from bottom to top; The direction of the magnetic moment is changed under the action; the magnetic moment of the second ferromagnetic insulator layer remains unchanged; the heavy metal layer is used to transfer the magnon current transmitted in the second ferromagnetic insulator layer to the inverse spin Hall effect voltage of the magnon junction Form expression; antiferromagnetic insulator layer is used to separate the first ferromagnetic insulator layer and the second ferromagnetic insulator layer;
声体波激励单元包括从下而上的第一金属电极层、压电层和第二金属电极层;第一金属电极层和第二金属电极层为可以施加交变电压的电极,压电层用于在交变电压下产生声体波,声体波向下传输,在磁子结单元中激发磁子流;The bulk acoustic wave excitation unit includes a first metal electrode layer, a piezoelectric layer and a second metal electrode layer from bottom to top; the first metal electrode layer and the second metal electrode layer are electrodes that can apply an alternating voltage, and the piezoelectric layer Used to generate bulk acoustic waves under alternating voltage, the bulk acoustic waves propagate downwards, and excite magnon currents in the magnon junction unit;
其中,当第一铁磁绝缘体层和第二铁磁绝缘体层具有相同的磁矩方向,则在声体波激励的作用下磁子结的逆自旋霍尔电压为高电平,在拓扑绝缘体层通入电流第一铁磁绝缘体层磁矩发生翻转后,停止向拓扑绝缘体层通入电流,此时在声体波激励的作用下磁子结的逆自旋霍尔电压为低电平;当第一铁磁绝缘体层和第二铁磁绝缘体层具有相反的磁矩方向,则在声体波激励的作用下磁子结的逆自旋霍尔电压在拓扑绝缘体层通入电流前后由低电平转变为高电平。Among them, when the first ferromagnetic insulator layer and the second ferromagnetic insulator layer have the same magnetic moment direction, the inverse spin Hall voltage of the magnon junction under the action of bulk acoustic wave excitation is high, and the topological insulator After the magnetic moment of the first ferromagnetic insulator layer is reversed, stop feeding the current to the topological insulator layer. At this time, the inverse spin Hall voltage of the magnon junction is low under the action of bulk acoustic wave excitation; When the first ferromagnetic insulator layer and the second ferromagnetic insulator layer have opposite magnetic moment directions, under the action of bulk acoustic wave excitation, the inverse spin Hall voltage of the magnon junction changes from low to low before and after the current is applied to the topological insulator layer. level transitions to a high level.
进一步优选地,拓扑绝缘体层通过磁控溅射或分子束外延的方式在衬底上生长,拓扑绝缘体层上方设置的电极通过磁控溅射法、电子束蒸发镀膜或热蒸发镀膜的方式生长。Further preferably, the topological insulator layer is grown on the substrate by magnetron sputtering or molecular beam epitaxy, and the electrodes arranged above the topological insulator layer are grown by magnetron sputtering, electron beam evaporation coating or thermal evaporation coating.
进一步优选地,拓扑绝缘体层为BixSb1-x、Bi2Se3、Sb2Te3或Bi2Te3;电极为Al、Cr、Cu、Mo或Ag;其中,0<x<1;Further preferably, the topological insulator layer is Bi x Sb 1-x , Bi 2 Se 3 , Sb 2 Te 3 or Bi 2 Te 3 ; the electrode is Al, Cr, Cu, Mo or Ag; wherein, 0<x<1;
进一步优选地,第一铁磁绝缘体层和第二铁磁绝缘体层为Y3Fe5O12、CoFe2O4或NiFe2O4;反铁磁绝缘体层为NiO、Fe2O3、Cr2O3、MgO、MnO、FeO、CoO、BiFeO3、LaMnO3、La2CuO4、TmFeO3、ZnCr2O4、F2、CuCl2、FeCl2、MnF2、FeF2或KNiF3;重金属层为V、Cr、Cu、Nb、Mo、Ru、Rh、Pd、Ag、Hf、Ta、W、Re、Ir、Pt或Au。Further preferably, the first ferromagnetic insulator layer and the second ferromagnetic insulator layer are Y 3 Fe 5 O 12 , CoFe 2 O 4 or NiFe 2 O 4 ; the antiferromagnetic insulator layer is NiO, Fe 2 O 3 , Cr 2 O 3 , MgO, MnO, FeO, CoO, BiFeO 3 , LaMnO 3 , La 2 CuO 4 , TmFeO 3 , ZnCr 2 O 4 , F 2 , CuCl 2 , FeCl 2 , MnF 2 , FeF 2 or KNiF 3 ; heavy metal layer V, Cr, Cu, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Ir, Pt or Au.
进一步优选地,重金属层通过磁控溅射镀膜法、热蒸发镀膜法或电子束蒸发镀膜法沉积,再通过光刻图形化制备。Further preferably, the heavy metal layer is deposited by magnetron sputtering coating method, thermal evaporation coating method or electron beam evaporation coating method, and then patterned by photolithography.
进一步优选地,第一金属电极层和第二金属电极层通过磁控溅射镀膜法、热蒸发镀膜法或电子束蒸发镀膜法沉积制备;压电层通过磁控溅射方法沉积,再通过光刻图形化制备。Further preferably, the first metal electrode layer and the second metal electrode layer are deposited and prepared by magnetron sputtering coating method, thermal evaporation coating method or electron beam evaporation coating method; the piezoelectric layer is deposited by magnetron sputtering method, and then the Engraved pattern preparation.
进一步优选地,第一金属电极层和第二金属电极层为V、Cr Cu、Nb、Mo、Ru、Rh、Pd、Ag、Hf、Ta、W、Re、Ir、Pt或Au;压电层为PZT、AlN或PVDF。Further preferably, the first metal electrode layer and the second metal electrode layer are V, Cr Cu, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Ir, Pt or Au; the piezoelectric layer It is PZT, AlN or PVDF.
进一步优选地,衬底的厚度为500μm,拓扑绝缘体层厚度为5nm~15nm;电极厚度为20nm~50nm。Further preferably, the thickness of the substrate is 500 μm, the thickness of the topological insulator layer is 5 nm˜15 nm; the thickness of the electrode is 20 nm˜50 nm.
进一步优选地,第一铁磁绝缘体层厚度为20nm~30nm,反铁磁绝缘层厚度为5nm~20nm;第二铁磁绝缘体层为40nm~50nm;重金属层厚度为5nm~20nm。Further preferably, the thickness of the first ferromagnetic insulator layer is 20nm-30nm, the thickness of the antiferromagnetic insulating layer is 5nm-20nm; the thickness of the second ferromagnetic insulator layer is 40nm-50nm; the thickness of the heavy metal layer is 5nm-20nm.
进一步优选地,第一金属电极层的厚度为20nm~100nm;第二金属电极层的厚度为20nm~100nm;压电层的厚度为20nm~100nm。Further preferably, the thickness of the first metal electrode layer is 20nm-100nm; the thickness of the second metal electrode layer is 20nm-100nm; the thickness of the piezoelectric layer is 20nm-100nm.
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下Generally speaking, compared with the prior art, the above technical solution conceived by the present invention has the following
有益效果:Beneficial effect:
本发明提供了一种基于磁子流效应的存储器,包括拓扑绝缘体单元、磁子结单元和声体波激励单元,其中,一方面,声体波激励单元包括第一金属电极层、压电层和第二金属电极层,在第一金属电极层和第二金属电极层上施加交变电压,压电层产生声体波,声体波向下传输,在磁子结单元中产生磁子流,以声体波激励作为磁子结单元动力,采用声体波激励磁子结可以有效解决存储器的发热问题,降低存储器的能量损失;拓扑绝缘体单元包括拓扑绝缘体层和电极层;另一方面,拓扑绝缘体层用于当通入电流时利用自旋轨道力矩翻转第一铁磁绝缘体层的磁矩朝向,可以极大的提高磁矩翻转效率;本发明提供了一种高效率、低功耗的基于磁子流效应的新型存储器。The present invention provides a memory based on the magnon flow effect, including a topological insulator unit, a magnon junction unit and a bulk acoustic wave excitation unit, wherein, on the one hand, the bulk acoustic wave excitation unit includes a first metal electrode layer, a piezoelectric layer and the second metal electrode layer, an alternating voltage is applied on the first metal electrode layer and the second metal electrode layer, the piezoelectric layer generates a bulk acoustic wave, and the bulk acoustic wave is transmitted downward to generate a magneton flow in the magneton junction unit , using bulk acoustic wave excitation as the power of the magnon-junction unit, using the bulk acoustic wave to excite the magnon-junction can effectively solve the heating problem of the memory and reduce the energy loss of the memory; the topological insulator unit includes a topological insulator layer and an electrode layer; on the other hand, The topological insulator layer is used to flip the magnetic moment direction of the first ferromagnetic insulator layer by using the spin-orbit torque when the current is applied, which can greatly improve the magnetic moment reversal efficiency; the present invention provides a high-efficiency, low-power consumption A new type of memory based on the magnon current effect.
附图说明Description of drawings
图1是本发明实施例提供的SOT-磁子结-BAW各层分离结构示意图;Fig. 1 is a schematic diagram of the separation structure of each layer of SOT-magnetic subjunction-BAW provided by the embodiment of the present invention;
图2是本发明实施例提供的采用的拓扑绝缘体单元示意图;Fig. 2 is a schematic diagram of a topological insulator unit used in an embodiment of the present invention;
图3是本发明实施例提供的磁子结单元示意图;Fig. 3 is a schematic diagram of a magnetic sub-junction unit provided by an embodiment of the present invention;
图4是本发明实施例提供的第一铁磁绝缘体层和第二铁磁绝缘体层中初始状态下具有相同磁矩方向的示意图;4 is a schematic diagram of the same magnetic moment direction in the initial state of the first ferromagnetic insulator layer and the second ferromagnetic insulator layer provided by the embodiment of the present invention;
图5是本发明实施例提供的在拓扑绝缘体层2中通入电流后,第一铁磁绝缘体层和第二铁磁绝缘体层的磁矩方向示意图;Fig. 5 is a schematic diagram of the magnetic moment direction of the first ferromagnetic insulator layer and the second ferromagnetic insulator layer after the current is passed through the topological insulator layer 2 provided by the embodiment of the present invention;
图6是本发明实施例提供的声体波激励单元示意图;Fig. 6 is a schematic diagram of a bulk acoustic wave excitation unit provided by an embodiment of the present invention;
图7是本发明实施例提供的两层铁磁绝缘体层磁矩方向不同情况下的逆自旋霍尔电压示意图;7 is a schematic diagram of the inverse spin Hall voltage under the condition that the magnetic moment directions of the two ferromagnetic insulator layers are different according to the embodiment of the present invention;
在所有附图中,相同的附图标记用以表示相同的元件或结构,其中:Throughout the drawings, the same reference numerals are used to designate the same elements or structures, wherein:
1-衬底,2-拓扑绝缘体层,3-电极层,4-第一铁磁绝缘体层;5-反铁磁绝缘体层;6-第二铁磁绝缘体层;7-重金属层;8-第二金属电极层;9-压电层;10-第一金属电极层。1-substrate, 2-topological insulator layer, 3-electrode layer, 4-first ferromagnetic insulator layer; 5-antiferromagnetic insulator layer; 6-second ferromagnetic insulator layer; 7-heavy metal layer; 8-th Two metal electrode layers; 9-piezoelectric layer; 10-first metal electrode layer.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
针对现有技术的以上缺陷或改进需求,本发明的目的在于提供一种基于磁子流效应的存储器,利用拓扑绝缘体调整磁子结单元第一铁磁绝缘层的磁矩方向,采用声体波激励单元的动力源,实现高效节能的存储器件。In view of the above defects or improvement needs of the prior art, the object of the present invention is to provide a memory based on the magnon current effect, which uses a topological insulator to adjust the magnetic moment direction of the first ferromagnetic insulating layer of the magnon junction unit, and adopts bulk acoustic wave The power source of the excitation unit realizes high-efficiency and energy-saving storage devices.
其中,拓扑绝缘体具有较大的自旋霍尔角(Spin Hall Angle),自旋霍尔角越大,相同电流密度下界面处积累的极化自旋流就越多,越有利于翻转磁矩,同时利用声子-磁子相互作用,采用向磁子结中注入声体波激励磁子流的方法进一步降低器件发热和能量损失。Among them, the topological insulator has a larger spin Hall angle (Spin Hall Angle), the larger the spin Hall angle, the more polarized spin currents accumulated at the interface at the same current density, and the more conducive to flipping the magnetic moment , while using the phonon-magnon interaction, the method of injecting bulk acoustic waves into the magnon junction to excite the magnon flow can further reduce the heating and energy loss of the device.
本发明提供了一种SOT-磁子结-BAW的存储器,包括:衬底、自下而上位于衬底上的拓扑绝缘体单元、磁子结单元和声体波激励单元,其中,声体波作为磁子结动力源,在拓扑绝缘体中通入电流,调整磁子结第一铁磁绝缘体层磁矩朝向,进而调控磁子结逆自旋霍尔效应电压以实现数据存储的目的;基于拓扑绝缘体调控磁矩的声体波激励磁子结结构简称为:SOT-磁子结-BAW或SOT-磁子结-BAW器件;The present invention provides a kind of memory of SOT-magnon junction-BAW, comprising: substrate, topological insulator unit located on the substrate from bottom to top, magneton junction unit and bulk acoustic wave excitation unit, wherein, bulk acoustic wave As the power source of the magneton junction, the current is passed through the topological insulator to adjust the orientation of the magnetic moment of the first ferromagnetic insulator layer of the magneton junction, and then adjust the inverse spin Hall effect voltage of the magneton junction to achieve the purpose of data storage; based on topology The bulk acoustic wave excited magnon junction structure in which the insulator regulates the magnetic moment is referred to as: SOT-magnon-junction-BAW or SOT-magnon-junction-BAW device;
进一步优选地,衬底包括但不限于硅衬底;Further preferably, the substrate includes but is not limited to a silicon substrate;
拓扑绝缘体层通过磁控溅射或分子束外延的方式在衬底上生长,当拓扑绝缘体层中通入电流时,在自旋轨道力矩作用下翻转第一铁磁绝缘体层磁矩;The topological insulator layer is grown on the substrate by magnetron sputtering or molecular beam epitaxy. When the topological insulator layer is fed with current, the magnetic moment of the first ferromagnetic insulator layer is reversed under the action of spin-orbit torque;
进一步优选地,拓扑绝缘体层为合金化合物材料,具体包括但不限于BixSb1-x、Bi2Se3、Sb2Te3或Bi2Te3;其中,0<x<1;Further preferably, the topological insulator layer is an alloy compound material, specifically including but not limited to Bi x Sb 1-x , Bi 2 Se 3 , Sb 2 Te 3 or Bi 2 Te 3 ; wherein, 0<x<1;
拓扑绝缘体层上方设置有电极,电极通过磁控溅射、电子束蒸发镀膜或热蒸发镀膜的方式在拓扑绝缘体层上生长,具体包括但不限于Al、Cr、Cu、Mo或Ag;An electrode is arranged above the topological insulator layer, and the electrode is grown on the topological insulator layer by magnetron sputtering, electron beam evaporation coating or thermal evaporation coating, specifically including but not limited to Al, Cr, Cu, Mo or Ag;
磁子结单元包含自下而上位于拓扑绝缘体层上的第一铁磁绝缘体层、反铁磁绝缘体层、第二铁磁绝缘体层和重金属层;磁子结单元所包含的第一铁磁绝缘体层磁矩朝向可以被邻近的拓扑绝缘体层调整,而第二铁磁绝缘体层保持不变的磁矩朝向,以构造第一铁磁绝缘体层和第二铁磁绝缘体层相同或相反的磁矩朝向;The magnetic sub-junction unit comprises a first ferromagnetic insulator layer, an antiferromagnetic insulator layer, a second ferromagnetic insulator layer and a heavy metal layer located on the topological insulator layer from bottom to top; the first ferromagnetic insulator contained in the magnetic sub-junction unit The layer magnetic moment orientation can be adjusted by the adjacent topological insulator layer, while the second ferromagnetic insulator layer maintains the same magnetic moment orientation, so as to construct the same or opposite magnetic moment orientation of the first ferromagnetic insulator layer and the second ferromagnetic insulator layer ;
进一步优选地,第一铁磁绝缘体层和第二铁磁绝缘体层均包括但不限于Y3Fe5O12、CoFe2O4和NiFe2O4层;Further preferably, both the first ferromagnetic insulator layer and the second ferromagnetic insulator layer include but are not limited to Y 3 Fe 5 O 12 , CoFe 2 O 4 and NiFe 2 O 4 layers;
进一步优选地,反铁磁绝缘体层为含氧化和物材料或含卤素化合物材料,具体包括但不限于NiO、Fe2O3、Cr2O3、MgO、MnO、FeO、CoO、BiFeO3、LaMnO3、La2CuO4、TmFeO3、ZnCr2O4、F2、CuCl2、FeCl2、MnF2、FeF2和KNiF3;Further preferably, the antiferromagnetic insulator layer is an oxide-containing compound material or a halogen-containing compound material, specifically including but not limited to NiO, Fe 2 O 3 , Cr 2 O 3 , MgO, MnO, FeO, CoO, BiFeO 3 , LaMnO 3. La 2 CuO 4 , TmFeO 3 , ZnCr 2 O 4 , F 2 , CuCl 2 , FeCl 2 , MnF 2 , FeF 2 and KNiF 3 ;
进一步优选地,重金属层具体包括但不限于V、Cr、Cu、Nb、Mo、Ru、Rh、Pd、Ag、Hf、Ta、W、Re、Ir、Pt或Au;Further preferably, the heavy metal layer specifically includes but is not limited to V, Cr, Cu, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Ir, Pt or Au;
磁子结中重金属层通过磁控溅射镀膜、热蒸发镀膜或电子束蒸发镀膜等方式沉积,后续再通过光刻图形化,用于测试逆自旋霍尔效应,表征磁子结的高低电平;The heavy metal layer in the magneton junction is deposited by magnetron sputtering coating, thermal evaporation coating or electron beam evaporation coating, etc., and then patterned by photolithography to test the inverse spin Hall effect and characterize the high and low voltage of the magneton junction. flat;
声体波激励单元自下而上包括第一金属层、压电层和第二金属层;在第一金属层和第二金属层施加交变电压,将随之在压电层中产生声体波,并且声体波向下方的磁子结中传递;The bulk acoustic wave excitation unit includes a first metal layer, a piezoelectric layer and a second metal layer from bottom to top; applying an alternating voltage to the first metal layer and the second metal layer will then generate an acoustic body in the piezoelectric layer wave, and the bulk acoustic wave is transmitted to the magneton junction below;
声体波激励单元中金属层通过磁控溅射镀膜、热蒸发镀膜或电子束蒸发镀膜等方式沉积,压电层将通过磁控溅射方式沉积,后续再通过光刻图形化;The metal layer in the bulk acoustic wave excitation unit is deposited by magnetron sputtering coating, thermal evaporation coating or electron beam evaporation coating, etc. The piezoelectric layer will be deposited by magnetron sputtering, and then patterned by photolithography;
进一步优选地,声体波激励单元中金属层具体包括但不限于V、Cr Cu、Nb、Mo、Ru、Rh、Pd、Ag、Hf、Ta、W、Re、Ir、Pt或Au;压电层为压电材料,具体包括但不限于PZT、AlN或PVDF。Further preferably, the metal layer in the bulk acoustic wave excitation unit specifically includes but is not limited to V, Cr Cu, Nb, Mo, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Ir, Pt or Au; The layers are piezoelectric materials including, but not limited to, PZT, AlN or PVDF.
实施例Example
如图1所示,本发明中存储器包括:声体波激励单元、磁子结单元和拓扑绝缘体单元;As shown in Figure 1, the memory in the present invention includes: a bulk acoustic wave excitation unit, a magneton junction unit and a topological insulator unit;
拓扑绝缘体单元包括拓扑绝缘体层2和电极层3;The topological insulator unit comprises a topological insulator layer 2 and an electrode layer 3;
位于最底层衬底1上方的拓扑绝缘体层2;对拓扑绝缘体层2进行材料设计,可以保证其具有很大自旋霍尔角的同时,实现高的电导率,更有效的对磁子结单元中的第一铁磁绝缘体层4磁矩进行翻转;在对拓扑绝缘体层2施加电流时,电流会对邻近的磁子结单元中第一铁磁绝缘体层4的磁矩产生一个自旋轨道力矩,在该自旋轨道力矩的作用下,磁矩会随之发生翻转,衬底1为硅衬底;拓扑绝缘体层2具体为BixSb1-x,在一些实例中,拓扑绝缘体层2还可以是Bi2Se3、Sb2Te3或Bi2Te3等;The topological insulator layer 2 located above the bottom substrate 1; the material design of the topological insulator layer 2 can ensure that it has a large spin Hall angle while achieving high electrical conductivity and more effective magneton junction units The magnetic moment of the first ferromagnetic insulator layer 4 in the topological insulator layer 4 is reversed; when a current is applied to the topological insulator layer 2, the current will generate a spin-orbit torque for the magnetic moment of the first ferromagnetic insulator layer 4 in the adjacent magneton junction unit , under the action of the spin-orbit torque, the magnetic moment will be reversed accordingly, the substrate 1 is a silicon substrate; the topological insulator layer 2 is specifically Bi x Sb 1-x , in some examples, the topological insulator layer 2 is also Can be Bi 2 Se 3 , Sb 2 Te 3 or Bi 2 Te 3 etc.;
衬底1具体厚度为500μm;拓扑绝缘体层2具体厚度为10nm,在一些实例中,拓扑绝缘体层厚度还可以是5nm~15nm;The specific thickness of the substrate 1 is 500 μm; the specific thickness of the topological insulator layer 2 is 10 nm, and in some examples, the thickness of the topological insulator layer can also be 5 nm to 15 nm;
电极3具体厚度为30nm,在一些实例中,拓扑绝缘体层厚度还可以是20nm~50nm;The specific thickness of the electrode 3 is 30nm. In some examples, the thickness of the topological insulator layer can also be 20nm-50nm;
磁子结单元包括第一铁磁绝缘体层4、反铁磁绝缘层5、第二铁磁绝缘体层6和重金属层7;最上层的重金属层7可以将第二铁磁绝缘体层6中传输来的磁子流以逆自旋霍尔效应电压的形式表现,通过拓扑绝缘体层2调节第一铁磁绝缘体层4磁矩朝向,整个器件可以在高、低逆自旋霍尔电压的状态进行调节;The magnetic sub-junction unit includes a first ferromagnetic insulator layer 4, an antiferromagnetic insulator layer 5, a second ferromagnetic insulator layer 6 and a heavy metal layer 7; the uppermost heavy metal layer 7 can transmit the second ferromagnetic insulator layer 6 to The magnon flow of the magnon is expressed in the form of the inverse spin Hall effect voltage, and the orientation of the magnetic moment of the first ferromagnetic insulator layer 4 is adjusted through the topological insulator layer 2, and the whole device can be adjusted in the state of high and low inverse spin Hall voltage ;
第一铁磁绝缘体层4和第二铁磁绝缘体层6可以为Y3Fe5O12、CoFe2O4和NiFe2O4;反铁磁绝缘体层5为含氧化合物材料或卤素化合物材料,具体包括但不限于NiO、Fe2O3、Cr2O3、MgO、MnO、FeO、CoO、BiFeO3、LaMnO3、La2CuO4、TmFeO3、ZnCr2O4、F2、CuCl2、FeCl2、MnF2、FeF2和KNiF3;The first ferromagnetic insulator layer 4 and the second ferromagnetic insulator layer 6 can be Y 3 Fe 5 O 12 , CoFe 2 O 4 and NiFe 2 O 4 ; the antiferromagnetic insulator layer 5 is an oxygen-containing compound material or a halogen compound material, Specifically including but not limited to NiO, Fe 2 O 3 , Cr 2 O 3 , MgO, MnO, FeO, CoO, BiFeO 3 , LaMnO 3 , La 2 CuO 4 , TmFeO 3 , ZnCr 2 O 4 , F 2 , CuCl 2 , FeCl 2 , MnF 2 , FeF 2 and KNiF 3 ;
第一铁磁绝缘体层4具体厚度为20nm,在一些实例中,第一铁磁绝缘体层4厚度可以是20nm~30nm,反铁磁绝缘层5厚度为10nm。在一些实例中,反铁磁绝缘体层厚度还可以是5nm~20nm;第二铁磁绝缘体层6具体厚度为40nm;在一些实例中,第二铁磁绝缘体层6厚度还可以是40nm~50nm;磁子结单元中各层均通过磁控溅射法依次沉积;在一些实例中,磁子结各层还可以通过脉冲激光沉积(PLD)、分子束外延(MBE)等方法沉积;The specific thickness of the first ferromagnetic insulator layer 4 is 20 nm. In some examples, the thickness of the first ferromagnetic insulator layer 4 may be 20 nm˜30 nm, and the thickness of the antiferromagnetic insulating layer 5 is 10 nm. In some examples, the thickness of the antiferromagnetic insulator layer can also be 5nm-20nm; the specific thickness of the second ferromagnetic insulator layer 6 is 40nm; in some examples, the thickness of the second ferromagnetic insulator layer 6 can also be 40nm-50nm; Each layer in the magneton junction unit is sequentially deposited by magnetron sputtering; in some examples, each layer of the magneton junction can also be deposited by pulsed laser deposition (PLD), molecular beam epitaxy (MBE) and other methods;
重金属层7具体厚度为10nm;在一些实例中,重金属层7厚度还可以是5nm~20nm;重金属层7通过磁控溅射沉积在第二铁磁绝缘体层6表面;在一些实例中,重金属层7还可以通过电子束蒸发(E-beam)、热蒸发等方法沉积;The specific thickness of the heavy metal layer 7 is 10nm; in some examples, the thickness of the heavy metal layer 7 can also be 5nm~20nm; the heavy metal layer 7 is deposited on the surface of the second ferromagnetic insulator layer 6 by magnetron sputtering; in some examples, the heavy metal layer 7 can also be deposited by electron beam evaporation (E-beam), thermal evaporation and other methods;
第二金属电极层8具体厚度为50nm。在一些实例中,第二金属电极层8还可以是20nm~100nm;第二金属电极层8通过磁控溅射法沉积在第二铁磁绝缘体层7表面;在一些实例中,第二金属电极层8还可以通过电子束蒸发(E-beam)和热蒸发等方法沉积;The specific thickness of the second metal electrode layer 8 is 50 nm. In some examples, the second metal electrode layer 8 can also be 20nm-100nm; the second metal electrode layer 8 is deposited on the surface of the second ferromagnetic insulator layer 7 by magnetron sputtering; in some examples, the second metal electrode layer Layer 8 can also be deposited by methods such as electron beam evaporation (E-beam) and thermal evaporation;
压电层9具体厚度为50nm,在一些实例中,压电层厚度还可以是20nm~100nm;压电层9材料通过磁控溅射法沉积在第二金属电极层8表面;The specific thickness of the piezoelectric layer 9 is 50 nm. In some examples, the thickness of the piezoelectric layer can be 20 nm to 100 nm; the material of the piezoelectric layer 9 is deposited on the surface of the second metal electrode layer 8 by magnetron sputtering;
第一金属电极层10具体厚度为50nm,在一些实例中,第一金属电极层10厚度还可以是20nm~100nm;第一金属电极层10通过磁控溅射法沉积在压电层9表面。在一些实例中,第一金属电极层10还可以通过电子束蒸发(E-beam)和热蒸发等方法沉积;The specific thickness of the first metal electrode layer 10 is 50nm. In some examples, the thickness of the first metal electrode layer 10 can also be 20nm-100nm; the first metal electrode layer 10 is deposited on the surface of the piezoelectric layer 9 by magnetron sputtering. In some examples, the first metal electrode layer 10 can also be deposited by methods such as electron beam evaporation (E-beam) and thermal evaporation;
本发明提供的SOT-磁子结-BAW的存储器的制备方法,包括以下步骤:The preparation method of the memory of the SOT-magnetic junction-BAW provided by the present invention comprises the following steps:
在硅衬底1上采用磁控溅射制备一层BixSb1-x,通过控制Bi靶和Sb靶溅射源功率的不同以控制相应的元素比例;A layer of Bi x Sb 1-x is prepared on the silicon substrate 1 by magnetron sputtering, and the corresponding element ratio is controlled by controlling the power difference between the Bi target and the Sb target sputtering source;
在生长好的上述拓扑绝缘体层上采用磁控溅射法依次制备第一铁磁绝缘体层、反铁磁绝缘层、第二铁磁绝缘体层和重金属层;The first ferromagnetic insulator layer, the antiferromagnetic insulating layer, the second ferromagnetic insulator layer and the heavy metal layer are sequentially prepared by magnetron sputtering on the grown topological insulator layer;
在第二铁磁绝缘层上采用磁控溅射法依次制备第二金属电极层、压电层和第一金属电极层。The second metal electrode layer, the piezoelectric layer and the first metal electrode layer are sequentially prepared on the second ferromagnetic insulating layer by using a magnetron sputtering method.
图2为拓扑绝缘体单元,通过磁控溅射法在硅衬底上依次生长不同厚度的拓扑绝缘体层材料BixSb1-x和电极层3;Fig. 2 is a topological insulator unit, and the topological insulator layer material Bi x Sb 1-x and electrode layer 3 of different thicknesses are grown sequentially on a silicon substrate by magnetron sputtering;
图3为磁子结单元,通过第二铁磁绝缘体层6上的重金属层7测量磁子结单元中的磁子流大小;Fig. 3 is a magnon junction unit, the magnitude of the magnon flow in the magnon junction unit is measured through the heavy metal layer 7 on the second ferromagnetic insulator layer 6;
磁子结效应原理如图1所示,从上至下依次为声体波激励单元、磁子结单元、拓扑绝缘体单元和衬底;其中,声体波激励单元包括第一金属电极层、压电层和第二金属电极层;磁子结单元包括重金属层、第一铁磁绝缘体层、反铁磁绝缘体层和第二铁磁绝缘体层;拓扑绝缘体单元包括拓扑绝缘体层和衬底;假设磁子结中第一铁磁绝缘体层和第二铁磁绝缘体层中初始状态下具有相同的磁矩方向,如图4所示,在拓扑绝缘体层2中通入电流后,在自旋轨道力矩作用下将翻转第一铁磁绝缘体层4中的磁矩,与第二铁磁绝缘体层6反向,如图5所示。若在施加声体波激励的情况下,逆自旋霍尔效应电压也将由高电位转向低电位;The principle of magnon junction effect is shown in Figure 1. From top to bottom, there are bulk acoustic wave excitation unit, magnon junction unit, topological insulator unit and substrate; wherein, the bulk acoustic wave excitation unit includes the first metal electrode layer, pressure electric layer and the second metal electrode layer; the magneton junction unit includes a heavy metal layer, a first ferromagnetic insulator layer, an antiferromagnetic insulator layer and a second ferromagnetic insulator layer; a topological insulator unit includes a topological insulator layer and a substrate; assuming a magnetic The first ferromagnetic insulator layer and the second ferromagnetic insulator layer in the sub-junction have the same magnetic moment direction in the initial state, as shown in Figure 4, after the current is passed into the topological insulator layer 2, the spin-orbit torque Down will flip the magnetic moment in the first ferromagnetic insulator layer 4 , opposite to that of the second ferromagnetic insulator layer 6 , as shown in FIG. 5 . If the bulk acoustic wave excitation is applied, the inverse spin Hall effect voltage will also turn from high potential to low potential;
声体波激励单元的结构如图6所示,通过第一金属电极层10和第二金属电极层8施加交变电压,压电层9随之产生对应的声体波;The structure of the bulk acoustic wave excitation unit is shown in Figure 6, an alternating voltage is applied through the first metal electrode layer 10 and the second metal electrode layer 8, and the piezoelectric layer 9 generates corresponding bulk acoustic waves accordingly;
SOT-磁子结-BAW在两层铁磁绝缘体层磁矩方向不同情况下的逆自旋霍尔电压如下:当两层铁磁绝缘体层中的磁矩方向相同的时候,如图7的平行线所示;呈现高电平状态;当两层铁磁绝缘体层中的磁矩方向相反时,呈现低电平状态;The inverse spin Hall voltage of SOT-magnon junction-BAW in the case of two ferromagnetic insulator layers with different magnetic moment directions is as follows: when the magnetic moment directions in the two ferromagnetic insulator layers are the same, as shown in Figure 7 As shown by the line; showing a high level state; when the directions of the magnetic moments in the two ferromagnetic insulator layers are opposite, showing a low level state;
综上所述,该实施例可以形成SOT-磁子结-BAW结构,通过拓扑绝缘体调整磁子结磁矩朝向,以声体波激励作为磁子结动力源,形成具有实际应用价值的高效率低功耗的存储器件原型;In summary, this embodiment can form a SOT-magnon-junction-BAW structure, adjust the orientation of the magnetic moment of the magnon-junction through a topological insulator, and use the bulk acoustic wave excitation as the power source of the magnon-junction to form a high-efficiency magnon-junction with practical application value. Low-power memory device prototype;
除了采用上述实施例中具有的磁子结单元的具体材料和结构外,也可以采用其它具有类似效应的材料以及磁子结结构。In addition to using the specific materials and structures of the magnetic sub-junction units in the above embodiments, other materials and magnetic sub-junction structures with similar effects may also be used.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It is easy for those skilled in the art to understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310436009.6A CN116507131A (en) | 2023-04-21 | 2023-04-21 | Memory based on magnetic substream effect |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310436009.6A CN116507131A (en) | 2023-04-21 | 2023-04-21 | Memory based on magnetic substream effect |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116507131A true CN116507131A (en) | 2023-07-28 |
Family
ID=87329654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310436009.6A Pending CN116507131A (en) | 2023-04-21 | 2023-04-21 | Memory based on magnetic substream effect |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116507131A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119630268A (en) * | 2025-02-11 | 2025-03-14 | 北京科技大学 | A method for controlling spin Hall magnetoresistance of ferromagnetic/heavy metal heterojunction |
-
2023
- 2023-04-21 CN CN202310436009.6A patent/CN116507131A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119630268A (en) * | 2025-02-11 | 2025-03-14 | 北京科技大学 | A method for controlling spin Hall magnetoresistance of ferromagnetic/heavy metal heterojunction |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8268641B2 (en) | Spin transfer MRAM device with novel magnetic synthetic free layer | |
JP5104753B2 (en) | Magnetic random access memory and manufacturing method thereof | |
TW546648B (en) | Spin switch and magnetic storage element using the same | |
WO2007115509A1 (en) | A magnetic logic element with toroidal multiple magnetic films and a method of logic treatment using the same | |
CN109560193A (en) | Magnetic texure and SOT-MRAM based on artificial antiferromagnetic fixing layer | |
WO2013103517A1 (en) | Spin torque transfer magnetic tunnel junction fabricated with a composite tunneling barrier layer | |
US8188558B2 (en) | ST-RAM magnetic element configurations to reduce switching current | |
CN104347226A (en) | Magnetic multilayer film based on magnetic skyrmion layer | |
CN107910439B (en) | Topologically Insulated Magnetoresistive Devices | |
CN101000821B (en) | A closed shape magnetic multilayer film and its preparation method and application | |
CN101853918B (en) | Single-electron magnetic resistance structure and application thereof | |
CN116507131A (en) | Memory based on magnetic substream effect | |
CN115715142A (en) | Method for generating controllable spin current by utilizing antiferromagnetic material, heterostructure device and spintronics device | |
CN104009151A (en) | Closed magnetic tunnel junction | |
CN111384235A (en) | A magnetic tunnel junction and NSOT-MRAM device based on the magnetic tunnel junction | |
CN110112287A (en) | A kind of autotelegraph magnetic reading memory based on more iron hetero-junctions exchange bias effects | |
CN110379917B (en) | Magnetic multilayer structure, magnetic junction device, magnetic random access memory device and auxiliary writing and direct reading methods thereof | |
CN102903841B (en) | A kind of temperature controlled magnetic electron device, its preparation method and application | |
CN103280234B (en) | Magnetic RAM | |
CN203932116U (en) | Close-shaped MTJ | |
CN113314667B (en) | A Magnetic Thin Film Material Structure Based on SOT Effect to Generate Bias | |
US20230067295A1 (en) | Magnetoresistive element having a nano-current-channel sturcture | |
CN115867045A (en) | Spin orbit torque magnetic memory based on voltage-controlled magnetic anisotropy effect | |
CN113257992B (en) | Magnon valve structure based on topological insulator material and spin-orbit torque effect | |
CN116096213A (en) | Spin wave devices and memories |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |