CN116445246B - 一种用于活体细胞分选的微流控芯片 - Google Patents

一种用于活体细胞分选的微流控芯片 Download PDF

Info

Publication number
CN116445246B
CN116445246B CN202310694083.8A CN202310694083A CN116445246B CN 116445246 B CN116445246 B CN 116445246B CN 202310694083 A CN202310694083 A CN 202310694083A CN 116445246 B CN116445246 B CN 116445246B
Authority
CN
China
Prior art keywords
flow channel
target
sorting
cell
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310694083.8A
Other languages
English (en)
Other versions
CN116445246A (zh
Inventor
吴永光
陈翔
郑焱
刘梦羽
萧俭杭
谢龙旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Kaipu Technology Intelligent Manufacturing Co ltd
Hybribio Ltd
Guangzhou Hybribio Medicine Technology Ltd
Original Assignee
Guangdong Kaipu Technology Intelligent Manufacturing Co ltd
Hybribio Ltd
Guangzhou Hybribio Medicine Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Kaipu Technology Intelligent Manufacturing Co ltd, Hybribio Ltd, Guangzhou Hybribio Medicine Technology Ltd filed Critical Guangdong Kaipu Technology Intelligent Manufacturing Co ltd
Priority to CN202310694083.8A priority Critical patent/CN116445246B/zh
Publication of CN116445246A publication Critical patent/CN116445246A/zh
Application granted granted Critical
Publication of CN116445246B publication Critical patent/CN116445246B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

本发明涉及一种用于活体细胞分选的微流控芯片,样品流道与分选流道的进液端连通,进气流道、目标流道和非目标流道与分选流道的出液端连通,目标流道与分选流道夹角为100°‑130°,非目标流道与分选流道夹角为100°‑140°;进气流道轴线和分选流道轴线的交点与进气流道、目标流道和非目标流道三者的交点相距0.02mm‑0.05mm。本方案中的微流控芯片可以扩大分选区,延长细胞在分选区的停留时间,气流可以准确的将目标细胞吹至目标流道内,提高细胞的分选准确率。

Description

一种用于活体细胞分选的微流控芯片
技术领域
本发明涉及细胞分选技术领域,具体地,涉及一种用于活体细胞分选的微流控芯片。
背景技术
随着在细胞领域越来越深入的研究,人们对细胞的了解越来越多。在研究细胞时,细胞分选是细胞生理和病理研究的关键环节。目前市面上进行细胞分选的主要技术手段是采用流式细胞仪和微流控芯片结合的方式将目标细胞从细胞群中分选出来。细胞分选芯片可采用压电式、磁性式或气动式的驱动结构驱动细胞改变运动轨迹,与其他方式相比,气动式的驱动结构对细胞的损伤最小。因此,需要分选出活性细胞时,大多选择气动式驱动结构的细胞分选芯片对目标细胞进行分选,如现有的一种同时检测细胞内多种荧光信号的分选装置,其微流控芯片包括检测区域、分选区、进气口、废液池和目标细胞池,检测区域与分选区之间通过第一细胞流道进行连接,分选区与废液池之间通过第二细胞流道进行连接,进气口与分选区通过气体流道进行连接,目标细胞池和分选区通过分选流道进行连接。第一细胞流道、第二细胞流道、气体流道和分选流道在分选区四周呈十字排布。该方案采用向气体流道喷气的方式将目标细胞吹至分选流道,气体在改变目标细胞路径时对目标细胞损伤更小,但是该方案中分选区面积过小,当分选流道内细胞液流速过快时,目标细胞在分选区停留的时间过短,难以确保气体通道内的气流能够准确将目标细胞吹至分选流道内,使细胞分选准确率不高。
发明内容
本发明为解决上述现有技术方案中微流控芯片的分选区面积过小,当分选流道内细胞液流速过快时,目标细胞在分选区停留的时间过短,难以确保气体通道内的气流能够准确将目标细胞吹至分选流道内,使细胞分选准确率不高的问题,提供了一种用于活体细胞分选的微流控芯片。本方案中可以进一步扩大分选区的面积,延长目标细胞经过分选区的时间,使得目标细胞可以被准确的吹至目标流道内,能够提高细胞分选的准确率。
本发明采用的技术方案是:一种用于活体细胞分选的微流控芯片,包括样品区、与样品区连通的样品流道、电磁进气阀、与电磁进气阀连通的进气流道、目标细胞池、与目标细胞池连通的目标流道、非目标细胞池、与非目标细胞池连通的非目标流道和分选流道。样品流道与分选流道的进液端连通,目标流道和非目标流道与分选流道的出液端连通,进气流道与分选流道连通并位于分选流道上靠近其出液口的一端。进气流道和非目标流道位于分选流道的一侧,目标流道位于分选流道的另一侧,目标流道与分选流道夹角为100°-130°,非目标流道与分选流道夹角为100°-140°,进气流道的轴线与分选流道的轴线垂直;进气流道轴线和分选流道轴线的交点与分选流道、目标流道和非目标流道三者的交点距离d为0.02mm-0.05mm。细胞分选区为分选流道上与目标流道、非目标流道和进气流道相交的一端。
微流控芯片工作时,样品区域内的目标细胞和非目标细胞随着细胞液的流动进入样品流道并在样品流道内单个线性排布。随着细胞液不断地向前流动,目标细胞和非目标细胞进入分选流道。识别细胞目标信号装置对进入分选流道内的细胞进行识别,当识别出细胞为目标细胞时,控制电磁进气阀向进气流道泵气,当目标细胞移动至分选区时,进气流道内的气体可以恰好移动至分选区,将目标细胞吹至目标流道内;当识别出细胞为非目标细胞时,电磁进气阀不向进气流道泵气,非目标细胞移动至分选区后,继续随细胞液流至非目标流道内。
本方案将目标流道、非目标流道和进气流道设置与分选流道相交形状且进气流道轴线和分选流道轴线的交点与进气流道、目标流道和非目标流道三者的交点距离d的距离为0.02mm-0.05mm时,增大分选区长度,目标细胞在分选区内停留的时间更长,使得可以有更多合适的时机向气体流道内泵气,完成气体将目标细胞吹入目标流道的工作,对目标细胞分选的准确率更高。
当进气流道内的气体进入分选区后,气体对细胞会施加一个垂直于细胞原路径的偏向力,使得目标细胞收到气体提供的偏向力后目标细胞的移动路径发生改变,变成向目标细胞流道移动的抛物线路径,该抛物线的形状受原细胞流速和进气气压的大小决定,该抛物线两条渐进性的夹角即为分选流道与目标流道的夹角。目标细胞在分选区内移动时,需保证目标细胞在沿分选流道轴线方向的移动距离为d时,目标细胞进入目标细胞流道内并且目标细胞的运动方向与目标流道的轴线平行,当d的距离为0.02mm-0.05mm、目标流道与分选流道夹角为100°-130°时目标细胞可以顺利进入目标细胞流道且目标细胞的运动方向与目标细胞流道的轴线方向平行。并且,由于目标流道与分选流道夹角为100°-130°时目标细胞改变路径所需的偏向力小于目标流道与分选流道垂直时目标细胞改变路径所需的偏向力。本申请中的进气气体气压小于现有技术中的进气气压时仍可以完成细胞分选工作,进气气压更小时气体对目标细胞的损伤更小,因此与现有技术相比本申请对目标细胞的损伤更小。同时,非目标流道与分选流道夹角为100°-140°时,在目标细胞在受到进气流道内气体提供的偏向力后目标细胞的运动方向与非目标流道轴线的夹角更大,进一步防止目标细胞进入非目标流道内。
优选的,分选流道包括第一流道和第二流道,第一流道的直径为0.1mm-0.12mm;第二流道的直径为0.18mm-0.2mm,第一流道与样品流道连通,第二流道与目标流道、非目标流道和进气流道连通。第二流道的直径大于第一流道流道的直径,可以减缓细胞在第二流道内的运动速度,还能防止进气流道内的气流向第一流道方向运动,当存在部分气流向第一流道的方向运动时,该股气流冲不过第二流道和第一流道的连接端,可以防止其反流冲击细胞,致使细胞受损。
优选的,第二流道上与第一流道连接的一端为锥形。第一流道和第二流道连接处为锥形,使得第一流道内的样品液可以平缓的进入并充满第二流道。
优选的,第二流道、进气流道、非目标流道和目标流道之间均设有圆弧倒角,其中,第二流道与进气流道之间的圆弧倒角为第一倒角;进气流道和非目标流道之间的倒角为第二倒角;非目标流道和目标流道之间的倒角为第三倒角;目标流道和第二流道之间的倒角为第四倒角。第一倒角的半径为0.08mm-0.1mm;第二倒角的半径为0.08mm-0.1mm;第三倒角的半径为0.12mm-0.15mm;第四倒角的半径为0.18mm-0.2mm。在第二流道、进气流道、非目标流道和目标流道之间相交的侧壁在交点处设置圆弧倒角,倒角的弧度与细胞抛物线形的运动路径重合,可以对细胞的运动起到导向作用,细胞与侧壁抵接时侧壁交点的圆弧倒角也不会损伤细胞。经实验测得,当第一倒角的半径为0.08mm-0.1mm;第二倒角的半径为0.08mm-0.1mm;第三倒角的半径为0.12mm-0.15mm;第四倒角的半径为0.18mm-0.2mm时,倒角对细胞的导向作用最好。
优选的,样品流道包括细胞流道和鞘液流道,样品区包括混合细胞区和鞘液区,细胞流道与混合细胞区连通,鞘液流道与鞘液区连通,鞘液流道和细胞流道相交于分选流道的进液端。鞘液流道有两个,两个鞘液流道分别位于细胞流道的相对两侧并以细胞流道的轴线为对称轴对称排布,鞘液流道与细胞流道的直径相同,非目标流道的直径为目标流道直径的两倍。鞘液可以包裹细胞使细胞呈直线单行排列流入细胞仪检测区域。鞘液流道有两个并分别位于细胞流道的两侧,使得流入分选流道内的细胞位于分选流道的中部。鞘液流道与细胞流道的直径相同,非目标流道的直径为目标流道直径的两倍使得在进入分选流道后细胞悬液与其两侧鞘液的比例为1:1:1,当分选流道内的液体在不经外界干扰时,靠近目标流道一侧的鞘液流入目标流道,细胞悬液和另一侧鞘液流入非目标流道,自动完成非目标细胞进入非目标流道的导向工作。
优选的,目标流道的长度不长于5mm。由于向进气流道内泵入的气体气压不易过大,否则进入微流控芯片内的气体在整个流道内串扰。气体对目标细胞的推力不足以使目标细胞在目标流道内行走太长的距离,当目标流道过长时,目标细胞停会留在目标流道内而不能到达目标细胞池,因此目标流道的长度不能过长,经实验测得,当目标流道的长度不长于5mm时,气体对目标细胞的推力可以使目标细胞顺利通过目标流道进入目标细胞池。
优选的,鞘液流道与细胞流道所呈夹角为25°-35°。鞘液流道上设有蛇形流阻段用以降低鞘液流道内鞘液的流速。随着鞘液流道与细胞流道所呈夹角角度的增加,鞘液与细胞液汇聚后鞘液流对细胞液流的冲击变大,冲击细胞液流中的细胞。经实验测得,当鞘液流道与细胞流道所呈夹角为25°-35°时,鞘液可以与细胞液平稳的混合。流阻形状为蛇形,鞘液在通过蛇形的鞘液流道后会减少鞘液的动能,降低鞘液的流速,进而减缓进入第一流道内样本溶液的流速,降低细胞的移动速度。
与现有技术相比,本发明的有益效果在于:本方案中的微流控芯片在进行细胞筛选时不会对细胞造成损伤。本方案扩大了细胞的分选区,使得目标细胞在细胞分选区内停留的时间增加,有更多合适的时机泵气,防止泵气过慢导致目标细胞进入非目标细胞池内,提高细胞分选的准确率,并且采用更小气压的气体即可完成推动目标细胞进入目标流道的目标。分选流道可以降低细胞移动速度还能防止气体反流,在进一步提高细胞分选准确率的同时还能避免细胞受损。第二流道、进气流道、非目标流道和目标流道之间相交的侧壁在交点处设有圆弧倒角,对进入分选区的细胞起到导向作用。
附图说明
图1是本发明一种用于活体细胞分选的微流控芯片的结构示意图;
图2是本发明一种用于活体细胞分选的微流控芯片的图1中的B部放大图;
图3是本发明一种用于活体细胞分选的微流控芯片的图1中的A部放大图。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;为了更好说明本实施例,附图某些部品会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。附图中描述位置关系仅用于示例性说明,不能理解为对本专利的限制。
本发明实施例的附图中相同或相似的标号对应相同或相似的部品;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”“长”“短”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
下面通过具体实施例,并结合附图,对本发明的技术方案作进一步的具体描述:
实施例1
如图1-图2所示为一种用于活体细胞分选的微流控芯片的实施例1,包括样品区、与样品区连通的样品流道、电磁进气阀、与电磁进气阀连通的进气流道1、目标细胞池5、与目标细胞池5连通的目标流道2、非目标细胞池6、与非目标细胞池6连通的非目标流道3和进行细胞分选的分选流道4。样品流道与分选流道4的进液端连通,目标流道2和非目标流道3与分选流道4的出液端连通,进气流道1与分选流道4连通并为其分选流道4上靠近其出液口的一端。进气流道1和非目标流道3位于分选流道4的一侧,目标流道2位于分选流道4的另一侧。目标流道2与分选流道4夹角为120°,非目标流道3与分选流道4夹角为128°,进气流道1的轴线与分选流道4的轴线垂直;进气流道1轴线和分选流道4轴线的交点与分选流道4、目标流道2和非目标流道3三者的交点距离d为0.05m。分选区为分选流道4上与目标流道2、非目标流道3和进气流道1相交的一端。
本实施例的工作原理或工作过程:微流控芯片工作时,样品区域内的目标细胞和非目标细胞随着细胞液的流动进入样品流道并在样品流道内单个线性排布。随着细胞液不断地向前流动,目标细胞和非目标细胞穿过分选流道4后进入分选区。识别细胞目标信号装置对进入分选流道4内的细胞进行识别,当识别出细胞为目标细胞时,控制电磁进气阀向进气流道1泵气,当目标细胞移动至分选流道4末端的分选区时,进气流道1内的气体可以恰好移动至分选区,将目标细胞吹至目标流道2内;当识别出细胞为非目标细胞时,电磁进气阀不向进气流道1泵气,非目标细胞移动至分选流道4末端的分选区时,继续随细胞液流至非目标流道3内。
表1 微流控芯片对照实验
对照组所使用的细胞分选芯片为现有技术一种同时检测细胞内多种荧光信号的分选装置中的微流控芯片,本申请所使用的微流控芯片为本方案所记载的微流控芯片。从对照组1和对照组2与本申请1和本申请2相比可知,对于同种目标细胞,在相同的进气气压和细胞流速的情况下,本申请中细胞分选的准确率远大于对照组中细胞分选的准确率。从对照组1和本申请1与对照组2和本申请2相比,在细胞流速相同的情况下,进气气压越大,细胞分选的准确率越高,但是从对照组1和对照2与本申请1和申请2来看,两组实验气压均等量减小时,对照组中细胞分选的准确率波动比本申请中细胞分选的准确率波动更大。从上述实验数据可知,增大细胞分选区并调节目标流道与分选流道夹角后,对细胞分选的准确率可以有显著的提升且当使用更小气压驱动目标细胞偏转时,气压波动对细胞分选的准确率影响较小,仍可以获得良好的细胞分选效果。
本实施例的有益效果:本方案扩大了细胞的分选区,使得目标细胞在细胞分选区内停留的时间增加,有更多合适的时机泵气,防止泵气过慢导致目标细胞进入非目标细胞池内,提高细胞分选的准确率。并且在驱动细胞偏转时采用更小气压的气体即可完成推动目标细胞进入目标流道的目的,气体的气压更小,则气流对目标细胞的损伤更小,使得目标细胞的活性更高。
实施例2
一种用于活体细胞分选的微流控芯片的实施例2,如图1-图3所示,在实施例1的基础上,对分选流道4和分选区的结构进一步限定。
具体的,分选流道4包括第一流道401和第二流道402,第一流道401的直径为0.1mm;第二流道402的直径为0.2mm,第一流道401与样品流道连通,第二流道402与目标流道2、非目标流道3和进气流道1连通。
具体的,第二流道402上与第一流道401连接的一端为锥形。
具体的,第二流道402、进气流道1、非目标流道3和目标流道2之间均设有圆弧倒角,其中,第二流道402与进气流道1之间的圆弧倒角为第一倒角7;进气流道1和非目标流道3之间的倒角为第二倒角8;非目标流道3和目标流道2之间的倒角为第三倒角9;目标流道2和第二流道402之间的倒角为第四倒角10。第一倒角7的半径为0.1mm;第二倒角8的半径为0.1mm;第三倒角9的半径为0.15mm;第四倒角10的半径为0.2mm。
本实施例的有益效果:第二流道402的直径大于第一流道401流道的直径,可以减缓细胞在第二流道402内的运动速度,还能防止进气流道1内的气流向第一流道401方向运动,当存在部分气流向第一流道401的方向运动时,该股气流冲不过第二流道402和第一流道401的连接端,可以防止其反流冲击细胞,致使细胞受损。第一流道401和第二流道402连接处为锥形,使得第一流道401内的样品液可以平缓的进入并充满第二流道402。在第二流道402、进气流道1、非目标流道3和目标流道2之间相交的侧壁在交点处设置圆弧倒角,圆弧倒角的形状与细胞的抛物线形运动路径相同,可以对流入分选区的细胞进行导向作用,更便于非目标细胞流入非目标流道3,目标细胞流入目标流道2。
实施例3
一种用于活体细胞分选的微流控芯片的实施例3,如图1-图3所示,在实施例1或实施例2的基础上,对样品流道、目标流道2和非目标流道3进一步限定。
具体的,样品流道包括细胞流道11和鞘液流道12,样品区包括混合细胞区13和鞘液区14,细胞流道11与混合细胞区13连通,鞘液流道12与鞘液区14连通,鞘液流道12和细胞流道11相交于分选流道4的进液端。鞘液流道12有两个,两个鞘液流道12分别位于细胞流道11的相对两侧并以细胞流道11的轴线为对称轴对称排布,鞘液流道12与细胞流道11的直径相同,非目标流道3的直径为目标流道2直径的两倍。
具体的,目标流道2的长度为4mm。鞘液流道12与细胞流道11所呈夹角为25°。鞘液流道12上设有蛇形流阻段(图中未示出)用以降低鞘液流道12内鞘液的流速。
本实施例的有益效果:鞘液流道12与细胞流道11的直径相同,非目标流道3的直径为目标流道2直径的两倍使得在进入分选流道4后细胞悬液与其两侧鞘液的比例为1:1:1,当分选流道4内的液体在不经外界干扰时,靠近目标流道2一侧的鞘液流入目标流道2,细胞悬液和另一侧鞘液流入非目标流道3,自动完成非目标细胞进入非目标流道3的导向工作。当目标流道2的长度为4mm时,气体对目标细胞的推力可以使目标细胞顺利通过目标流道2进入目标细胞池5。随着鞘液流道12与细胞流道11所呈夹角角度的增加,鞘液与细胞液汇聚后鞘液流对细胞液流的冲击变大,冲击细胞液流中的细胞。经实验测得,当鞘液流道12与细胞流道11所呈夹角为25°时,鞘液可以与细胞液平稳的混合。流阻形状为蛇形,鞘液在通过蛇形的鞘液流道12后会减少鞘液的动能,降低鞘液的流速,进而减缓进入第一流道401内样本溶液的流速,降低细胞的移动速度。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

1.一种用于活体细胞分选的微流控芯片,其特征在于,包括样品区、与所述样品区连通的样品流道、电磁进气阀、与所述电磁进气阀连通的进气流道(1)、目标细胞池(5)、与所述目标细胞池(5)连通的目标流道(2)、非目标细胞池(6)、与所述非目标细胞池(6)连通的非目标流道(3)和分选流道(4);
所述样品流道与所述分选流道(4)的进液端连通,所述目标流道(2)和所述非目标流道(3)与所述分选流道(4)的出液端连通,所述进气流道(1)与所述分选流道(4)连通并位于所述分选流道(4)上靠近其出液口的一端,所述目标流道(2)位于所述分选流道(4)的一侧,所述进气流道(1)和所述非目标流道(3)位于所述分选流道(4)的另一侧,所述目标流道(2)与所述分选流道(4)夹角为100°-130°,所述非目标流道(3)与所述分选流道(4)夹角为100°-140°,所述进气流道(1)的轴线与所述分选流道(4)的轴线垂直;所述进气流道(1)的轴线和所述分选流道(4)的轴线的交点与所述分选流道(4)、所述目标流道(2)和所述非目标流道(3)三者的交点相距0.02mm-0.05mm。
2.根据权利要求1所述的一种用于活体细胞分选的微流控芯片,其特征在于,所述分选流道(4)包括第一流道(401)和第二流道(402),所述第一流道(401)的直径为0.1mm-0.12mm;所述第二流道(402)的直径为0.18mm-0.2mm,所述第一流道(401)与所述样品流道连通,所述第二流道(402)与所述目标流道(2)、所述非目标流道(3)和所述进气流道(1)连通。
3.根据权利要求2所述的一种用于活体细胞分选的微流控芯片,其特征在于,所述第二流道(402)上与所述第一流道(401)连接的一端为锥形。
4.根据权利要求2所述的一种用于活体细胞分选的微流控芯片,其特征在于,所述第二流道(402)、所述进气流道(1)、所述非目标流道(3)和所述目标流道(2)之间均设有圆弧倒角,其中,所述第二流道(402)与所述进气流道(1)之间的圆弧倒角为第一倒角(7);所述进气流道(1)和所述非目标流道(3)之间的倒角为第二倒角(8);所述非目标流道(3)和所述目标流道(2)之间的倒角为第三倒角(9);所述目标流道(2)和所述第二流道(402)之间的倒角为第四倒角(10)。
5.根据权利要求4所述的一种用于活体细胞分选的微流控芯片,其特征在于,所述第一倒角(7)的半径为0.08mm-0.1mm;所述第二倒角(8)的半径为0.08mm-0.1mm;所述第三倒角(9)的半径为0.12mm-0.15mm;所述第四倒角(10)的半径为0.18mm-0.2mm。
6.根据权利要求1所述的一种用于活体细胞分选的微流控芯片,其特征在于,所述样品流道包括细胞流道(11)和鞘液流道(12),所述样品区包括混合细胞区(13)和鞘液区(14),所述细胞流道(11)与所述混合细胞区(13)连通,所述鞘液流道(12)与所述鞘液区(14)连通,鞘液流道(12)和细胞流道(11)相交于分选流道(4)的进液端。
7.根据权利要求6所述的一种用于活体细胞分选的微流控芯片,其特征在于,所述鞘液流道(12)有两个,两个所述鞘液流道(12)分别位于所述细胞流道(11)的相对两侧并以所述细胞流道(11)的轴线为对轴对称排布,所述鞘液流道(12)与所述细胞流道(11)的直径相同,所述非目标流道(3)的直径为所述目标流道(2)直径的两倍。
8.根据权利要求7所述的一种用于活体细胞分选的微流控芯片,其特征在于,所述目标流道(2)的长度不长于5mm。
9.根据权利要求7所述的一种用于活体细胞分选的微流控芯片,其特征在于,所述鞘液流道(12)与所述细胞流道(11)所呈夹角为25°-35°。
10.根据权利要求9所述的一种用于活体细胞分选的微流控芯片,其特征在于,所述鞘液流道(12)上设有蛇形流阻段用以降低所述鞘液流道(12)内鞘液的流速。
CN202310694083.8A 2023-06-13 2023-06-13 一种用于活体细胞分选的微流控芯片 Active CN116445246B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310694083.8A CN116445246B (zh) 2023-06-13 2023-06-13 一种用于活体细胞分选的微流控芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310694083.8A CN116445246B (zh) 2023-06-13 2023-06-13 一种用于活体细胞分选的微流控芯片

Publications (2)

Publication Number Publication Date
CN116445246A CN116445246A (zh) 2023-07-18
CN116445246B true CN116445246B (zh) 2023-09-08

Family

ID=87125938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310694083.8A Active CN116445246B (zh) 2023-06-13 2023-06-13 一种用于活体细胞分选的微流控芯片

Country Status (1)

Country Link
CN (1) CN116445246B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1688732A2 (en) * 2005-02-08 2006-08-09 Japan Science and Technology Agency Cell sorter chip having gel electrodes
KR100670590B1 (ko) * 2005-10-05 2007-01-17 주식회사 디지탈바이오테크놀러지 확장된 채널을 가진 마이크로칩 및 이를 이용하는 미세입자 분석 장치
CN104140926A (zh) * 2014-07-15 2014-11-12 大连医科大学附属第二医院 一种在微流控芯片上实现全自动分选循环肿瘤细胞的装置及其方法
TW201629203A (zh) * 2015-02-13 2016-08-16 Nat Univ Chung Hsing 細胞胞器篩選裝置及以其採集細胞胞器之方法
CN106669873A (zh) * 2017-02-17 2017-05-17 深圳韦拓生物科技有限公司 一种用于细胞冷冻的微流控芯片及混合系统及其控制方法
CN107164212A (zh) * 2017-02-27 2017-09-15 大连海事大学 一种基于微流控芯片的单细胞自动操控分选装置及方法
CN214088461U (zh) * 2020-11-30 2021-08-31 晶准生物医学(深圳)有限公司 芯片结合口及细胞分选仪
CN114292741A (zh) * 2021-12-13 2022-04-08 清华大学 一种基于电火花空化气泡的分选装置及方法
CN217140437U (zh) * 2021-11-26 2022-08-09 杭州纯迅生物科技有限公司 一种高稳定性的液滴分选系统及包含该系统的微流控芯片

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9260693B2 (en) * 2004-12-03 2016-02-16 Cytonome/St, Llc Actuation of parallel microfluidic arrays

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1688732A2 (en) * 2005-02-08 2006-08-09 Japan Science and Technology Agency Cell sorter chip having gel electrodes
KR100670590B1 (ko) * 2005-10-05 2007-01-17 주식회사 디지탈바이오테크놀러지 확장된 채널을 가진 마이크로칩 및 이를 이용하는 미세입자 분석 장치
CN104140926A (zh) * 2014-07-15 2014-11-12 大连医科大学附属第二医院 一种在微流控芯片上实现全自动分选循环肿瘤细胞的装置及其方法
TW201629203A (zh) * 2015-02-13 2016-08-16 Nat Univ Chung Hsing 細胞胞器篩選裝置及以其採集細胞胞器之方法
CN106669873A (zh) * 2017-02-17 2017-05-17 深圳韦拓生物科技有限公司 一种用于细胞冷冻的微流控芯片及混合系统及其控制方法
CN107164212A (zh) * 2017-02-27 2017-09-15 大连海事大学 一种基于微流控芯片的单细胞自动操控分选装置及方法
CN214088461U (zh) * 2020-11-30 2021-08-31 晶准生物医学(深圳)有限公司 芯片结合口及细胞分选仪
CN217140437U (zh) * 2021-11-26 2022-08-09 杭州纯迅生物科技有限公司 一种高稳定性的液滴分选系统及包含该系统的微流控芯片
CN114292741A (zh) * 2021-12-13 2022-04-08 清华大学 一种基于电火花空化气泡的分选装置及方法

Also Published As

Publication number Publication date
CN116445246A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
US8869987B2 (en) Serpentine structures for continuous flow particle separations
US7584857B2 (en) Method and apparatus for sorting particles
US9757726B2 (en) System for high throughput sperm sorting
US10371622B2 (en) Device for high throughput sperm sorting
US11591566B2 (en) Methods for high throughput sperm sorting
CN116445246B (zh) 一种用于活体细胞分选的微流控芯片
CN103170265B (zh) 一种压电微混合器
CN113333040A (zh) 一种利用振荡流的高集成度微纳颗粒汇聚微流控装置
EP0883798A1 (en) Preanalysis chamber for a flow particle analyzer
KR100726339B1 (ko) 미세입자 정렬분리용 미세유체칩 및 이를 이용한 미세입자분리방법
CN111690508A (zh) 一种多功能单元集成稀有肿瘤细胞多级分选器件
CN111895100A (zh) 集成式气动顶针阀、集成式气动顶针混合阀
US6192939B1 (en) Apparatus and method for driving a microflow
CN112755933B (zh) 多级反应微流道结构、微流控芯片和非均相反应方法
CN111733074B (zh) 用于循环肿瘤细胞高通量磁力分选的微流控芯片及其系统
WO2022161373A1 (zh) 生物粒子分选流道及微流控芯片
WO2013044109A1 (en) Microfluidic device for separating cells from a fluid
CN206315807U (zh) 一种声表面波控制开启和关闭的微阀
CN112755935B (zh) 一种微流道结构、微流控芯片以及非均相反应方法
CN211111935U (zh) 利用鞘液逆流防止细胞阻塞的微流控芯片
CN214636263U (zh) 一种微流道结构和微流控芯片
CN113324429A (zh) 换热器扁管及具有其的换热器
CN106732836A (zh) 一种声表面波控制开启和关闭的微阀及其控制方法
CN220143418U (zh) 微流控芯片
KR20210142191A (ko) 기체 매체를 운반 및/또는 제어하기 위한 연료 전지 시스템용 운반 유닛

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40092423

Country of ref document: HK