CN116463118B - 一种具有聚集诱导发光效应的银团簇及其制备方法和应用 - Google Patents

一种具有聚集诱导发光效应的银团簇及其制备方法和应用 Download PDF

Info

Publication number
CN116463118B
CN116463118B CN202310249333.7A CN202310249333A CN116463118B CN 116463118 B CN116463118 B CN 116463118B CN 202310249333 A CN202310249333 A CN 202310249333A CN 116463118 B CN116463118 B CN 116463118B
Authority
CN
China
Prior art keywords
silver
preparation
cluster
clusters
aggregation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310249333.7A
Other languages
English (en)
Other versions
CN116463118A (zh
Inventor
马凡怡
张昀
刘路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN202310249333.7A priority Critical patent/CN116463118B/zh
Publication of CN116463118A publication Critical patent/CN116463118A/zh
Application granted granted Critical
Publication of CN116463118B publication Critical patent/CN116463118B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/26Cellulose ethers
    • C08J2301/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Environmental Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Dentistry (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明属于生物医药和食品科学领域,涉及一种银团簇,特别是指一种具有聚集诱导发光效应的银团簇及其制备方法和应用。本发明以表面活性剂、柠檬酸和硝酸银为原料,通过简单的反应合成了一种新的具有聚集诱导发光效应的银团簇。该银团簇在固体状态下具有明亮的荧光,水溶液中无荧光,可用于抗菌、荧光标记等方面。固体密封避光保存两周以上,荧光强度未见明显改变。

Description

一种具有聚集诱导发光效应的银团簇及其制备方法和应用
技术领域
本发明属于生物医药和食品科学领域,涉及一种银团簇,特别是指一种具有聚集诱导发光效应的银团簇及其制备方法和应用。
背景技术
纳米团簇独特的性能使其具备了可制造出各种性能优良的特殊材料,具有极大的研究意义,也因此成为近年来学者研究关注的热点。其中,银团簇可以用于生物成像,检测水样和化学传感等诸多领域,故本实验旨在研究绿色环保,操作简单且具有明亮荧光亮度的银纳米团簇(AgNCs)制备方法。
由于银团簇在外界环境下稳定性较差,极易受光和氧气的影响,产生聚集而生成大颗粒,因此,为了提高AgNCs的稳定性,常常采用其与硫醇,炔基,DNA,多肽,卟啉等一些物质配合,作为其保护剂。如硫醇作为配体,银以Ag2S3的形式与硫醇配体配位的AgNCs;以吡啶羧酸作为配体,利用超分子自组装策略,合成了具有亮橙红色的Ag9-NCs/2,6-DPA发光水凝胶;使用谷胱甘肽(GSH),N-乙酰-L-半胱氨酸(NALC)分别作为配体,合成了具有较大的Stocks位移的AgNCs;利用DNA分子结构的多样性,采用DNA作为模板,引导AgNCs的合成,并有效的防止其聚集;制备了以无机阴离子和有机炔共同作为配体,尺寸大小仅为1.96 nm的Ag43团簇。
纳米团簇由于其微小的结构,导致其产生与非团簇物质不同的物理化学性质,同时也代表了纳米团簇具有十分广泛的应用前景,AgNCs作为团簇的一种,在生物与医学等各领域内有诸多应用。独特的荧光特性可以使AgNCs作为荧光探针用于生物成像;占总原子70%~90%的表面原子,代表其具有极大的表面积,可以用于检测重金属离子或生物分子以及高效的抗菌、催化作用等。关于AgNCs的应用,国内已有许多学者在研究,如检测Hg2+的银团簇;检测甲硝唑的银团簇;人们通过比较银纳米颗粒和银纳米团簇对多耐药性铜绿假单胞菌的抗菌效果,发现银纳米团簇的抗菌能力更优异。制备配合物常用的配体有柠檬酸、乙二胺四乙酸,其中柠檬酸钠为常用食品添加剂,具有生物化学活性,但是柠檬酸根很容易和银离子结合生成不溶于水的柠檬酸银。专利CN 110591702 A公开了一种聚集诱导型发光银纳米团簇的制备方法,采用N-乙酰基-L-半胱氨酸为还原剂及配体保护剂制备了一种具有良好发光性能的聚集诱导型发光银纳米团簇,该纳米团簇的荧光特性是在溶液状态显示的荧光特性,且抑菌性未知。该纳米团簇形成原理是因为其中半胱氨酸中存在巯基,利用巯基修饰的银纳米团簇并保持其稳定性。另现有的纳米银多是仅对革兰氏阴性或革兰氏阳性具有单一的抑菌性,并不具有同时对革兰氏阴性和阳性的抑菌性;为了进一步探索因纳米团簇的制备工艺及纳米团簇固态发光的可能性,本课题组进行了长期的探索。
发明内容
为了解决上述技术问题,本发明公开了一种具有聚集诱导发光效应的银团簇及其制备方法和应用。与现有技术不同,本申请的纳米银团簇制备过程中不存在巯基修饰,是首次没有利用巯基维持银纳米团簇稳定性。
本发明的技术方案是这样实现的:
一种具有聚集诱导发光效应的银团簇的制备方法,步骤为:
(1)将硝酸银、十二烷基磺酸钠和柠檬酸溶于蒸馏水中得反应液;
(2)步骤(1)的反应液水浴搅拌反应至完全后,加入乙醇离心分离、纯化即得银团簇。
所述步骤(1)中硝酸银、十二烷基磺酸钠和柠檬酸的摩尔比为0.01-6:0-1.2:1-5。
所述步骤(2)中所述步骤(2)中水浴搅拌反应的温度为0-70℃、时间为0.1-48h。
进一步地,加入乙醇后反应液中的醇含量为65-90% v/v,进一步的,加入乙醇离心分离的操作重复至少两次。
所述离心的条件为4000rpm处理10min。
上述的方法制备的银团簇,所述银团簇在365 nm紫外灯下呈现明亮的固体荧光,而在水溶液中则无荧光。
上述的银团簇在制备固体荧光材料中的应用。
上述的银团簇在制备细胞荧光标记中的应用。
上述的银团簇在制备抗菌包装材料膜中的应用。
上述的银团簇在制备检测试剂中的应用。
本发明具有以下有益效果:
1、本发明以表面活性剂、柠檬酸和硝酸银为原料,通过简单的反应合成了一种新的具有聚集诱导发光效应的银团簇,解决了在制备银团簇的过程中,柠檬酸根容易和银离子结合生成不溶于水的柠檬酸银的技术问题。三个银离子与柠檬酸根结合,生产不溶于水的柠檬酸银沉淀,该制备方法利用控制银离子浓度以及在表面吸附剂的作用下,能有效抑制沉淀生成。
2、该银团簇在固体状态下具有明亮的荧光,水溶液中无荧光,可用于抗菌、荧光标记等方面。固体密封避光保存两周,荧光强度未见明显改变(图5B)。
3、本发明制备的Ag-NPs团簇对革兰氏阳性菌和革兰氏阴性菌均表现出良好的抑菌活性,制备成薄膜具有很好的抗菌活性,且本申请的Ag-NPs团簇经急性毒性实验验证在小于100 mg/kg时,对小鼠没有或极小的毒性,可以作为潜在的食品、药品抗菌材料。
4、本发明制备的Ag-NPs团簇在365 nm紫外灯下出现明亮的固体荧光,用于固体荧光材料。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为Ag-NPs团簇透射电镜图。
图2为Ag-NPs团簇不同反应时间红外光谱图。
图3为Ag-NPs团簇XRD图。
图4为Ag-NPs团簇在365 nm紫外灯下固体图。
图5为Ag-NPs团簇荧光图(A)及稳定性(B)。
图6为Ag-NPs团簇抑菌图。
图7为Ag-NPs团簇对MCF-7细胞成像的日光图(A)和荧光图(B)。
图8为Ag-NPs团簇作为荧光墨水图。
图9为Ag-NPs团簇制备抗菌包装材料膜。
图10为Ag-NPs团簇制备复合材料膜的抗菌性。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
1、本实施例具有聚集诱导发光效应的Ag-NPs团簇的制备:
硝酸银、十二烷基磺酸钠、柠檬酸(1:0.001:1.2)溶于蒸馏水中,50℃水浴搅拌反应1小时,冷至室温后加入4倍量无水乙醇,4000rpm离心10 min,将得到的白色沉淀溶于少量水中,再次加入4倍量无水乙醇,4000rpm离心10 min,收集白色沉淀,溶于少量水中,再次加入4倍量无水乙醇,4000rpm离心10 min,即得。
2、Ag-NPs团簇结构的检测
Ag-NPs团簇透射电镜图(图1)显示粒径很小,约为2.43 nm。在柠檬酸修饰的Ag-NPs团簇的红外光谱中(图2),峰值在3400cm-1左右呈现出强而宽的吸收带,指的是羟基伸缩振动峰,峰值在1620 cm-1左右为羰基吸收带,在2900 cm-1处的吸收峰属于柠檬酸上亚甲基的伸缩振动峰,均显示与羧酸盐相关,表明外表面成功包覆了水溶性基团。
Ag-NPs团簇的X射线衍射图谱如图3所示。标准单质银的衍射角在JCPDS卡数据为2θ=38.096º,44.257º,64.406º,77.452º,对应的晶面分别是:(111),(200),(220),(311),(222)晶面,Ag-NPs团簇的结晶性较差,峰不十分明显,但在相应的位置上可以看到Ag-NPs团簇的2θ与标准银单质的2θ基本一致。
3、Ag-NPs团簇荧光
Ag-NPs团簇在365 nm紫外灯下,以黑色背景观察时,呈现黄色荧光(图4),荧光发射峰在375 nm,随Ag-NPs浓度的增加,荧光越强(图5A)。
实施例2
本实施例具有聚集诱导发光效应的Ag-NPs团簇的制备:
硝酸银、十二烷基磺酸钠、柠檬酸(6:0.1:0.8)溶于蒸馏水中,70℃水浴搅拌反应10小时,冷至室温后加入9倍量无水乙醇,4000rpm离心10 min,将得到的白色沉淀溶于少量水中,再次加入9倍量无水乙醇,4000rpm离心10 min,收集白色沉淀,溶于少量水中,再次加入9倍量无水乙醇,4000rpm离心10 min,即得。
实施例3
本实施例具有聚集诱导发光效应的Ag-NPs团簇的制备:
硝酸银、柠檬酸(1:1.1)溶于蒸馏水中,60℃水浴搅拌反应48小时,冷至室温后加入6倍量无水乙醇,4000rpm离心10 min,将得到的白色沉淀溶于少量水中,再次加入6倍量无水乙醇,4000rpm离心10 min,收集白色沉淀,溶于少量水中,再次加入6倍量无水乙醇,4000rpm离心10 min,即得。
实施例4
本实施例具有聚集诱导发光效应的Ag-NPs团簇的制备:
硝酸银、十二烷基磺酸钠、柠檬酸(5:0.03:4.5)溶于蒸馏水中,30℃水浴搅拌反应23小时,冷至室温后加入6倍量无水乙醇,4000rpm离心10 min,将得到的白色沉淀溶于少量水中,再次加入6倍量无水乙醇,4000rpm离心10 min,收集白色沉淀,溶于少量水中,再次加入6倍量无水乙醇,4000rpm离心10 min,即得。
实施例5
本实施例具有聚集诱导发光效应的Ag-NPs团簇的制备:
硝酸银、十二烷基磺酸钠、柠檬酸(0.8:0.08:1)溶于蒸馏水中,20℃水浴搅拌反应15小时,冷至室温后加入5倍量无水乙醇,4000rpm离心10 min,将得到的白色沉淀溶于少量水中,再次加入5倍量无水乙醇,4000rpm离心10 min,收集白色沉淀,溶于少量水中,再次加入5倍量无水乙醇,4000rpm离心10 min,即得。
实施效果例
以实施例1制备的产品对产品的性能进行研究:
1、抑菌性
Ag-NPs团簇抑菌效果结果:革兰氏阳性菌和革兰氏阴性菌是由创伤、癌症等多种疾病引起的感染性病原菌,具有一定的适应调节性,因而产生了对多种药物的耐药性,有效抑制细菌生长、不断改进抗菌材料至关重要。因此,我们采用琼脂平板打孔扩散法研究了Ag-NPs团簇对金黄色葡萄球菌(革兰氏阳性)和大肠杆菌(革兰氏阴性)的抗菌活性。将Ag-NPs团簇样品置于琼脂平板孔中进行筛选试验,分析其抑菌圈大小。Ag-NPs团簇对革兰氏阳性菌和革兰氏阴性菌均表现出良好的抑菌活性(见图6)。
2、急性毒性
分别给予10 mg/kg、20 mg/kg、50 mg/kg、100mg/kg不同剂量的Ag-NPs团簇,实验小鼠低剂量组(10 mg/kg、20 mg/kg、)其呼吸窘迫、消瘦、姿势、行为、自主和毒性反应均未见明显变化。实验小鼠给与50mg/kg的Ag-NPs团簇,8只中1只于24小时内出现活动减少、嗜睡、不思饮食等现象,48 h后恢复正常。100 mg/kg体重(BW)剂量组小鼠在24 h内,小鼠均出现活动减少、嗜睡、不思饮食等现象,48 h后两组小鼠均恢复正常。14天观察期内所有剂量口服均未见动物死亡,表明Ag-NPs团簇毒性低,可以作为潜在的食品、药品抗菌材料。
3、细胞荧光标记
用ArrayScan VTI HCS 600高内涵活细胞成像系统,观察Ag-NPs团簇对MCF-7细胞标记效果,结果如图7所示,可以看出MCF-7细胞在Ag-NPs团簇培育后,形貌保持良好且发射明亮荧光,表明Ag-NPs团簇能作为荧光探针用于细胞成像。
4、荧光显色墨水
配制Ag-NPs溶液(0.25 g/mL),利用Ag-NPs作为荧光墨水,结果如图8所示。由图8可明显看出本申请的银团簇具有显色性能。
5、抗菌包装材料
采用溶剂浇筑法制备AgNPs团簇复合膜。在0.25 g/mL AgNPs溶液中依次加入CMC和甘油的混合液中,50℃水浴搅拌1 h。最后将复合膜溶液在离心机(4000g,6 min)中去除气泡,在64 cm2的培养皿中倒入30 mL溶液,放入50℃的烘箱干燥24 h。
如图9所示,其中a为未加Ag-NPs的CMC膜;b为加入Ag-NPs复合膜。由于Ag-NPs团簇具有良好的革兰氏阴性和革兰氏阳性抑菌性,其制备的Ag-NPs复合膜仍保留了良好的抗菌性(如图10所示)。将制膜液倒于琼脂平板上,以无菌水做为对照组,培养大肠杆菌和金黄色葡萄球菌,观察两种菌的生长状况。图10上层为革兰氏阴性(大肠杆菌E. coli抑菌性),下层为革兰氏阳性(金黄色葡萄球菌S. aureus抑菌性)。因此Ag-NPs银团簇可制成图9b所示的抑菌包装材料。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种具有聚集诱导发光效应的银团簇的制备方法,其特征在于,步骤为:
(1)将硝酸银、十二烷基磺酸钠和柠檬酸溶于蒸馏水中得反应液;
(2)步骤(1)的反应液水浴搅拌反应至完全后,加入乙醇离心分离、纯化即得银团簇;
所述步骤(1)中硝酸银、十二烷基磺酸钠和柠檬酸的摩尔比为1:0.001:1.2;
所述步骤(2)中水浴搅拌反应的温度为50℃、时间为1h。
2.根据权利要求1所述的具有聚集诱导发光效应的银团簇的制备方法,其特征在于:加入乙醇后反应液中的醇含量为65-90% v/v,加入乙醇离心分离的操作重复至少两次。
3.根据权利要求2所述的具有聚集诱导发光效应的银团簇的制备方法,其特征在于:所述离心的条件为4000rpm处理10min。
4.权利要求1-3任一项所述的方法制备的银团簇,其特征在于:所述银团簇在365 nm紫外灯下呈现明亮的固体荧光,而在水溶液中则无荧光。
5.权利要求4所述的银团簇在制备固体荧光材料中的应用。
6.权利要求4所述的银团簇在制备细胞荧光标记中的应用。
7.权利要求4所述的银团簇在制备抗菌包装材料膜中的应用。
8.权利要求4所述的银团簇在制备检测试剂中的应用。
CN202310249333.7A 2023-03-15 2023-03-15 一种具有聚集诱导发光效应的银团簇及其制备方法和应用 Active CN116463118B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310249333.7A CN116463118B (zh) 2023-03-15 2023-03-15 一种具有聚集诱导发光效应的银团簇及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310249333.7A CN116463118B (zh) 2023-03-15 2023-03-15 一种具有聚集诱导发光效应的银团簇及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116463118A CN116463118A (zh) 2023-07-21
CN116463118B true CN116463118B (zh) 2024-01-30

Family

ID=87183252

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310249333.7A Active CN116463118B (zh) 2023-03-15 2023-03-15 一种具有聚集诱导发光效应的银团簇及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116463118B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102127428A (zh) * 2010-12-14 2011-07-20 中国科学院苏州纳米技术与纳米仿生研究所 荧光银团簇、其制备方法及应用
EP3516960A1 (en) * 2018-01-30 2019-07-31 CNT Lab S.R.L. Composition comprising silver (ag+) ion clusters
CN110591702A (zh) * 2019-09-19 2019-12-20 山西大学 一种聚集诱导型发光银纳米团簇的制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102127428A (zh) * 2010-12-14 2011-07-20 中国科学院苏州纳米技术与纳米仿生研究所 荧光银团簇、其制备方法及应用
EP3516960A1 (en) * 2018-01-30 2019-07-31 CNT Lab S.R.L. Composition comprising silver (ag+) ion clusters
CN110591702A (zh) * 2019-09-19 2019-12-20 山西大学 一种聚集诱导型发光银纳米团簇的制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Molecular insights into sodium dodecyl sulphate mediated control of size for silver nanoparticles;V. Shah et al.;,Journal of Molecular Liquids;第273卷;第222-230页 *

Also Published As

Publication number Publication date
CN116463118A (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
Mohamed et al. Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for in vitro antibacterial, antibiofilm, and antifungal applications
Rahmati et al. Ag-doped magnetic metal organic framework as a novel nanostructured material for highly efficient antibacterial activity
Menazea et al. Novel green synthesis of zinc oxide nanoparticles using orange waste and its thermal and antibacterial activity
Khan et al. Recent progress of algae and blue–green algae-assisted synthesis of gold nanoparticles for various applications
Vijayan et al. Seaweeds: A resource for marine bionanotechnology
Ramya et al. Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities
Ghaedi et al. Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties
Thangaraju et al. Synthesis of silver nanoparticles and the antibacterial and anticancer activities of the crude extract of Sargassum polycystum C
Saqib et al. Catalytic potential of endophytes facilitates synthesis of biometallic zinc oxide nanoparticles for agricultural application
Das et al. Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens
Sadhasivam et al. Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms
Patra et al. Ciprofloxacin conjugated zinc oxide nanoparticle: A camouflage towards multidrug resistant bacteria
Mura et al. Multifunctionalization of wool fabrics through nanoparticles: A chemical route towards smart textiles
Suganya et al. Size controlled biogenic silver nanoparticles as antibacterial agent against isolates from HIV infected patients
Le et al. Novel silver nanoparticles: synthesis, properties and applications
Rajgovind et al. Pterocarpus marsupium derived phyto-synthesis of copper oxide nanoparticles and their antimicrobial activities
Mirzaei et al. Phyco-fabrication of bimetallic nanoparticles (zinc–selenium) using aqueous extract of Gracilaria corticata and its biological activity potentials
Rosário et al. Photoluminescent organisms: how to make fungi glow through biointegration with lanthanide metal-organic frameworks
Dumbrava et al. New Composite nanomaterials with antimicrobial and photocatalytic properties based on silver and zinc oxide
Zaidi et al. Hollow ZnO from assembly of nanoparticles: photocatalytic and antibacterial activity
Kakanejadifard et al. New azo-schiff base ligand capped silver and cadmium sulfide nanoparticles preparation, characterization, antibacterial and antifungal activities
Mohammadi-Aghdam et al. In-vitro anticancer on acute lymphoblastic leukemia NALM-6 cell line, antibacterial and catalytic performance of eco-friendly synthesized ZnO and Ag-doped ZnO nanoparticles using Hedera colchica extract
CN116463118B (zh) 一种具有聚集诱导发光效应的银团簇及其制备方法和应用
Varaprasad Co-assembled ZnO (shell)–CuO (core) nano-oxide materials for microbial protection
Li et al. Antibacterial activity and cytotoxicity of l‑phenylalanine-oxidized starch-coordinated zinc (II)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant