CN116490673A - 用于确定地质特性的碎屑成像 - Google Patents

用于确定地质特性的碎屑成像 Download PDF

Info

Publication number
CN116490673A
CN116490673A CN202180054583.4A CN202180054583A CN116490673A CN 116490673 A CN116490673 A CN 116490673A CN 202180054583 A CN202180054583 A CN 202180054583A CN 116490673 A CN116490673 A CN 116490673A
Authority
CN
China
Prior art keywords
physical characteristic
color
digital image
physical
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180054583.4A
Other languages
English (en)
Inventor
S·迪桑托
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology Corp
Original Assignee
Schlumberger Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology Corp filed Critical Schlumberger Technology Corp
Publication of CN116490673A publication Critical patent/CN116490673A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/005Testing the nature of borehole walls or the formation by using drilling mud or cutting data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/06Arrangements for treating drilling fluids outside the borehole
    • E21B21/063Arrangements for treating drilling fluids outside the borehole by separating components
    • E21B21/065Separating solids from drilling fluids
    • E21B21/066Separating solids from drilling fluids with further treatment of the solids, e.g. for disposal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Multimedia (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Quality & Reliability (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

数字图像处理从地质地层取回的钻屑样本的数字图像和相关方法,包括识别图像中至少描绘第一物理特性的预定最小异质性的各个区域,提取每个识别的区域中描绘预定定量范围内的第二物理特性的粒子,以及测量每个提取的粒子的第三物理特性。第一物理特性可以是区域内的纹理、尺寸、颜色或光谱响应。第二物理特性可以是亮度、颜色、对比度、色调、饱和度或小波能量。第三物理特性可以是尺寸或颜色。

Description

用于确定地质特性的碎屑成像
相关申请的交叉引用
本申请要求2020年8月6日提交的题为“Method for analyzing a drillcuttings sample,”的美国临时申请号63/061,904的优先权和权益,其全部内容通过引用结合于此。
背景技术
地面测井是一种井场服务,可提供关于已钻岩石和储层潜力的早期指示。例如,被称为“泥浆录井人员(logger)”的井场操作员可能试图根据从井返回的钻屑进行岩性识别,以便重建井的地质图。泥浆录井人员根据图像和酸性测试创建一个手动描述。对于每个样本,泥浆录井人员可以检查切割样本(例如,通过双筒望远镜或其他放大装置)并尝试识别样本中的不同岩石类型。如果岩石类型在视觉上不清晰,一些钻屑可能会被分离出来进行酸性测试和最终识别。然后,泥浆录井人员试图量化样本中不同岩石类型的比例。使用该信息,可以进行井地层的重建,以创建岩性柱。然而,手动岩石类型识别和量化可能是主观的(例如,受泥浆录井人员的地质背景的影响)并且耗时。
发明内容
提供本概述以介绍将在以下详细描述中进一步描述的一些概念。该概述不旨在标识所要求保护的主题的不可或缺的特征,也不旨在用于帮助限制所要求保护的主题的范围。
本公开的实施例涉及一种方法,该方法包括处理从地质地层取回的钻屑样本的数字图像。数字图像处理包括识别图像中至少描述第一物理特性的预定最小异质性的各个区域。在每个识别的区域中,提取描述预定定量范围内的第二物理特性的粒子。然后测量每个提取的粒子的第三物理特性。第一物理特性可以是区域内的纹理、尺寸、颜色或光谱响应。第二物理特性可以是亮度、颜色、对比度、色调、饱和度或小波能量。第三物理特性可以是尺寸或颜色。
本公开的实施例还涉及一种包括处理系统的设备,该处理系统具有处理器和存储可执行计算机程序代码的存储器,当由处理器执行时,该可执行计算机程序代码处理从地质地层取回的钻屑样本的数字图像。数字图像处理包括识别图像中至少描述第一物理特性的预定最小异质性的各个区域,提取每个识别区域中描述预定定量范围内的第二物理特性的粒子,并测量每个提取粒子的第三物理特性。
本公开的这些和附加方面在下面的描述中阐述,和/或可以由本领域普通技术人员通过阅读这里的材料和/或实践这里描述的原理来学习。本公开的至少一些方面可以通过所附权利要求中记载的手段来实现。
附图说明
当结合附图阅读时,从以下详细描述中可以理解本公开。需要强调的是,根据工业中的标准实践,各种特征没有按比例绘制。事实上,为了讨论清楚,各种特征的尺寸可以任意增加或减少。
图1是根据本公开的一个或多个方面的井场装置的示例实施方式的至少一部分的示意图。
图2是根据本公开的一个或多个方面的处理系统的示例实施方式的至少一部分的示意图。
图3是根据本公开的一个或多个方面的方法的示例实施方式的至少一部分的流程图。
图4-7描绘了根据图3所示方法的一个或多个方面的数字图像处理的各个阶段的示例结果。
图8是描绘图3所示方法的示例结果的曲线图。
具体实施方式
应当理解,以下公开提供了许多不同的实施例或示例,用于实施各种实施例的不同特征。下面描述部件和布置的具体示例,以简化本公开。当然,这些仅仅是示例,并不旨在进行限制。此外,本公开可以在各种示例中重复附图标记和/或字母。这种重复是为了简单和清楚,其本身并不规定所讨论的各种实施例和/或配置之间的关系。
图1是根据本公开的一个或多个方面的用于在井场为油/气井钻井眼的装置100的示例实施方式的至少一部分的示意图。装置100包括用于钻井眼(洞穴)108的旋转钻井工具104,以及地面装置112,在地面装置112中,钻杆被放置在井眼108中。井眼108由旋转钻井工具104在地质地层(底层)116中形成。在井场地面120,具有排放管128的井口124关闭井眼108。
钻井工具104包括钻井头132、钻柱136和液体注射头140。钻井头132包括钻头144,用于钻穿地质地层116的岩石。钻柱136由一组中空钻杆形成,钻井液通过该一组中空钻杆经由液体注射头140从地面120泵送到钻井头132。钻井液是钻井泥浆,例如水基或油基钻井泥浆。
地面装置112包括用于支撑钻井工具104并驱动其旋转的支撑件(例如,顶部驱动装置)148、用于注射钻井液的注射器152和泥浆振动筛156。注射器152液压连接到注射头140,以便将钻井液引入和泵送(例如,经由一个或多个泵160)到钻柱136中。泥浆振动筛156收集从排放管128流出的带有钻屑的钻井液。泥浆振动筛156包括允许固体钻屑168从钻井泥浆中分离的筛子164。泥浆振动筛156还包括用于排出钻屑168的出口172。
本公开的一个或多个方面涉及用于分析钻屑168的方法和系统。这种系统可以位于井场,例如在泥浆振动筛156附近,如图1所示,或者在距离泥浆振动筛156几百米的舱室或其他设施中。这种系统可以位于远离井场的地方,例如在实验室中。
图1所示的这种系统的示例包括用于收集从出口172排出的钻屑168的容器或其他取样器176。成像设备180,用于拍摄钻屑168的样本的一个或多个多像素数字图像。成像设备180(和其他部件)用于经由自动分析由成像设备180生成的图像来识别或以其他方式预测地质地层116的一个或多个特性。成像设备180可以是或可以包括光学或电子显微镜或照相机。
该系统还可以包括准备单元184,例如可以在成像之前清洗、干燥、分离和/或以其他方式准备取样的钻屑168。然而,准备单元184是可选的,或者可能能够被绕过,使得钻屑168可以在已经被取样之后立即被成像。要注意的是,在被成像设备180成像之前,钻屑168可以不彼此分离。
钻屑可以被自动取样,包括被转移到制备设备184(当使用时),然后经由输送器188和运输设备192转移到成像设备180。准备和/或成像可以通过经由制备设备184和成像设备180等的一系列动作命令的各种设备自动执行。然而,其他输送设备也可以或替代地用于运输钻屑168。
该系统还包括至少连接到成像设备180的处理系统196,以便接收由成像设备180拍摄的图像。处理系统196可以是或可以包括下面参考图2描述的处理系统200的一个或多个实例的至少一部分。如下所述,处理系统196可以包括分析模块197,其可操作来分析由成像设备180拍摄的图像。处理系统196还可以包括用于控制样本的制备和成像的控制单元198,例如在其中取样和/或输送和/或制备和/或成像是自动的实施方式中。在这种实施方式中,在本公开的范围内的其他实施方式中,处理系统196还能够与输送器188、制备设备185、运输设备192和成像设备180通信。处理系统196还可以与井场的其他模块通信,例如通过已知或未来开发的过程(例如,基于滞后时间)来确定从其取回钻屑样本的深度。处理系统196可以位于成像设备180附近,或者远离成像设备180。处理系统196还可以包括位于不同位置的几个模块,例如一个位于成像设备180附近,一个远离成像设备180。每个这样的模块可以是或者可以包括下面参考图2描述的处理系统200的至少一部分。
要注意的是,图1中描述的系统是一个示例实施方式。已经描述了何时自动处理钻屑样本。然而,在本公开范围内的其他实施方式中,样本可以由操作者手动收集并转移到舱室或实验室,在那里样本可以被成像并可选地被制备。本公开范围内的系统的实施方式也可以仅包括成像设备180和处理系统196。这种系统可以用于例如分析钻屑和/或其他类型的岩石样本。
图2是根据本公开的一个或多个方面的处理系统200的示例实施方式的至少一部分的示意图。处理系统200可以是或形成一个或多个设备控制器、处理器、处理系统和/或图1中示出的(或以其他方式关联的)其他电子设备的至少一部分,包括用于执行这里描述的方法的至少一部分。例如,处理系统200(或其实例、部分或部分的实例)可以是、形成或以其他方式结合取样器176、成像设备180、制备单元184、输送器188、运输设备192、处理系统196、分析模块197和/或控制单元198的至少一部分操作。
处理系统200可以是或可以包括例如一个或多个处理器、控制器、专用计算设备、个人计算机(PC,例如,台式、膝上型和/或平板计算机)、个人数字助理、智能手机、工业PC(IPC)、可编程逻辑控制器(PLC)、服务器、互联网设备和/或其他类型的计算设备。尽管处理系统200的一个或多个实例的整体可以在一个设备中实施,但是也可以设想处理系统200的一个或多个部件或功能可以跨多个设备实施,其中一些或整体可以在井场和/或远离井场。
处理系统200可以包括处理器212,例如通用可编程处理器。处理器212可以包括本地存储器214,并且可以执行本地存储器214和/或另一存储设备中存在的计算机/机器可读和可执行的程序代码指令232(即,计算机程序代码)。作为非限制性示例,处理器212可以是、可以包括或由适合于本地应用环境的各种类型的一个或多个处理器实施,并且可以包括通用计算机、专用计算机、微处理器、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、专用集成电路(ASIC)和基于多核处理器架构的处理器中的一个或多个。处理器212的示例包括一个或多个INTEL微处理器、来自ARM和/或PICO系列微控制器的微控制器、以及一个或多个FPGA中的嵌入式软/硬处理器。
处理器212可以执行程序代码指令232和/或其他指令和/或程序等,以实施这里描述的示例方法和/或操作。例如,当由处理系统200的处理器212执行时,程序代码指令232可以使得处理器212接收和处理传感器数据,例如由成像设备180获得的未知岩石样本图像。当由处理系统200的处理器212执行时,程序代码指令232还可以或替代地使处理器212输出控制数据(即,控制命令)以控制井场装置的一个或多个部分或部件,例如取样器176、成像设备180、准备单元184、输送器188、运输设备192、分析模块197和/或控制单元198,可能包括执行示例方法的一个或多个方面。
处理器212可能经由总线222和/或其他通信装置与主存储器216通信,例如可以包括易失性存储器218和非易失性存储器220。易失性存储器218可以是、可以包括或由各种类型的随机存取存储器(RAM)实施,例如静态RAM(SRAM)、动态RAM(DRAM)、快速页面模式动态随机存取存储器(FPM DRAM)、扩展数据输出DRAM(EDO DRAM)、同步DRAM(SDRAM)、双倍数据速率SDRAM(DDR SDRAM(包括DDR2、DDR3、DDR4、DDR5等)、RAMBUS DRAM(RDRAM)和/或其他类型的RAM设备。非易失性存储器220可以是、可以包括或由只读存储器、闪存和/或其他类型的存储设备来实施。一个或多个存储器控制器(未示出)可以控制对易失性存储器218和/或非易失性存储器220的访问。
处理系统200还可以包括接口电路224,其例如经由总线222与处理器212通信。接口电路224可以是、可以包括或由各种类型的标准接口实施,例如以太网接口、通用串行总线(USB)、第三代输入/输出(3GIO)接口、无线接口、蜂窝接口和/或卫星接口等。接口电路224可以包括图形驱动卡。接口电路224可以包括通信设备,例如调制解调器或网络接口卡,以便于经由广域网(WAN,例如,以太网连接、DSL、电话线、同轴电缆、蜂窝电话系统、卫星通信系统等)与外部计算设备交换数据。
处理系统200可以经由接口电路224与各种传感器、摄像机、致动器、处理设备、装备控制器和井构造系统的其他设备通信,可能包括取样器176、成像设备180、准备单元184、输送器188、运输设备192、处理系统196、分析模块197和/或控制单元198。接口电路224可以通过利用一个或多个通信协议,例如基于以太网的网络协议(例如,ProfiNET、OPC、OPC/UA、Modbus TCP/IP、EtherCAT、UDP多播、西门子S7通信等)、专有通信协议和/或另一种通信协议,来促进处理系统200和一个或多个设备之间的通信。
一个或多个输入设备226也可以连接到接口电路224。输入设备226可以允许人类用户输入程序代码指令232,程序代码指令232可以是或者可以包括控制数据、操作参数、操作设定点、井建造计划和/或操作序列的数据库。程序代码指令232还可以包括建模或预测例程、方程、算法、过程、应用和/或可操作来执行这里描述的示例方法和/或操作的其他程序。输入设备226可以是、可以包括或由键盘、鼠标、操纵杆、触摸屏、轨迹板、轨迹球、等点(isopoint)和/或语音识别系统等来实施。一个或多个输出设备228也可以连接到接口电路224。输出设备228可以允许各种数据的可视化或其他感官感知,例如传感器数据、状态数据和/或其他示例数据。输出设备228可以是、可以包括或由视频输出设备(例如,液晶显示器(LCD)、发光二极管(LED)显示器、阴极射线管(CRT)显示器、触摸屏等)、打印机和/或扬声器等实施。
处理系统200可以包括用于存储数据和程序代码指令232的大容量存储设备230。大容量存储设备230可以例如经由总线222连接到处理器212。大容量存储设备230可以是或可以包括有形的、非暂时性的计算机可读存储介质,例如硬盘驱动器、光盘(CD)驱动器和/或数字多功能盘(DVD)驱动器等。
处理系统200可以通过接口电路224与外部存储介质234通信连接。外部存储介质234可以是或者可以包括可移动存储介质(例如,CD或DVD),例如可以用于存储数据和程序代码指令232。
如上所述,程序代码指令232可以存储在大容量存储设备230、主存储器216、本地存储器214和/或可移动存储介质234中。因此,处理系统200可以根据硬件来实施(可能在包括诸如ASIC的集成电路的一个或多个芯片中实施),或者可以实施为由处理器212执行的软件或固件。在固件或软件的情况下,实施方式可以被提供为计算机程序产品,包括存储由处理器212执行的计算机程序代码指令232(即,软件或固件)的非暂时性计算机可读介质或存储结构。程序代码指令232可以包括程序指令或计算机程序代码,当由处理器212执行时,可以执行和/或促使执行本文描述的方法、过程和/或操作的一个或多个方面。
图3是根据本公开的一个或多个方面的方法300的至少一部分实施方式的流程图。方法300可以结合图1和/或2中描绘的装置(和/或也在本公开范围内的其他装置)来使用。例如,方法300可用于通过处理304样本的多像素数字图像来确定多个钻屑样本168的一个或多个特性。这种数字图像的示例如图4所示。图4中描绘的示例数字图像以灰色阴影示出,尽管也在本公开范围内的其他实施方式可以利用多色、黑白和/或其他格式的数字图像。该方法可以包括通过成像器,例如成像设备180和/或其他装置,对钻屑样本168进行成像308。图像处理304可以由处理系统来执行,例如处理系统196和/或可能具有一个或多个特征和/或功能的其他处理系统,如上面关于图2所示的处理系统200的一个或多个部件所描述的。
图像处理304包括识别312图像中的单独区域,其至少描绘了第一物理特性的预定最小异质性。第一物理特性可以是区域内的纹理、尺寸、颜色或光谱响应,使得预定的最小异质性可以是在单个区域内变化至少50%(例如)的纹理、尺寸、颜色或光谱响应值。例如,识别312异质区域可以包括分割316图像(例如,基于每个钻屑之间的检测边界,即,在图像中识别的每个单独钻屑一个区域)和基于其中描述的异质性分类320每个区域,使得识别312的区域是单独描述至少第一物理特性的预定最小异质性的那些段。
然而,用于分割和分类图像以识别312异质区域的其他方法也在本发明的范围内。根据一些实施例,用于识别312异质区域的方法可以包括基于在第一物理特性的多个预定值范围之一内的像素的所描绘的第一物理特性对图像的每个像素进行分类324,然后基于像素分类对图像进行分割328,使得所识别的312区域是单独地至少描绘第一物理特性的预定最小异质性的那些段。例如,当第一物理特性是纹理或粒子尺寸时,预定值范围可以是预定最小值和最大值之间的5微米(μm)的尺寸间隔(例如,10μm到200μm)。类似地,当第一物理特性是颜色时,预定值范围可以是400nm(即,蓝色)和700nm(即,红色)之间的10纳米(nm)的波长间隔,或者当第一物理特性是光谱响应时,预定值范围可以是300nm和1000nm之间的20nm的波长间隔。然而,其他值范围和区间也在本公开的范围内。在这样的实施方式中,图像分割328可以基于被分类在预定值范围的同一范围中的相邻像素或像素簇。
在识别312异质区域的每个示例性实施方式中,在本公开范围内的其他方法中,单独识别312的区域可以是那些至少描绘第一物理特性的预定最小异质性和至少一个其他物理特性的至少一个其他预定最小异质性的区域。例如,第一物理特性和至少一个其他物理特性可以共同包括区域内的纹理、尺寸、颜色和光谱响应中的至少两个。
不管用于分割和分类所获得的308图像的区域的方法如何,区域可以被分类为“粒状的”(例如,至少不同纹理、不同尺寸和/或不同光谱/颜色响应的最小异质性)、“层状的”(具有线性和伸长形状的异质性,其中对比度可变性垂直于最长轴)、“同质的”(低于预定最小值或不可辨别和/或不可测量的异质性)、或“混合的”(粒状、层状和同质中的至少两种或每种的最小组合)。在一些实施例中,区域可以被分类为粒状或非粒状。
图像处理304还包括,在每个识别的312区域中,提取332描述预定定量范围内的第二物理特性的粒子。例如,第二物理特性可以是亮度、颜色、对比度、色调、饱和度、小波能量和/或其他。在这种情况下,注意色调代表颜色本身,饱和度是颜色强度和/或纯度的表达,亮度代表亮度。小波能量可以通过将小波变换应用于所识别的312区域,或者经由Haralick指示器来获得。
图像处理304还包括测量336每个提取332粒子的第三物理特性。第三物理特性可以是尺寸、颜色和/或其他。图像处理304还可以包括将第三物理特性测量336排序(sort)340成多个预定值范围。例如,预定值范围可以是10μm和200μm之间的5μm的尺寸间隔,400纳米和700纳米之间的10纳米的颜色波长间隔,或者300纳米和1000纳米之间的20纳米的光谱响应波长间隔。然而,其他值范围和区间也在本公开的范围内。排序340的示例结果由图8所示的图表描绘。
可以利用与提取的332粒子的每个粒子相关联的图像中的像素数以及图像的分辨率来测量336第三物理特性。例如,一个像素可以相当于大约10μm,使得跨越三个像素的粒子可以被测量为具有30μm的尺寸。然而,由于奈奎斯特取样规则,粒子尺寸可测量的下限可以被强制为至少2×2像素的粒子尺寸,这意味着,取决于照相机分辨率,可能必须通过统计和/或机器学习方法来估计更小的粒子尺寸。在下面描述的图4-7所示的示例中,由实际图片分辨率给出的测量下限可以估计为20μm,但是对于更高分辨率的相机,该限制可以小到1μm。
方法300可以进一步包括利用排序340的第三物理特性测量结果来预测344地质地层的至少一个地质特性。预测344至少一个地质特性可以包括预测预定的多种岩石类型中的哪一种或多种存在于地质地层116中。例如,预定的岩石类型可以包括火成岩、沉积岩和变质岩,或者每种岩石的具体示例(例如,花岗岩、砂岩、石灰石、板岩和大理石)。预测344至少一种地质特性可以进一步包括预测被预测存在于地质地层116中的一种或多种岩石类型中的每一种的数量。至少一个预测344的地质特性还可以或替代地包括地质地层116的粒度、颜色和孔隙度中的一个或多个。
方法300还可以包括在钻入地质地层116以形成井眼108的同时,在从井眼108取回之后收集348多个钻屑样本,然后对收集348的多个钻屑样本进行成像308以获得数字图像。当上述钻屑分析设备位于井场时,可以利用方法300的这种实施方式,与当钻屑分析设备位于远离井场的位置时,例如在实验室中,利用的方法300的其他实施方式(也在本公开的范围内)形成对比。
排序340的粒子测量值,以及可能的地层116的预测344的地质特性,也可以用于生成和/或更新352基于时间和/或基于深度的录井。例如,可以确定356井眼108的额外(例如,新形成的)深度也将通过上述图像处理304被调查,在这种情况下,图像处理304可以在钻井操作期间在相应的后续时间对从地质地层116取回348的多个额外钻屑样本中的相应一个的多个额外数字图像中的每一个重复。否则,方法300可以结束360。
图4是通过对多个钻屑样本进行成像308而得到的示例数字图像。图5描绘了分割过程316/328的示例输出,其中不同的灰色阴影对应于图像的每个部分(例如,每个像素或像素组)被分类的类别。然而,也可以使用其他颜色方案。如上所述,在图5所示的示例中使用的四个类别是粒状的、层状的、均匀的和混合的,尽管在本公开的范围内的其他实施方式可以利用另外定义的类别,例如仅仅两个类别(例如粒状的和非粒状的)。在图5的示例中,粒状类别由附图标记500表示的灰色阴影描绘。
图6描绘了异质区域识别312的示例结果,其中已经提取了至少描绘了第一物理特性的预定最小异质性的识别312区域,并且遮蔽了图像的剩余部分。图6还示出了可以用适当的算法,例如腐蚀(去除)和孔洞填充算法(可能用先前的阈值处理来获得黑白图像)来细化所识别312的区域,以便获得所识别312的区域的更好的清晰度。
图7描绘了来自粒子提取232的示例结果。在图7的示例中,已经提取了亮粒子,但是提取方法可以应用于其他种类的粒子颜色或与相关地质推断信息的对比。
鉴于本公开的整体,本领域普通技术人员将容易认识到,本公开介绍了一种方法,该方法包括处理从地质地层取回的多个钻屑样本的数字图像,其中该数字图像处理包括:识别图像中的单独区域,该图像至少描绘了第一物理特性的预定最小异质性;在每个识别的区域中,提取描述预定定量范围内的第二物理特性的粒子;以及测量每个提取的粒子的第三物理特性。
第一物理特性可以是区域内的纹理、尺寸、颜色或光谱响应。
预定最小异质性可以是第一预定最小异质性,并且识别区域可以包括识别单独的区域,其描述:至少第一物理特性的第一预定最小异质性;和至少一个第四物理特性的至少第二预定最小异质性。第一物理特性和至少一个第四物理特性可以共同包括区域内的纹理、尺寸、颜色和光谱响应中的至少两个。
第二物理特性可以是亮度、颜色、对比度、色调、饱和度或小波能量。
第三物理特性可以是尺寸或颜色。
识别区域可以包括:基于每个钻屑之间检测到的边界分割图像;以及将这些区域识别为单独地描绘了至少第一物理特性的预定最小异质性的那些段。
识别区域可以包括:基于在第一物理特性的多个预定值范围之一内的像素的所描绘的第一物理特性,对图像的每个像素进行分类;基于像素分类分割图像;以及将这些区域识别为单独地描绘了至少第一物理特性的预定最小异质性的那些段。图像分割可以基于被分类在同一预定值范围中的相邻像素。
数字图像处理还可以包括将第三物理特性测量值排序成多个预定值范围。该方法还可以包括利用排序的第三物理特性测量值预测地质地层的至少一个地质特性。预测至少一个地质特性可以包括预测预定的多种岩石类型中的哪一种或多种存在于地质地层中。预测至少一个地质特性还可以包括预测被预测存在于地质地层中的一种或多种岩石类型中的每一种的数量。该至少一种地质特性可以包括地质地层的粒度、颜色和孔隙度中的一个或多个。
该方法还可以包括:在钻入地质地层以形成井眼的同时,在从井眼取回之后收集多个钻屑样本;以及经由成像设备的操作,对所收集的多个钻屑样本进行成像,以获得数字图像。
该方法还可以包括:在钻井操作期间的相应后续时间,对从地质地层取回的钻屑的多个附加样本中的相应样本的多个附加数字图像中的每一个重复图像处理;以及生成根据数字图像和每个附加数字图像确定的第三物理特性的值的基于时间的录井。
该方法还可以包括:在钻井操作期间,在地质地层中形成的井眼的不同对应深度处,对从地质地层中取回的钻屑的多个附加样本中的对应样本的多个附加数字图像中的每一个重复图像处理;以及生成根据数字图像和每个附加数字图像确定的第三物理特性的值的基于深度的录井。
本公开还介绍了一种包括处理系统的装备,该处理系统具有处理器和存储可执行计算机程序代码的存储器,当该可执行计算机程序代码被处理器执行时,处理从地质地层取回的多个钻屑样本的数字图像,其中该数字图像处理包括:识别图像中至少描绘第一物理特性的预定最小异质性的各个区域;在每个识别的区域中,提取描述预定定量范围内的第二物理特性的粒子;以及测量每个提取的粒子的第三物理特性。
该装置还可以包括用于获得数字图像的成像设备。
第一物理特性可以是区域内的纹理、尺寸、颜色或光谱响应。
第二物理特性可以是亮度、颜色、对比度、色调、饱和度或小波能量。
第三物理特性可以是尺寸或颜色。
本文描述了本公开的一个或多个具体实施例。这些描述的实施例是当前公开的技术的示例。另外,为了提供这些实施例的简明描述,在说明书中可能没有描述实际实施例的所有特征。应当理解,在任何这种实际实施方式的开发中,如同在任何工程或设计项目中一样,将做出许多特定于实施例的决定,以实施开发者的特定目标,例如符合系统相关和商业相关的约束,这些约束可能因实施例而异。此外,应当理解,这种开发努力可能是复杂且耗时的,但是对于受益于本公开的普通技术人员来说,这仍然是设计、制作和制造的常规任务。
此外,应当理解,对本公开的“一个实施例”或“一实施例”的引用不旨在被解释为排除也结合了所述特征的附加实施例的存在。例如,关于这里的实施例描述的任何元件可以与这里描述的任何其他实施例的任何元件组合。本文所述的数字、百分比、比率或其他值旨在包括该值,以及“大约”或“近似”所述值的其他值,如本公开的实施例所涵盖的本领域普通技术人员所理解的。因此,所述值应该被解释为足够宽泛,以包含至少足够接近所述值的值,以执行期望的功能或实现期望的结果。所述值至少包括在合适的制造或生产过程中预期的变化,并且可以包括在所述值的5%以内、1%以内、0.1%以内或0.01%以内的值。
鉴于本公开,本领域普通技术人员应该认识到,等同的结构不脱离本公开的精神和范围,并且在不脱离本公开的精神和范围的情况下,可以对本文公开的实施例进行各种改变、替换和变更。包括功能性“装置加功能”条款在内的等同结构旨在涵盖在此描述的执行所述功能的结构,包括以相同方式操作的结构等同物和提供相同功能的等同结构。申请人的明确意图是不为任何权利要求调用装置加功能或其他功能性声明,除了那些词语“用于…装置”与相关功能一起出现的权利要求。落入权利要求的含义和范围内的对实施例的每个添加、删除和修改都将被权利要求所包含。
这里使用的术语“近似”、“大约”和“基本上”表示接近所述量的量,该量在标准制造或工艺公差内,或者仍然执行期望的功能或实现期望的结果。例如,术语“大约”、“约”和“基本上”可以指所述量的小于5%、小于1%、小于0.1%和小于0.01%的量。此外,应该理解,前面描述中的任何方向或参考系仅仅是相对方向或运动。例如,对“上”和“下”或“上方”或“下方”的任何引用仅仅是对相关元件的相对位置或运动的描述。
提供本公开末尾的摘要是为了允许读者快速确定本技术公开的特性。提交它是基于这样的理解,即它将不被用来解释或限制权利要求的范围或含义。

Claims (20)

1.一种方法,包括:
处理从地质地层取回的多个钻屑样本的数字图像,其中数字图像处理包括:
识别图像中至少描绘第一物理特性的预定最小异质性的各个区域;
在每个识别的区域中,提取描述预定定量范围内的第二物理特性的粒子;和
测量每个提取的粒子的第三物理特性。
2.根据权利要求1所述的方法,其中第一物理特性是所述区域内的纹理、尺寸、颜色或光谱响应。
3.根据权利要求1所述的方法,其中:
预定最小异质性是第一预定最小异质性;和
识别所述区域包括识别描述以下内容的各个区域:
至少第一物理特性的第一预定最小异质性;和
至少一个第四物理特性的至少第二预定最小异质性。
4.根据权利要求3所述的方法,其中第一物理特性和至少一个第四物理特性共同包括所述区域内的纹理、尺寸、颜色和光谱响应中的至少两个。
5.根据权利要求1所述的方法,其中第二物理特性是亮度、颜色、对比度、色调、饱和度或小波能量。
6.根据权利要求1所述的方法,其中第三物理特性是尺寸或颜色。
7.根据权利要求1所述的方法,其中识别所述区域包括:
基于检测到的每个钻屑之间的边界分割图像;和
将所述区域识别为单独描绘至少第一物理特性的预定最小异质性的那些段。
8.根据权利要求1所述的方法,其中识别所述区域包括:
基于该像素的所描绘的第一物理特性在第一物理特性的多个预定值范围之一内,对图像的每个像素进行分类;
基于像素分类分割图像;和
将所述区域识别为单独描绘至少第一物理特性的预定最小异质性的那些段。
9.根据权利要求8所述的方法,其中所述图像分割是基于被分类在同一预定值范围内的相邻像素。
10.根据权利要求1所述的方法,其中所述数字图像处理还包括将第三物理特性测量值排序为多个预定值范围。
11.根据权利要求10所述的方法,还包括利用排序的第三物理特性测量值预测地质地层的至少一个地质特性。
12.根据权利要求11所述的方法,其中预测所述至少一种地质特性包括预测预定的多种岩石类型中的哪一种或多种存在于地质地层中。
13.根据权利要求12所述的方法,其中预测所述至少一种地质特性还包括预测被预测为存在于地质地层中的一种或多种岩石类型中的每一种的数量。
14.根据权利要求11所述的方法,其中所述至少一种地质特性包括地质地层的粒度、颜色和孔隙度中的一个或多个。
15.根据权利要求1所述的方法,进一步包括:
当钻入地质地层以形成井眼时,在从井眼取回之后收集多个钻屑样本;和
经由成像设备的操作,对所收集的多个钻屑样本进行成像,以获得数字图像。
16.根据权利要求1所述的方法,进一步包括:
在钻井操作期间的相应后续时间,对从地质地层取回的多个附加钻屑样本中的相应一个的多个附加数字图像中的每一个重复图像处理;和
生成根据数字图像和每个附加数字图像确定的第三物理特性的值的基于时间的录井。
17.根据权利要求1所述的方法,进一步包括:
在钻井操作期间,在地质地层中形成的井眼的不同对应深度处,对从地质地层取回的多个附加钻屑样本中的对应一个的多个附加数字图像中的每一个重复图像处理;和
生成根据数字图像和每个附加数字图像确定的第三物理特性的值的基于深度的录井。
18.一种装备,包括:
处理系统,该处理系统包括处理器和存储可执行计算机程序代码的存储器,当由处理器执行时,该可执行计算机程序代码处理从地质地层取回的多个钻屑样本的数字图像,其中数字图像处理包括:
识别图像中至少描绘第一物理特性的预定最小异质性的各个区域;
在每个识别的区域中,提取描述预定定量范围内的第二物理特性的粒子;和
测量每个提取的粒子的第三物理特性。
19.根据权利要求18所述的装备,还包括用于获取数字图像的成像设备。
20.根据权利要求18所述的装备,其中:
第一物理特性是该区域内的纹理、尺寸、颜色或光谱响应;
第二物理特性是亮度、颜色、对比度、色调、饱和度或小波能量;和
第三物理特性是尺寸或颜色。
CN202180054583.4A 2020-08-06 2021-08-06 用于确定地质特性的碎屑成像 Pending CN116490673A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063061904P 2020-08-06 2020-08-06
US63/061,904 2020-08-06
PCT/US2021/044883 WO2022032057A1 (en) 2020-08-06 2021-08-06 Cuttings imaging for determining geological properties

Publications (1)

Publication Number Publication Date
CN116490673A true CN116490673A (zh) 2023-07-25

Family

ID=80118568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180054583.4A Pending CN116490673A (zh) 2020-08-06 2021-08-06 用于确定地质特性的碎屑成像

Country Status (4)

Country Link
US (1) US20230351580A1 (zh)
CN (1) CN116490673A (zh)
MX (1) MX2023001524A (zh)
WO (1) WO2022032057A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023230101A1 (en) * 2022-05-27 2023-11-30 Schlumberger Technology Corporation Collaborative generation of cuttings logs via artificial intelligence
WO2023235347A1 (en) * 2022-05-31 2023-12-07 Schlumberger Technology Corporation Automated image-based rock type identification with neural-network segmentation and continuous learning
WO2024020523A1 (en) * 2022-07-21 2024-01-25 Schlumberger Technology Corporation Formation porosity estimation from digital images
US20240144458A1 (en) * 2022-10-26 2024-05-02 Halliburton Energy Services, Inc. Real-time formations cuttings analysis system using computer vision and machine learning approach during a drilling operation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2469222A1 (en) * 2010-12-23 2012-06-27 Geoservices Equipements Method for analyzing at least a cutting emerging from a well, and associated apparatus.
WO2016077521A1 (en) * 2014-11-12 2016-05-19 Covar Applied Technologies, Inc. System and method for measuring characteristics of cuttings and fluid front location during drilling operations with computer vision
US9412023B1 (en) * 2015-03-31 2016-08-09 Chevron U.S.A. Inc. Method to determine wettability of rock samples using image analysis
EP3340113A1 (en) * 2016-12-23 2018-06-27 Geoservices Equipements Method and system for analyzing cuttings coming from a wellbore
US10781692B2 (en) * 2018-05-07 2020-09-22 Schlumberger Technology Corporation Method and system for analyzing rock samples

Also Published As

Publication number Publication date
WO2022032057A1 (en) 2022-02-10
US20230351580A1 (en) 2023-11-02
MX2023001524A (es) 2023-03-21

Similar Documents

Publication Publication Date Title
US11443149B2 (en) Cuttings imaging for determining geological properties
CN116490673A (zh) 用于确定地质特性的碎屑成像
US10991078B2 (en) Inferring petrophysical properties of hydrocarbon reservoirs using a neural network
US10761003B2 (en) Method and system for analyzing cuttings coming from a wellbore
US8331626B2 (en) Method for estimating material properties of porous media using computer tomographic images thereof
US11062439B2 (en) Automating microfacies analysis of petrographic images
US10781680B2 (en) Detection and quantification of proppant for optimized fracture treatment design in in-fill and new wells
US8416413B2 (en) Products and methods for identifying rock samples
CA3035734C (en) A system and method for estimating permeability using previously stored data, data analytics and imaging
US11670073B2 (en) System and method for detection of carbonate core features from core images
WO2023132935A1 (en) Systems and methods for segmenting rock particle instances
US20220327713A1 (en) Automatic digital rock segmentation
Ismailova et al. Automated drill cuttings size estimation
WO2023101691A1 (en) Classification of pore or grain types in formation samples from a subterranean formation
WO2023133512A1 (en) Systems and methods for measuring physical lithological features based on calibrated photographs of rock particles
Montes et al. Automatic Determination of Cuttings and Cavings Properties for Hole Cleaning and Wellbore Stability Assessment Using a Laser-Based Sensor
US20230374903A1 (en) Autonomous Interpretation of Rock Drill Cuttings
WO2024020523A1 (en) Formation porosity estimation from digital images
WO2023230101A1 (en) Collaborative generation of cuttings logs via artificial intelligence
WO2024129378A1 (en) Integrated mobile system for formation rock analysis
Botha et al. Multi-scale imaging and cross-property correlations in heterogenous sandstone
WO2023235347A1 (en) Automated image-based rock type identification with neural-network segmentation and continuous learning
Wang et al. Micro rock fracture image acquisition and processing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination