CN116434920A - A method and device for predicting the risk of progression of gastrointestinal metaplasia - Google Patents
A method and device for predicting the risk of progression of gastrointestinal metaplasia Download PDFInfo
- Publication number
- CN116434920A CN116434920A CN202310639573.8A CN202310639573A CN116434920A CN 116434920 A CN116434920 A CN 116434920A CN 202310639573 A CN202310639573 A CN 202310639573A CN 116434920 A CN116434920 A CN 116434920A
- Authority
- CN
- China
- Prior art keywords
- image
- marker
- attribute
- segmentation
- feature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 59
- 206010054949 Metaplasia Diseases 0.000 title claims abstract description 53
- 230000002496 gastric effect Effects 0.000 title claims abstract description 44
- 230000015689 metaplastic ossification Effects 0.000 title claims abstract description 31
- 230000011218 segmentation Effects 0.000 claims abstract description 224
- 239000003550 marker Substances 0.000 claims abstract description 193
- 208000004300 Atrophic Gastritis Diseases 0.000 claims abstract description 96
- 208000036495 Gastritis atrophic Diseases 0.000 claims abstract description 96
- 208000016644 chronic atrophic gastritis Diseases 0.000 claims abstract description 96
- 210000004204 blood vessel Anatomy 0.000 claims abstract description 56
- 238000011002 quantification Methods 0.000 claims abstract description 54
- 230000000968 intestinal effect Effects 0.000 claims abstract description 15
- 238000013139 quantization Methods 0.000 claims description 118
- 238000000605 extraction Methods 0.000 claims description 63
- 238000010801 machine learning Methods 0.000 claims description 54
- 239000003086 colorant Substances 0.000 claims description 8
- 230000000877 morphologic effect Effects 0.000 claims description 7
- 238000001914 filtration Methods 0.000 claims description 6
- 210000002784 stomach Anatomy 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims 2
- 238000005260 corrosion Methods 0.000 claims 1
- 230000007797 corrosion Effects 0.000 claims 1
- 238000004043 dyeing Methods 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 16
- 238000004364 calculation method Methods 0.000 description 12
- 210000001156 gastric mucosa Anatomy 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 230000037303 wrinkles Effects 0.000 description 11
- 238000012549 training Methods 0.000 description 10
- 238000013527 convolutional neural network Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000013528 artificial neural network Methods 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 6
- 238000003066 decision tree Methods 0.000 description 6
- 238000007637 random forest analysis Methods 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 230000004927 fusion Effects 0.000 description 5
- 238000002575 gastroscopy Methods 0.000 description 5
- 238000003709 image segmentation Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000010191 image analysis Methods 0.000 description 3
- 238000007477 logistic regression Methods 0.000 description 3
- 238000012706 support-vector machine Methods 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 2
- 208000005718 Stomach Neoplasms Diseases 0.000 description 2
- 206010017758 gastric cancer Diseases 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 210000004203 pyloric antrum Anatomy 0.000 description 2
- 201000011549 stomach cancer Diseases 0.000 description 2
- 230000002087 whitening effect Effects 0.000 description 2
- 206010003694 Atrophy Diseases 0.000 description 1
- 208000007882 Gastritis Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000003064 k means clustering Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 210000004088 microvessel Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/20—ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/62—Analysis of geometric attributes of area, perimeter, diameter or volume
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20021—Dividing image into blocks, subimages or windows
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30028—Colon; Small intestine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Primary Health Care (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Quality & Reliability (AREA)
- Geometry (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了一种胃肠上皮化生进展风险预测方法与装置,涉及图像处理技术领域,该方法包括以下步骤:通过获取标志物分割图像、萎缩性胃炎分割图像以及肠化分割图像的标签属性的特征量化值,进行胃镜图像肠化等级分类;所述标志物分割图像的第一标签属性包括血管属性、褶皱属性、颜色属性、弥漫属性;所述萎缩性胃炎分割图像的第二标签属性包括粗糙度属性、绒毛样属性、偏白色属性、亮蓝脊属性;所述肠化分割图像的第三标签属性包括位置属性、形态属性。本发明充分考量了胃镜图像多个不同属性的特征量化值对图像处理的准确性及直观性影响,有效提高肠化风险等级识别效率和识别准确率。
The invention discloses a method and device for predicting the risk of progression of gastrointestinal metaplasia, and relates to the technical field of image processing. The feature quantification value of the gastroscopic image is classified into intestinal grade; the first label attribute of the marker segmentation image includes blood vessel attribute, fold attribute, color attribute, and diffuse attribute; the second label attribute of the atrophic gastritis segmentation image includes Roughness attribute, fuzzy attribute, off-white attribute, bright blue ridge attribute; the third label attribute of the intestinalized segmentation image includes position attribute and shape attribute. The present invention fully considers the influence of multiple characteristic quantification values of different attributes of the gastroscope image on the accuracy and intuition of image processing, and effectively improves the identification efficiency and identification accuracy of intestinal metaplasia risk levels.
Description
技术领域technical field
本发明属于图像处理技术领域,具体涉及一种胃肠上皮化生进展风险预测方法与装置。The invention belongs to the technical field of image processing, and in particular relates to a method and device for predicting the risk of gastrointestinal metaplasia progression.
背景技术Background technique
肠上皮化生是肠型胃癌的主要癌前疾病。多中心调查发现我国胃肠上皮化生患病率约为23.6%,基数庞大。目前临床上常规依据指南对肠上皮化生患者进行定期复查。然而,仅有0.2%的肠上皮化生患者有机会进展为胃癌,其余患者病情保持稳定甚至发生好转,但尚无有效方法区分高或低进展风险肠上皮化生。这一方面导致医患对肠上皮化生的重视程度不高、规范复查率不足50%,使得部分高进展风险患者病情延误;另一方面导致部分低进展风险患者接受长期、多次复查,带来一定的医疗资源浪费。Intestinal metaplasia is the main precancerous disease of intestinal type gastric cancer. A multi-center survey found that the prevalence of gastrointestinal metaplasia in my country is about 23.6%, which is a huge base. At present, patients with intestinal metaplasia are regularly reexamined according to the guidelines in clinical practice. However, only 0.2% of intestinal metaplasia patients have the chance to progress to gastric cancer, and the remaining patients remain stable or even improve. However, there is no effective way to distinguish between high and low risk of intestinal metaplasia. On the one hand, this has led to doctors and patients not paying much attention to intestinal metaplasia, and the standard review rate is less than 50%, which has delayed the treatment of some patients with high risk of progression; A certain amount of medical resources will be wasted.
发明内容Contents of the invention
针对以上问题,本发明第一方提供了一种胃肠上皮化生进展风险预测方法,可以有效提高肠化风险等级识别效率和识别准确率。In view of the above problems, the first party of the present invention provides a method for predicting the risk of progression of gastrointestinal metaplasia, which can effectively improve the identification efficiency and accuracy of intestinal metaplasia risk level.
为达到以上目的,本发明采取的技术方案是:For achieving above object, the technical scheme that the present invention takes is:
一种胃肠上皮化生进展风险预测方法,包括以下步骤:A method for predicting the risk of progression of gastrointestinal metaplasia, comprising the following steps:
通过获取标志物分割图像、萎缩性胃炎分割图像以及肠化分割图像的标签属性的特征量化值,进行胃镜图像肠化等级分类;By obtaining the feature quantification value of the label attribute of the marker segmentation image, the atrophic gastritis segmentation image and the intestinalization segmentation image, the intestinalization level classification of the gastroscopy image is carried out;
所述标志物分割图像的第一标签属性包括血管属性、褶皱属性、颜色属性、弥漫属性;The first label attributes of the marker segmentation image include blood vessel attributes, fold attributes, color attributes, and diffuse attributes;
所述萎缩性胃炎分割图像的第二标签属性包括粗糙度属性、绒毛样属性、偏白色属性、亮蓝脊属性;The second label attributes of the atrophic gastritis segmented image include roughness attributes, fluff-like attributes, off-white attributes, and bright blue ridge attributes;
所述肠化分割图像的第三标签属性包括位置属性、形态属性。The third label attribute of the intestinalized segmented image includes position attribute and shape attribute.
一些实施例中,所述通过获取标志物分割图像、萎缩性胃炎分割图像以及肠化分割图像的标签属性的特征量化值,进行胃镜图像肠化等级分类,包括以下步骤:In some embodiments, the step of classifying the intestinalization level of the gastroscopic image by acquiring the marker segmentation image, the atrophic gastritis segmentation image and the feature quantification value of the label attribute of the intestinalization segmentation image includes the following steps:
获取胃镜图像,对所述胃镜图像进行标志物分割,获取标志物分割图像;Obtaining a gastroscope image, performing marker segmentation on the gastroscope image, and acquiring a marker segmentation image;
对所述标志物分割图像进行第一标签属性的特征提取,获取第一标签属性对应的第一特征量化值,将第一特征量化值输入已训练的机器学习分类器进行分类,得到胃镜图像萎缩性胃炎分类结果;Carrying out feature extraction of the first label attribute on the marker segmentation image, obtaining the first feature quantization value corresponding to the first label attribute, inputting the first feature quantization value into a trained machine learning classifier for classification, and obtaining gastroscope image atrophy Classification results of gastritis;
对所述萎缩性胃炎分割图像进行第二标签属性的特征提取,获取第二标签属性对应的第二特征量化值,将所述第二特征量化值输入已训练的机器学习分类器进行分类,得到胃镜图像肠化分类结果;Carrying out feature extraction of the second label attribute on the segmented image of atrophic gastritis, obtaining a second feature quantization value corresponding to the second label attribute, inputting the second feature quantization value into a trained machine learning classifier for classification, and obtaining Gastroscopic image enterochemical classification results;
对所述肠化分割图像进行第三标签属性的特征提取,获取第三标签属性对应的第三特征量化值,将所述第三特征量化值输入已训练的机器学习分类器进行分类,得到胃镜图像肠化风险等级分类结果。Carrying out the feature extraction of the third tag attribute on the intestinalization segmented image, obtaining the third feature quantization value corresponding to the third tag attribute, inputting the third feature quantization value into a trained machine learning classifier for classification, and obtaining the gastroscopy Image enterification risk level classification results.
一些实施例中,对所述标志物分割图像进行第一标签属性的特征提取,获取第一标签属性对应的第一特征量化值,包括以下步骤:In some embodiments, the feature extraction of the first label attribute is performed on the marker segmentation image, and the first feature quantization value corresponding to the first label attribute is obtained, including the following steps:
获取标志物分割图像中的血管分割图像;Obtain the blood vessel segmentation image in the marker segmentation image;
根据公式:According to the formula:
得到血管特征量化值label1,其中nv是血管分割图像中血管数目,sv是血管分割图像中血管面积,S是标志物分割图像面积;Obtain the blood vessel feature quantization value label 1 , where n v is the number of blood vessels in the blood vessel segmentation image, s v is the area of blood vessels in the blood vessel segmentation image, and S is the area of the marker segmentation image;
根据公式:According to the formula:
得到褶皱特征量化值label2,其中sz是标志物分割图像中标志物区域内的褶皱面积,nz是标志物分割图像中标志物区域内的褶皱数目,S是标志物分割图像面积,sf是标志物分割图像中非标志物区域内的褶皱面积,nf是标志物分割图像中非标志物区域内的褶皱数量;Get the wrinkle feature quantization value label 2 , where s z is the wrinkle area in the marker region in the marker segmentation image, nz is the number of folds in the marker region in the marker segmentation image, S is the area of the marker segmentation image, s f is the wrinkle area in the non-marker region in the marker segmentation image, n f is the number of folds in the non-marker region in the marker segmentation image;
根据公式:According to the formula:
得到颜色特征量化值label3,其中rc,gc,bc是三通道平均颜色值,S是标志物分割图像中标志物区域的面积,nc是剔除接近黑色的颜色后对剩余列表计算平均数目;Get the color feature quantization value label 3 , where r c , g c , b c are the average color values of the three channels, S is the area of the marker region in the marker segmentation image, and n c is the calculation of the remaining list after removing the color close to black average number;
根据公式:According to the formula:
得到弥漫特征量化值label4,其中M是对整个胃内壁进行采图的数量,wQi,hQi是每张图像宽和高,Si是对每张图像进行标志物分割并在连通域的基础上的到标志物的面积,wbi,hbi是标志物的宽和高,(xbi,ybi)是标志物的形心坐标。The diffuse feature quantification value label 4 is obtained, where M is the number of images collected for the entire gastric inner wall, w Qi , h Qi are the width and height of each image, S i is the marker segmentation of each image and in the connected domain Based on the area to the marker, w bi , h bi are the width and height of the marker, and (x bi , y bi ) are the centroid coordinates of the marker.
一些实施例中,所述血管分割图像,获取步骤包括:In some embodiments, the obtaining step of the blood vessel segmentation image includes:
将标志物分割图像转为灰度图像后进行二值化;Binarize the marker segmentation image into a grayscale image;
对所述二值化的标志物分割图像进行腐蚀操作,得到标志物分割图像掩码图像;performing an erosion operation on the binarized marker segmentation image to obtain a mask image of the marker segmentation image;
对所述标志物分割图像灰度图像进行中值滤波;performing median filtering on the grayscale image of the marker segmentation image;
对所得所述中值滤波后的标志物分割图像进行直方图均衡化;performing histogram equalization on the obtained median-filtered marker segmentation image;
对所述直方图均衡化后的标志物分割图像进行伽马变换;performing gamma transformation on the marker segmented image after the histogram equalization;
对所得所述伽马变换后的标志物分割图像进行卷积操作;performing a convolution operation on the obtained gamma-transformed marker segmentation image;
将所述卷积后的标志物分割图像与所述标志物分割图像掩码图像进行逐位对比,如若掩码图像中某处像素值为0,则将卷积后的标志物分割图像在此处像素值置为0,获得去噪后的标志物分割图像;Comparing the convolutional marker segmentation image with the marker segmentation image mask image bit by bit, if a pixel value in the mask image is 0, the convolutional marker segmentation image is here Set the pixel value at 0 to obtain the denoised marker segmentation image;
对去噪后的标志物分割图像进行对比度拉伸,得到标志物分割图像对应的血管分割图像。Contrast stretching is performed on the denoised marker segmented image to obtain a blood vessel segmented image corresponding to the marker segmented image.
一些实施例中,对所述萎缩性胃炎分割图像进行第二标签属性的特征提取,获取第二标签属性对应的第二特征量化值,包括以下步骤:In some embodiments, the feature extraction of the second label attribute is performed on the segmented image of atrophic gastritis, and the second feature quantization value corresponding to the second label attribute is obtained, including the following steps:
根据公式:According to the formula:
得到粗糙度特征量化值label5,其中WW,HW分别是萎缩性胃炎分割图像的宽和高,Pmean是萎缩性胃炎分割图像的平均像素值,imgW为萎缩性胃炎分割图像,W0为按照某一设定的阈值将萎缩性胃炎分割图进行二值化后方差最大所在行,0<W0<WW;Get the roughness feature quantization value label 5 , where W W , H W are the width and height of the segmented image of atrophic gastritis respectively, P mean is the average pixel value of the segmented image of atrophic gastritis, img W is the segmented image of atrophic gastritis, W 0 is the row with the largest variance after binarizing the atrophic gastritis segmentation map according to a set threshold, 0<W 0 <W W ;
根据公式:According to the formula:
得到绒毛样特征量化值label6,其中Nr是绒毛样区域数目,sri是绒毛样区域的面积,wri,hri是绒毛样区域最小外接矩形的宽和高,nri是绒毛样区域的角点并在角点处进行打断获得绒毛段的数目;Get the fluff-like feature quantization value label 6 , where N r is the number of fluff-like regions, s ri is the area of the fluff-like regions, w ri , h ri are the width and height of the smallest circumscribed rectangle of the fluff-like regions, and n ri is the fluff-like regions and break at the corners to obtain the number of fluff segments;
根据公式:According to the formula:
得到偏白色特征量化值label7,其中nb是最大类像素点数目,(rbi,gbi,bbi)颜色数目最多类别的各个像素点的像素值;Obtain the partial white feature quantization value label 7 , wherein n b is the maximum number of pixel points, and (r bi , g bi , b bi ) the pixel value of each pixel point of the category with the largest number of colors;
根据公式:According to the formula:
得到亮蓝脊特征量化值label8,其中WL,HL是亮蓝脊分割图像的宽和高,imgL是为亮蓝脊分割图像,(xRSL,yRSL)是亮蓝脊分割图像形心坐标,SRSL是亮蓝脊分割图像面积,(xRS,yRS)是染色放大萎缩性胃炎分割图像形心坐标,SRS是染色放大萎缩性胃炎区域面积,是标准亮蓝脊三通道平均像素值,PL是亮蓝脊分割图像平均像素值。Get the bright blue ridge feature quantization value label 8 , where W L , HL are the width and height of the bright blue ridge segmented image, img L is the bright blue ridge segmented image, (x RSL , y RSL ) is the bright blue ridge segmented image Centroid coordinates, S RSL is the bright blue ridge segmented image area, (x RS , y RS ) is the centroid coordinates of the stained and enlarged atrophic gastritis segmented image, S RS is the area of the stained and enlarged atrophic gastritis, is the average pixel value of the three channels of the standard bright blue ridge, and PL is the average pixel value of the bright blue ridge segmented image.
一些实施例中,对所述肠化分割图像进行第三标签属性的特征提取,获取第三标签属性对应的第三特征量化值,包括以下步骤:In some embodiments, the feature extraction of the third label attribute is performed on the intestinalization segmentation image, and the third feature quantization value corresponding to the third label attribute is obtained, including the following steps:
根据公式:According to the formula:
得出位置特征量化值label9,其中SC是肠化分割图像面积,[(xFDX,yFDX),(xFDD,yFDD),(xFJ,yFJ),(xFTX,yFTX),(xFTD,yFTD)]是胃风险部位分割图像形心坐标,[SFDX,SFDD,SFJ,SFTX,SFTD]是风险部位面积,listd=[dFDX,dFDD,dFJ,dFTX,dFTD]是肠化分割图像与各个风险部位距离;Get the location feature quantization value label9, where S C is the intestinalized segmented image area, [(x FDX ,y FDX ),(x FDD ,y FDD ),(x FJ ,y FJ ),(x FTX ,y FTX ) ,(x FTD ,y FTD )] is the centroid coordinates of the gastric risk part segmentation image, [S FDX , S FDD , S FJ , S FTX , S FTD ] is the area of the risk part, list d = [d FDX , d FDD , d FJ , d FTX , d FTD ] are the distances between the intestinalization segmentation image and each risk site;
根据公式:According to the formula:
得出形态特征量化值label10,其中WC,HC分别是肠化分割图像最小外接矩形的宽和高,(xC,yC)是肠化分割图像的形心坐标,rC是肠化分割图像最小外接圆半径,nf是最小外接圆内非肠化分割区域的数目,sfi是非肠化分割区域面积,(xfi,yfi)是肠化分割图像最小外接圆形心。The morphological feature quantification value label10 is obtained, where W C , H C are the width and height of the smallest circumscribed rectangle of the intestinalization segmentation image, (x C , y C ) are the centroid coordinates of the intestinalization segmentation image, r C is the intestinalization Radius of the minimum circumscribed circle of the segmented image, n f is the number of non-intestinalized segmentation regions in the minimum circumscribed circle, s fi is the area of non-intestinalized segmented regions, (x fi , y fi ) is the center of the minimum circumscribed circle of the intestinalized segmented image.
一些实施例中,所述将所述第三特征量化值输入已训练的机器学习分类器进行分类,得到胃镜图像肠化风险等级分类结果,其中分类器包括特征拟合子网络和分类子网络;In some embodiments, the third feature quantization value is input into a trained machine learning classifier for classification to obtain the classification result of gastroscopic image intestinalization risk level, wherein the classifier includes a feature fitting sub-network and a classification sub-network;
所述得到胃镜图像肠化风险等级分类结果,包括以下步骤:The obtaining the classification result of gastroscopic image intestinal metaplasia risk level comprises the following steps:
采用所述特征拟合子网络对所述标签属性的特征量化值进行拟合处理,得到判定系数;Using the feature fitting sub-network to perform fitting processing on the feature quantization value of the tag attribute to obtain a determination coefficient;
基于所述判定系数,采用所述分类子网络进行分析,得到所述识别结果。Based on the determination coefficient, the classification sub-network is used for analysis to obtain the identification result.
针对以上问题,本发明第二方提供了一种胃肠上皮化生进展风险预测装置,可以有效提高肠化风险等级识别效率和识别准确率。In view of the above problems, the second aspect of the present invention provides a device for predicting the risk of progression of gastrointestinal metaplasia, which can effectively improve the identification efficiency and accuracy of intestinal metaplasia risk level.
为达到以上目的,本发明采取的技术方案是:For achieving above object, the technical scheme that the present invention takes is:
一种胃肠上皮化生进展风险预测装置,用于:A device for predicting the risk of progression of gastrointestinal metaplasia, used for:
通过获取标志物分割图像、萎缩性胃炎分割图像以及肠化分割图像的标签属性的特征量化值,进行胃镜图像肠化等级分类;By obtaining the feature quantification value of the label attribute of the marker segmentation image, the atrophic gastritis segmentation image and the intestinalization segmentation image, the intestinalization level classification of the gastroscopy image is carried out;
所述标志物分割图像的第一标签属性包括血管属性、褶皱属性、颜色属性、弥漫属性;The first label attributes of the marker segmentation image include blood vessel attributes, fold attributes, color attributes, and diffuse attributes;
所述萎缩性胃炎分割图像的第二标签属性包括粗糙度属性、绒毛样属性、偏白色属性、亮蓝脊属性;The second label attributes of the atrophic gastritis segmented image include roughness attributes, fluff-like attributes, off-white attributes, and bright blue ridge attributes;
所述肠化分割图像的第三标签属性包括位置属性、形态属性。The third label attribute of the intestinalized segmented image includes position attribute and shape attribute.
一些实施例中,包括:Some examples include:
采集模块,其用于获取胃镜图像;Acquisition module, it is used for obtaining gastroscope image;
分割模块,其用于对所述胃镜图像进行标志物分割,获取标志物分割图像;A segmentation module, which is used to perform marker segmentation on the gastroscope image, and obtain a marker segmentation image;
特征提取模块,其用于对所述标志物分割图像进行第一标签属性的特征提取,获取第一标签属性对应的第一特征量化值;A feature extraction module, which is used to perform feature extraction of a first label attribute on the marker segmented image, and obtain a first feature quantization value corresponding to the first label attribute;
特征提取模块,其还用于对所述萎缩性胃炎分割图像进行第二标签属性的特征提取,获取第二标签属性对应的第二特征量化值,对所述肠化分割图像进行第三标签属性的特征提取,获取第三标签属性对应的第三特征量化值;A feature extraction module, which is also used to perform feature extraction of the second label attribute on the atrophic gastritis segmented image, obtain a second feature quantization value corresponding to the second label attribute, and perform a third label attribute on the intestinalization segmented image feature extraction, and obtain the third feature quantization value corresponding to the third tag attribute;
生成模块,其用于将第一特征量化值输入已训练的机器学习分类器进行分类,得到胃镜图像萎缩性胃炎分类结果,将所述第二特征量化值输入已训练的机器学习分类器进行分类,得到胃镜图像肠化分类结果;将所述第三特征量化值输入已训练的机器学习分类器进行分类,得到胃镜图像肠化风险等级分类结果。A generation module, which is used to input the first feature quantization value into the trained machine learning classifier for classification, obtain the classification result of gastroscopic image atrophic gastritis, and input the second feature quantization value into the trained machine learning classifier for classification , to obtain the classification result of intestinalization of the gastroscopic image; input the third feature quantization value into the trained machine learning classifier for classification, and obtain the classification result of the risk level of intestinalization of the gastroscopic image.
一些实施例中,所述特征提取模块用于:In some embodiments, the feature extraction module is used for:
对所述标志物分割图像进行第一标签属性的特征提取,获取第一标签属性对应的第一特征量化值,包括以下步骤:Carrying out the feature extraction of the first label attribute on the segmentation image of the marker, and obtaining the first feature quantization value corresponding to the first label attribute, comprising the following steps:
对所述标志物分割图像进行第一标签属性的特征提取,获取第一标签属性对应的第一特征量化值,包括以下步骤:Carrying out the feature extraction of the first label attribute on the segmentation image of the marker, and obtaining the first feature quantization value corresponding to the first label attribute, comprising the following steps:
获取标志物分割图像中的血管分割图像;Obtain the blood vessel segmentation image in the marker segmentation image;
根据公式:According to the formula:
得到血管特征量化值label1,其中nv是血管分割图像中血管数目,sv是血管分割图像中血管面积,S是标志物分割图像面积;Obtain the blood vessel feature quantization value label 1 , where n v is the number of blood vessels in the blood vessel segmentation image, s v is the area of blood vessels in the blood vessel segmentation image, and S is the area of the marker segmentation image;
根据公式:According to the formula:
得到褶皱特征量化值label2,其中sz是标志物分割图像中标志物区域内的褶皱面积,nz是标志物分割图像中标志物区域内的褶皱数目,S是标志物分割图像面积,sf是标志物分割图像中非标志物区域内的褶皱面积,nf是标志物分割图像中非标志物区域内的褶皱数量;Get the wrinkle feature quantization value label 2 , where s z is the wrinkle area in the marker region in the marker segmentation image, nz is the number of folds in the marker region in the marker segmentation image, S is the area of the marker segmentation image, s f is the wrinkle area in the non-marker region in the marker segmentation image, n f is the number of folds in the non-marker region in the marker segmentation image;
根据公式:According to the formula:
得到颜色特征量化值label3,其中rc,gc,bc是三通道平均颜色值,S是标志物分割图像中标志物区域的面积,nc是剔除接近黑色的颜色后对剩余列表计算平均数目;Get the color feature quantization value label 3 , where r c , g c , b c are the average color values of the three channels, S is the area of the marker region in the marker segmentation image, and n c is the calculation of the remaining list after removing the color close to black average number;
根据公式:According to the formula:
得到弥漫特征量化值label4,其中M是对整个胃内壁进行采图的数量,wQi,hQi是每张图像宽和高,Si是对每张图像进行标志物分割并在连通域的基础上的到标志物的面积,wbi,hbi是标志物的宽和高,(xbi,ybi)是标志物的形心坐标。The diffuse feature quantification value label 4 is obtained, where M is the number of images collected for the entire gastric inner wall, w Qi , h Qi are the width and height of each image, S i is the marker segmentation of each image and in the connected domain Based on the area to the marker, w bi , h bi are the width and height of the marker, and (x bi , y bi ) are the centroid coordinates of the marker.
本发明中的胃肠上皮化生进展风险预测方法包括以下步骤:通过获取标志物分割图像、萎缩性胃炎分割图像以及肠化分割图像的标签属性的特征量化值,进行胃镜图像肠化等级分类;所述标志物分割图像的第一标签属性包括血管属性、褶皱属性、颜色属性、弥漫属性;所述萎缩性胃炎分割图像的第二标签属性包括粗糙度属性、绒毛样属性、偏白色属性、亮蓝脊属性;所述肠化分割图像的第三标签属性包括位置属性、形态属性。本发明充分考量了胃镜图像多个不同属性的特征量化值对图像处理的准确性及直观性影响,有效提高肠化风险等级识别效率和识别准确率。The method for predicting the risk of progression of gastrointestinal metaplasia in the present invention includes the following steps: classifying the intestinal metaplasia grade of the gastroscopic image by acquiring the feature quantification value of the label attribute of the marker segmented image, the atrophic gastritis segmented image and the intestinal metaplasia segmented image; The first label attribute of the marker segmentation image includes blood vessel attribute, fold attribute, color attribute, and diffuse attribute; the second label attribute of the atrophic gastritis segmentation image includes roughness attribute, fluffy attribute, off-white attribute, bright Blue ridge attribute; the third label attribute of the intestinalized segmentation image includes position attribute and shape attribute. The present invention fully considers the influence of multiple characteristic quantification values of different attributes of the gastroscope image on the accuracy and intuition of image processing, and effectively improves the identification efficiency and identification accuracy of intestinal metaplasia risk levels.
附图说明Description of drawings
图1为本发明实施例中一种胃肠上皮化生进展风险预测方法流程图;Fig. 1 is a flow chart of a method for predicting the risk of gastrointestinal metaplasia progression in an embodiment of the present invention;
图2为本发明实施例中胃肠上皮化生进展风险预测方法的标志物分割图像效果图;Fig. 2 is an image effect diagram of marker segmentation in the method for predicting the risk of progression of gastrointestinal metaplasia in the embodiment of the present invention;
图3为本发明实施例中胃肠上皮化生进展风险预测方法的非萎缩性胃炎/萎缩性胃炎展示图;Fig. 3 is a display diagram of non-atrophic gastritis/atrophic gastritis in the method for predicting the risk of progression of gastrointestinal metaplasia in the embodiment of the present invention;
图4为本发明实施例中胃肠上皮化生进展风险预测方法的萎缩性胃炎/肠化展示图;Fig. 4 is a display diagram of atrophic gastritis/intestinal metaplasia in the method for predicting the risk of progression of gastrointestinal metaplasia in the embodiment of the present invention;
图5为本发明实施例中胃肠上皮化生进展风险预测方法的血管提取效果图;Fig. 5 is an effect diagram of blood vessel extraction of the method for predicting the risk of progression of gastrointestinal metaplasia in the embodiment of the present invention;
图6为本发明实施例中胃肠上皮化生进展风险预测方法的颜色主成分提取效果图;Fig. 6 is an extraction effect diagram of color principal components of the method for predicting the risk of progression of gastrointestinal metaplasia in the embodiment of the present invention;
图7为本发明实施例中胃肠上皮化生进展风险预测方法的绒毛样分割效果图;Fig. 7 is a villi-like segmentation effect diagram of the method for predicting the risk of progression of gastrointestinal metaplasia in the embodiment of the present invention;
图8为本申请实施例中胃肠上皮化生进展风险预测方法的亮蓝脊展示图。Fig. 8 is a diagram showing bright blue ridges of the method for predicting the risk of progression of gastrointestinal metaplasia in the embodiment of the present application.
具体实施方式Detailed ways
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present application clearer, the technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application. Obviously, the described embodiments It is a part of the embodiments of this application, but not all of them. Based on the embodiments in the present application, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present application.
参见图1所示,本发明实施例第一方提供一种胃肠上皮化生进展风险预测方法包括以下步骤:Referring to Figure 1, the first party of the embodiment of the present invention provides a method for predicting the risk of gastrointestinal metaplasia progression, which includes the following steps:
S1.获取胃镜图像,对所述胃镜图像进行标志物分割,获取标志物分割图像;S1. Obtain a gastroscope image, perform marker segmentation on the gastroscope image, and acquire a marker segmented image;
其中,获取胃镜图像,所述胃镜图像可以是白光图像,也可以是染色图像,也可以是染色放大图像,该胃镜图像即为通过电子内镜拍摄胃部的电子胃镜图像。具体地,可以通过胃镜采集得到胃镜图像,也可以从计算机设备的存储器中预先存储的图像库中获取胃镜图像。Wherein, the gastroscope image is acquired, and the gastroscope image can be a white light image, a stained image, or a stained magnified image, and the gastroscope image is an electronic gastroscope image of the stomach captured by an electronic endoscope. Specifically, the gastroscope image may be collected through a gastroscope, or the gastroscope image may be acquired from an image library pre-stored in the memory of the computer device.
对所述胃镜图像进行标志物分割,获取标志物分割图像,标志物分割图像如图2所示。Marker segmentation is performed on the gastroscope image to obtain a marker segmented image, as shown in FIG. 2 .
具体地,将胃镜图像和标志物区域作为样本图像,预先训练标志物分割模型,例如,选择Unet++、Mask-RCNN等图像分割网络模型,在一具体实施方式中,将胃镜图像作为训练后的分割模型的输入,分割模型的输出结果为标志物分割图像。可以理解地,本实施例中通过得到标志物分割图,以便后续对标志物分割图像进行多个标签属性特征量化,提高量化的准确度。Specifically, the gastroscope image and the marker region are used as sample images, and the marker segmentation model is pre-trained, for example, image segmentation network models such as Unet++ and Mask-RCNN are selected. In a specific embodiment, the gastroscope image is used as the segmentation after training. The input of the model, the output of the segmentation model is the landmark segmentation image. It can be understood that in this embodiment, the segmentation map of the marker is obtained, so as to subsequently perform multiple label attribute feature quantification on the segmented image of the marker, so as to improve the accuracy of quantification.
S2.对所述标志物分割图像进行第一标签属性的特征提取,获取第一标签属性对应的第一特征量化值,将第一特征量化值输入已训练的机器学习分类器进行分类,得到胃镜图像萎缩性胃炎分类结果;S2. Perform feature extraction of the first label attribute on the marker segmented image, obtain the first feature quantization value corresponding to the first label attribute, input the first feature quantization value into the trained machine learning classifier for classification, and obtain a gastroscope Image classification results of atrophic gastritis;
对所述标志物分割图像进行第一标签属性的特征提取,获取第一标签属性对应的第一特征量化值,其中第一标签属性是指标志物分割图像的多个属性,例如,标志物分割图像的血管属性、褶皱属性、颜色属性、弥漫属性等,第一特征量化值是指各个第一标签属性的特征对应的量化值。Perform feature extraction of the first label attribute on the marker segmentation image, and obtain a first feature quantization value corresponding to the first label attribute, wherein the first label attribute refers to multiple attributes of the marker segmentation image, for example, marker segmentation For the blood vessel attribute, fold attribute, color attribute, diffuse attribute, etc. of the image, the first feature quantization value refers to the quantization value corresponding to the feature of each first label attribute.
具体地,采用特征提取方法对目标区域图像进行特征提取,得到第一特征量化值,其中的特征提取方法可以是人工特征提取方法结合基于图像特征分析的算法如像素邻域均值计算、最大像素值提取等,计算得到第一特征量化值,也可以是深度学习的特征提取方法,如,卷积神经网络CNN、UNet++等,具体可根据第一标签属性的特征进行选取,此处不作限制。本实施例中,通过对标志物分割图像进行特征提取,获取对应的第一特征量化值,实现了对标志物分割图像的各个第一标签属性的特征的量化计算,使得特征量化值更加全面丰富,以便后续基于该多个第一特征量化值进行准确直观的图像分析和识别,提高了对萎缩性胃炎识别的准确率。Specifically, the feature extraction method is used to extract the features of the image of the target area to obtain the first feature quantization value, wherein the feature extraction method can be an artificial feature extraction method combined with an algorithm based on image feature analysis, such as pixel neighborhood mean calculation, maximum pixel value Extraction, etc., to calculate the first feature quantization value, can also be a feature extraction method of deep learning, such as convolutional neural network CNN, UNet++, etc., which can be selected according to the characteristics of the first label attribute, and there is no limitation here. In this embodiment, by performing feature extraction on the marker segmented image and obtaining the corresponding first feature quantization value, the quantitative calculation of the features of each first label attribute of the marker segmented image is realized, making the feature quantization value more comprehensive and rich , so that subsequent accurate and intuitive image analysis and recognition can be performed based on the plurality of first characteristic quantification values, and the accuracy rate of recognition of atrophic gastritis is improved.
一些实施例中,将各个第一特征量化值输入已训练的机器学习分类器进行分类,得到萎缩性胃炎的分类结果。其中,已训练的机器学习分类器可通过样本学习具备分类能力的机器学习算法模型实现,本实施例的机器学习分类器用于将不同的第一特征值集合划分到非萎缩性胃炎或者萎缩性胃炎结果中的一类。具体地,可以利用至少一个机器学习模型进行分类的分类器。其中的机器学习模型可以是如下的一个或者多个:神经网络(例如,卷积神经网络、BP神经网络等)、逻辑回归模型、支持向量机、决策树、随机森林、感知器以及其它机器学习模型。作为这样的机器学习模型的训练的部分,训练输入是各个第一特征量化值,例如,血管属性、褶皱属性、颜色属性、弥漫属性等,通过训练,建立第一特征值集合与待识别的胃镜图像萎缩性胃炎应关系的分类器,使得该预设分类器具备判断待识别的胃镜图像对应的分类结果是非萎缩性胃炎或者萎缩性胃炎结果的能力。本实施例中,该分类器为二分类器,即得到2个分类结果,也即非萎缩性胃炎结果或者萎缩性胃炎结果,如图3所示。可以理解地,本实施例中充分考量了萎缩性胃炎分割图像多个不同属性的特征量化值及萎缩性胃炎分割图像多个不同属性的特征量化值对图像处理的准确性及直观性影响,通过提取信息量更加丰富的特征并对多个不同属性的特征进行量化及综合处理,提高了特征值量化的合理性,相较于传统的只考虑单一特征信息及单一的统计比较方法,大大提高了萎缩性胃炎识别效率。In some embodiments, each first feature quantization value is input into a trained machine learning classifier for classification, and a classification result of atrophic gastritis is obtained. Wherein, the trained machine learning classifier can be realized by learning a machine learning algorithm model with classification ability through samples, and the machine learning classifier in this embodiment is used to divide different first feature value sets into non-atrophic gastritis or atrophic gastritis A class in the result. Specifically, at least one machine learning model can be used to classify the classifier. The machine learning model can be one or more of the following: neural network (for example, convolutional neural network, BP neural network, etc.), logistic regression model, support vector machine, decision tree, random forest, perceptron and other machine learning Model. As part of the training of such a machine learning model, the training input is each first feature quantization value, for example, blood vessel attributes, fold attributes, color attributes, diffuse attributes, etc., through training, the first feature value set and the gastroscope to be identified are established. The classifier of the image atrophic gastritis response relationship enables the preset classifier to have the ability to judge whether the classification result corresponding to the gastroscope image to be recognized is the result of non-atrophic gastritis or atrophic gastritis. In this embodiment, the classifier is a binary classifier, that is, two classification results are obtained, that is, the result of non-atrophic gastritis or the result of atrophic gastritis, as shown in FIG. 3 . It can be understood that in this embodiment, the influence of the quantified values of the multiple attributes of the atrophic gastritis segmented image on the accuracy and intuitiveness of the image processing is fully considered. Extracting features with richer information and quantifying and comprehensively processing multiple features with different attributes improves the rationality of feature value quantification. Compared with traditional methods that only consider a single feature information and a single statistical comparison method, it greatly improves Atrophic gastritis identification efficiency.
S3.对所述萎缩性胃炎分割图像进行第二标签属性的特征提取,获取第二标签属性对应的第二特征量化值,将所述第二特征量化值输入已训练的机器学习分类器进行分类,得到胃镜图像肠化分类结果;S3. Perform feature extraction of the second label attribute on the segmented image of atrophic gastritis, obtain a second feature quantization value corresponding to the second label attribute, and input the second feature quantization value into a trained machine learning classifier for classification , to obtain the intestinalization classification result of the gastroscope image;
一些实施例中,对萎缩性胃炎分割图像进行多个第二标签属性的特征提取,获取多个第二标签属性对应的第二特征量化值。其中,第二标签属性是指萎缩性胃炎分割图像的多个属性,例如,萎缩性胃炎分割图像的粗糙度属性、绒毛样属性、偏白色属性、亮蓝脊属性等,第二特征量化值是指各个第二标签属性的特征对应的量化值。In some embodiments, the feature extraction of multiple second label attributes is performed on the segmented image of atrophic gastritis, and the second feature quantization values corresponding to the multiple second label attributes are obtained. Wherein, the second label attribute refers to multiple attributes of the atrophic gastritis segmented image, for example, the roughness attribute, fluffy attribute, off-white attribute, bright blue ridge attribute, etc. of the atrophic gastritis segmented image, and the second feature quantization value is Refers to the quantized value corresponding to the feature of each second label attribute.
具体地,采用特征提取方法对目标区域图像进行特征提取,得到第二特征量化值,其中的特征提取方法可以是人工特征提取方法结合基于图像特征分析的算法如像素邻域均值计算、最大像素值提取等,计算得到第二特征量化值,也可以是深度学习的特征提取方法,如,卷积神经网络CNN、UNet++等,具体可根据第二标签属性的特征进行选取,此处不作限制。本实施例中,通过对萎缩性胃炎分割图像进行特征提取,获取对应的第二特征量化值,实现了对萎缩性胃炎分割图像的各个第二标签属性的特征的量化计算,使得特征量化值更加全面丰富,以便后续基于该多个第二特征量化值进行准确直观的图像分析和识别,提高了对肠化识别的准确率。Specifically, the feature extraction method is used to extract the features of the image of the target area to obtain the second feature quantization value, wherein the feature extraction method can be an artificial feature extraction method combined with an algorithm based on image feature analysis, such as pixel neighborhood mean value calculation, maximum pixel value Extraction, etc., to calculate the second feature quantization value, can also be a feature extraction method of deep learning, such as convolutional neural network CNN, UNet++, etc., which can be selected according to the characteristics of the second label attribute, which is not limited here. In this embodiment, by performing feature extraction on the segmented image of atrophic gastritis and obtaining the corresponding second feature quantization value, the quantitative calculation of the features of each second label attribute of the segmented image of atrophic gastritis is realized, so that the feature quantization value is more accurate. It is comprehensive and enriched, so that accurate and intuitive image analysis and recognition can be performed subsequently based on the plurality of second characteristic quantification values, and the accuracy rate of intestinalization recognition is improved.
一些实施例中,将各个第二特征量化值输入已训练的机器学习分类器进行分类,得到肠化的分类结果。其中,已训练的机器学习分类器可通过样本学习具备分类能力的机器学习算法模型实现,本实施例的机器学习分类器用于将不同的第二特征值集合划分到非肠化或者肠化结果中的一类。具体地,可以利用至少一个机器学习模型进行分类的分类器。其中的机器学习模型可以是如下的一个或者多个:神经网络(例如,卷积神经网络、BP神经网络等)、逻辑回归模型、支持向量机、决策树、随机森林、感知器以及其它机器学习模型。作为这样的机器学习模型的训练的部分,训练输入是各个第二特征量化值,例如,粗糙度属性、绒毛样属性、偏白色属性、亮蓝脊属性等,通过训练,建立第二特征值集合与待识别的胃镜图像肠化对应关系的分类器,使得该预设分类器具备判断待识别的胃镜图像对应的分类结果是非肠化或者肠化结果的能力。本实施例中,该分类器为二分类器,即得到2个分类结果,也即非肠化或者肠化结果,如图4所示。可以理解地,本实施例中充分考量了萎缩性胃炎分割图像多个不同属性的特征量化值及萎缩性胃炎分割图像多个不同属性的特征量化值对图像处理的准确性及直观性影响,通过提取信息量更加丰富的特征并对多个不同属性的特征进行量化及综合处理,提高了特征值量化的合理性,相较于传统的只考虑单一特征信息及单一的统计比较方法,大大提高了肠化识别效率。In some embodiments, each second feature quantization value is input into a trained machine learning classifier for classification, and an intestinalized classification result is obtained. Wherein, the trained machine learning classifier can be realized by learning a machine learning algorithm model capable of classification through samples, and the machine learning classifier in this embodiment is used to divide different second feature value sets into non-intestinalized or intestinalized results of a class. Specifically, at least one machine learning model can be used to classify the classifier. The machine learning model can be one or more of the following: neural network (for example, convolutional neural network, BP neural network, etc.), logistic regression model, support vector machine, decision tree, random forest, perceptron and other machine learning Model. As part of the training of such a machine learning model, the training input is each second feature quantization value, for example, roughness attribute, fluffy attribute, off-white attribute, bright blue ridge attribute, etc. Through training, a second feature value set is established The classifier corresponding to the intestinalization of the gastroscope image to be recognized enables the preset classifier to have the ability to determine whether the classification result corresponding to the gastroscope image to be recognized is a result of non-intestinalization or intestinalization. In this embodiment, the classifier is a binary classifier, that is, two classification results are obtained, that is, non-intestinalized or intestinalized results, as shown in FIG. 4 . It can be understood that in this embodiment, the influence of the quantified values of the multiple attributes of the atrophic gastritis segmented image on the accuracy and intuitiveness of the image processing is fully considered. Extracting features with richer information and quantifying and comprehensively processing multiple features with different attributes improves the rationality of feature value quantification. Compared with traditional methods that only consider a single feature information and a single statistical comparison method, it greatly improves Enterochemical recognition efficiency.
S4.对所述肠化分割图像进行第三标签属性的特征提取,获取第三标签属性对应的第三特征量化值,将所述第三特征量化值输入已训练的机器学习分类器进行分类,得到胃镜图像肠化风险等级分类结果。S4. Perform feature extraction of the third label attribute on the intestinalized segmented image, obtain a third feature quantization value corresponding to the third label attribute, and input the third feature quantization value into a trained machine learning classifier for classification, The risk classification results of intestinal metaplasia in gastroscopy images were obtained.
一些实施例中,对肠化分割图像进行多个第三标签属性的特征提取,获取多个第三标签属性对应的第三特征量化值。In some embodiments, feature extraction of multiple third label attributes is performed on the intestinalization segmentation image, and third feature quantization values corresponding to the multiple third label attributes are obtained.
其中,第三标签属性是指肠化分割图像的多个属性,例如,肠化分割图像的位置属性、形态属性等,第三特征量化值是指各个第三标签属性的特征对应的量化值。Wherein, the third label attribute refers to a plurality of attributes of the intestinalized segmented image, for example, the position attribute, shape attribute, etc. of the intestinalized segmented image, and the third feature quantization value refers to the quantized value corresponding to the feature of each third label attribute.
具体地,采用特征提取方法对目标区域图像进行特征提取,得到第三特征量化值,其中的特征提取方法可以是人工特征提取方法结合基于图像特征分析的算法如像素邻域均值计算、最大像素值提取等,计算得到第三特征量化值,也可以是深度学习的特征提取方法,如,卷积神经网络CNN、UNet++等,具体可根据第三标签属性的特征进行选取,此处不作限制。本实施例中,通过对肠化分割图像进行特征提取,获取对应的第三特征量化值,实现了对肠化分割图像的各个第三标签属性的特征的量化计算,使得特征量化值更加全面丰富,以便后续基于该多个第三特征量化值进行准确直观的图像分析和识别,提高了对肠化风险等级识别的准确率。Specifically, the feature extraction method is used to extract the features of the image of the target area to obtain the third feature quantization value, wherein the feature extraction method can be an artificial feature extraction method combined with an algorithm based on image feature analysis, such as the calculation of the mean value of the pixel neighborhood, the maximum pixel value Extraction, etc., to calculate the third feature quantization value, can also be a feature extraction method of deep learning, such as convolutional neural network CNN, UNet++, etc., which can be selected according to the characteristics of the third label attribute, and there is no limitation here. In this embodiment, by performing feature extraction on the intestinalization segmentation image and obtaining the corresponding third feature quantization value, the quantitative calculation of the features of each third label attribute of the intestinalization segmentation image is realized, making the feature quantization value more comprehensive and rich , so that subsequent accurate and intuitive image analysis and identification can be performed based on the plurality of third characteristic quantification values, and the accuracy rate of identification of intestinalization risk level is improved.
将各个第三特征量化值输入已训练的机器学习分类器进行分类,得到肠化的分类结果。Each third feature quantization value is input into a trained machine learning classifier for classification, and an intestinalized classification result is obtained.
其中,已训练的机器学习分类器可通过样本学习具备分类能力的机器学习算法模型实现,本实施例的机器学习分类器用于将不同的特征值集合划分到低风险或者高风险结果中的一类。具体地,可以利用至少一个机器学习模型进行分类的分类器。其中的机器学习模型可以是如下的一个或者多个:神经网络(例如,卷积神经网络、BP神经网络等)、逻辑回归模型、支持向量机、决策树、随机森林、感知器以及其它机器学习模型。作为这样的机器学习模型的训练的部分,训练输入是各个第三特征量化值,例如,位置属性、形态属性等,通过训练,建立第三特征值集合与待识别的胃镜图像肠化风险等级对应关系的分类器,使得该预设分类器具备判断待识别的胃镜图像对应的分类结果是低风险或者高风险结果的能力。本实施例中,该分类器为二分类器,即得到2个分类结果,也即低风险或者高风险结果。可以理解地,本实施例中充分考量了肠化分割图像多个不同属性的特征量化值及肠化分割图像多个不同属性的特征量化值对图像处理的准确性及直观性影响,通过提取信息量更加丰富的特征并对多个不同属性的特征进行量化及综合处理,提高了特征值量化的合理性,相较于传统的只考虑单一特征信息及单一的统计比较方法,大大提高了肠化风险等级识别效率。Among them, the trained machine learning classifier can be realized by learning a machine learning algorithm model with classification capabilities through samples. The machine learning classifier in this embodiment is used to divide different feature value sets into low-risk or high-risk results. . Specifically, at least one machine learning model can be used to classify the classifier. The machine learning model can be one or more of the following: neural network (for example, convolutional neural network, BP neural network, etc.), logistic regression model, support vector machine, decision tree, random forest, perceptron and other machine learning Model. As part of the training of such a machine learning model, the training input is each third feature quantization value, for example, position attribute, morphological attribute, etc., and through training, the third feature value set is established to correspond to the intestinalization risk level of the gastroscope image to be identified The classifier of the relationship makes the preset classifier capable of judging whether the classification result corresponding to the gastroscope image to be recognized is a low-risk or high-risk result. In this embodiment, the classifier is a binary classifier, that is, two classification results are obtained, that is, low-risk or high-risk results. It can be understood that in this embodiment, the quantified values of the multiple attributes of the intestinalized segmented image and the influence of the quantized values of the multiple attributes of the segmented image with the intestinalized segmented image on the accuracy and intuitiveness of the image processing are fully considered. By extracting the information Quantify and comprehensively process multiple features with different attributes, which improves the rationality of feature value quantification. Compared with the traditional method of only considering a single feature information and a single statistical comparison method, it greatly improves the quality Risk level identification efficiency.
上述实施例提供了一种胃肠上皮化生进展风险预测方法,首先获取并根据待识别的胃镜图像进行标志物分割得到标志物分割图像,其次获取标志物分割图像对应的多个第一特征量化值,其次将多个第一特征量化值输入已训练的机器学习分类器得到萎缩性胃炎识别结果,再次获取萎缩性胃炎分割图像多个第二特征量化值,再次将多个第二特征量化值输入已训练的机器学习分类器得到肠化识别结果,再次获取肠化分割图像多个第三特征量化值,再次将多个第三特征量化值输入已训练的机器学习分类器得到肠化风险等级识别结果;本实施例充分考量了胃镜图像多个不同属性的特征量化值对图像处理的准确性及直观性影响,有效提高肠化风险等级识别效率和识别准确率。The above embodiment provides a method for predicting the risk of gastrointestinal metaplasia progression. First, obtain and perform marker segmentation based on the gastroscope image to be recognized to obtain a marker segmentation image, and then acquire multiple first feature quantifications corresponding to the marker segmentation image. value, and then input multiple first feature quantization values into the trained machine learning classifier to obtain the recognition result of atrophic gastritis, obtain multiple second feature quantization values of atrophic gastritis segmented image again, and again multiple second feature quantization values Input the trained machine learning classifier to obtain the intestinalization identification result, obtain multiple third feature quantization values of the intestinalization segmentation image again, and input multiple third feature quantization values into the trained machine learning classifier again to obtain the intestinalization risk level Recognition results; this embodiment fully considers the impact of the quantified values of multiple attributes of the gastroscope image on the accuracy and intuition of image processing, effectively improving the identification efficiency and accuracy of the risk level of intestinal metaplasia.
在一个实施例中,多个第一标签属性包括血管属性、褶皱属性、颜色属性、弥漫属性;对标志物分割图像进行多个第一标签属性的特征提取,获取各个第一标签属性对应的第一特征量化值的步骤,包括:采用预设的血管量化方法确定标志物分割图像血管量化结果;采用预设的褶皱量化方法确定标志物分割图像褶皱量化结果;采用预设的颜色量化方法确定标志物分割图像颜色量化结果;采用预设的弥漫量化方法确定标志物分割图像弥漫量化结果。In one embodiment, the multiple first label attributes include blood vessel attributes, fold attributes, color attributes, and diffuse attributes; the feature extraction of multiple first label attributes is performed on the landmark segmentation image, and the first label attributes corresponding to each first label attribute are obtained. A step of feature quantification, comprising: using a preset blood vessel quantification method to determine the blood vessel quantification result of the marker segmentation image; using a preset wrinkle quantification method to determine the marker segmentation image wrinkle quantification result; using a preset color quantification method to determine the marker The color quantification result of the object segmentation image; the diffuse quantification result of the marker segmentation image is determined using a preset diffuse quantification method.
其中,白光下正常胃黏膜表面几乎观察不到微血管,但当胃黏膜表面出现炎症等疾病时,黏膜下血管可以得到清晰的显现。Among them, microvessels can hardly be observed on the surface of normal gastric mucosa under white light, but when diseases such as inflammation occur on the surface of gastric mucosa, submucosal blood vessels can be clearly displayed.
具体地,获取标志物分割图像中血管的步骤包括:Specifically, the step of obtaining blood vessels in the marker segmentation image includes:
将标志物分割图像转为灰度图像后进行二值化,二值化阈值为τ,τ∈(0,255)可根据实际情况而定,这里不做具体限制;Convert the marker segmentation image into a grayscale image and perform binarization. The binarization threshold is τ, and τ∈(0,255) can be determined according to the actual situation, and there is no specific limitation here;
调用opencv工具包cv2.erode(),对所述二值化的标志物分割图像进行腐蚀操作,得到标志物分割图像掩码图像;Call the opencv toolkit cv2.erode() to corrode the binarized marker segmentation image to obtain the marker segmentation image mask image;
调用opencv工具包cv2.medianBlur(),对所述标志物分割图像灰度图像进行中值滤波;Call the opencv toolkit cv2.medianBlur() to perform median filtering on the grayscale image of the marker segmentation image;
调用opencv工具包cv2.createCLAHE(),对所述中值滤波后的标志物分割图像进行直方图均衡化;Call the opencv toolkit cv2.createCLAHE() to perform histogram equalization on the marker segmentation image after the median filtering;
对所述直方图均衡化后的标志物分割图像进行伽马变换,伽马变换公式为O(x,y)=I(x,y)γ,其中,O(x,y)为伽马变换后的图,I(x,y)为原图,本发明中γ=0.5;Perform gamma transformation on the marker segmented image after the histogram equalization, the gamma transformation formula is O(x, y)=I(x, y) γ , where O(x, y) is the gamma transformation After the figure, I (x, y) is the original figure, and γ=0.5 among the present invention;
调用opencv工具包cv2.filter2D(),对所述伽马变换后的标志物分割图像进行卷积操作;Call the opencv toolkit cv2.filter2D() to perform a convolution operation on the gamma-transformed marker segmentation image;
将所述卷积后的标志物分割图像与所述标志物分割图像掩码图像进行逐位对比,如若掩码图像中某处像素值为0,则将卷积后的标志物分割图像在此处像素值置为0,获得去噪后的标志物分割图像;Comparing the convolutional marker segmentation image with the marker segmentation image mask image bit by bit, if a pixel value in the mask image is 0, the convolutional marker segmentation image is here Set the pixel value at 0 to obtain the denoised marker segmentation image;
对去噪后的标志物分割图像进行对比度拉伸,得到标志物分割图像对应的血管分割图像,如图5所示。Contrast stretching is performed on the denoised landmark segmentation image to obtain the blood vessel segmentation image corresponding to the landmark segmentation image, as shown in Figure 5.
具体地,在连通域的基础上获取所述血管分割图像中血管面积为sv和血管数目nv,则血管量化值为其中S为标志物分割图像面积,标志物分割时候可得到。Specifically, the blood vessel area in the blood vessel segmentation image is obtained on the basis of the connected domain as s v and the number of blood vessels n v , then the blood vessel quantization value is Among them, S is the area of the marker segmentation image, which can be obtained when the marker is segmented.
其中,正常胃黏膜存在褶皱,但当胃黏膜表面出现炎症等疾病时,黏膜褶皱会扁平甚至消失。Among them, there are folds in the normal gastric mucosa, but when there are diseases such as inflammation on the surface of the gastric mucosa, the mucosal folds will flatten or even disappear.
具体地,采用训练好的褶皱分割模型对胃镜图像中的褶皱进行分割,所述褶皱分割模型可以是Unet++、Mask-RCNN等图像分割网络模型,并在连通域的基础上计算标志物区域内的褶皱面积为sz、褶皱数目为nz、标志物区域面积为S,非标志物区域内的褶皱面积为sf、褶皱数目为nf,则褶皱量化值为 Specifically, the folds in the gastroscope image are segmented by using the trained fold segmentation model. The fold segmentation model can be an image segmentation network model such as Unet++, Mask-RCNN, etc., and on the basis of the connected domain, calculate the If the fold area is s z , the number of folds is n z , the area of the marker area is S, the area of folds in the non-marker area is s f , and the number of folds is n f , then the quantitative value of the fold is
其中,胃黏膜发红或者发白或者红白相间,表示胃黏膜出现异常,而且存在萎缩性胃炎的概率很大。Among them, the gastric mucosa is red or white or red and white, indicating that the gastric mucosa is abnormal, and there is a high probability of atrophic gastritis.
具体地,通过PIL自带的getcolors()方法对标志物分割图像进行颜色主成分提取,如图6所示,在一个具体实施例中,标志物分割图像做颜色主成分提取时输出色-数对应列表[(14757,(193,87,73)),(12541,(176,85,69)),(25072,(175,65,58)),(11435,(211,110,91)),(16153,(195,96,79)),(15781,(179,76,64)),(3488,(116,48,42)),(4308,(5,0,2)),(1920,(0,0,3)),(156689,(0,0,0))],剔除接近黑色的颜色(colorr≤20,colorg≤20,colorb≤20)后对剩余列表计算平均数目为nc,三通道平均颜分别为rc,gc,bc,则颜色量化值为其中,S为标志物区域面积。Specifically, the color principal component of the marker segmentation image is extracted through the getcolors() method that comes with PIL, as shown in Figure 6, in a specific embodiment, when the marker segmentation image is used for color principal component extraction, the output color-number Corresponding list [(14757,(193,87,73)),(12541,(176,85,69)),(25072,(175,65,58)),(11435,(211,110,91)),( 16153,(195,96,79)),(15781,(179,76,64)),(3488,(116,48,42)),(4308,(5,0,2)),(1920, (0,0,3)),(156689,(0,0,0))], calculate the average number of remaining lists after removing colors close to black (color r ≤20, color g ≤20, color b ≤20) is n c , the average color of the three channels is r c , g c , b c , then the color quantization value is Among them, S is the area of the marker area.
其中,萎缩性胃炎会在整个胃黏膜表面扩散,随着时间的推移,可能会弥漫至整个胃内表面。Among them, atrophic gastritis spreads over the entire surface of the gastric mucosa, and may spread to the entire inner surface of the stomach over time.
具体地,对整个胃内壁进行采图共M张图像,每张图像宽和高分别为wQi,hQi,对每张图像进行标志物分割并在连通域的基础上的到标志物的面积为Si、标志物的宽和高分别为wbi,hbi,标志物的形心坐标为(xbi,ybi),则弥漫程度量化值为Specifically, a total of M images are collected for the entire gastric inner wall, and the width and height of each image are w Qi , h Qi , respectively. Each image is segmented by markers and the area of the markers is calculated on the basis of the connected domain is S i , the width and height of the marker are w bi , h bi , and the centroid coordinates of the marker are (x bi , y bi ), then the quantitative value of the diffuse degree is
在一个实施例中,已训练的机器学习分类器包括特征拟合子网络和分类子网络;各个第一特征量化值输入已训练的机器学习分类器进行分类,得到胃镜图像萎缩性胃炎分类结果的步骤,包括:采用特征拟合子网络对各个第一特征量化值进行拟合处理,得到判定系数;基于判定系数,采用分类子网络进行分析,得到分类结果。In one embodiment, the trained machine learning classifier includes a feature fitting sub-network and a classification sub-network; each first feature quantization value is input into the trained machine learning classifier for classification, and the result of the classification of gastroscopic image atrophic gastritis is obtained. The steps include: using a feature fitting sub-network to perform fitting processing on each first feature quantization value to obtain a determination coefficient; based on the determination coefficient, use a classification sub-network to analyze to obtain a classification result.
具体地,通过特征拟合子网络各个第一特征量化值进行拟合处理进行拟合处理,根据拟合结果各个第一特征量化值进行拟合处理的对应的权重,继续以上述实施例中第一特征量化值label1~label4为例,利用决策树、随机森林等确定label1~label4,对应的权重分别为λ1,λ2,λ3,λ4,则此时融合特征值为:分类结果为非萎缩性胃炎、萎缩性胃炎结果。Specifically, the fitting process is carried out through the first quantized value of the feature fitting sub-network, and the corresponding weight of the fitting process is performed according to the first quantized value of the fitting result. Take a feature quantization value label 1 ~ label 4 as an example, use decision tree, random forest, etc. to determine label 1 ~ label 4 , and the corresponding weights are λ 1 , λ 2 , λ 3 , λ 4 , then the fusion feature value at this time is : The classification results are the results of non-atrophic gastritis and atrophic gastritis.
本实施例中,通过对各个第一特征量化值进行融合计算,使得胃镜图像的信息特征更加丰富,且量化更加精准,提高了胃镜图像萎缩性胃炎的识别准确率和识别效率。In this embodiment, the information features of the gastroscope image are enriched and the quantification is more accurate by fusion calculation of each first feature quantization value, which improves the recognition accuracy and recognition efficiency of atrophic gastritis in the gastroscope image.
在一个实施例中,多个第二标签属性包括粗糙度属性、绒毛样属性、偏白色属性、亮蓝脊属性;对萎缩性胃炎分割图像进行多个第二标签属性的特征提取,获取各个第二标签属性对应的第二特征量化值的步骤,包括:采用预设的粗糙度特征量化方法确定萎缩性胃炎分割图像粗糙度特征量化结果;采用预设的绒毛样特征量化方法确定萎缩性胃炎分割图像绒毛样特征量化结果;采用预设的偏白色量化方法确定萎缩性胃炎分割图像偏白色量化结果;采用预设的亮蓝脊量化方法确定萎缩性胃炎分割图像亮蓝脊量化结果。In one embodiment, the plurality of second label attributes include roughness attribute, fuzzy attribute, off-white attribute, and bright blue ridge attribute; the feature extraction of a plurality of second label attributes is performed on the segmented image of atrophic gastritis, and each first label attribute is obtained. The step of the second feature quantification value corresponding to the two-label attribute includes: using a preset roughness feature quantification method to determine the roughness feature quantification result of the atrophic gastritis segmentation image; using a preset villi-like feature quantization method to determine the atrophic gastritis segmentation Quantification results of fluff-like features in the image; using the preset whitening quantification method to determine the whitening quantification result of the segmented image of atrophic gastritis; using the preset bright blue ridge quantification method to determine the bright blue ridge quantification result of the segmented image of atrophic gastritis.
其中,由萎缩性胃炎进展成肠化,胃黏膜表面会逐渐变的粗糙。Among them, from atrophic gastritis to intestinal metaplasia, the surface of the gastric mucosa will gradually become rough.
具体地,表面粗糙度特征量化值为其中,WW,HW分别为萎缩性胃炎分割图像的宽和高,Pmean为萎缩性胃炎分割图像的平均像素值,imgW为萎缩性胃炎分割图像,W0为按照某一设定的阈值将萎缩性胃炎分割图进行二值化后方差最大所在行,0<W0<WW。Specifically, the surface roughness feature quantization value is Among them, W W , H W are the width and height of the segmented image of atrophic gastritis respectively, P mean is the average pixel value of the segmented image of atrophic gastritis, img W is the segmented image of atrophic gastritis, W 0 is the row where the variance is the largest after binarizing the segmented image of atrophic gastritis according to a set threshold, 0<W 0 <W W .
其中,肠化后的胃黏膜产生绒毛样,如图7所示。Among them, the gastric mucosa after intestinalization produced villi, as shown in FIG. 7 .
具体地,采用训练好的绒毛样分割模型对萎缩性胃炎分割图像中的绒毛样进行分割,所述绒毛样分割模型可以是Unet++、Mask-RCNN等图像分割网络模型,并在连通域的基础上对绒毛样区域进行单独提取并获取绒毛样区域的面积sri、绒毛样区域数目Nr和绒毛样区域最小外接矩形的宽和高wri,hri,后采用角点检测获取绒毛样区域的角点并在角点处进行打断获得多个绒毛段,绒毛段数目为nri,则绒毛样特征量化值为 Specifically, the villi-like segmentation model in the atrophic gastritis segmentation image is segmented using the villi-like segmentation model that has been trained. The villi-like segmentation model can be an image segmentation network model such as Unet++, Mask-RCNN, etc. Separately extract the fluff-like region and obtain the area s ri of the fluff-like region, the number N r of the fluff-like region, and the width and height w ri and height of the smallest circumscribed rectangle of the fluff-like region, and then use corner detection to obtain the value of the fluff-like region corner point and interrupt at the corner point to obtain multiple fluff segments, the number of fluff segments is n ri , then the fluff-like feature quantization value is
其中,肠化后的胃黏膜颜色偏白。Among them, the color of gastric mucosa after intestinal transformation is white.
具体地,通过颜色聚类方法对萎缩性胃炎分割图像中的颜色进行聚类,在一个具体实施例中可以采用k-means聚类法,这里不做具体限制,获取颜色数目最多类别的各个像素点的像素值(rbi,gbi,bbi)及最大类像素点数目nb,则偏白色量化值为Specifically, the colors in the segmented image of atrophic gastritis are clustered by the color clustering method. In a specific embodiment, the k-means clustering method can be used, and there is no specific limitation here, and each pixel of the category with the largest number of colors is obtained pixel value (r bi , g bi , b bi ) and the maximum number of pixel points n b , then the off-white quantization value is
其中,肠化后的胃黏膜在染色放大状态下可能会出现亮蓝脊现象,如图8所示。Among them, the gastric mucosa after intestinalization may appear bright blue ridges in the state of staining and amplification, as shown in Figure 8.
具体地,对胃镜染色放大图像进行萎缩性胃炎分割获得染色放大萎缩性胃炎分割图像并获得染色放大萎缩性胃炎区域面积SRS和染色放大萎缩性胃炎分割图像形心(xRS,yRS),采用训练好的亮蓝脊分割模型对萎缩性胃炎分割图像中的绒毛样进行分割并获得亮蓝脊分割图像和亮蓝脊分割图像面积SRSL和亮蓝脊分割图像形心(xRSL,yRSL),所述亮蓝脊分割模型可以是Unet++、Mask-RCNN等图像分割网络模型,获取亮蓝脊分割图像平均像素值WL,HL分别为亮蓝脊分割图像的宽和高,imgL为亮蓝脊分割图像,则亮蓝脊量化值为/>其中WW,HW分别为萎缩性胃炎分割图像最小外接矩形的宽和高,/>为标准亮蓝脊三通道平均像素值,在一个具体实施例中/> Specifically, perform atrophic gastritis segmentation on the stained and enlarged image of the gastroscope to obtain the segmented image of the stained and enlarged atrophic gastritis, and obtain the area of the stained and enlarged atrophic gastritis S RS and the centroid of the stained and enlarged atrophic gastritis segmentation image (x RS , y RS ), Use the trained bright blue ridge segmentation model to segment the villi in the atrophic gastritis segmentation image and obtain the bright blue ridge segmentation image and the area S RSL of the bright blue ridge segmentation image and the centroid of the bright blue ridge segmentation image (x RSL , y RSL ), the bright blue ridge segmentation model can be image segmentation network models such as Unet++, Mask-RCNN, obtains the average pixel value of the bright blue ridge segmentation image W L , H L are the width and height of the bright blue ridge segmented image respectively, img L is the bright blue ridge segmented image, then the quantized value of the bright blue ridge is /> Where W W , H W are the width and height of the smallest circumscribed rectangle of the segmented image of atrophic gastritis respectively, /> is the average pixel value of the standard bright blue ridge three channels, in a specific embodiment />
在一个实施例中,已训练的机器学习分类器包括特征拟合子网络和分类子网络;各个第二特征量化值输入已训练的机器学习分类器进行分类,得到胃镜图像肠化分类结果的步骤,包括:采用特征拟合子网络对各个第二特征量化值进行拟合处理,得到判定系数;基于判定系数,采用分类子网络进行分析,得到分类结果。In one embodiment, the trained machine learning classifier includes a feature fitting sub-network and a classification sub-network; each second feature quantization value is input into the trained machine learning classifier for classification, and the step of obtaining the intestinalization classification result of the gastroscope image , including: using a feature fitting sub-network to perform fitting processing on each second feature quantization value to obtain a determination coefficient; based on the determination coefficient, using a classification sub-network to perform analysis to obtain a classification result.
具体地,通过特征拟合子网络各个第二特征量化值进行拟合处理进行拟合处理,根据拟合结果各个第二特征量化值进行拟合处理的对应的权重,继续以上述实施例中第二特征量化值label5~label8为例,利用决策树、随机森林等确定label5~label8,对应的权重分别为λ5,λ6,λ7,λ8,则此时融合特征值为:分类结果为非肠化、肠化结果。Specifically, the fitting process is performed by performing the fitting process on each second feature quantization value of the feature fitting sub-network, and the corresponding weights of the fitting process are performed on each second feature quantization value according to the fitting result, and continue to use the first Take two-feature quantization values label 5 ~ label 8 as an example, use decision tree, random forest, etc. to determine label 5 ~ label 8 , and the corresponding weights are λ 5 , λ 6 , λ 7 , λ 8 , then the fusion feature value at this time is : The classification result is the result of non-intestinalization and intestinalization.
本实施例中,通过对各个第二特征量化值进行融合计算,使得胃镜图像的信息特征更加丰富,且量化更加精准,提高了胃镜图像肠化的识别准确率和识别效率。In this embodiment, the information features of the gastroscope image are enriched and the quantification is more accurate by fusion calculation of each second feature quantization value, which improves the recognition accuracy and recognition efficiency of gastroscope image intestinalization.
在一个实施例中,多个第三标签属性包括位置属性、形态属性;对萎缩性胃炎分割图像进行多个第三标签属性的特征提取,获取各个第三标签属性对应的第三特征量化值的步骤,包括:采用预设的位置量化方法确定肠化分割图像位置量化结果;采用预设的形态量化方法确定肠化分割图像形态量化结果。In one embodiment, the plurality of third tag attributes include position attribute and morphological attribute; the feature extraction of a plurality of third tag attributes is performed on the segmented image of atrophic gastritis, and the third feature quantization value corresponding to each third tag attribute is obtained. The steps include: using a preset position quantification method to determine the position quantification result of the intestinalization segmentation image; using a preset morphological quantification method to determine the morphology quantification result of the intestinalization segmentation image.
其中,当肠化出现在胃窦小弯、胃窦大弯、胃角、胃体小弯、胃体大弯风险部位时,风险系数较大。Among them, when intestinal metaplasia occurs in the lesser curvature of the gastric antrum, the greater curvature of the gastric antrum, the gastric angle, the lesser curvature of the gastric body, and the greater curvature of the gastric body, the risk factor is higher.
具体地,采用训练好的胃风险部位分割模型对胃镜图像中的胃风险部位分割并获得胃风险部位分割图像形心[(xFDX,yFDX),(xFDD,yFDD),(xFJ,yFJ),(xFTX,yFTX),(xFTD,yFTD)]及风险部位面积[SFDX,SFDD,SFJ,SFTX,SFTD],所述胃风险部位分割模型可以是Unet++、Mask-RCNN等图像分割网络模型,则肠化分割图像与各个风险部位距离为listd=[dFDX,dFDD,dFJ,dFTX,dFTD],其中距离计算公式为肠化分割图像形心距离各个风险部位分割图像形心的欧式距离,则肠化分割图像与各个风险部位距离面积交并比为Specifically, use the trained gastric risk part segmentation model to segment the gastric risk part in the gastroscope image and obtain the centroid of the gastric risk part segmentation image [(x FDX ,y FDX ),(x FDD ,y FDD ),(x FJ , y FJ ), (x FTX , y FTX ), (x FTD , y FTD )] and risk area [S FDX , S FDD , S FJ , S FTX , S FTD ], the gastric risk area segmentation model can be If it is an image segmentation network model such as Unet++, Mask-RCNN, etc., the distance between the intestinalization segmentation image and each risk part is list d = [d FDX ,d FDD ,d FJ ,d FTX ,d FTD ], where the distance calculation formula is intestinalization The Euclidean distance between the centroid of the segmented image and the centroid of the segmented image of each risk part, then the intersection-area ratio of the distance between the segmented image and each risk part is
其中SC为肠化分割图像面积,则位置量化值为 Where S C is the area of the intestinalized segmented image, and the position quantization value is
其中,肠化分割图像形态越复杂,风险系数较大。Among them, the more complex the shape of the intestinalization segmentation image, the greater the risk factor.
具体地,在连通域的基础上获取肠化分割图像的形心(xC,yC),获取肠化分割图像最小外接圆及最小外接圆半径rC,获取最小外接圆内非肠化分割区域的数目nf和非肠化分割区域面积sfi及形心(xfi,yfi),则形态量化值为其中WC,HC分别为肠化分割图像最小外接矩形的宽和高。Specifically, the centroid (x C , y C ) of the intestinalization segmentation image is obtained on the basis of the connected domain, the minimum circumscribed circle and the minimum circumscribed circle radius r C of the intestinalization segmentation image are obtained, and the non-intestinalization segmentation in the minimum circumscribed circle is obtained The number of regions n f and the area of non-intestinalized segmentation region s fi and centroid (x fi , y fi ), then the morphological quantization value is Among them, W C and H C are the width and height of the smallest circumscribed rectangle of the intestinalization segmentation image, respectively.
在一个实施例中,已训练的机器学习分类器包括特征拟合子网络和分类子网络;各个第三特征量化值输入已训练的机器学习分类器进行分类,得到胃镜图像肠化风险等级分类结果的步骤,包括:采用特征拟合子网络对各个第三特征量化值进行拟合处理,得到判定系数;基于判定系数,采用分类子网络进行分析,得到分类结果。In one embodiment, the trained machine learning classifier includes a feature fitting sub-network and a classification sub-network; each of the third feature quantization values is input into the trained machine learning classifier for classification, and the gastroscope image intestinalization risk level classification result is obtained The step includes: using a feature fitting sub-network to perform fitting processing on each third feature quantization value to obtain a determination coefficient; based on the determination coefficient, using a classification sub-network to perform analysis to obtain a classification result.
具体地,通过特征拟合子网络各个第三特征量化值进行拟合处理进行拟合处理,根据拟合结果各个第三特征量化值进行拟合处理的对应的权重,继续以上述实施例中第三特征量化值label9~label10为例,利用决策树、随机森林等确定label9~label10,对应的权重分别为λ9,λ10,则此时融合特征值为:分类结果为低风险、高风险结果。Specifically, the fitting process is performed through each third feature quantization value of the feature fitting sub-network, and the corresponding weight of the fitting process is performed according to each third feature quantization value of the fitting result, continuing to use the first Take the three-feature quantization value label 9 ~ label 10 as an example, use decision tree, random forest, etc. to determine label 9 ~ label 10 , and the corresponding weights are λ 9 , λ 10 respectively, then the fusion feature value at this time is: Classification results are low risk and high risk results.
本发明中的胃肠上皮化生进展风险预测方法包括以下步骤:通过获取标志物分割图像、萎缩性胃炎分割图像以及肠化分割图像的标签属性的特征量化值,进行胃镜图像肠化等级分类;所述标志物分割图像的第一标签属性包括血管属性、褶皱属性、颜色属性、弥漫属性;所述萎缩性胃炎分割图像的第二标签属性包括粗糙度属性、绒毛样属性、偏白色属性、亮蓝脊属性;所述肠化分割图像的第三标签属性包括位置属性、形态属性。本发明充分考量了胃镜图像多个不同属性的特征量化值对图像处理的准确性及直观性影响,有效提高肠化风险等级识别效率和识别准确率。The method for predicting the risk of progression of gastrointestinal metaplasia in the present invention includes the following steps: classifying the intestinal metaplasia grade of the gastroscopic image by acquiring the feature quantification value of the label attribute of the marker segmented image, the atrophic gastritis segmented image and the intestinal metaplasia segmented image; The first label attribute of the marker segmentation image includes blood vessel attribute, fold attribute, color attribute, and diffuse attribute; the second label attribute of the atrophic gastritis segmentation image includes roughness attribute, fluffy attribute, off-white attribute, bright Blue ridge attribute; the third label attribute of the intestinalized segmentation image includes position attribute and shape attribute. The present invention fully considers the influence of multiple characteristic quantification values of different attributes of the gastroscope image on the accuracy and intuition of image processing, and effectively improves the identification efficiency and identification accuracy of intestinal metaplasia risk levels.
本发明实施例第二方提供一种胃肠上皮化生进展风险预测装置,用于:The second aspect of the embodiment of the present invention provides a risk prediction device for the progression of gastrointestinal metaplasia, which is used for:
通过获取标志物分割图像、萎缩性胃炎分割图像以及肠化分割图像的标签属性的特征量化值,进行胃镜图像肠化等级分类;By obtaining the feature quantification value of the label attribute of the marker segmentation image, the atrophic gastritis segmentation image and the intestinalization segmentation image, the intestinalization level classification of the gastroscopy image is carried out;
所述标志物分割图像的第一标签属性包括血管属性、褶皱属性、颜色属性、弥漫属性;The first label attributes of the marker segmentation image include blood vessel attributes, fold attributes, color attributes, and diffuse attributes;
所述萎缩性胃炎分割图像的第二标签属性包括粗糙度属性、绒毛样属性、偏白色属性、亮蓝脊属性;The second label attributes of the atrophic gastritis segmented image include roughness attributes, fluff-like attributes, off-white attributes, and bright blue ridge attributes;
所述肠化分割图像的第三标签属性包括位置属性、形态属性。The third label attribute of the intestinalized segmented image includes position attribute and shape attribute.
一些实施例中,包括:Some examples include:
采集模块,其用于获取胃镜图像;Acquisition module, it is used for obtaining gastroscope image;
分割模块,其用于对所述胃镜图像进行标志物分割,获取标志物分割图像;A segmentation module, which is used to perform marker segmentation on the gastroscope image, and obtain a marker segmentation image;
特征提取模块,其用于对所述标志物分割图像进行第一标签属性的特征提取,获取第一标签属性对应的第一特征量化值;A feature extraction module, which is used to perform feature extraction of a first label attribute on the marker segmented image, and obtain a first feature quantization value corresponding to the first label attribute;
特征提取模块,其还用于对所述萎缩性胃炎分割图像进行第二标签属性的特征提取,获取第二标签属性对应的第二特征量化值,对所述肠化分割图像进行第三标签属性的特征提取,获取第三标签属性对应的第三特征量化值;A feature extraction module, which is also used to perform feature extraction of the second label attribute on the atrophic gastritis segmented image, obtain a second feature quantization value corresponding to the second label attribute, and perform a third label attribute on the intestinalization segmented image feature extraction, and obtain the third feature quantization value corresponding to the third tag attribute;
生成模块,其用于将第一特征量化值输入已训练的机器学习分类器进行分类,得到胃镜图像萎缩性胃炎分类结果,将所述第二特征量化值输入已训练的机器学习分类器进行分类,得到胃镜图像肠化分类结果;将所述第三特征量化值输入已训练的机器学习分类器进行分类,得到胃镜图像肠化风险等级分类结果。A generation module, which is used to input the first feature quantization value into the trained machine learning classifier for classification, obtain the classification result of gastroscopic image atrophic gastritis, and input the second feature quantization value into the trained machine learning classifier for classification , to obtain the classification result of intestinalization of the gastroscopic image; input the third feature quantization value into the trained machine learning classifier for classification, and obtain the classification result of the risk level of intestinalization of the gastroscopic image.
一些实施例中,所述特征提取模块用于:In some embodiments, the feature extraction module is used for:
对所述标志物分割图像进行第一标签属性的特征提取,获取第一标签属性对应的第一特征量化值,包括以下步骤:Carrying out the feature extraction of the first label attribute on the segmentation image of the marker, and obtaining the first feature quantization value corresponding to the first label attribute, comprising the following steps:
获取标志物分割图像中的血管分割图像;Obtain the blood vessel segmentation image in the marker segmentation image;
根据公式:According to the formula:
得到血管特征量化值label1,其中nv是血管分割图像中血管数目,sv是血管分割图像中血管面积,S是标志物分割图像面积;Obtain the blood vessel feature quantization value label 1 , where n v is the number of blood vessels in the blood vessel segmentation image, s v is the area of blood vessels in the blood vessel segmentation image, and S is the area of the marker segmentation image;
根据公式:According to the formula:
得到褶皱特征量化值label2,其中sz是标志物分割图像中标志物区域内的褶皱面积,nz是标志物分割图像中标志物区域内的褶皱数目,S是标志物分割图像面积,sf是标志物分割图像中非标志物区域内的褶皱面积,nf是标志物分割图像中非标志物区域内的褶皱数量;Get the wrinkle feature quantization value label 2 , where s z is the wrinkle area in the marker region in the marker segmentation image, nz is the number of folds in the marker region in the marker segmentation image, S is the area of the marker segmentation image, s f is the wrinkle area in the non-marker region in the marker segmentation image, n f is the number of folds in the non-marker region in the marker segmentation image;
根据公式:According to the formula:
得到颜色特征量化值label3,其中rc,gc,bc是三通道平均颜色值,S是标志物分割图像中标志物区域的面积,nc是剔除接近黑色的颜色后对剩余列表计算平均数目;Get the color feature quantization value label 3 , where r c , g c , b c are the average color values of the three channels, S is the area of the marker region in the marker segmentation image, and n c is the calculation of the remaining list after removing the color close to black average number;
根据公式:According to the formula:
得到弥漫特征量化值label4,其中M是对整个胃内壁进行采图的数量,wQi,hQi是每张图像宽和高,Si是对每张图像进行标志物分割并在连通域的基础上的到标志物的面积,wbi,hbi是标志物的宽和高,(xbi,ybi)是标志物的形心坐标。The diffuse feature quantification value label 4 is obtained, where M is the number of images collected for the entire gastric inner wall, w Qi , h Qi are the width and height of each image, S i is the marker segmentation of each image and in the connected domain Based on the area to the marker, w bi , h bi are the width and height of the marker, and (x bi , y bi ) are the centroid coordinates of the marker.
所述血管分割图像,获取步骤包括:The blood vessel segmentation image, the obtaining step includes:
将标志物分割图像转为灰度图像后进行二值化;Binarize the marker segmentation image into a grayscale image;
调用opencv工具包cv2.erode(),对所述二值化的标志物分割图像进行腐蚀操作,得到标志物分割图像掩码图像;Call the opencv toolkit cv2.erode() to corrode the binarized marker segmentation image to obtain the marker segmentation image mask image;
调用opencv工具包cv2.medianBlur(),对所述标志物分割图像灰度图像进行中值滤波;Call the opencv toolkit cv2.medianBlur() to perform median filtering on the grayscale image of the marker segmentation image;
调用opencv工具包cv2.createCLAHE(),对所得所述中值滤波后的标志物分割图像进行直方图均衡化;Call the opencv toolkit cv2.createCLAHE() to perform histogram equalization on the obtained median-filtered marker segmentation image;
对所述直方图均衡化后的标志物分割图像进行伽马变换;performing gamma transformation on the marker segmented image after the histogram equalization;
调用opencv工具包cv2.filter2D(),对所得所述伽马变换后的标志物分割图像进行卷积操作;Call the opencv toolkit cv2.filter2D() to perform a convolution operation on the obtained gamma-transformed marker segmentation image;
将所述卷积后的标志物分割图像与所述标志物分割图像掩码图像进行逐位对比,如若掩码图像中某处像素值为0,则将卷积后的标志物分割图像在此处像素值置为0,获得去噪后的标志物分割图像;Comparing the convolutional marker segmentation image with the marker segmentation image mask image bit by bit, if a pixel value in the mask image is 0, the convolutional marker segmentation image is here Set the pixel value at 0 to obtain the denoised marker segmentation image;
对去噪后的标志物分割图像进行对比度拉伸,得到标志物分割图像对应的血管分割图像。Contrast stretching is performed on the denoised marker segmented image to obtain a blood vessel segmented image corresponding to the marker segmented image.
一些实施例中,特征提取模块还用于:对所述萎缩性胃炎分割图像进行第二标签属性的特征提取,获取第二标签属性对应的第二特征量化值,包括以下步骤:In some embodiments, the feature extraction module is also used to: perform feature extraction of the second label attribute on the atrophic gastritis segmented image, and obtain a second feature quantization value corresponding to the second label attribute, including the following steps:
根据公式:According to the formula:
得到粗糙度特征量化值label5,其中WW,HW分别是萎缩性胃炎分割图像的宽和高,Pmean是萎缩性胃炎分割图像的平均像素值,imgW为萎缩性胃炎分割图像,W0为按照某一设定的阈值将萎缩性胃炎分割图进行二值化后方差最大所在行,0<W0<WW;Get the roughness feature quantization value label 5 , where W W , H W are the width and height of the segmented image of atrophic gastritis respectively, P mean is the average pixel value of the segmented image of atrophic gastritis, img W is the segmented image of atrophic gastritis, W 0 is the row with the largest variance after binarizing the atrophic gastritis segmentation map according to a set threshold, 0<W 0 <W W ;
根据公式:According to the formula:
得到绒毛样特征量化值label6,其中Nr是绒毛样区域数目,sri是绒毛样区域的面积,wri,hri是绒毛样区域最小外接矩形的宽和高,nri是绒毛样区域的角点并在角点处进行打断获得绒毛段的数目;Get the fluff-like feature quantization value label 6 , where N r is the number of fluff-like regions, s ri is the area of the fluff-like regions, w ri , h ri are the width and height of the smallest circumscribed rectangle of the fluff-like regions, and n ri is the fluff-like regions and break at the corners to obtain the number of fluff segments;
根据公式:According to the formula:
得到偏白色特征量化值label7,其中nb是最大类像素点数目,(rbi,gbi,bbi)颜色数目最多类别的各个像素点的像素值;Obtain the partial white feature quantization value label 7 , wherein n b is the maximum number of pixel points, and (r bi , g bi , b bi ) the pixel value of each pixel point of the category with the largest number of colors;
根据公式:According to the formula:
得到亮蓝脊特征量化值label8,其中WL,HL是亮蓝脊分割图像的宽和高,imgL是为亮蓝脊分割图像,(xRSL,yRSL)是亮蓝脊分割图像形心坐标,SRSL是亮蓝脊分割图像面积,(xRS,yRS)是染色放大萎缩性胃炎分割图像形心坐标,SRS是染色放大萎缩性胃炎区域面积,是标准亮蓝脊三通道平均像素值,PL是亮蓝脊分割图像平均像素值。Get the bright blue ridge feature quantization value label 8 , where W L , HL are the width and height of the bright blue ridge segmented image, img L is the bright blue ridge segmented image, (x RSL , y RSL ) is the bright blue ridge segmented image Centroid coordinates, S RSL is the bright blue ridge segmented image area, (x RS , y RS ) is the centroid coordinates of the stained and enlarged atrophic gastritis segmented image, S RS is the area of the stained and enlarged atrophic gastritis, is the average pixel value of the three channels of the standard bright blue ridge, and PL is the average pixel value of the bright blue ridge segmented image.
一些实施例中,特征提取模块还用于:对所述肠化分割图像进行第三标签属性的特征提取,获取第三标签属性对应的第三特征量化值,包括以下步骤:In some embodiments, the feature extraction module is also used to: perform feature extraction of the third label attribute on the intestinalized segmented image, and obtain a third feature quantization value corresponding to the third label attribute, including the following steps:
根据公式:According to the formula:
得出位置特征量化值label9,其中SC是肠化分割图像面积,[(xFDX,yFDX),(xFDD,yFDD),(xFJ,yFJ),(xFTX,yFTX),(xFTD,yFTD)]是胃风险部位分割图像形心坐标,[SFDX,SFDD,SFJ,SFTX,SFTD]是风险部位面积,listd=[dFDX,dFDD,dFJ,dFTX,dFTD]是肠化分割图像与各个风险部位距离;Get the location feature quantization value label 9 , where S C is the intestinalization segmented image area, [(x FDX ,y FDX ),(x FDD ,y FDD ),(x FJ ,y FJ ),(x FTX ,y FTX ), (x FTD , y FTD )] are the centroid coordinates of the gastric risk part segmentation image, [S FDX , S FDD , S FJ , S FTX , S FTD ] are the risk part area, list d = [d FDX , d FDD ,d FJ ,d FTX ,d FTD ] are the distances between the intestinalization segmentation image and each risk site;
根据公式:According to the formula:
得出形态特征量化值label10,其中WC,HC分别是肠化分割图像最小外接矩形的宽和高,(xC,yC)是肠化分割图像的形心坐标,rC是肠化分割图像最小外接圆半径,nf是最小外接圆内非肠化分割区域的数目,sfi是非肠化分割区域面积,(xfi,yfi)是肠化分割图像最小外接圆形心。The quantitative value label 10 of the morphological features is obtained, where W C , H C are the width and height of the smallest circumscribed rectangle of the intestinalization segmentation image, (x C , y C ) are the centroid coordinates of the intestinalization segmentation image, and r C is the intestinalization segmentation image The radius of the minimum circumscribed circle of the segmented image, n f is the number of non-intestinalized segmentation regions in the minimum circumscribed circle, s fi is the area of the non-intestinalized segmented region, (x fi , y fi ) is the center of the minimum circumscribed circle of the intestinalized segmented image.
一些实施例中,生产模块用于所述将所述第三特征量化值输入已训练的机器学习分类器进行分类,得到胃镜图像肠化风险等级分类结果,其中分类器包括特征拟合子网络和分类子网络;In some embodiments, the production module is used to input the third feature quantization value into the trained machine learning classifier for classification, and obtain the classification result of gastroscopic image intestinalization risk level, wherein the classifier includes a feature fitting sub-network and classification subnetwork;
所述得到胃镜图像肠化风险等级分类结果,包括以下步骤:The obtaining the classification result of gastroscopic image intestinal metaplasia risk level comprises the following steps:
采用所述特征拟合子网络对所述标签属性的特征量化值进行拟合处理,得到判定系数;Using the feature fitting sub-network to perform fitting processing on the feature quantization value of the tag attribute to obtain a determination coefficient;
基于所述判定系数,采用所述分类子网络进行分析,得到所述识别结果。Based on the determination coefficient, the classification sub-network is used for analysis to obtain the identification result.
在本申请的描述中,需要说明的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。In the description of the present application, it should be noted that the orientation or positional relationship indicated by the terms "upper", "lower" and so on is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present application and simplifying the description. It is not intended to indicate or imply that the device or element referred to must have a particular orientation, be constructed, or operate in a particular orientation, and thus should not be construed as limiting the application. Unless otherwise clearly specified and limited, the terms "installation", "connection" and "connection" should be interpreted in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection, It can also be an electrical connection; it can be a direct connection, or an indirect connection through an intermediary, or an internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
需要说明的是,在本申请中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that in this application, relative terms such as "first" and "second" are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply There is no such actual relationship or order between these entities or operations. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or device. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.
以上所述仅是本申请的具体实施方式,使本领域技术人员能够理解或实现本申请。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。The above descriptions are only specific implementation manners of the present application, so that those skilled in the art can understand or implement the present application. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the application. Therefore, the present application will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features claimed herein.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310639573.8A CN116434920A (en) | 2023-05-31 | 2023-05-31 | A method and device for predicting the risk of progression of gastrointestinal metaplasia |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310639573.8A CN116434920A (en) | 2023-05-31 | 2023-05-31 | A method and device for predicting the risk of progression of gastrointestinal metaplasia |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116434920A true CN116434920A (en) | 2023-07-14 |
Family
ID=87081739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310639573.8A Withdrawn CN116434920A (en) | 2023-05-31 | 2023-05-31 | A method and device for predicting the risk of progression of gastrointestinal metaplasia |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116434920A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117238532A (en) * | 2023-11-10 | 2023-12-15 | 武汉楚精灵医疗科技有限公司 | Intelligent follow-up method and device |
-
2023
- 2023-05-31 CN CN202310639573.8A patent/CN116434920A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117238532A (en) * | 2023-11-10 | 2023-12-15 | 武汉楚精灵医疗科技有限公司 | Intelligent follow-up method and device |
CN117238532B (en) * | 2023-11-10 | 2024-01-30 | 武汉楚精灵医疗科技有限公司 | Intelligent follow-up method and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3455782B1 (en) | System and method for detecting plant diseases | |
CN110678901B (en) | Information processing apparatus, information processing method, and computer-readable storage medium | |
CN109003279B (en) | Fundus retina blood vessel segmentation method and system based on K-Means clustering labeling and naive Bayes model | |
Zhu et al. | Lesion detection of endoscopy images based on convolutional neural network features | |
CN110189303B (en) | NBI image processing method based on deep learning and image enhancement and application thereof | |
CN105512612A (en) | SVM-based image classification method for capsule endoscope | |
CN112001895B (en) | Thyroid calcification detection device | |
CN114511770B (en) | Road sign recognition method | |
CN104036521A (en) | Novel retina eye fundus image segmenting method | |
Plissiti et al. | Watershed-based segmentation of cell nuclei boundaries in Pap smear images | |
CN111539330A (en) | Transformer substation digital display instrument identification method based on double-SVM multi-classifier | |
CN116434920A (en) | A method and device for predicting the risk of progression of gastrointestinal metaplasia | |
Shambhu et al. | Edge-based segmentation for accurate detection of malaria parasites in microscopic blood smear images: a novel approach using FCM and MPP algorithms | |
Ghosh et al. | Block based histogram feature extraction method for bleeding detection in wireless capsule endoscopy | |
CN116524205A (en) | Sewage aeration automatic detection and identification method | |
CN113807180A (en) | Face recognition method based on LBPH and feature points | |
Xiong et al. | Bleeding detection in wireless capsule endoscopy based on MST clustering and SVM | |
CN108230341A (en) | A kind of eye fundus image blood vessel segmentation method that nomography is scratched based on layering | |
CN105701833B (en) | Alimentary canal capsule endoscope video hookworm image computer automatic testing method | |
CN118212442A (en) | AI system for focus identification in nuclear medicine image | |
CN109948706B (en) | Micro-calcification cluster detection method combining deep learning and feature multi-scale fusion | |
Zabihi et al. | Vessel extraction of conjunctival images using LBPs and ANFIS | |
CN117649373A (en) | Digestive endoscope image processing method and storage medium | |
Bethanigtyas et al. | Classification system vocal cords disease using digital image processing | |
CN114049345B (en) | A liver CT image classification method based on dataset |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20230714 |
|
WW01 | Invention patent application withdrawn after publication |