CN116478420B - 一种共价三嗪框架材料及其制备方法和应用 - Google Patents

一种共价三嗪框架材料及其制备方法和应用 Download PDF

Info

Publication number
CN116478420B
CN116478420B CN202310483451.4A CN202310483451A CN116478420B CN 116478420 B CN116478420 B CN 116478420B CN 202310483451 A CN202310483451 A CN 202310483451A CN 116478420 B CN116478420 B CN 116478420B
Authority
CN
China
Prior art keywords
covalent triazine
adsorption
framework material
reaction
ctfs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310483451.4A
Other languages
English (en)
Other versions
CN116478420A (zh
Inventor
陈谦
赵英伯
梁坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Forestry University
Original Assignee
Southwest Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Forestry University filed Critical Southwest Forestry University
Priority to CN202310483451.4A priority Critical patent/CN116478420B/zh
Publication of CN116478420A publication Critical patent/CN116478420A/zh
Application granted granted Critical
Publication of CN116478420B publication Critical patent/CN116478420B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种共价三嗪框架材料及其制备方法,该材料是在氮气、溶剂存在条件下,将三聚氯氰、肼单盐酸盐、缚酸剂混合反应,反应后通入纯氧氧化,固液分离,固体洗涤干燥制得,将共价三嗪框架材料应用在处理含Hg2+废水中,其表现出良好的吸附效果,经多次循环吸附测试后该材料对Hg2+吸附性能无明显下降,本发明为含重金属废水的治理提供了一种新途径,且本发明材料制备简单,适用于工业化生产和市场推广应用。

Description

一种共价三嗪框架材料及其制备方法和应用
技术领域
本发明属于共价有机框架(COFs)制备技术领域,具体涉及一种共价三嗪框架材料及其制备方法和应用。
背景技术
近年来,共价有机框架(COFs)材料因其稳定的结构、高比表面积、大孔隙率、可修饰结构和易于功能化而受到了科学家们的广泛关注。通过控制COFs材料的孔径、形状和链接方式以及后合成修饰,功能性COFs材料在气体储存分离、传感器和污染物吸附等领域发挥了越来越重要的作用。尤其在环境化学领域,COFs材料的研究和应用已成为一热门课题,COFs材料应用在结构控制、分类以及在环境污染物检测和去除中,包括对气体污染物、放射性核素、有机污染物和重金属离子的吸附等。如今,环境污染正愈演愈烈,已成为一个不可忽视的全球性问题,而水污染是环境污染中不可或缺的一项问题。确切地说,汞、镉、铜、铅和铬等重金属离子对环境与人类的健康造成了严重的影响。开发对有毒重金属污染物具有快速动力学和高吸收效率的新型吸附剂是处理水污染中的一项艰巨任务。
共价三嗪框架材料(CTFs)作为一种新型COFs材料,其骨架中因具有三嗪基,使得CTFs在热稳定性、结晶度、比表面积和电子迁移等方面具有更大的优势,所以在气体存储、污染物去除、光电催化和催化剂载体等方面具有广阔的应用前景。偶氮键因具有独特的光致异构,且偶氮键上的N处于sp2杂化且具有孤对电子,是一种构建对金属离子高吸附性能的COFs材料的理想链接键。目前,基于偶氮键构建COFs材料的报道较少,且大多数报道中的COFs材料骨架中的偶氮键都是通过后修饰而嵌入的。
发明内容
本发明提供了一种基于偶氮键链接的共价三嗪框架材料(CTFs)及其制备方法,共价三嗪框架材料是通过一锅两步法,溶剂热聚合方法制得,该方法简单、产物产率较高;具体是在氮气、溶剂存在条件下,将三聚氯氰、肼单盐酸盐、缚酸剂混合,在60~90℃下反应48~72h,反应后通入纯氧氧化,固液分离,固体依次用甲醇和超纯水洗涤,干燥后获得共价三嗪框架材料。
所述三聚氯氰与肼盐酸盐的摩尔比为1:1~3,溶剂为四氢呋喃、甲醇中的一种或几种,缚酸剂选自吡啶,吡啶添加量为三聚氯氰摩尔量的五倍。
本发明另一目的是将上述方法制得的共价三嗪框架材料应用在处理含重金属废水中。
与现有技术相比,本发明具有以下有益效果:
本发明制备方法以三聚氯氰与肼单盐酸盐为原料,通过取代反应,再通过氧气氧化,得到由偶氮键链接、且产率较高的共价三嗪框架材料(CTFs);将该材料应用在处理含汞废水中,实验结果显示,本发明材料在处理浓度2000ppm的含Hg2+溶液,在25℃下具有对Hg2+良好的吸附能力(2756.43 mg/g);水中常见的干扰成分对材料吸附水中Hg2+的过程不存在较为显著的影响,本发明共价三嗪框架材料经多次循环吸附测试后对Hg2+吸附性能无明显下降,其在含Hg2+废水的处理中具有实际应用潜力,适用于工业化生产和市场推广应用。
附图说明
图1为本发明共价三嗪框架材料的扫描电镜图,左图放大倍数为24K,右图放大倍数为100K;
图2为本发明共价三嗪框架材料、三聚氯氰、肼单盐酸盐的红外图谱;
图3为共价三嗪框架材料的N2吸附-脱附曲线;
图4为共价三嗪框架材料的热重分析曲线;
图5为共价三嗪框架材料对不同金属离子处理效果;
图6为共价三嗪框架材料对含不同浓度Hg2 +溶液的处理结果;
图7为溶液中共存的金属离子对共价三嗪框架材料吸附效果的影响结果;
图8为吸附Hg2+后的材料经EDTA和HCl分别洗脱后,循环吸附测试的结果;
图9为溶液pH对共价三嗪框架材料对Hg2 +的吸附效果影响的结果。
具体实施方式
下面通过附图和实施例对本发明作进一步详细说明,但本发明保护范围不局限于所述内容;下述应用实验中,每组实验均设置3次平行实验,取平均值;
实施例1:本实施例共价三嗪框架材料的制备方法及应用
1、在室温下向250mL圆底烧瓶中加入三聚氯氰(1830mg,10mmol)和吡啶(3955mg,50mmol),加入无水THF75mL和甲醇25mL作为溶剂,搅拌混匀后,再加入肼单盐酸盐(1370.2mg,20mmol),然后在N2气氛、70℃下反应72小时后,向体系中通入纯氧氧化24h,使材料骨架中-N-N-氧化为-N=N-,反应结束后抽滤得到固体,用玛瑙研钵将固体研磨成粉末,然后分别用甲醇(3×20mL)和超纯水(3×20mL)进行洗涤,最后在60℃下干燥6h得到1130mg淡黄色粉末状的共价三嗪框架材料SWFU-CTFs-102,产率为93%;
上述方法制得的共价三嗪框架材料SWFU-CTFs-102的扫描电镜图见图1,SEM图像展示了SWFU-CTFs-102材料的微球结构,它是由大量直径为60nm的纳米球和长60-70nm不等的纳米棒堆叠组装而成的;FT-IR光谱图2显示,肼单盐酸盐的N-H(3251cm-1)峰在SWFU-CTFs-102材料的谱图中消失,且在SWFU-CTFs-102材料的谱图中有N=N(1456cm-1,1353cm-1)新峰,证明共价三嗪框架材料成功制备出来。
SWFU-CTFs-102材料的氮气吸附脱附等温线见图3,根据BET法,SWFU- CTFs-102材料的比表面积和孔容积分别为12.23 m²/g 和0.053345 cm³/g,该材料比表面积较低的原因可能是三聚氯氰与肼的取代反应可逆性较差,不利于材料聚合过程中的结构缺陷自修复;SWFU-CTFs-102材料的氮气吸附-脱附等温线显示出典型的Ⅳ型等温线,表明发生毛细管凝聚,产生脱附滞后(adsorption hysteresis)出现滞后环,表明该材料是一种微介孔并存材料;同时,我们也测量了SWFU-CTFs-102材料的热稳定性(图4),可以观察到材料在0-280℃发生了第一次质量损失,这可以解释为随着温度升高材料空隙中的水分与未除净的溶剂挥发造成的;当温度升到420℃,材料的质量损失40%,材料的骨架发生了变形与坍塌;当温度升到420℃,质量损失达到了60%,材料开始分解;这证明了SWFU-CTFs-102材料的热稳定性良好。
2、共价三嗪框架材料SWFU-CTFs-102在处理含重金属废水中的应用
分别配制含Hg2 +、Cu2 +、Cr3+、Pb2 +离子的溶液(浓度为150mg/L),在具塞锥形瓶中分别加入SWFU-CTFs-102材料10mg,然后加入10mL的含不同种重金属离子的溶液,在恒温震荡器中25℃下恒温震荡12h,使用ICP法测定重金属离子浓度,按照下式计算去除率:
,其中,R为吸附剂对重金属离子的去除率,%;C0为重金属离子在溶液中的起始浓度,mg/mL;Ce为当吸附剂吸附平衡时重金属离子的平衡浓度,mg/mL;结果见图5,图中显示SWFU-CTFs-102材料对Hg2+具有明显的吸附效果,可能是Hg2+的价电子层结构相较于其他四种金属离子稳定,且Hg的原子半径大于Cd、Cr和Cu,所以Hg展现出比其他四种金属离子的化学配位能力。此外,根据软硬酸碱理论,汞离子是一种较软的酸,而三嗪基和偶氮键中的氮原子因为具有孤对电子是一种软碱。
3、共价三嗪框架材料SWFU-CTFs-102对含不同浓度Hg2 +溶液的处理
配制初始浓度分别为50、100、200、400、600、800、1000、1200、1400、1600、1800、2000ppm的Hg2 +溶液,并置于具塞锥形瓶中每瓶100mL,每个瓶中分别加入10mg的SWFU-CTFs-102材料,在恒温震荡器中25℃下恒温震荡12h,使用ICP法测定重金属离子浓度,按照下式计算吸附容量:
,其中,Q为重金属离子的吸附容量,mg/g;C0为重金属离子在溶液中的起始浓度,mg/mL;Ce为当吸附剂吸附平衡时重金属离子的平衡浓度,mg/mL。V为重金属离子溶液的体积,mL;m为投放吸附材料的质量,g;结果见图6,结果表明,在Hg2+浓度为2000ppm,温度为25℃条件下,该材料具有对Hg2+的吸附容量为2756.43 mg/g,具有优异的吸附能力。
4、溶液中常见的共存金属离子对共价三嗪框架材料SWFU-CTFs-102吸附效果的影响
配制含600ppm Hg2 +的溶液,在其中分别添加浓度分别为0.1mol/L、0.01mol/L的Ca2+、Mg2+、Na+、K+离子,并分别取100mL置于8个具塞锥形瓶中,每个瓶中分别加入10mg的共价三嗪框架材料,混匀后在恒温震荡器中25℃下恒温震荡12h,使用ICP法测定重金属离子浓度,计算吸附容量(同步骤3),结果见图7,结果表明,共存离子在接近自然水体常规浓度0.01mol/L下,各金属阳离子吸附量的影响程度呈现出Ca2+>Mg2+>Na+>K+;对于这几种金属离子而言,离子半径越大,其对吸附过程干扰越明显。共存离子通过占据吸附材料表面的活性位点或内部空腔后,通过排斥阻力的影响,使得水中游离Hg2+无法与其结合,而影响最大的Ca2+,由于其水合离子半径大于Hg2+,导致其阻碍作用更强;当共存离子浓度升高到0.1mol/L 时,各离子的影响程度排序基本不变,影响最大的Ca2+使得材料对Hg2+吸附效率降低了3%,总之,水中常见的干扰离子对SWFU-CTFs-102材料吸附水中Hg2+的过程不存在较为显著的影响,体现出其实际应用潜力。
5、吸附Hg2+的SWFU-CTFs-102材料洗脱处理后的循环吸附测试实验
首先,在2个具塞锥形瓶中分别加入10mg的SWFU-CTFs-102材料,然后加入100mLHg2+浓度为600 mg/L的溶液,然后将具塞锥形瓶放入水浴恒温震荡器(温度设置为25℃)并开始计时,恒温分别震荡12h后,用砂芯漏斗过滤回收吸附剂,固体吸附剂分别用EDTA(0.15M)和HCl(0.15M)两种洗脱剂进行洗脱,洗脱后的吸附剂干燥,重复用于处理含Hg2+溶液,滤液中金属离子的浓度使用全谱直读等离子体发射光谱仪检测;
本实验研究SWFU-CTFs-102材料对Hg2+的可重复利用性能,采用吸附容量来作为性能指标,计算吸附容量(同步骤3);结果见图8,结果表明,经4次循环测试后,用EDTA洗脱的材料比用HCl洗脱的材料的平衡吸附容量下降的少,结果表明EDTA对SWFU-CTFs-102材料中Hg2+的洗脱能力强于HCl,洗脱后的材料的吸附能力经过4次循环后下降了约9%,SWFU-CTFs-102材料具有重复利用的潜力。
6、溶液pH对SWFU-CTFs-102材料吸附Hg2 +的影响实验
在200mL的具塞锥形瓶中分别加入10mg的SWFU-CTFs-102材料,然后分别量取并加入150mL、pH分别为1、2、3、4、5、6、7,初始浓度为150 mg/L的含汞离子溶液,然后将具塞锥形瓶放入水浴恒温震荡器(温度设置为25℃)并开始计时,恒温震荡24 h后,使用全谱直读等离子体发射光谱仪检测滤液中汞离子的浓度;
结果见图9,结果表明SWFU-CTFs-102材料的吸附能力在pH=6时最强,其吸附容量为2174.98 mg/g。当pH过小时,溶液体系中过多的H+会使材料的表面带正电荷,产生静电斥力阻碍化学吸附位点对金属离子的螯合作用,进而导致吸材料的吸附能力急剧下降,随着pH值降低,SWFU-CTFs-102材料的吸附能力逐渐下降,这可以解释为静电作用,并且溶液体系中过多的H+也会抢占化学吸附位点。
实施例3:对比例1
在室温下向250mL圆底烧瓶中加入三聚氯氰(1830mg,10mmol)和二异丙基乙胺(9450mg,50mmol),加入无水THF 75mL和甲醇25mL作为溶剂,搅拌混匀后,再加入肼单盐酸盐(1370.2mg,20mmol),然后在N2气氛、70℃下反应72小时后,向体系中通入纯氧氧化24h,反应结束后抽滤得到固体,用玛瑙研钵将固体研磨成粉末,然后分别用甲醇(3×20mL)和超纯水(3×20mL)进行洗涤,最后在60℃下干燥6h得到1190mg淡黄色粉末状的共价三嗪框架材料,产率为98%,然后将该材料用于处理Hg2+浓度为600mg/L的溶液,结果显示本实施例制得的材料对Hg2+无吸附效果。
实施例4:对比例2
在室温下向250mL圆底烧瓶中加入三聚氯氰(1830mg,10mmol)和二异丙基乙胺(9450mg,50mmol),加入DMF100mL作为溶剂,搅拌混匀后,再加入肼单盐酸盐(1370.2mg,20mmol),然后在N2气氛、100℃下反应72小时后,向体系中通入纯氧氧化24h,反应结束后抽滤得到固体,用玛瑙研钵将固体研磨成粉末,然后分别用甲醇(3×20mL)和超纯水(3×20mL)进行洗涤,最后在60℃下干燥6h得到114mg红褐色粉末状的共价三嗪框架材料,产率为9.4%,产率极低;
同时参照上述方法采用DMSO作为溶剂,反应完成后无固体生成,反应瓶中为黑色液体,且伴随硫化物刺激性气体生成。

Claims (4)

1.一种共价三嗪框架材料的制备方法,其特征在于:在氮气、溶剂存在条件下,将三聚氯氰、肼单盐酸盐、缚酸剂混合反应,反应后通入纯氧氧化,固液分离,固体洗涤干燥后获得共价三嗪框架材料;
反应在60~90℃下进行48~72h,通入纯氧再反应24~48h;缚酸剂为吡啶,溶剂为四氢呋喃、甲醇中的一种或几种。
2.根据权利要求1所述的共价三嗪框架材料的制备方法,其特征在于:三聚氯氰与肼单盐酸盐的摩尔比为1:1~3。
3.权利要求1-2任一项所述的共价三嗪框架材料的制备方法制得的共价三嗪框架材料。
4.权利要求3所述的共价三嗪框架材料在处理含重金属废水中的应用。
CN202310483451.4A 2023-05-04 2023-05-04 一种共价三嗪框架材料及其制备方法和应用 Active CN116478420B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310483451.4A CN116478420B (zh) 2023-05-04 2023-05-04 一种共价三嗪框架材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310483451.4A CN116478420B (zh) 2023-05-04 2023-05-04 一种共价三嗪框架材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116478420A CN116478420A (zh) 2023-07-25
CN116478420B true CN116478420B (zh) 2023-11-28

Family

ID=87224893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310483451.4A Active CN116478420B (zh) 2023-05-04 2023-05-04 一种共价三嗪框架材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116478420B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116925344B (zh) * 2023-09-08 2023-11-17 西南林业大学 一种多孔三嗪基含硫聚酰胺材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101328153A (zh) * 2008-06-12 2008-12-24 杭州捷尔思阻燃化工有限公司 三(三溴苯氧基)三嗪的非溶剂法制备方法
CN106478986A (zh) * 2016-08-26 2017-03-08 华南理工大学 一种环保型阻燃剂及其制备方法和应用
CN108117651A (zh) * 2018-01-09 2018-06-05 西北师范大学 一种具有三嗪结构的多孔有机共价框架材料的合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101328153A (zh) * 2008-06-12 2008-12-24 杭州捷尔思阻燃化工有限公司 三(三溴苯氧基)三嗪的非溶剂法制备方法
CN106478986A (zh) * 2016-08-26 2017-03-08 华南理工大学 一种环保型阻燃剂及其制备方法和应用
CN108117651A (zh) * 2018-01-09 2018-06-05 西北师范大学 一种具有三嗪结构的多孔有机共价框架材料的合成方法

Also Published As

Publication number Publication date
CN116478420A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
Zhang et al. Diaminomaleonitrile functionalized double-shelled hollow MIL-101 (Cr) for selective removal of uranium from simulated seawater
Cui et al. Fast removal of Hg (II) ions from aqueous solution by amine-modified attapulgite
Liu et al. Thermodynamics, kinetics, and isotherms studies for gold (III) adsorption using silica functionalized by diethylenetriaminemethylenephosphonic acid
Xu et al. Precise separation and efficient enrichment of palladium from wastewater by amino-functionalized silica adsorbent
Huang et al. A post-functional Ti-based MOFs composite for selective removal of Pb (II) from water
Wu et al. A new porous magnetic chitosan modified by melamine for fast and efficient adsorption of Cu (II) ions
Chen et al. Facile preparation of a remarkable MOF adsorbent for Au (III) selective separation from wastewater: Adsorption, regeneration and mechanism
Li et al. Tailored metal-organic frameworks facilitate the simultaneously high-efficient sorption of UO22+ and ReO4− in water
Pan et al. Rapid and selective recovery of Ag (I) from simulative electroplating effluents by sulfydryl-rich covalent organic framework (COF-SH) with high adsorption capacity
Wang et al. Highly effective and selective adsorption of Au (III) from aqueous solution by poly (ethylene sulfide) functionalized chitosan: Kinetics, isothermal adsorption and thermodynamics
CN116478420B (zh) 一种共价三嗪框架材料及其制备方法和应用
CN110801815A (zh) 一种吸附Pb和Cd的改性环糊精/介孔硅及其应用
Xue et al. Removal mechanism of Sb (V) by a hybrid ZIF-8@ FeNPs and used for treatment of mining wastewater
Li et al. A novel composite adsorbent for the separation and recovery of indium from aqueous solutions
Yu et al. Surface ion imprinted bagasse for selective removal of Cu (II) from the leaching solution of electroplating sludge
Lin et al. Development of quaternized polyethylenimine-cellulose fibers for fast recovery of Au (CN) 2-in alkaline wastewater: Kinetics, isotherm, and thermodynamic study
CN112892502A (zh) 含聚多巴胺的离子螯合剂的制备方法及所得产品
Huang et al. Adsorption of uranium (VI) from aqueous solutions using cross-linked magnetic chitosan beads
Xiang et al. Recovery of gold from waste solutions using a new RFB resin
Sun et al. Mercapto-functionalized magnetic metal–organic framework for simultaneous removal of inorganic selenium and antimony species
Wang et al. Preparation of pyrrolidinyl diglycolamide bonded silica particles and its rare earth separation properties
Chaudhuri et al. Amino-and sulfur-containing POSS for highly efficient and selective extraction of platinum group elements from acidic solution
Wang et al. Efficient defluoridation of water by employing hybrid nanosized cerium oxides embedded within cross-linked cellulose foam
Xiang et al. Efficient recovery of gold using Macroporous Metal-Organic framework prepared by the'MOF in MOF'method
Guo et al. Control of the separation order of Au (III), Pd (II), and Pt (IV) achieved by site-controllable carboxyl-functionalized diethylaminoethyl celluloses

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant