CN116432491A - Method and system for judging implosion failure mechanism of deep-sea metal pressure-resistant shell based on modal displacement - Google Patents
Method and system for judging implosion failure mechanism of deep-sea metal pressure-resistant shell based on modal displacement Download PDFInfo
- Publication number
- CN116432491A CN116432491A CN202310334495.0A CN202310334495A CN116432491A CN 116432491 A CN116432491 A CN 116432491A CN 202310334495 A CN202310334495 A CN 202310334495A CN 116432491 A CN116432491 A CN 116432491A
- Authority
- CN
- China
- Prior art keywords
- deep
- finite element
- pressure vessel
- implosion
- element model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 124
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 80
- 239000002184 metal Substances 0.000 title claims abstract description 80
- 238000000034 method Methods 0.000 title claims abstract description 64
- 230000007246 mechanism Effects 0.000 title claims abstract description 32
- 230000007547 defect Effects 0.000 claims abstract description 116
- 238000010168 coupling process Methods 0.000 claims abstract description 21
- 238000004364 calculation method Methods 0.000 claims abstract description 20
- 230000008878 coupling Effects 0.000 claims abstract description 20
- 238000005859 coupling reaction Methods 0.000 claims abstract description 20
- 239000007787 solid Substances 0.000 claims abstract description 13
- 238000004458 analytical method Methods 0.000 claims abstract description 10
- 238000004422 calculation algorithm Methods 0.000 claims description 8
- 230000003993 interaction Effects 0.000 claims description 3
- 238000012795 verification Methods 0.000 abstract 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 7
- 238000013461 design Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及深海金属耐压结构建模及评估领域,具体地,涉及基于模态位移的深海金属耐压壳内爆失效机制判断方法及系统。The invention relates to the field of modeling and evaluation of deep-sea metal pressure-resistant structures, in particular to a method and system for judging the implosion failure mechanism of deep-sea metal pressure-resistant shells based on modal displacement.
背景技术Background technique
深海金属耐压壳是水下航行器和载人潜器的重要组成部分,它需要承受不同水深环境中的外界静水压力,为内部非耐压部件提供作业环境。目前对金属耐压壳水下内爆机制的判断通常是直接采用流固耦合方法进行数值计算,该方法基于耐压壳表面流体和结构的相互作用,在计算过程中通过力和位移的传递实现内爆失效机制的判断。Deep-sea metal pressure hull is an important part of underwater vehicles and manned submersibles. It needs to withstand the external hydrostatic pressure in different water depth environments and provide an operating environment for internal non-pressure-resistant components. At present, the judgment of the underwater implosion mechanism of the metal pressure vessel is usually directly calculated by the fluid-solid coupling method. This method is based on the interaction between the surface fluid and the structure of the pressure vessel, and is realized through the transfer of force and displacement during the calculation process. Determination of implosion failure mechanism.
但是在实际工程中发现,由于深海金属耐压壳结构复杂,在设计制造中存在大小不等的初始几何和材料缺陷。因此在直接采用流固耦合算法进行数值计算时,一方面需要强大的计算能力,这将造成很大的计算成本。另一方面不能充分考虑结构的缺陷,造成数值模拟结果的误差。However, in actual engineering, it is found that due to the complex structure of the deep-sea metal pressure vessel, there are initial geometric and material defects of various sizes in the design and manufacture. Therefore, when directly using the fluid-solid coupling algorithm for numerical calculation, on the one hand, it needs a strong computing power, which will cause a large calculation cost. On the other hand, the defects of the structure cannot be fully considered, resulting in errors in the numerical simulation results.
本发明通过采用有限元方法对深海金属耐压结构进行模态计算,并考虑结构的几何不圆度要求,能够科学地判断深海金属耐压结构的失效机制,对于水下航行器和载人深潜器等深海设备的设计和制造具有重要的工程应用价值。The present invention can scientifically judge the failure mechanism of the deep-sea metal pressure-resistant structure by adopting the finite element method to perform modal calculation on the deep-sea metal pressure-resistant structure, and considering the geometric out-of-roundness requirements of the structure. The design and manufacture of submersibles and other deep-sea equipment has important engineering application value.
发明内容Contents of the invention
针对现有技术中的缺陷,本发明的目的是提供一种基于模态位移的深海金属耐压壳内爆失效机制判断方法及系统。In view of the defects in the prior art, the object of the present invention is to provide a method and system for judging the implosion failure mechanism of deep-sea metal pressure vessel based on modal displacement.
根据本发明提供的一种基于模态位移的深海金属耐压壳内爆失效机制判断方法,包括:A method for judging the implosion failure mechanism of a deep-sea metal pressure vessel based on modal displacement provided by the present invention includes:
步骤S1:对深海金属耐压壳进行结构有限元模型建模,得到有限元模型,对有限元模型的节点进行编号;Step S1: Carry out structural finite element model modeling on the deep-sea metal pressure vessel, obtain the finite element model, and number the nodes of the finite element model;
步骤S2:采用有限元方法对有限元模型进行特征值屈曲分析,得到前N阶模态位移结果;Step S2: Using the finite element method to perform eigenvalue buckling analysis on the finite element model to obtain the first N order modal displacement results;
步骤S3:基于各阶模态位移结果得到局部单一模态缺陷法或组合模态缺陷法的初始几何缺陷;Step S3: Obtain the initial geometric defects of the local single mode defect method or combined mode defect method based on the results of the modal displacements of each order;
步骤S4:根据耐压壳的几何不圆度要求进行初始几何缺陷的缩放,获得深海耐压结构的最终几何缺陷位移;Step S4: Scale the initial geometric defect according to the geometric out-of-roundness requirements of the pressure vessel, and obtain the final geometric defect displacement of the deep-sea pressure structure;
步骤S5:对不同最终几何缺陷位移的结果进行有限元模型的建模,得到最终的结构有限元模型,利用得到的最终结构有限元模型判断深海金属耐压壳内爆失效形式;Step S5: Carry out finite element model modeling on the results of different final geometric defect displacements to obtain the final structural finite element model, and use the obtained final structural finite element model to determine the implosion failure mode of the deep-sea metal pressure vessel;
步骤S6:对深海环境中的金属耐压壳进行内爆流固耦合计算,验证利用最终结构有限元模型判断深海金属耐压壳内爆失效形式。Step S6: Carry out implosion fluid-solid coupling calculation on the metal pressure vessel in the deep sea environment, and verify the implosion failure mode of the deep sea metal pressure vessel by using the final structural finite element model.
优选地,所述步骤S3采用:基于各阶模态位移结果获取某一阶模态结果得到单一模态缺陷法的初始几何缺陷;或基于各阶模态位移结果进行部分或全部叠加,得到组合模态缺陷法的缺陷几何缺陷。Preferably, the step S3 adopts: obtaining a certain order modal result based on the modal displacement results of each order to obtain the initial geometric defect of the single mode defect method; or performing partial or complete superposition based on the modal displacement results of each order to obtain a combined The defect geometry of the modal defect method.
优选地,所述步骤S4采用:将耐压壳的几何不圆度要求作为缩放系数,对初始几何缺陷位移进行缩放,得到最终几何缺陷位移。Preferably, the step S4 adopts: taking the geometric out-of-roundness requirement of the pressure vessel as a scaling factor to scale the initial geometric defect displacement to obtain the final geometric defect displacement.
优选地,所述步骤S5采用:将最终节点缺陷位移对应的节点编号m添加到结构有限元模型节点编号ni上,得到最终的结构有限元模型;Preferably, the step S5 adopts: adding the node number m corresponding to the final node defect displacement to the node number n i of the structural finite element model to obtain the final structural finite element model;
其中,考虑基于模态位移的深海金属耐压壳的节点位置为:Among them, considering the node position of the deep-sea metal pressure vessel based on the modal displacement is:
nn,i(x,y)=ni+mi n n, i(x, y) = n i +m i
式中,nn,i(x,y)表示基于前N阶模态叠加位移后的单元节点编号i对应的位置。In the formula, n n, i(x, y) represents the position corresponding to the unit node number i after the superimposed displacement based on the first N modes.
优选地,所述步骤S6采用:对深海环境中的金属耐压壳采用流固耦合算法进行内爆流固耦合计算。Preferably, the step S6 adopts: adopting a fluid-structure coupling algorithm to calculate the implosion fluid-structure coupling for the metal pressure vessel in the deep sea environment.
根据本发明提供的一种基于模态位移的深海金属耐压壳内爆失效机制判断系统,包括:According to the present invention, a system for judging the implosion failure mechanism of a deep-sea metal pressure vessel based on modal displacement includes:
模块M1:对深海金属耐压壳进行结构有限元模型建模,得到有限元模型,对有限元模型的节点进行编号;Module M1: Carry out structural finite element model modeling on the deep-sea metal pressure vessel, obtain the finite element model, and number the nodes of the finite element model;
模块M2:采用有限元方法对有限元模型进行特征值屈曲分析,得到前N阶模态位移结果;Module M2: Use the finite element method to perform eigenvalue buckling analysis on the finite element model to obtain the first N order modal displacement results;
模块M3:基于各阶模态位移结果得到局部单一模态缺陷法或组合模态缺陷法的初始几何缺陷;Module M3: Obtain the initial geometric defects of the local single mode defect method or the combined mode defect method based on the displacement results of each order of mode;
模块M4:根据耐压壳的几何不圆度要求进行初始几何缺陷的缩放,获得深海耐压结构的最终几何缺陷位移;Module M4: Scale the initial geometric defects according to the geometric out-of-roundness requirements of the pressure vessel, and obtain the final geometric defect displacement of the deep-sea pressure structure;
模块M5:对不同最终几何缺陷位移的结果进行有限元模型的建模,得到最终的结构有限元模型,利用得到的最终结构有限元模型判断深海金属耐压壳内爆失效形式;Module M5: Carry out finite element model modeling on the results of different final geometric defect displacements to obtain the final structural finite element model, and use the obtained final structural finite element model to judge the implosion failure form of deep-sea metal pressure vessel;
模块M6:对深海环境中的金属耐压壳进行内爆流固耦合计算,验证利用最终结构有限元模型判断深海金属耐压壳内爆失效形式。Module M6: Carry out fluid-solid coupling calculation of implosion metal pressure vessel in deep sea environment, and verify the use of final structural finite element model to judge the implosion failure mode of deep sea metal pressure vessel.
优选地,所述模块M3采用:基于各阶模态位移结果获取某一阶模态结果得到单一模态缺陷法的初始几何缺陷;或基于各阶模态位移结果进行部分或全部叠加,得到组合模态缺陷法的缺陷几何缺陷。Preferably, the module M3 adopts: obtaining a certain order modal result based on the modal displacement results of each order to obtain the initial geometric defect of the single mode defect method; or performing partial or complete superposition based on the modal displacement results of each order to obtain a combined The defect geometry of the modal defect method.
优选地,所述模块M4采用:将耐压壳的几何不圆度要求作为缩放系数,对初始几何缺陷位移进行缩放,得到最终几何缺陷位移。Preferably, the module M4 adopts: taking the geometric out-of-roundness requirement of the pressure vessel as a scaling factor to scale the initial geometric defect displacement to obtain the final geometric defect displacement.
优选地,所述模块M5采用:将最终节点缺陷位移对应的节点编号mi添加到结构有限元模型节点编号ni上,得到最终的结构有限元模型;Preferably, the module M5 adopts: adding the node number m i corresponding to the final node defect displacement to the node number n i of the structural finite element model to obtain the final structural finite element model;
其中,考虑基于模态位移的深海金属耐压壳的节点位置为:Among them, considering the node position of the deep-sea metal pressure vessel based on the modal displacement is:
nn,i(x,y)=ni+mi n n, i(x, y) = n i +m i
式中,nn,i(x,y)表示基于前N阶模态叠加位移后的单元节点编号i对应的位置。In the formula, n n, i(x, y) represents the position corresponding to the unit node number i after the superimposed displacement based on the first N modes.
优选地,所述模块M6采用:对深海环境中的金属耐压壳采用流固耦合算法进行内爆流固耦合计算。Preferably, the module M6 adopts: a fluid-structure coupling algorithm for implosion fluid-structure coupling calculations for metal pressure hulls in deep sea environments.
与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、本发明基于单一缺陷模态法和整体缺陷模态法考虑了深海金属耐压壳的初始缺陷,能够满足水下潜器的设计和建造要求。1. The present invention considers the initial defects of deep-sea metal pressure hulls based on the single defect mode method and the overall defect mode method, and can meet the design and construction requirements of underwater submersibles.
2、本发明基于半径的不圆度系数缩放单一模态位移和整体模态位移结果,实现了深海金属耐压壳内爆失效形式的快速判断。2. The present invention scales the single mode displacement and the overall mode displacement results based on the out-of-roundness coefficient of the radius, and realizes the rapid judgment of the implosion failure form of the deep-sea metal pressure vessel.
3、本发明通过计算深海金属耐压壳内爆失效后的演化特征,实现了水下内爆和模态位移的相互关联的反演控制。3. The present invention realizes the interrelated inversion control of underwater implosion and modal displacement by calculating the evolution characteristics after implosion failure of the deep-sea metal pressure vessel.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other characteristics, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1是一种基于模态位移的深海金属耐压壳内爆失效机制判断方法的流程图。Fig. 1 is a flowchart of a method for judging the implosion failure mechanism of a deep-sea metal pressure vessel based on modal displacement.
图2是深海钛合金环肋圆柱壳结构有限元模型示意图。Fig. 2 is a schematic diagram of a finite element model of a deep-sea titanium alloy ring rib cylindrical shell structure.
图3是深海钛合金环肋圆柱壳前6阶模态位移结果示意图。Fig. 3 is a schematic diagram of the first six modal displacement results of a deep-sea titanium alloy ring-ribbed cylindrical shell.
图4是深海钛合金环肋圆柱壳单一1阶模态和前6阶模态叠加后的有限元模型示意图。Fig. 4 is a schematic diagram of the finite element model after the superposition of the single first-order mode and the first six-order modes of the deep-sea titanium alloy ring-ribbed cylindrical shell.
图5是深海钛合金环肋圆柱壳极限强度示意图。Fig. 5 is a schematic diagram of the ultimate strength of a deep sea titanium alloy ring rib cylindrical shell.
图6是两种基于模态位移的深海钛合金环肋圆柱壳极内爆失效机制示意图。Fig. 6 is a schematic diagram of two implosion failure mechanisms of deep-sea titanium alloy ring-ribbed cylindrical shell poles based on modal displacement.
具体实施方式Detailed ways
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。The present invention will be described in detail below in conjunction with specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that those skilled in the art can make several changes and improvements without departing from the concept of the present invention. These all belong to the protection scope of the present invention.
针对深海金属耐压壳在深海中发生内爆的失效机制判断问题,本发明的目的是提供一种基于模态位移的深海金属耐压壳内爆失效机制判断方法及系统,能够准确判断深海金属耐压壳的内爆失效形式,并为后续基于该模型的结构极限强度、结构动态响应等评估提供了基础,旨在为深海水下航行器和载人潜器的设计和制造提供理论依据和实践基础。Aiming at the problem of judging the failure mechanism of deep-sea metal pressure vessel implosion in deep sea, the purpose of the present invention is to provide a method and system for judging the failure mechanism of deep-sea metal pressure vessel implosion based on modal displacement, which can accurately judge the failure mechanism of deep-sea metal pressure vessel. The implosion failure form of the pressure hull provides a basis for the subsequent evaluation of the structural ultimate strength and structural dynamic response based on this model, aiming to provide a theoretical basis and basis for the design and manufacture of deep-sea underwater vehicles and manned submersibles. Practical basis.
实施例1Example 1
根据本发明提供的一种基于模态位移的深海金属耐压壳内爆失效机制判断方法,包括:A method for judging the implosion failure mechanism of a deep-sea metal pressure vessel based on modal displacement provided by the present invention includes:
步骤S1:对深海金属耐压壳进行结构有限元模型建模,得到有限元模型,对有限元模型的节点进行编号;Step S1: Carry out structural finite element model modeling on the deep-sea metal pressure vessel, obtain the finite element model, and number the nodes of the finite element model;
步骤S2:采用有限元方法对有限元模型进行特征值屈曲分析,得到前N阶模态位移结果;Step S2: Using the finite element method to perform eigenvalue buckling analysis on the finite element model to obtain the first N order modal displacement results;
步骤S3:基于各阶模态位移结果得到局部单一模态缺陷法或组合模态缺陷法的初始几何缺陷;Step S3: Obtain the initial geometric defects of the local single mode defect method or combined mode defect method based on the results of the modal displacements of each order;
步骤S4:根据耐压壳的几何不圆度要求进行初始几何缺陷的缩放,获得深海耐压结构的最终几何缺陷位移;Step S4: Scale the initial geometric defect according to the geometric out-of-roundness requirements of the pressure vessel, and obtain the final geometric defect displacement of the deep-sea pressure structure;
步骤S5:对不同最终几何缺陷位移的结果进行有限元模型的建模,得到最终的结构有限元模型,利用得到的最终结构有限元模型判断深海金属耐压壳内爆失效形式;Step S5: Carry out finite element model modeling on the results of different final geometric defect displacements to obtain the final structural finite element model, and use the obtained final structural finite element model to determine the implosion failure mode of the deep-sea metal pressure vessel;
步骤S6:对深海环境中的金属耐压壳进行内爆流固耦合计算,验证利用最终结构有限元模型判断深海金属耐压壳内爆失效形式。Step S6: Carry out implosion fluid-solid coupling calculation on the metal pressure vessel in the deep sea environment, and verify the implosion failure mode of the deep sea metal pressure vessel by using the final structural finite element model.
具体地,所述步骤S3采用:基于各阶模态位移结果获取某一阶模态结果得到单一模态缺陷法的初始几何缺陷;或基于各阶模态位移结果进行部分或全部叠加,得到组合模态缺陷法的缺陷几何缺陷。Specifically, the step S3 adopts: obtaining a certain order modal result based on the modal displacement results of each order to obtain the initial geometric defect of the single mode defect method; or performing partial or complete superposition based on the modal displacement results of each order to obtain a combined The defect geometry of the modal defect method.
具体地,所述步骤S4采用:将耐压壳的几何不圆度要求作为缩放系数,对初始几何缺陷位移进行缩放,得到最终几何缺陷位移。Specifically, the step S4 adopts: taking the geometric out-of-roundness requirement of the pressure vessel as a scaling factor to scale the initial geometric defect displacement to obtain the final geometric defect displacement.
具体地,所述步骤S5采用:将最终节点缺陷位移对应的节点编号mi添加到结构有限元模型节点编号ni上,得到最终的结构有限元模型;Specifically, the step S5 adopts: adding the node number m i corresponding to the final node defect displacement to the node number n i of the structural finite element model to obtain the final structural finite element model;
其中,考虑基于模态位移的深海金属耐压壳的节点位置为:Among them, considering the node position of the deep-sea metal pressure vessel based on the modal displacement is:
nn,i(x,y)=ni+mi n n, i(x, y) = n i +m i
式中,nn,i(x,y)表示基于前N阶模态叠加位移后的单元节点编号i对应的位置。In the formula, n n, i(x, y) represents the position corresponding to the unit node number i after the superimposed displacement based on the first N modes.
具体地,所述步骤S6采用:对深海环境中的金属耐压壳采用流固耦合算法进行内爆流固耦合计算。Specifically, the step S6 adopts: using the fluid-structure coupling algorithm for the metal pressure vessel in the deep sea environment to perform the fluid-structure coupling calculation of the implosion.
根据本发明提供的一种基于模态位移的深海金属耐压壳内爆失效机制判断系统,包括:According to the present invention, a system for judging the implosion failure mechanism of a deep-sea metal pressure vessel based on modal displacement includes:
模块M1:对深海金属耐压壳进行结构有限元模型建模,得到有限元模型,对有限元模型的节点进行编号;Module M1: Carry out structural finite element model modeling on the deep-sea metal pressure vessel, obtain the finite element model, and number the nodes of the finite element model;
模块M2:采用有限元方法对有限元模型进行特征值屈曲分析,得到前N阶模态位移结果;Module M2: Use the finite element method to perform eigenvalue buckling analysis on the finite element model to obtain the first N order modal displacement results;
模块M3:基于各阶模态位移结果得到局部单一模态缺陷法或组合模态缺陷法的初始几何缺陷;Module M3: Obtain the initial geometric defects of the local single mode defect method or the combined mode defect method based on the displacement results of each order of mode;
模块M4:根据耐压壳的几何不圆度要求进行初始几何缺陷的缩放,获得深海耐压结构的最终几何缺陷位移;Module M4: Scale the initial geometric defects according to the geometric out-of-roundness requirements of the pressure vessel, and obtain the final geometric defect displacement of the deep-sea pressure structure;
模块M5:对不同最终几何缺陷位移的结果进行有限元模型的建模,得到最终的结构有限元模型,利用得到的最终结构有限元模型判断深海金属耐压壳内爆失效形式;Module M5: Carry out finite element model modeling on the results of different final geometric defect displacements to obtain the final structural finite element model, and use the obtained final structural finite element model to judge the implosion failure form of deep-sea metal pressure vessel;
模块M6:对深海环境中的金属耐压壳进行内爆流固耦合计算,验证利用最终结构有限元模型判断深海金属耐压壳内爆失效形式。Module M6: Carry out fluid-solid coupling calculation of implosion metal pressure vessel in deep sea environment, and verify the use of final structural finite element model to judge the implosion failure mode of deep sea metal pressure vessel.
具体地,所述模块M3采用:基于各阶模态位移结果获取某一阶模态结果得到单一模态缺陷法的初始几何缺陷;或基于各阶模态位移结果进行部分或全部叠加,得到组合模态缺陷法的缺陷几何缺陷。Specifically, the module M3 adopts: based on the modal displacement results of each order, a certain order modal result is obtained to obtain the initial geometric defect of the single mode defect method; The defect geometry of the modal defect method.
具体地,所述模块M4采用:将耐压壳的几何不圆度要求作为缩放系数,对初始几何缺陷位移进行缩放,得到最终几何缺陷位移。Specifically, the module M4 adopts: taking the geometric out-of-roundness requirement of the pressure vessel as a scaling factor to scale the initial geometric defect displacement to obtain the final geometric defect displacement.
具体地,所述模块M5采用:将最终节点缺陷位移对应的节点编号mi添加到结构有限元模型节点编号ni上,得到最终的结构有限元模型;Specifically, the module M5 adopts: adding the node number mi corresponding to the final node defect displacement to the node number n i of the structural finite element model to obtain the final structural finite element model;
其中,考虑基于模态位移的深海金属耐压壳的节点位置为:Among them, considering the node position of the deep-sea metal pressure vessel based on the modal displacement is:
nn,i(x,y)=ni+mi n n, i(x, y) = n i +m i
式中,nn,i(x,y)表示基于前N阶模态叠加位移后的单元节点编号i对应的位置。In the formula, n n, i(x, y) represents the position corresponding to the unit node number i after the superimposed displacement based on the first N modes.
具体地,所述模块M6采用:对深海环境中的金属耐压壳采用流固耦合算法进行内爆流固耦合计算。Specifically, the module M6 adopts: a fluid-structure coupling algorithm is used for implosion fluid-structure coupling calculations for metal pressure-resistant shells in deep-sea environments.
实施例2Example 2
实施例2是实施例1的优选例Embodiment 2 is a preferred example of embodiment 1
根据本发明提供的一种基于模态位移的深海金属耐压壳内爆失效机制判断方法,如图1所示,包括:According to the present invention, a method for judging the implosion failure mechanism of a deep-sea metal pressure vessel based on modal displacement, as shown in Figure 1, includes:
步骤1:对深海金属耐压壳进行有限元模型建模;Step 1: Carry out finite element model modeling on the deep-sea metal pressure vessel;
对深海金属耐压壳进行结构有限元建模,由于应用对象通常为球形或者圆柱形薄壳结构,因此通常采用壳单元,圆柱形钛合金耐压壳有限元模型如图2所示。令有限元模型的节点编号记为ni。Structural finite element modeling of deep-sea metal pressure hulls, since the application objects are usually spherical or cylindrical thin shell structures, shell elements are usually used. The finite element model of cylindrical titanium alloy pressure hulls is shown in Figure 2. Let the node number of the finite element model be recorded as n i .
步骤2:对有限元模型进行特征值屈曲分析,得到结构的前N阶模态位移结果;Step 2: Perform eigenvalue buckling analysis on the finite element model to obtain the first N order modal displacement results of the structure;
采用有限元方法对有限元模型进行特征值屈曲分析,得到前6阶模态位移结果,如图3所示。并分别记录模态位移结果对应的总节点编号分别记作m1,i、m2,i、m3,i、m4,i、m5,i、m6,i。其中下标1~6表示相应的模态阶数,下标i表示有限元模型的节点编号。The eigenvalue buckling analysis of the finite element model is carried out by using the finite element method, and the results of the first six modal displacements are obtained, as shown in Figure 3. And record the total node numbers corresponding to the modal displacement results respectively as m 1,i , m 2,i ,m 3,i ,m 4,i ,m 5,i ,m 6,i . Among them, the subscripts 1 to 6 represent the corresponding modal orders, and the subscript i represents the node number of the finite element model.
步骤3:将各阶模态位移结果进行部分或全部叠加,得到局部单一模态缺陷法和整体组合模态缺陷法的初始几何缺陷;Step 3: Superimpose part or all of the modal displacement results of each order to obtain the initial geometric defects of the local single mode defect method and the overall combined mode defect method;
单一模态缺陷位移结果是将特征值屈曲的分析中的某一阶作为结构的初始缺陷,而多模态叠加组合的缺陷位移结果是在一个模型中同时引入多个特征值屈曲模态结果,从而形成具有多阶模态位移缺陷形式的有限元结构模型。采用python自编译程序,将对应有限元节点编号的圆柱形耐压壳的模态结果m1,i~m6,i进行叠加,得到基于模态位移结果的初始几何缺陷:The result of single-mode defect displacement is to use a certain order in the analysis of eigenvalue buckling as the initial defect of the structure, while the result of defect displacement combined by multi-mode superposition is to introduce multiple eigenvalue buckling modal results into one model at the same time. A finite element structural model with a multi-mode displacement defect form is thus formed. The python self-compiled program is used to superimpose the modal results m 1, i ~ m 6, i of the cylindrical pressure shell corresponding to the finite element node number, and the initial geometric defect based on the modal displacement result is obtained:
mn,i=m1,i+m2,i+...+mN-1,i+mN,i m n,i =m 1,i +m 2,i +...+m N-1,i +m N,i
式中,mn,i表示前N阶模态所有节点的模态位移叠加之和。In the formula, m n, i represent the sum of the modal displacement superposition of all nodes in the first N order modes.
步骤4:根据耐压壳的几何不圆度要求进行初始几何缺陷的缩放,数值结果作为深海耐压结构的最终几何缺陷位移;Step 4: Scale the initial geometric defect according to the geometric out-of-roundness requirements of the pressure hull, and the numerical result is used as the final geometric defect displacement of the deep-sea pressure structure;
对于深海金属耐压壳而言,需要考虑制造误差的影响。对于圆柱形环肋圆柱壳而言,取0.5%作为初始不圆度。采用python自编译程序,将该不圆度要求作为缩放系数,对基于模态叠加法得到的初始几何缺陷位移进行缩放,得到深海钛合金耐压壳的最终几何缺陷位移,令最终缺陷位移对应的节点编号为mi。For deep-sea metal pressure vessels, the influence of manufacturing errors needs to be considered. For cylindrical ring-ribbed cylindrical shells, 0.5% is taken as the initial out-of-roundness. Using the python self-compiled program, the out-of-roundness requirement is used as a scaling factor to scale the initial geometric defect displacement based on the mode superposition method to obtain the final geometric defect displacement of the deep-sea titanium alloy pressure hull, so that the final defect displacement corresponds to The node number is m i .
mi=0.5%×mn,i m i =0.5%×m n,i
式中,mi表示考虑初始不圆度后基于前N阶模态叠加位移后的单元节点编号。In the formula, m i represents the node number of the unit after considering the initial out-of-roundness and superimposing displacement based on the first N order modes.
步骤5:按照计算的先后顺序,对不同最终几何缺陷位移的结果进行有限元模型的建模,得到最终的有限元模型,利用最终的有限元模型判断深海金属耐压壳内爆失效形式;Step 5: According to the order of calculation, the finite element model is modeled on the results of different final geometric defect displacements to obtain the final finite element model, and the implosion failure form of the deep-sea metal pressure vessel is judged by the final finite element model;
采用python自编译程序,实现深海环肋圆柱壳的最终节点缺陷位移对应的节点编号mi分别依次添加到结构有限元模型节点编号ni上,得到最终的环肋圆柱壳内爆计算结构模型。其中考虑基于模态位移的深海金属耐压壳的节点位置为:Using the python self-compiler program, the node number mi corresponding to the final node defect displacement of the deep-sea ring-ribbed cylindrical shell is sequentially added to the node number ni of the structural finite element model, and the final implosion calculation structural model of the ring-ribbed cylindrical shell is obtained. Among them, the node position of the deep-sea metal pressure vessel based on the modal displacement is considered as:
nn,i(x,y)=ni+mi n n, i(x, y) = n i +m i
式中,nn,i(x,y)表示基于前N阶模态叠加位移后的单元节点编号i对应的位置。In the formula, n n, i(x, y) represents the position corresponding to the unit node number i after the superimposed displacement based on the first N modes.
根据所述各阶模态叠加位移结果,得到考虑初始缺陷的结构有限元模型,如图4所示。其中将一阶屈曲模态结果作为环肋圆柱壳的初始缺陷而得到的有限元结构模型时,环肋圆柱壳仅仅在中心表面位置处出现微幅凹陷,而其他位置基本不变。因此预测深海环肋圆柱壳发生内爆时,首先在中心位置开始向内凹陷,并且优先在中心位置处失效。随着内爆的演化,中心位置的塌陷逐渐向两端扩展,最终导致整个结构失效。但是可以预见的是,将一阶屈曲模态位移作为初始缺陷的环肋圆柱壳而言,最后阶段仍能保持相对完整的结构。According to the superimposed displacement results of the modes of each order, a structural finite element model considering the initial defects is obtained, as shown in Fig. 4 . When the first-order buckling mode results are used as the initial defects of the ring-ribbed cylindrical shell to obtain the finite element structural model, the ring-ribbed cylindrical shell only has a slight depression at the central surface position, while other positions are basically unchanged. Therefore, it is predicted that when the deep-sea ring-ribbed cylindrical shell implodes, it will first sink inward at the center and fail at the center first. As the implosion evolved, the collapse at the center gradually expanded to both ends, eventually leading to the failure of the entire structure. However, it can be predicted that for the ring-ribbed cylindrical shell with the first-order buckling mode displacement as the initial defect, the final stage can still maintain a relatively complete structure.
当初始几何缺陷的模态数为6阶时,临近屈曲极限强度增大,且结构表面呈现出多阶模态的缺陷位移特征,表面出现了微幅凹陷。因此可以预见前6阶模态位移叠加的内爆失效机制中,环肋圆柱壳结构在表面将呈现多阶模态的凹陷特征,且随着内爆的发展,圆柱壳中间段几乎同一时间失效破碎,未保留相对完整的结构。When the modal number of the initial geometric defect is 6th order, the strength near the buckling limit increases, and the surface of the structure presents defect displacement characteristics of multi-order modes, and a slight depression appears on the surface. Therefore, it can be predicted that in the implosion failure mechanism of the superposition of the first six modal displacements, the surface of the ring-ribbed cylindrical shell structure will present a multi-mode concave feature, and with the development of the implosion, the middle section of the cylindrical shell will fail at almost the same time Broken, relatively intact structure is not preserved.
此外,基于考虑结构和几何初始缺陷的有限元模型,采用弧长法针对该模型进行极限承载计算结果如图5所示。以此证明采用单一模态缺陷法和整体模态缺陷法得到的结果不同,验证了模态叠加的正确性。In addition, based on the finite element model considering the structural and geometric initial defects, the arc length method is used to carry out the ultimate bearing calculation results for this model, as shown in Fig. 5. This proves that the results obtained by using the single mode defect method and the overall mode defect method are different, and the correctness of the mode superposition is verified.
步骤6:对深海环境中的金属耐压壳进行内爆流固耦合计算,验证基于模态位移的深海金属耐压壳内爆结构变形的结果Step 6: Carry out fluid-solid coupling calculation of implosion metal pressure vessel in deep sea environment, and verify the result of implosion structural deformation of deep sea metal pressure vessel based on modal displacement
采用流固耦合算法,对步骤五中最终有限元模型进行内爆失效机制数值模拟,验证基于模态位移结果的环肋圆柱壳判断方法的正确性。其中基于单一模态和前六阶叠加模态位移的内爆失效过程如图6所示。The fluid-solid coupling algorithm is used to simulate the implosion failure mechanism of the final finite element model in step five, and verify the correctness of the judgment method of the ring-ribbed cylindrical shell based on the modal displacement results. The implosion failure process based on the displacement of the single mode and the first six superimposed modes is shown in Fig. 6.
对于将一阶屈曲模态结果作为初始缺陷引入结构有限元模型的结果而言,深海环肋圆柱壳在中心位置开始向内凹陷,并且先在中心位置处失效。随着内爆的演化,中心位置的塌陷逐渐向两端延伸,最终导致整个结构失效。而在前6阶模态位移叠加的内爆失效机制中,环肋圆柱壳结构在表面位置呈现了多阶模态的变形特征,且随着内爆的发展,圆柱壳中间段基本完全失效破碎。由此可见,该环肋圆柱壳的水下内爆失效机制与基于模态位移的单一和叠加结果保持一致。因此,本发明基于模态位移能够快速得到深海金属耐压壳内爆失效机制,对深海潜器耐压壳的设计和制造有重要的工程意义。For the results of introducing the first-order buckling mode results as initial defects into the structural finite element model, the deep-sea ring-ribbed cylindrical shell starts to sag inward at the center and fails at the center first. As the implosion evolved, the collapse at the center gradually extended to both ends, eventually leading to the failure of the entire structure. However, in the implosion failure mechanism of the superposition of the first six modal displacements, the ring-ribbed cylindrical shell structure presents multi-mode deformation characteristics at the surface position, and with the development of the implosion, the middle section of the cylindrical shell basically completely fails and breaks . It can be seen that the underwater implosion failure mechanism of the ring-ribbed cylindrical shell is consistent with the single and superposition results based on the modal displacement. Therefore, the invention can quickly obtain the implosion failure mechanism of the deep-sea metal pressure vessel based on the modal displacement, which has important engineering significance for the design and manufacture of the pressure vessel of the deep-sea submersible.
本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的系统、装置及其各个模块以外,完全可以通过将方法步骤进行逻辑编程来使得本发明提供的系统、装置及其各个模块以逻辑门、开关、专用集成电路、可编程逻辑控制器以及嵌入式微控制器等的形式来实现相同程序。所以,本发明提供的系统、装置及其各个模块可以被认为是一种硬件部件,而对其内包括的用于实现各种程序的模块也可以视为硬件部件内的结构;也可以将用于实现各种功能的模块视为既可以是实现方法的软件程序又可以是硬件部件内的结构。Those skilled in the art know that, in addition to realizing the system, device and each module thereof provided by the present invention in a purely computer-readable program code mode, the system, device and each module thereof provided by the present invention can be completely programmed by logically programming the method steps. The same program is implemented in the form of logic gates, switches, application specific integrated circuits, programmable logic controllers, and embedded microcontrollers, among others. Therefore, the system, device and each module provided by the present invention can be regarded as a hardware component, and the modules included in it for realizing various programs can also be regarded as the structure in the hardware component; A module for realizing various functions can be regarded as either a software program realizing a method or a structure within a hardware component.
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the specific embodiments described above, and those skilled in the art may make various changes or modifications within the scope of the claims, which do not affect the essence of the present invention. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310334495.0A CN116432491A (en) | 2023-03-30 | 2023-03-30 | Method and system for judging implosion failure mechanism of deep-sea metal pressure-resistant shell based on modal displacement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310334495.0A CN116432491A (en) | 2023-03-30 | 2023-03-30 | Method and system for judging implosion failure mechanism of deep-sea metal pressure-resistant shell based on modal displacement |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116432491A true CN116432491A (en) | 2023-07-14 |
Family
ID=87079062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310334495.0A Pending CN116432491A (en) | 2023-03-30 | 2023-03-30 | Method and system for judging implosion failure mechanism of deep-sea metal pressure-resistant shell based on modal displacement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116432491A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103714206A (en) * | 2013-12-17 | 2014-04-09 | 天津大学 | Subsea pipeline two-dimensional static numerical simulation method for introducing initial defects based on modes |
CN108614912A (en) * | 2018-03-21 | 2018-10-02 | 江苏科技大学 | A kind of spherical shape pneumatic shell mechanical characteristic analysis computational methods |
CN111753455A (en) * | 2020-06-30 | 2020-10-09 | 仲恺农业工程学院 | A fast calculation method for dynamic buckling of slender metal arch structures considering geometric defects |
CN112307659A (en) * | 2020-10-30 | 2021-02-02 | 江苏科技大学 | A numerical calculation method for the ultimate bearing capacity of a double-layer cylindrical pressure hull |
WO2022121200A1 (en) * | 2020-12-08 | 2022-06-16 | 江苏科技大学 | Numerical computation method for spherical pressure hull containing random pitting defect |
-
2023
- 2023-03-30 CN CN202310334495.0A patent/CN116432491A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103714206A (en) * | 2013-12-17 | 2014-04-09 | 天津大学 | Subsea pipeline two-dimensional static numerical simulation method for introducing initial defects based on modes |
CN108614912A (en) * | 2018-03-21 | 2018-10-02 | 江苏科技大学 | A kind of spherical shape pneumatic shell mechanical characteristic analysis computational methods |
CN111753455A (en) * | 2020-06-30 | 2020-10-09 | 仲恺农业工程学院 | A fast calculation method for dynamic buckling of slender metal arch structures considering geometric defects |
CN112307659A (en) * | 2020-10-30 | 2021-02-02 | 江苏科技大学 | A numerical calculation method for the ultimate bearing capacity of a double-layer cylindrical pressure hull |
WO2022121200A1 (en) * | 2020-12-08 | 2022-06-16 | 江苏科技大学 | Numerical computation method for spherical pressure hull containing random pitting defect |
Non-Patent Citations (5)
Title |
---|
中国船级社: "潜水系统与潜水器入级规范", 1 December 2018, 人民交通出版社, pages: 61 - 62 * |
同志学等: "缺陷圆柱壳体外压屈曲的仿真分析", 哈尔滨工业大学学报, vol. 54, no. 7, 31 July 2022 (2022-07-31), pages 64 - 69 * |
张建;周通;王纬波;唐文献;: "模态缺陷条件下复合材料柱形壳屈曲特性", 复合材料学报, no. 03, 31 December 2017 (2017-12-31), pages 124 - 132 * |
张晓龙等: "氮化硅陶瓷空心浮力球在内爆临界状态下的失效分析", 海洋工程, vol. 38, no. 6, 30 November 2020 (2020-11-30), pages 70 - 76 * |
熊志鑫;黄志权;张道兵;胡雄;: "模态缺陷条件下的深潜耐压球壳极限强度", 哈尔滨工程大学学报, no. 01, 31 December 2020 (2020-12-31), pages 80 - 84 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112632814B (en) | Recycled concrete three-dimensional model construction method based on ellipsoidal random aggregate | |
KR101895784B1 (en) | Assembly tree modeling system and method for member of vessel | |
Landmann et al. | A highly automated parallel Chimera method for overset grids based on the implicit hole cutting technique | |
US20190179977A1 (en) | Methods And Systems For Authoring Simulation Scenarios | |
CN118378461B (en) | Support structure checking simulation method and equipment based on mechanical numerical simulation | |
CN110688798B (en) | Deformation prediction method, device, equipment and storage medium for shell structural part | |
CN103353911B (en) | Modal method introduces initial imperfection subsea pipeline complete buckling two dimensional dynamic analogy method | |
CN113505435A (en) | Carbon fiber shell analysis method based on response surface model | |
Krätzig et al. | Onbest'shell models–From classical shells, degenerated and multi-layered concepts to 3D | |
Fu et al. | Mechanical properties and optimal configurations of variable-curvature pressure hulls based on the equal-strength shell theory | |
CN112395746A (en) | Method for calculating property of equivalent material of microstructure family, microstructure, system and medium | |
CN116432491A (en) | Method and system for judging implosion failure mechanism of deep-sea metal pressure-resistant shell based on modal displacement | |
Zarrinzadeh et al. | Extended finite element fracture analysis of a cracked isotropic shell repaired by composite patch | |
CN103714207A (en) | Subsea pipeline three-dimensional dynamic numerical simulation method for introducing initial defects based on modes | |
Hassan et al. | Simulation of ratcheting responses of elbow piping components | |
CN103729504A (en) | Method for simulating three-dimensional static numerical values of submarine pipelines with introduced initial defects on basis of modes | |
CN117637211A (en) | Method, device and equipment for detecting defects of reactor core barrel in reactor pressure vessel | |
CN115935559A (en) | Downhole tool bending simulation method and device | |
CN113688556A (en) | Method and device for acquiring constitutive parameters of rubber material | |
Jing et al. | Integral Bulge Forming Method for Soccer Ball-Shaped Tank Using Symmetrical Preformed Box Consisting of Plate Parts | |
HUANG et al. | A design method for spherical pressure shells subjected to external pressure | |
Łaczek et al. | Load capacity of a thick-walled cylinder with a radial hole | |
Zhuoyi et al. | Structure design of an autonomous underwater vehicle made of composite material | |
Hwang et al. | Simplified impinging jet model for practical sloshing assessment of LNG cargo containment | |
Kim et al. | Damage identification of truss structures based on force method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |