CN116455278A - Self-tuning method for pid parameters of permanent magnet synchronous motor control system based on neural network self-adaptive control - Google Patents

Self-tuning method for pid parameters of permanent magnet synchronous motor control system based on neural network self-adaptive control Download PDF

Info

Publication number
CN116455278A
CN116455278A CN202310176216.2A CN202310176216A CN116455278A CN 116455278 A CN116455278 A CN 116455278A CN 202310176216 A CN202310176216 A CN 202310176216A CN 116455278 A CN116455278 A CN 116455278A
Authority
CN
China
Prior art keywords
output
neural network
layer
speed
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310176216.2A
Other languages
Chinese (zh)
Inventor
马宇
孙志锋
马风力
黄颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Lichao Intelligent Technology Co ltd
Hangzhou Yida Software Technology Co ltd
Zhejiang University ZJU
Original Assignee
Hangzhou Lichao Intelligent Technology Co ltd
Hangzhou Yida Software Technology Co ltd
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Lichao Intelligent Technology Co ltd, Hangzhou Yida Software Technology Co ltd, Zhejiang University ZJU filed Critical Hangzhou Lichao Intelligent Technology Co ltd
Priority to CN202310176216.2A priority Critical patent/CN116455278A/en
Publication of CN116455278A publication Critical patent/CN116455278A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0014Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using neural networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0017Model reference adaptation, e.g. MRAS or MRAC, useful for control or parameter estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本发明提供了一种基于神经网络自适应控制的永磁同步电机控制系统pid参数自整定的方法,该方法包括以下步骤:步骤1:设计转速环的自适应控制器的神经网络结构;步骤2:利用梯度下降算法在线调整神经网络自适应控制器的神经网络权值;步骤3:电机转速的反馈控制。本发明能够实现永磁同步电机转速环控制系统pid参数的自整定,提升电机运行的动态性能;可以提高电机控制算法的自适应能力,摆脱对系统模型参数的依赖性。

The invention provides a method for self-tuning of PID parameters of a permanent magnet synchronous motor control system based on neural network adaptive control, the method comprising the following steps: Step 1: designing the neural network structure of the adaptive controller of the speed loop; Step 2 : Using the gradient descent algorithm to adjust the neural network weights of the neural network adaptive controller online; Step 3: Feedback control of the motor speed. The invention can realize the self-tuning of the pid parameters of the permanent magnet synchronous motor speed loop control system, improve the dynamic performance of the motor operation, improve the self-adaptive ability of the motor control algorithm, and get rid of the dependence on the system model parameters.

Description

一种基于神经网络自适应控制的永磁同步电机控制系统pid 参数自整定的方法A permanent magnet synchronous motor control system pid based on neural network adaptive control Parameter self-tuning method

技术领域technical field

本发明属于永磁同步电机控制领域,具体涉及一种基于神经网络自适应控制的永磁同步电机控制系统pid参数自整定的方法。The invention belongs to the field of permanent magnet synchronous motor control, in particular to a method for self-tuning of PID parameters of a permanent magnet synchronous motor control system based on neural network adaptive control.

背景技术Background technique

随着电力电子技术、计算机技术和自动控制技术的发展,交流电机调速技术也得到了极大的发展,交流电机的性能表现出了强大的优越性。在交流调速系统中,同步电机调速相比于异步电机调速,具有功率因数高、变频器容量小且转动惯量小的优点,在大功率交流传动系统中,同步电机调速系统的优势明显。随着永磁材料的发展与应用,永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)以其功率密度高、转矩惯量比大和动态响应速度快的特点受到越来越多的关注。With the development of power electronics technology, computer technology and automatic control technology, AC motor speed regulation technology has also been greatly developed, and the performance of AC motors has shown a strong advantage. In the AC speed control system, compared with the asynchronous motor speed control, the synchronous motor speed control has the advantages of high power factor, small frequency converter capacity and small moment of inertia. In the high-power AC drive system, the advantages of the synchronous motor speed control system obvious. With the development and application of permanent magnet materials, permanent magnet synchronous motor (Permanent Magnet Synchronous Motor, PMSM) has attracted more and more attention due to its high power density, large torque-to-inertia ratio and fast dynamic response.

传统永磁同步电机转速环与电流环的控制器为PI控制器,但是PI控制器的参数设置只能应用于某一特定的工作范围,当电机工作状态发生变化时PI控制器的控制效果变差,无法提供较佳的性能,而神经网络可以通过学习规则进行调整从而使系统特性得到优化。The controller of the speed loop and current loop of the traditional permanent magnet synchronous motor is a PI controller, but the parameter setting of the PI controller can only be applied to a specific working range. When the working state of the motor changes, the control effect of the PI controller changes. Poor, unable to provide better performance, and the neural network can be adjusted by learning rules to optimize the system characteristics.

发明内容Contents of the invention

为了克服传统永磁同步电机PI控制器只能应用于某一特定的工作范围,当电机工作状态发生变化时PI控制器的控制效果变差,无法提供较佳的性能的问题,本发明提供了一种基于神经网络自适应控制的永磁同步电机控制系统pid参数自整定的方法。In order to overcome the problem that the PI controller of the traditional permanent magnet synchronous motor can only be applied to a specific working range, and the control effect of the PI controller becomes worse when the working state of the motor changes, and cannot provide better performance, the present invention provides A self-tuning method for pid parameters of permanent magnet synchronous motor control system based on neural network adaptive control.

本发明的技术方案如下:Technical scheme of the present invention is as follows:

本发明首先提供了一种基于神经网络自适应控制的永磁同步电机控制系统pid参数自整定的方法,其包括如下步骤:The present invention at first provides a kind of method for self-tuning of PID parameter of permanent magnet synchronous motor control system based on neural network self-adaptive control, and it comprises the following steps:

1)设计转速环的自适应控制器的神经网络结构,根据电机控制系统结构确定神经网络输入层输出、根据输入层输出和隐藏层激活函数确定神经网络隐藏层输出、根据神经网络隐藏层输出和激活函数确定神经网络输出层输出;1) Design the neural network structure of the adaptive controller of the speed loop, determine the output of the input layer of the neural network according to the structure of the motor control system, determine the output of the hidden layer of the neural network according to the output of the input layer and the activation function of the hidden layer, and determine the output of the hidden layer of the neural network according to the output of the hidden layer of the neural network and The activation function determines the output of the neural network output layer;

2)从电机传感器获得电机转速和转子位置信息,以电机参考转速、电机实际转速和两者的转速差作为转速环神经网络自适应控制器的输入,利用梯度下降算法在线调整神经网络自适应控制器的神经网络权值;神经网络输出层输出的值即为转速环pid的增益环节参数kp、积分环节参数ki、微分环节参数kd,然后利用增量式pid算法得到神经网络自适应控制器的输出:2) Obtain the motor speed and rotor position information from the motor sensor, take the reference speed of the motor, the actual speed of the motor and the speed difference between the two as the input of the speed loop neural network adaptive controller, and use the gradient descent algorithm to adjust the neural network adaptive control online The neural network weights of the controller; the output value of the neural network output layer is the gain link parameter k p , the integral link parameter k i , and the differential link parameter k d of the speed loop pid, and then the neural network self-adaptive Controller output:

u(k)=u(k-1)+kp(e(k)-e(k-1))+kie(k)+kd(e(k)-2e(k-1)+e(k-2))u(k)=u(k-1)+k p (e(k)-e(k-1))+k i e(k)+k d (e(k)-2e(k-1)+ e(k-2))

其中,k表示离散的时间量,控制器输出u(k)即为q轴参考电流iq *Among them, k represents a discrete amount of time, and the controller output u(k) is the q-axis reference current i q * ,

3)将q轴参考电流和实际q轴电流值输入进电流环前馈pi控制器里,从而得到q轴和d轴参考电压;根据q轴和d轴参考电压和转子位置信息通过坐标变换,通过svpwm调制的方式调整永磁同步电机控制系统的逆变桥的开关从而控制电机转速,实现电机转速的反馈控制。3) Input the q-axis reference current and the actual q-axis current value into the current loop feed-forward pi controller to obtain the q-axis and d-axis reference voltages; through coordinate transformation according to the q-axis and d-axis reference voltages and rotor position information, The switch of the inverter bridge of the permanent magnet synchronous motor control system is adjusted by means of svpwm modulation to control the motor speed and realize the feedback control of the motor speed.

作为本发明的优选方案,所述的步骤1)中的设计转速环的自适应控制器的神经网络结构,具体为:As a preferred solution of the present invention, the neural network structure of the adaptive controller of the design speed loop in the described step 1) is specifically:

选择三层神经网络,包括一个输入层,一个隐藏层和一个输出层,输入节点对应电机控制系统运行的电机参考转速、电机实际转速和转速差;输出节点对应于转速环pid的三个参数kp、ki、kd;输入层节点数j为3,输出层节点数i为3,隐藏层节点数为 Choose a three-layer neural network, including an input layer, a hidden layer and an output layer. The input node corresponds to the motor reference speed, the actual speed of the motor and the speed difference of the motor control system; the output node corresponds to the three parameters kp of the speed loop pid , ki, kd; the number j of input layer nodes is 3, the number i of output layer nodes is 3, and the number of hidden layer nodes is

作为本发明的优选方案,所述的步骤1)中的根据电机控制系统结构确定输入层输出,具体为:As a preferred solution of the present invention, in the described step 1), the input layer output is determined according to the structure of the motor control system, specifically:

对于电机控制系统,选择神经网络的输入层的输出为:For a motor control system, the output of the input layer of the neural network is chosen to be:

其中x(j)代表神经网络的输入量,即电机参考转速、电机实际转速和转速差,j代表神经元节点;角标(1)代表神经网络第一层。Among them, x(j) represents the input of the neural network, that is, the reference speed of the motor, the actual speed of the motor and the speed difference, and j represents the neuron node; the subscript (1) represents the first layer of the neural network.

作为本发明的优选方案,所述的步骤1)中的根据输入层输出和隐藏层激活函数确定隐藏层输出,具体为:As a preferred solution of the present invention, in the described step 1), the hidden layer output is determined according to the input layer output and the hidden layer activation function, specifically:

由输入层输出得到隐藏层输入为:The hidden layer input obtained from the input layer output is:

其中ωij代表相应神经元之间的连接权重;Oj为输入层的输出;角标(2)代表隐藏层;Among them, ω ij represents the connection weight between corresponding neurons; O j is the output of the input layer; the subscript (2) represents the hidden layer;

隐藏层的输出为:The output of the hidden layer is:

其中,g(x)代表隐藏层的激活函数, Among them, g(x) represents the activation function of the hidden layer,

作为本发明的优选方案,所述的步骤1)中的根据隐藏层输出和激活函数确定输出层输出,具体为:As a preferred solution of the present invention, the output of the output layer is determined according to the output of the hidden layer and the activation function in the described step 1), specifically:

输出层输入为:The output layer input is:

输出层的输出为:The output of the output layer is:

其中ωli代表隐藏层和输出层相应神经元之间的连接权重;Oi为隐藏层的输出;角标(3)代表输出层;f(x)代表隐藏层的活化函数,由于输出层输出对应于pid参数kp、ki、kd,故f(x)为非负活化函数,f(x)=ReLU(x)=max(0,x);Among them, ω li represents the connection weight between the corresponding neurons in the hidden layer and the output layer; O i is the output of the hidden layer; the subscript (3) represents the output layer; f(x) represents the activation function of the hidden layer. Corresponding to pid parameters k p , ki , k d , so f(x) is a non-negative activation function, f(x)=ReLU(x)=max(0,x);

作为本发明的优选方案,所述的步骤2)中的在线调整神经网络自适应控制器的神经网络权值,具体为:As a preferred solution of the present invention, the online adjustment of the neural network weights of the neural network adaptive controller in the described step 2) is specifically:

取性能指标函数为:Take the performance index function as:

其中r(k)代表参考转速,y(k)代表实际转速;Where r(k) represents the reference speed, y(k) represents the actual speed;

利用梯度下降算法修正神经网络的连接权值函数,并附加一个惯性项使搜索可以快速收敛到全局极小,于是得到:Use the gradient descent algorithm to modify the connection weight function of the neural network, and add an inertia term to make the search quickly converge to the global minimum, so we get:

其中,η为学习率,α为惯性系数,为隐藏层到输出层连接权值的变化量,求解表达式第一项:Among them, η is the learning rate, α is the inertia coefficient, Solve for the first term of the expression for the amount of change in the connection weights from the hidden layer to the output layer:

实际电机控制pid算法采用离散的增量式算法,对于增量式算法,The actual motor control pid algorithm uses a discrete incremental algorithm, for the incremental algorithm,

于是可得:So you can get:

于是根据之前各层的输入输出函数可以得到:Then according to the input and output functions of the previous layers, we can get:

则上式可写为:make Then the above formula can be written as:

同理可得隐藏层权值计算公式为:In the same way, the formula for calculating the weight of the hidden layer is:

其中 in

于是权值可以根据采集到的数据进行更新。Then the weights can be updated according to the collected data.

作为本发明的优选方案,所述的步骤2)中,对学习率η进行更新,具体为:As a preferred solution of the present invention, in the step 2), the learning rate η is updated, specifically:

学习率η(k)=σ*η(k-1)Learning rate η(k)=σ*η(k-1)

其中变化因子σ=2λ,λ=sign(g(k)*g(k-1));Among them, the change factor σ=2 λ , λ=sign(g(k)*g(k-1));

其中λ反映了梯度方向;故对于输出层和隐藏层的学习率梯度方向分别为:where λ reflects the gradient direction; therefore, the learning rate gradient directions for the output layer and the hidden layer are:

根据上述对学习率进行更新。The learning rate is updated according to the above.

与现有技术相比,本发明的优点在于:本发明以神经网络自适应控制器取代了传统pid控制器减小,提高了系统控制精度;同时利用梯度下降算法来在线调整神经网络权值实现自适应功能,提高控制系统的自适应能力。Compared with the prior art, the present invention has the advantages that: the present invention replaces the traditional pid controller with a neural network adaptive controller to reduce the reduction and improve the system control accuracy; meanwhile, the gradient descent algorithm is used to adjust the neural network weights online to realize Adaptive function, improve the adaptive ability of the control system.

附图说明Description of drawings

图1是本发明系统流程图;Fig. 1 is a flow chart of the system of the present invention;

图2是本发明系统示意图;Fig. 2 is a schematic diagram of the system of the present invention;

图3是本发明设计的神经网络示意图;Fig. 3 is the neural network schematic diagram that the present invention designs;

图4是本发明神经网络算法的主体循环过程;Fig. 4 is the subject circulation process of neural network algorithm of the present invention;

图5是空载时本发明与传统pid算法速度曲线图;Fig. 5 is the speed curve diagram of the present invention and traditional pid algorithm when no-load;

图6是直接负载时本发明与传统pid算法速度曲线图;Fig. 6 is the speed curve diagram of the present invention and traditional pid algorithm during direct load;

图7是变载时本发明与传统pid算法速度曲线图。Fig. 7 is a speed curve diagram of the present invention and the traditional pid algorithm when the load is changed.

具体实施方式Detailed ways

下面结合具体实施方式对本发明做进一步阐述和说明。所述实施例仅是本公开内容的示范且不圈定限制范围。本发明中各个实施方式的技术特征在没有相互冲突的前提下,均可进行相应组合。The present invention will be further elaborated and described below in combination with specific embodiments. The embodiments are merely exemplary of the disclosure and do not delineate the scope of limitation. The technical features of the various implementations in the present invention can be combined accordingly on the premise that there is no conflict with each other.

参照图2,永磁同步电机控制的整体流程主要包括以下:Referring to Figure 2, the overall process of permanent magnet synchronous motor control mainly includes the following:

①采集电机的运行状态包括转子旋转角速度ωr、位置θr等信息,位置信息作为坐标变换的依据,转速信息将角速度ωr转化每分钟转速N送入转速环;① Acquisition of the running state of the motor includes information such as rotor rotational angular velocity ω r , position θr, etc. The position information is used as the basis for coordinate transformation, and the rotational speed information converts the angular velocity ω r into the rotational speed per minute N and sends it into the rotational speed loop;

②根据当前的转速信息N与期待得到的参考转速Nref作差送入PI控制器可以使实际转速跟踪参考转速,也就是常说的转速环;② According to the difference between the current speed information N and the expected reference speed N ref , it is sent to the PI controller to make the actual speed track the reference speed, which is often called the speed loop;

③转速环PI调节器输出量可以作为下一环节中q轴电流的参考值iqref,进而与实际q轴电流值iq进行比较从而送入PI调节器实现跟踪,再结合d轴进行PI调节,从而得到q轴和d轴参考电压vq *和vd *,这就是电流环;③The output of the speed loop PI regulator can be used as the reference value i qref of the q-axis current in the next link, and then compared with the actual q-axis current value i q to be sent to the PI regulator for tracking, and then combined with the d-axis for PI adjustment , so that the q-axis and d-axis reference voltages v q * and v d * are obtained, which is the current loop;

④根据q轴和d轴参考电压和转子位置可以通过坐标变换得到vα *和vβ *,然后通过svpwm调制的方式调整逆变桥的开关从而控制电机转速;由此实现了电机转速的反馈控制。④ According to the q-axis and d-axis reference voltage and the rotor position, v α * and v β * can be obtained through coordinate transformation, and then the switch of the inverter bridge is adjusted through svpwm modulation to control the motor speed; thereby realizing the feedback of the motor speed control.

本发明主要针对传统永磁同步电机PI控制器只能应用于某一特定的工作范围,以及当电机工作状态发生变化时PI控制器的控制效果变差的问题。本发明的流程图如图1所示,包括如下步骤:The invention mainly aims at the problem that the PI controller of the traditional permanent magnet synchronous motor can only be applied to a specific working range, and the control effect of the PI controller becomes worse when the working state of the motor changes. Flow chart of the present invention as shown in Figure 1, comprises the steps:

1)设计转速环的自适应控制器的神经网络结构,根据电机控制系统结构确定神经网络输入层输出、根据输入层输出和隐藏层激活函数确定神经网络隐藏层输出、根据神经网络隐藏层输出和激活函数确定神经网络输出层输出;1) Design the neural network structure of the adaptive controller of the speed loop, determine the output of the input layer of the neural network according to the structure of the motor control system, determine the output of the hidden layer of the neural network according to the output of the input layer and the activation function of the hidden layer, and determine the output of the hidden layer of the neural network according to the output of the hidden layer of the neural network and The activation function determines the output of the neural network output layer;

2)从电机传感器获得电机转速和转子位置信息,以电机参考转速、电机实际转速和两者的转速差作为转速环神经网络自适应控制器的输入,利用梯度下降算法在线调整神经网络自适应控制器的神经网络权值;神经网络输出层输出的值即为转速环pid的增益环节参数kp、积分环节参数ki、微分环节参数kd,然后利用增量式pid算法得到神经网络自适应控制器的输出:2) Obtain the motor speed and rotor position information from the motor sensor, take the reference speed of the motor, the actual speed of the motor and the speed difference between the two as the input of the speed loop neural network adaptive controller, and use the gradient descent algorithm to adjust the neural network adaptive control online The neural network weights of the controller; the output value of the neural network output layer is the gain link parameter k p , the integral link parameter k i , and the differential link parameter k d of the speed loop pid, and then the neural network self-adaptive Controller output:

u(k)=u(k-1)+kp(e(k)-e(k-1))+kie(k)+kd(e(k)-2e(k-1)+e(k-2))u(k)=u(k-1)+k p (e(k)-e(k-1))+k i e(k)+k d (e(k)-2e(k-1)+ e(k-2))

其中,k表示离散的时间量,控制器输出u(k)即为q轴参考电流iqrefAmong them, k represents a discrete amount of time, and the controller output u(k) is the q-axis reference current i qref ,

3)将q轴参考电流和实际q轴电流值输入进电流环前馈pi控制器里,从而得到q轴和d轴参考电压;根据q轴和d轴参考电压和转子位置信息通过坐标变换,通过svpwm调制的方式调整永磁同步电机控制系统的逆变桥的开关从而控制电机转速,实现电机转速的反馈控制。3) Input the q-axis reference current and the actual q-axis current value into the current loop feed-forward pi controller to obtain the q-axis and d-axis reference voltages; through coordinate transformation according to the q-axis and d-axis reference voltages and rotor position information, The switch of the inverter bridge of the permanent magnet synchronous motor control system is adjusted by means of svpwm modulation to control the motor speed and realize the feedback control of the motor speed.

本发明通过建立永磁同步电机数学模型,确定神经网络自适应控制器的输入输出物理量。首先写出三相永磁同步电机的运动方程:The invention determines the input and output physical quantities of the neural network self-adaptive controller by establishing a permanent magnet synchronous motor mathematical model. First write the motion equation of the three-phase permanent magnet synchronous motor:

其中J为转动惯量,B为阻尼系数,Te为电磁转矩,TL为负载转矩,ωm为电机的机械角速度;pn为电机极对数,id、iq分别表示d、q轴的电流分量,Ld、Lq分别表示为d、q轴的电感,ψf为永磁体磁链;Among them, J is the moment of inertia, B is the damping coefficient, T e is the electromagnetic torque, T L is the load torque, ω m is the mechanical angular velocity of the motor; p n is the number of pole pairs of the motor, and i d and i q represent d, The current component of the q-axis, L d , L q represent the inductance of the d-axis and q-axis respectively, and ψ f is the flux linkage of the permanent magnet;

在转子磁场定向同步速旋转的dq坐标系写电流方程如下:Write the current equation in the dq coordinate system of the rotor field-oriented synchronous speed rotation as follows:

其中ud、uq分别表示d、q轴的电压分量;ωe是电机的电角速度;Among them, u d and u q represent the voltage components of the d and q axes respectively; ω e is the electrical angular velocity of the motor;

从上式中可以看出,定子电流id、iq分别在d轴、q轴方向上产生交叉耦合电动势,若定子电流id、iq完全解耦,那么上式会变为:It can be seen from the above formula that the stator currents id and i q generate cross-coupling electromotive force in the directions of the d-axis and q-axis respectively. If the stator currents id and i q are completely decoupled, the above formula will become:

ud *、uq *分别表示电流解耦后的d、q轴的电压分量;采用常规pi调节器时可以得到d、q轴的电压为:u d * and u q * represent the voltage components of the d and q axes respectively after current decoupling; when using a conventional pi regulator, the voltages of the d and q axes can be obtained as:

其中vd *和vq *是经过pi调节后的参考电压。所以对于电流环来说可以将电流误差作为神经网络自适应控制器的输入,d、q电压作为控制器输出;对于转速环可以把转速误差作为神经网络自适应控制器的输入,q轴电流作为控制器输出。本发明提供的主要为针对转速环的神经网络自适应控制器。对于电流环,可以参照本发明方法设计神经网络自适应控制器,也可以采用现有的传统的自适应控制器。Where v d * and v q * are reference voltages after pi adjustment. Therefore, for the current loop, the current error can be used as the input of the neural network adaptive controller, and the d and q voltages can be used as the output of the controller; for the speed loop, the speed error can be used as the input of the neural network adaptive controller, and the q-axis current can be used as the input of the neural network adaptive controller. Controller output. The invention mainly provides a neural network adaptive controller for the speed loop. For the current loop, a neural network adaptive controller can be designed with reference to the method of the present invention, or an existing traditional adaptive controller can be used.

如图4所示,本发明主要是设计一种转速环神经网络自适应控制器,并对神经网络进行学习,在线调整网络参数,实现pid控制参数自适应调整,神经网络自适应控制器的设计和参数调整具体包括如下步骤:As shown in Fig. 4, the present invention mainly designs a kind of rotational speed ring neural network adaptive controller, and learns neural network, online adjustment network parameter, realizes pid control parameter adaptive adjustment, the design of neural network adaptive controller And parameter adjustment specifically includes the following steps:

步骤1:确定神经网络结构。Step 1: Determine the neural network structure.

如图3所示,选择三层神经网络,一个输入层,一个隐藏层和一个输出层,输入节点对应电机控制系统运行的状态量——电机参考转速、电机实际转速和转速差;输出节点对应于pid控制器的三个参数kp、ki、kd。故输入层节点数为j=3,输出层节点数为i=3,隐藏层节点数为故取l=5。As shown in Figure 3, a three-layer neural network is selected, with an input layer, a hidden layer and an output layer. The input nodes correspond to the state quantities of the motor control system—the reference speed of the motor, the actual speed of the motor, and the speed difference; the output nodes correspond to Based on the three parameters kp, ki, kd of the pid controller. Therefore, the number of nodes in the input layer is j=3, the number of nodes in the output layer is i=3, and the number of nodes in the hidden layer is So take l=5.

步骤2:根据电机控制系统结构确定输入层输出。Step 2: Determine the input layer output according to the motor control system structure.

对于该控制系统,选择神经网络的输入层输出为:For this control system, the input layer output of the neural network is chosen as:

其中x分别代表神经网络的输入量即电机参考转速、电机实际转速和转速差,j代表神经元节点;角标(1)代表神经网络第一层;Among them, x represents the input of the neural network, that is, the reference speed of the motor, the actual speed of the motor and the speed difference, and j represents the neuron node; the subscript (1) represents the first layer of the neural network;

步骤3:根据输入层输出和隐藏层激活函数确定隐藏层输出。Step 3: Determine the output of the hidden layer according to the output of the input layer and the activation function of the hidden layer.

由输入层输出得到隐层输入为:The hidden layer input obtained from the input layer output is:

其中ωij代表相应神经元之间的连接权重;Oj为输入层的输出;角标(2)代表隐藏层;输出层的输出为:Among them, ω ij represents the connection weight between corresponding neurons; O j is the output of the input layer; the subscript (2) represents the hidden layer; the output of the output layer is:

其中,g(x)代表隐藏层的激活函数, Among them, g(x) represents the activation function of the hidden layer,

步骤4:根据隐藏层输出和激活函数确定输出层输出。Step 4: Determine the output layer output according to the hidden layer output and activation function.

输出层函数与上述式子相似:The output layer function is similar to the above formula:

其中ωli代表隐藏层和输出层相应神经元之间的连接权重;Oi为隐藏层的输出;角标(3)代表输出层;f(x)代表隐藏层的活化函数,由于输出层输出对应于pid参数,故f(x)为非负活化函数,f(x)=ReLU(x)=max(0,x);Among them, ω li represents the connection weight between the corresponding neurons in the hidden layer and the output layer; O i is the output of the hidden layer; the subscript (3) represents the output layer; f(x) represents the activation function of the hidden layer. Corresponding to the pid parameter, so f(x) is a non-negative activation function, f(x)=ReLU(x)=max(0,x);

步骤5:接下来进行各层连接权值更新。Step 5: Next, update the connection weights of each layer.

取性能指标函数为:Take the performance index function as:

利用梯度下降算法修正网络的连接权值函数,并附加一个惯性项使搜索可以快速收敛到全局极小,于是可以得到:Use the gradient descent algorithm to modify the connection weight function of the network, and add an inertial term so that the search can quickly converge to the global minimum, so we can get:

其中,η为学习率,α为惯性系数,求解表达式第一项:Among them, η is the learning rate, α is the inertia coefficient, and solve the first term of the expression:

其中对于由于可以测出y(k)和u(k)相对变化量,即which for Since the relative change of y(k) and u(k) can be measured, that is

也可以近似用符号函数来替代,即这样可以简化运算,另一方面在实际操作时可以在分母上加一微小量避免初始时刻分母为0;实际电机控制pid算法可以采用离散的增量式算法,对于增量式算法,/> It can also be approximated by a symbolic function, that is, This can simplify the calculation. On the other hand, in actual operation, a small amount can be added to the denominator to prevent the denominator from being 0 at the initial moment; the actual motor control pid algorithm can use a discrete incremental algorithm. For the incremental algorithm, />

于是可得:So you can get:

于是根据之前各层的输入输出函数可以得到:Then according to the input and output functions of the previous layers, we can get:

则上式可写为:make Then the above formula can be written as:

同理可得隐藏层权值计算公式为:In the same way, the formula for calculating the weight of the hidden layer is:

其中 in

于是权值可以根据采集到的数据进行更新。Then the weights can be updated according to the collected data.

步骤6:学习率的更新。Step 6: Update of learning rate.

附加惯性项面临选取率的选取困难,进而产生收敛速度和收敛性的矛盾。于是另考虑引入学习速率自适应设计。The additional inertia item faces the difficulty of selecting the selection rate, which leads to the contradiction between the convergence speed and the convergence. Therefore, the introduction of learning rate adaptive design is also considered.

η(k)=σ*η(k-1)η(k)=σ*η(k-1)

其中σ为变化因子σ=2λ,λ=sign(g(k)*g(k-1));Where σ is the variation factor σ=2 λ , λ=sign(g(k)*g(k-1));

其中λ反映了梯度方向。故对于输出层和隐藏层的学习率梯度方向分别为:where λ reflects the gradient direction. Therefore, the learning rate gradient directions for the output layer and the hidden layer are:

根据上述可以对学习率进行更新。The learning rate can be updated according to the above.

于是权值可以根据采集到的数据进行更新。神经网络输出层输出的值即为pid参数的kp、ki、kd,然后利用增量式pid算法得到控制器输出:Then the weights can be updated according to the collected data. The output value of the neural network output layer is the k p , k i , k d of the pid parameters, and then the controller output is obtained by using the incremental pid algorithm:

u(k)=u(k-1)+kp(e(k)-e(k-1))+kie(k)+kd(e(k)-2e(k-1)+e(k-2))u(k)=u(k-1)+k p (e(k)-e(k-1))+k i e(k)+k d (e(k)-2e(k-1)+ e(k-2))

控制器输出u(k)即为q轴参考电流iq *,将q轴参考电流输入进电流环前馈pi控制器里进而控制电机运行。The controller output u(k) is the q-axis reference current i q * , and the q-axis reference current is input into the current loop feedforward pi controller to control the operation of the motor.

仿真结果分析:为了验证所提出方法的可行性,在Matlab/Simulink环境下进行了仿真验证,并将其与PI调节器进行了对比。Analysis of simulation results: In order to verify the feasibility of the proposed method, simulation verification was carried out in the Matlab/Simulink environment, and it was compared with the PI regulator.

图5是空载时本发明与传统pid算法速度曲线图,由图5可以看出在电机空载时,本发明转速曲线超调量远小于传统pid算法,而且达到稳态的调节时间也远小于传统pid算法;图6是直接负载时本发明与传统pid算法速度曲线图,由图6可以看出在电机直接施加负载运行时,本发明转速曲线超调量远小于传统pid算法,而且达到稳态的调节时间也远小于传统pid算法;图7是变载时本发明与传统pid算法速度曲线图,图7是0-0.2s时电机空载运行,然后0.2s时突加负载,0.2-0.4s时负载运行,然后可以看出突加负载后本发明恢复转速稳定的时间小于传统pid算法;从以上图中均可以看出本发明算法的超调量和调整时间等动态性能均优于传统pid算法。综上所述,本文所提出的算法可以达到预想的控制精度,能够有效提高电机运行的性能。Fig. 5 is the speed curve diagram of the present invention and traditional pid algorithm when no-load, as can be seen from Fig. 5 when motor is no-load, the speed curve overshoot of the present invention is far less than traditional pid algorithm, and the adjustment time to reach steady state is also far Less than the traditional pid algorithm; Fig. 6 is the speed curve diagram of the present invention and the traditional pid algorithm during direct load, as can be seen from Fig. 6 when the motor is directly applied with load operation, the speed curve overshoot of the present invention is far less than the traditional pid algorithm, and reaches The adjustment time of the steady state is also much shorter than the traditional pid algorithm; Fig. 7 is the speed curve diagram of the present invention and the traditional pid algorithm when the load is changed. -0.4s when the load runs, and then it can be seen that the time for the present invention to restore the stable speed after the sudden load is shorter than the traditional pid algorithm; from the above figure, it can be seen that the dynamic performance of the algorithm of the present invention such as overshoot and adjustment time is excellent In the traditional pid algorithm. In summary, the algorithm proposed in this paper can achieve the expected control accuracy and can effectively improve the performance of the motor operation.

最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。Finally, it should be noted that: the above is only a preferred embodiment of the present invention, and is not intended to limit the present invention. Although the present invention has been described in detail with reference to the foregoing embodiments, for those skilled in the art, it still The technical solutions recorded in the foregoing embodiments may be modified, or some technical features thereof may be equivalently replaced. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (7)

1.一种基于神经网络自适应控制的永磁同步电机控制系统pid参数自整定的方法,其特征在于,包括如下步骤:1. A method for self-tuning of permanent magnet synchronous motor control system pid parameters based on neural network adaptive control, is characterized in that, comprises the steps: 1)设计转速环的自适应控制器的神经网络结构,根据电机控制系统结构确定神经网络输入层输出、根据输入层输出和隐藏层激活函数确定神经网络隐藏层输出、根据神经网络隐藏层输出和激活函数确定神经网络输出层输出;1) Design the neural network structure of the adaptive controller of the speed loop, determine the output of the input layer of the neural network according to the structure of the motor control system, determine the output of the hidden layer of the neural network according to the output of the input layer and the activation function of the hidden layer, and determine the output of the hidden layer of the neural network according to the output of the hidden layer of the neural network and The activation function determines the output of the neural network output layer; 2)从电机传感器获得电机转速和转子位置信息,以电机参考转速、电机实际转速和两者的转速差作为转速环神经网络自适应控制器的输入,利用梯度下降算法在线调整神经网络自适应控制器的神经网络权值;神经网络输出层输出的值即为转速环pid的增益环节参数kp、积分环节参数ki、微分环节参数kd,然后利用增量式pid算法得到神经网络自适应控制器的输出:2) Obtain the motor speed and rotor position information from the motor sensor, take the reference speed of the motor, the actual speed of the motor and the speed difference between the two as the input of the speed loop neural network adaptive controller, and use the gradient descent algorithm to adjust the neural network adaptive control online The neural network weights of the controller; the output value of the neural network output layer is the gain link parameter k p , the integral link parameter k i , and the differential link parameter k d of the speed loop pid, and then the neural network self-adaptive Controller output: u(k)=u(k-1)+kp(e(k)-e(k-1))+kie(k)u(k)=u(k-1)+k p (e(k)-e(k-1))+k i e(k) +kd(e(k)-2e(k-1)+e(k-2))+k d (e(k)-2e(k-1)+e(k-2)) 其中,k表示离散的时间量,控制器输出u(k)即为q轴参考电流iq *Among them, k represents a discrete amount of time, and the controller output u(k) is the q-axis reference current i q * , 3)将q轴参考电流和实际q轴电流值输入进电流环前馈pi控制器里,从而得到q轴和d轴参考电压;根据q轴和d轴参考电压和转子位置信息通过坐标变换,通过svpwm调制的方式调整永磁同步电机控制系统的逆变桥的开关从而控制电机转速,实现电机转速的反馈控制。3) Input the q-axis reference current and the actual q-axis current value into the current loop feed-forward pi controller to obtain the q-axis and d-axis reference voltages; through coordinate transformation according to the q-axis and d-axis reference voltages and rotor position information, The switch of the inverter bridge of the permanent magnet synchronous motor control system is adjusted by means of svpwm modulation to control the motor speed and realize the feedback control of the motor speed. 2.根据权利要求1所述的方法,其特征在于,所述的步骤1)中的设计转速环的自适应控制器的神经网络结构,具体为:2. method according to claim 1, is characterized in that, the neural network structure of the adaptive controller of the design speed loop in described step 1), specifically: 选择三层神经网络,包括一个输入层,一个隐藏层和一个输出层,输入节点对应电机控制系统运行的电机参考转速、电机实际转速和转速差;输出节点对应于转速环pid的三个参数kp、ki、kd;输入层节点数j为3,输出层节点数i为3,隐藏层节点数为 Choose a three-layer neural network, including an input layer, a hidden layer and an output layer. The input node corresponds to the motor reference speed, the actual speed of the motor and the speed difference of the motor control system; the output node corresponds to the three parameters kp of the speed loop pid , ki, kd; the number j of input layer nodes is 3, the number i of output layer nodes is 3, and the number of hidden layer nodes is 3.根据权利要求1所述的方法,其特征在于,所述的步骤1)中的根据电机控制系统结构确定输入层输出,具体为:3. The method according to claim 1, characterized in that, in said step 1), determining the input layer output according to the motor control system structure is specifically: 对于电机控制系统,选择神经网络的输入层的输出为:For a motor control system, the output of the input layer of the neural network is chosen to be: 其中x(j)代表神经网络的输入量,即电机参考转速、电机实际转速和转速差,j代表神经元节点;角标(1)代表神经网络第一层。Among them, x(j) represents the input of the neural network, that is, the reference speed of the motor, the actual speed of the motor and the speed difference, and j represents the neuron node; the subscript (1) represents the first layer of the neural network. 4.根据权利要求1所述的方法,其特征在于,所述的步骤1)中的根据输入层输出和隐藏层激活函数确定隐藏层输出,具体为:4. method according to claim 1, is characterized in that, in described step 1) according to input layer output and hidden layer activation function, determine hidden layer output, specifically: 由输入层输出得到隐藏层输入为:The hidden layer input obtained from the input layer output is: 其中ωij代表相应神经元之间的连接权重;Oj为输入层的输出;角标(2)代表隐藏层;Among them, ω ij represents the connection weight between corresponding neurons; O j is the output of the input layer; the subscript (2) represents the hidden layer; 隐藏层的输出为:The output of the hidden layer is: 其中,g(x)代表隐藏层的激活函数, Among them, g(x) represents the activation function of the hidden layer, 5.根据权利要求1所述的方法,其特征在于,所述的步骤1)中的根据隐藏层输出和激活函数确定输出层输出,具体为:5. method according to claim 1, is characterized in that, in described step 1) according to hidden layer output and activation function, determine output layer output, specifically: 输出层输入为:The output layer input is: 输出层的输出为:The output of the output layer is: 其中ωli代表隐藏层和输出层相应神经元之间的连接权重;Oi为隐藏层的输出;角标(3)代表输出层;f(x)代表隐藏层的活化函数,由于输出层输出对应于pid参数kp、ki、kd,故f(x)为非负活化函数,f(x)=ReLU(x)=max(0,x);Among them, ω li represents the connection weight between the corresponding neurons in the hidden layer and the output layer; O i is the output of the hidden layer; the subscript (3) represents the output layer; f(x) represents the activation function of the hidden layer. Corresponding to pid parameters k p , ki , k d , so f(x) is a non-negative activation function, f(x)=ReLU(x)=max(0,x); 6.根据权利要求1所述的方法,其特征在于,所述的步骤2)中的在线调整神经网络自适应控制器的神经网络权值,具体为:6. method according to claim 1, is characterized in that, described step 2) in the neural network weights of online adjustment neural network adaptive controller, specifically: 取性能指标函数为:Take the performance index function as: 其中r(k)代表参考转速,y(k)代表实际转速;Where r(k) represents the reference speed, y(k) represents the actual speed; 利用梯度下降算法修正神经网络的连接权值函数,并附加一个惯性项使搜索可以快速收敛到全局极小,于是得到:Use the gradient descent algorithm to modify the connection weight function of the neural network, and add an inertia term to make the search quickly converge to the global minimum, so we get: 其中,η为学习率,α为惯性系数,为隐藏层到输出层连接权值的变化量,求解表达式第一项:Among them, η is the learning rate, α is the inertia coefficient, Solve for the first term of the expression for the amount of change in the connection weights from the hidden layer to the output layer: 实际电机控制pid算法采用离散的增量式算法,对于增量式算法, The actual motor control pid algorithm uses a discrete incremental algorithm, for the incremental algorithm, 于是可得:So we can get: 于是根据之前各层的输入输出函数可以得到:Then according to the input and output functions of the previous layers, we can get: 则上式可写为: make Then the above formula can be written as: 同理可得隐藏层权值计算公式为:In the same way, the formula for calculating the weight of the hidden layer is: 其中 in 于是权值可以根据采集到的数据进行更新。Then the weights can be updated according to the collected data. 7.根据权利要求6所述的方法,其特征在于,所述的步骤2)中,对学习率η进行更新,具体为:7. method according to claim 6, is characterized in that, in described step 2), learning rate n is updated, specifically: 学习率η(k)=σ*η(k-1)Learning rate η(k)=σ*η(k-1) 其中变化因子σ=2λ,λ=sign(g(k)*g(k-1));Among them, the change factor σ=2 λ , λ=sign(g(k)*g(k-1)); 其中λ反映了梯度方向;故对于输出层和隐藏层的学习率梯度方向分别为:where λ reflects the gradient direction; therefore, the learning rate gradient directions for the output layer and the hidden layer are: 根据上述对学习率进行更新。The learning rate is updated according to the above.
CN202310176216.2A 2023-02-28 2023-02-28 Self-tuning method for pid parameters of permanent magnet synchronous motor control system based on neural network self-adaptive control Pending CN116455278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310176216.2A CN116455278A (en) 2023-02-28 2023-02-28 Self-tuning method for pid parameters of permanent magnet synchronous motor control system based on neural network self-adaptive control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310176216.2A CN116455278A (en) 2023-02-28 2023-02-28 Self-tuning method for pid parameters of permanent magnet synchronous motor control system based on neural network self-adaptive control

Publications (1)

Publication Number Publication Date
CN116455278A true CN116455278A (en) 2023-07-18

Family

ID=87120971

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310176216.2A Pending CN116455278A (en) 2023-02-28 2023-02-28 Self-tuning method for pid parameters of permanent magnet synchronous motor control system based on neural network self-adaptive control

Country Status (1)

Country Link
CN (1) CN116455278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117879408A (en) * 2024-03-11 2024-04-12 深圳市昱森机电有限公司 Self-adaptive intelligent control method of linear motor and related equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117879408A (en) * 2024-03-11 2024-04-12 深圳市昱森机电有限公司 Self-adaptive intelligent control method of linear motor and related equipment
CN117879408B (en) * 2024-03-11 2024-05-31 深圳市昱森机电有限公司 Self-adaptive intelligent control method of linear motor and related equipment

Similar Documents

Publication Publication Date Title
Maiti et al. Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power
CN110138297A (en) A kind of permanent magnetic linear synchronous motor speed and current double closed-loop control system and control method
Lin et al. Intelligent maximum torque per ampere tracking control of synchronous reluctance motor using recurrent Legendre fuzzy neural network
US11616460B1 (en) Fuzzy finite-time optimal synchronization control method for fractional-order permanent magnet synchronous generator
CN106849793A (en) A kind of Over Electric Motor with PMSM fuzzy Neural Network Control System
CN113271042B (en) Multi-motor fixed time optimization cooperative control method
Jamoussi et al. Robust sliding mode control using adaptive switching gain for induction motors
CN111510035A (en) A control method and device for a permanent magnet synchronous motor
CN110829902A (en) Model-free predictive speed control method and system for permanent magnet synchronous motor for electric vehicle
Lu et al. Improved sliding mode control for permanent magnet synchronous motor servo system
Lin et al. Observer-based prescribed performance speed control for PMSMs: a data-driven RBF neural network approach
CN116455278A (en) Self-tuning method for pid parameters of permanent magnet synchronous motor control system based on neural network self-adaptive control
Wang et al. Model predictive position control of permanent magnet synchronous motor servo system with sliding mode observer
Wang et al. A second-order sliding mode observer optimized by neural network for speed and position estimation of PMSMs
Chinaeke-Ogbuka et al. A robust high-speed sliding mode control of permanent magnet synchronous motor based on simplified hysteresis current comparison
Liu et al. Composite control based on FNTSMC and adaptive neural network for PMSM system
Badini et al. Parameter independent speed estimation technique for PMSM drive in electric vehicle
CN114625005A (en) Backstepping anti-interference rotating speed control method for control moment gyro frame servo system
CN117879419A (en) An improved position sensorless control method for permanent magnet synchronous motor
Kumar et al. Adaptive neuro-fuzzy speed controller for vector controlled induction motor drive
CN117691895A (en) A speed collaborative control method for dual-axis linkage systems based on explicit model predictive control
CN113343592B (en) A DQN intelligent control method for permanent magnet synchronous motor of new energy aircraft
Song et al. Design of PMSM Dual‐Loop Control Systems Integrating LADRC and PI Controllers via an Improved PSO Algorithm
Mao et al. Synchronous reluctance motor speed tracking using a modified second-order sliding mode control method
CN115133828A (en) A permanent magnet synchronous motor control method and system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination