CN116417877A - 压缩纳秒级的激光脉冲并生成100飞秒级的超短脉冲的设备 - Google Patents
压缩纳秒级的激光脉冲并生成100飞秒级的超短脉冲的设备 Download PDFInfo
- Publication number
- CN116417877A CN116417877A CN202310024634.XA CN202310024634A CN116417877A CN 116417877 A CN116417877 A CN 116417877A CN 202310024634 A CN202310024634 A CN 202310024634A CN 116417877 A CN116417877 A CN 116417877A
- Authority
- CN
- China
- Prior art keywords
- oscillator
- laser
- waveguide
- pulses
- trigger signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 43
- 230000005540 biological transmission Effects 0.000 claims abstract description 13
- 230000003595 spectral effect Effects 0.000 claims abstract description 13
- 238000002156 mixing Methods 0.000 claims abstract description 9
- 230000000694 effects Effects 0.000 claims abstract description 8
- 239000012780 transparent material Substances 0.000 claims abstract description 8
- 230000008878 coupling Effects 0.000 claims abstract description 7
- 238000010168 coupling process Methods 0.000 claims abstract description 7
- 238000005859 coupling reaction Methods 0.000 claims abstract description 7
- 239000013307 optical fiber Substances 0.000 claims description 12
- 239000000835 fiber Substances 0.000 claims description 10
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 3
- 230000010355 oscillation Effects 0.000 description 11
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 230000005284 excitation Effects 0.000 description 3
- 230000009022 nonlinear effect Effects 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 229910052769 Ytterbium Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 230000005374 Kerr effect Effects 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- SYHGEUNFJIGTRX-UHFFFAOYSA-N methylenedioxypyrovalerone Chemical compound C=1C=C2OCOC2=CC=1C(=O)C(CCC)N1CCCC1 SYHGEUNFJIGTRX-UHFFFAOYSA-N 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- -1 ytterbium ions Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/005—Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
- H01S3/0057—Temporal shaping, e.g. pulse compression, frequency chirping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/353—Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
- G02F1/3536—Four-wave interaction
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/365—Non-linear optics in an optical waveguide structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/005—Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
- H01S3/0085—Modulating the output, i.e. the laser beam is modulated outside the laser cavity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08004—Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08018—Mode suppression
- H01S3/08022—Longitudinal modes
- H01S3/08027—Longitudinal modes by a filter, e.g. a Fabry-Perot filter is used for wavelength setting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/0912—Electronics or drivers for the pump source, i.e. details of drivers or circuitry specific for laser pumping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094003—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
- H01S3/094015—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre with pump light recycling, i.e. with reinjection of the unused pump light back into the fiber, e.g. by reflectors or circulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/10084—Frequency control by seeding
- H01S3/10092—Coherent seed, e.g. injection locking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
- H01S3/108—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
- H01S3/1106—Mode locking
- H01S3/1112—Passive mode locking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/005—Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
- H01S5/0092—Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0627—Construction or shape of active medium the resonator being monolithic, e.g. microlaser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/0675—Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06791—Fibre ring lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08086—Multiple-wavelength emission
- H01S3/0809—Two-wavelenghth emission
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
- H01S3/1123—Q-switching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
- H01S3/1123—Q-switching
- H01S3/113—Q-switching using intracavity saturable absorbers
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Lasers (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
用于生成超短脉冲的设备,其中振荡器由以下形成:第一和第二非重叠传输带通滤波器;具有不等于零的非线性克尔系数χ(3)的光学透明装置,被配置为通过对所传输的信号的自相位调制来实现频谱展宽;产生正增益的光波导;被配置为接收被设计为激活振荡器的操作的触发信号的节点;触发信号生成设备,包括:激光源,被配置为生成激光脉冲,优选地具有最小带宽,持续时间为数百ps至ns;耦合系统,被设计为将触发激光的脉冲引入由以不等于零的非线性克尔系数χ(3)为特征的光学透明材料制成的波导,波导被配置为产生两种不同效应,以便在光谱上展宽触发激光的脉冲,具体地为:a)自相位调制和b)四波混频;波导的输出向节点提供触发信号。
Description
相关申请的交叉引用
本专利申请要求于2022年1月7日提交的意大利专利申请102022000000167的优先权,其全部公开以引用方式并入本文。
技术领域
本发明涉及一种用于将纳秒级的激光脉冲(从几百皮秒到几百纳秒)压缩成100飞秒级的超短脉冲(从几十飞秒到几百飞秒)的设备。
背景技术
为了获得100飞秒量级(1fs=10-15s)的超短激光脉冲,有几种架构可用,通常基于固态技术或光纤中的锁模操作。类似于图1所示的架构最近建立起来。
图1公开了现有技术,并示出了用于生成所述超短脉冲的激光振荡器的示例。
振荡器包括布置在两个反射器(1和8)之间的波导,并包括两个不重叠的传输带通滤波器SF1和SF2(2和7),非线性系数χ(3)不等于零的光学透明装置(4,6),以及产生正增益的光学放大器(5),光学透明装置(4,6)通过对通过这些装置(4,6)传输的信号进行自相位调制来实现频谱展宽。
在现有技术的实施例中,波导为单模光纤。
基于滤波器(2,7)的反射或通过两个端子镜中的一个的透射(如果它具有反射率<100%)或通过振荡器的任何其他点的透射,输出信号被拾取,而激光振荡可以由放大器(5)的自发发射噪声诱导,或者可以通过将外部信号注入方便地为目的而选择的振荡器的点来触发(不一定与用于拾取输出信号的相同节点相一致)。就噪声而言,它应该是指具有正增益的光学放大器(5)内的光信号波动。这些波动发生在具有正增益的光学放大器(5)的增益频带内,并且通常由自发衰减过程产生。
激光振荡发生在循环脉冲稳定时,通过光学透明装置(4)和(6)以及通过光学放大器(5)在单个步骤产生的循环脉冲的总频带展宽至少等于滤波器(2)和(7)之间的间距。
在使用外部激发信号产生触发的情况下,迄今为止文献中提出的解决方案中已被证明具有最大可靠性的触发设备产生的脉冲为几皮秒或几十皮秒,并且是复杂而昂贵的激发激光源。
一旦振荡开始,如果光学放大器的增益保持不变,即使外部触发信号中断,循环脉冲的能量和持续时间也保持不变。因此,振荡器发射一串相同的脉冲,其重复周期等于振荡器中覆盖完整周期所需的时间。根据现有技术,通过添加正确的群速度色散量,此皮秒级的脉冲可以压缩到100飞秒级的持续时间。
发明内容
制造商认为有必要通过在振荡器中压缩由非常简单且具有成本效益的激光器生成的脉冲来提供超短脉冲,从1纳秒级的持续时间到100飞秒级的持续时间。
上述目的由权利要求1中描述的类型的用于压缩脉冲的设备实现。
附图说明
本发明现在将参考附图进行描述,附图示出了其非限制性实施例,其中:
图1示出了根据现有技术生成超短激光脉冲的设备的示例;
图2示出了根据本发明的用于将纳秒级的激光脉冲压缩为100飞秒级的超短脉冲的设备;以及
图3示出了根据本发明的频带展宽信号的频谱,用于触发图2的设备的振荡;
图4示出了基于类环结构的替代的更复杂但同样有效的解决方案,用于图2所示的振荡器。
具体实施方式
图2示出了根据本发明的用于将纳秒级的激光脉冲压缩为100飞秒级的超短脉冲的设备。超短激光脉冲是持续时间为100飞秒量级的激光脉冲。
图2的设备包括振荡器32,振荡器32由以下形成:
端子光学反射器10和17;
第一和第二非重叠传输带通滤波器11和16,分别与端子光学反射器10和17耦接;
具有不等于零的非线性克尔系数χ(3)的光学透明设备13,15,被配置为通过对通过这些设备传输的信号的自相位调制来实现频谱展宽;
有源波导(例如光纤)14,当由同样使用已知技术操作的适当电流发生器19驱动的泵浦激光二极管18以已知技术照明时,产生正增益;
节点12,被配置为接收被设计为激活振荡器32中的激光振荡的触发信号;(在说明示例中,节点12被布置在带通滤波器11和光学透明设备13之间——基于实际需要,节点12可以以任何方式被布置在端子光学反射器10和17之间的任何位置)。
图2的设备进一步包括触发信号生成设备31。
在本文所示的示例中,分别以不同组件的形式实现端子光学反射器10和17以及第一和第二带通滤波器11和16;然而,端子光学反射器10和相应的带通滤波器11可以集成在一个单个组件中,就如端子光学反射器17和相应的带通滤波器16可以集成在一个单个组件中一样。
对应于非线性克尔指数n2的系数χ(3)等于,例如,电信光纤典型的约3x10-16 cm2/W,足以通过自相位调制获得足够的频谱展宽,然而,具有高非线性的特殊光纤或波导可以有效地用于产生更短的脉冲或生成完全集成在光学芯片上波导中的具有高重复率(>1Ghz)的振荡器。
非重叠传输带通滤波器11和16基于已知的操作原理。在这方面,有几种可能的替代可用,都具有相当的效果,诸如具有合适介电涂层的薄玻璃板,放置在玻璃板上或在光纤内部获得的表面或体积衍射光栅。
具有不等于零的非线性系数χ(3)的光学透明设备13,15通常是由单模光纤获得的。实际上,具有不等于零的χ(3)的任何光学透明材料,只要大小合适,都可以作为非线性装置,通过非线性装置通过自相位调制和四波混频来获得频谱展宽。然而,由于全内反射原理,诸如光纤的波导可以将光辐射限制在任意长的距离内,因此在这方面特别有效。在可能的光纤中,本质上是单模光纤中,因为它们确保在较小的芯内传播,因此容易允许实现更高的光强度级别,从而优化非线性现象的触发。
掺杂有稀土元素的活性离子,诸如例如但不限于,镱、钕、铒或铥的有源波导14,当被适当泵浦(即,在通过吸收与由设备18产生的相应吸收光谱的峰值之一对应的波长的电磁辐射而获得正增益的条件下)时,导致光学放大器的生成,并且在结构上与用于触发非线性光学现象的无源类的光学透明设备13,15兼容。在创建的原型的特别情况下,其在波长为1064nm操作,使用了掺有镱离子的光纤。所要求的掺杂剂浓度不是被认为与最终操作相关的参数。假设必须创建在不同波长下操作的系统,活性纤维的掺杂剂必须相应地改变,如文献中所述。在这里讨论的示例中使用的有源单模光纤通常长度约为1米。
根据本发明,触发信号生成设备31包括:
微芯片激光源21,被配置为生成优选地具有纳秒级的持续时间且具有约等于持续时间的倒数的最小带宽(傅里叶极限);
光学系统22(用一组透镜示意性表示),被设计为将激光21的脉冲耦合到波导23的输入,波导23由以不等于零的非线性克尔系数χ(3)为特征的光学透明材料制成。所述由光学透明材料制成的装置一般可以类似于光学透明设备13和15中使用的装置,除了基于所需非线性效应的程度优化尺寸以外,不限于在设备13和15中通过循环脉冲的重复频率和能量而设置的尺寸。
波导23触发两个不同的非线性效应,以便在光谱上加宽激光21的输入脉冲,具体地为:
a)自相位调制(SPM);以及
b)四波混频(FWM);
在这种情况下,相对于自相位调制(SPM),四波混频(FWM)在产生频谱展宽方面起着主要作用。
波导23的输出通过耦合设备24向节点12提供触发信号。
波导23通常由单模光纤制成。
特别地,在申请人创建的原型中,单模光纤的长度范围为5至15米。
激光源21优选地具有超过100W的发射脉冲的峰值功率。
激光源21通常以微芯片激光器的形式实现。
激光器方便地在Q开关模式下操作,这表明了已知类型的激光振荡器的一种特殊操作模式,利用这种模式激光器可以产生脉冲输出光束。这种技术允许产生具有极高峰值功率的光脉冲,远高于在连续模式下操作时由相同激光器产生的光脉冲。在Q开关模式中,放大器处于高增益状态,而合适的调制器迅速将腔损耗(Q因子)从高值(防止激光振荡)切换到低值,从而允许振荡以发射单个非常强烈的光脉冲的形式出现。有源调制器是电子组件,而无源调制器是由部分透明材料制成的更简单的组件,其光学吸收取决于入射光强而降低。与其他可能的激发信号的注入器相比,此源在紧凑、坚固、可靠和低成本方面具有优势。注入只需要触发振荡,一旦在设备(33)的输出处获得稳定的操作,注入就可以完全禁用。
例如,在为本发明创建的原型中,注入涉及使用以1064nm的波长操作,处于无源Q开关模式,脉冲持续时间为300ps,重复频率为50kHz的微芯片激光器(由带有介电反射镜的单个晶体组成的单片激光器,其同时用作有源装置和可饱和吸收器)。激光器只在生成一些脉冲所需的时间内保持开启状态,这大大简化了其电源供应。这是非限制性的示例。
一种可能的替代方案是具有离散元件的简单固态激光器,其中包括增益元件,诸如有源晶体材料或有源波导或有源光纤,和调制元件,这样当由激光二极管适当泵浦时,它们就可以允许Q开关模式下的操作。
另一种替代方案是半导体激光二极管,由持续时间为纳秒级并例如通过光纤技术进行放大的电流脉冲控制。
然而,与具有无源Q开关的微芯片激光器相比,这些替代可能意味着更高的成本和更大的制造复杂性。
自相位调制(SPM)(https://it.qiq.wiki/wiki/Self_phase_modulation)是光-物质相互作用的非线性光学效应。由于光学克尔效应,当光在介质中传播时,强烈的光脉冲将引起介质折射率的时间调制。此折射率的变化将产生光脉冲的相移,导致脉冲的频谱展宽。
四波混频(FWM)(https://it.qiq.wiki/wiki/Four_wave_mixing)是非线性光学中的一种互调现象,由此,给定三个光学频率f1、f2和f3,可以基于由能量守恒引起的条件f1+f2=f3+f4,生成第四光学频率。在“恶化”情况下,两个频率为f1的光子(强场或“泵”)和频率为f3的光子(弱场或“信号”)就足够了,前提是f2=f1,生成f4=2·f1-f3。在特定情况下,由于f1和f3是两个不同的频率(f3可以由光学放大器中的自发发射生成,但也可以由真空量子波动生成,在没有其他东西的情况下),f4是新生成的频率,产生对称的频谱展宽(f4-f1=f1-f3)。
波导23(图3)的输出信号被频谱加宽,并包括与由激光器21生成的原始信号之一的振幅峰值相当的振幅峰值和包含足以在振荡器32中生成振荡的能量的钟形基(基座)。
图3示出了信号的频谱,即其波长表示(与光带频率成反比)。
图3的垂直刻度是对数刻度,以便指出频谱中可能的基座,即振幅低于中心峰值几个数量级的频谱展宽。
启动激光源(具有无源Q开关的微芯片)生成的信号的频谱具有<0.1nm的带宽,因此在图3中用一条很窄的线表示。FWM现象在中心峰下生成中心钟,而拉曼效应在中心峰的右边生成另一个横向钟,这对于振荡器32的操作不是必需的。
基于申请人的实验数据,此信号获得了系统且可靠地触发振荡的效果。由触发设备31在波导23中通过FWM产生的钟的一些纳米的频谱宽度支持短持续时间(数百fs)和通常<1nJ的能量的噪声波动,足以通过SPM产生适合于建立振荡器32的操作的频带展宽。通过SPM和FWM的频带展宽同时进行,尽管FWM波动起决定性作用。
事实上,通过SPM产生的带宽与脉冲的峰值功率成正比,并与其持续时间成反比。
在实践中,微芯片源(在示例中)的脉冲太长,无法触发足够的SPM:根据本发明,所述源生成的脉冲还产生相对较宽的FWM频谱,其对应于较小能量的短强度波动,但峰值功率和持续时间足以支持触发振荡和随后生成稳定脉冲所要求的频带,通过已知技术补偿色散,该稳定脉冲可以在振荡器的输出处减少到约100飞秒。
例如,如果10米长的单模光纤被用作波导23,最小带宽(傅里叶极限)脉冲为30ps,为了通过FWM生成数纳米的基座,需要100nJ量级的脉冲能量。波导23的最佳长度取决于由设备21提供的脉冲的持续时间和能量,以及23的非线性克尔系数χ(3)。
在节点12和耦合设备24之间插入光学循环器或旋转器25,以便将输出信号与由设备31生成的触发信号分离。以这种方式,光学循环器或旋转器25被配置为允许将触发信号从触发信号生成设备31传输到节点12,并允许将由振荡器32产生的输出信号从连接到节点12的第一端口28传输到作为输出的第二端口29。例如,可以使用基于法拉第效应的旋转器,它允许从第三端口27单向传播到第一端口28(触发信号的注入路径20),以及从第一端口28单向传播到第二端口29(提取路径)。可替代地,振荡器32的输出可以由与注入节点12不同的节点拾取。在循环器或旋转器25的第二端口29处可用的脉冲通常有几皮秒的持续时间,并且可以通过使用常见的色散设备26进一步压缩到最终持续时间(100飞秒量级),色散设备26使用衍射光栅(如有必要,在光纤中实现)或能够以适当的数量和符号提供群速度色散的任何其他材料。循环器或旋转器25通常还对触发设备31实现保护性光学隔离功能。色散设备26具有可在其上拾取超短脉冲的输出。色散设备26还可以被配置为压缩振荡器32的任何输出处可获得的脉冲(不经过循环器或旋转器25)到100飞秒量级的最终持续时间。
上述实施例的变体是可能的。
图4示出了一种变体,其中振荡器包括环路径,环路径包括:
第一和第二非重叠传输带通滤波器11和16;
具有不等于零的非线性克尔系数χ(3)的光学透明设备13,15,被布置在带通滤波器11和16之间,并被配置为通过对通过这些设备13,15传输的信号的自相位调制来实现频谱展宽;
有源光波导14,被布置在光学透明设备13,15之间并产生正增益;
节点12,被配置为接收被设计为建立振荡器34的操作的触发信号(节点12可被布置在环路径的任何位置);
具有不等于零的非线性克尔系数χ(3)的其他光学透明的非线性设备35、37;
隔离器36,被配置用于布置在环路径内任意点上的光辐射的特定传播方向(箭头所示);
第二光学放大器38,与放大器14相似但不一定相同,由电流发生器40驱动的激光二极管39泵浦,布置在设备35和37之间;
上述类型的触发信号生成设备31,包括:
激光源21,被配置为生成持续时间为纳秒级的激光脉冲,需要以纳秒级的持续时间触发振荡器34;
耦合系统22,被设计用于将激光脉冲21引入由以不等于零的非线性克尔系数χ(3)为特征的光学透明材料制成的波导23内,波导23被配置为实现两种不同的效果,以便在光谱上展宽激光脉冲(21),具体地为:
a)自相位调制(SPM);以及
b)四波混频(FWM);
波导23的输出向节点12提供触发信号。
如果将振荡器32替换为参考图4所述的环形振荡器,则从1纳秒级的脉冲开始,生成100飞秒级脉冲的方法保持其有效性。此配置意味着没有端子反射器10和17,并且通过光学透明非线性装置35和37连接滤波器11和16,并添加隔离器36,这有助于设置环内的特定传播方向。
在本文未示出的特定实施例中,可以省略光学系统22和波导23,并且激光器21的脉冲可以直接耦合在振荡器中,例如耦合到节点12,只要光学透明设备13,15和有源波导14的大小被设计为作为整体生成所需的非线性效应而不是波导23。
附图标记
32振荡器;
10、17端子光学反射器;
11、16第一和第二非重叠传输带通滤波器;
13、15光学透明设备;
14,38有源波导;
18、39泵浦激光二极管;
19、40电流发生器;
12节点;
31触发信号生成设备;
20注入路径;
21微芯片激光源;
22光学系统;
23波导;
24耦合设备;
25光学循环器或旋转器;
28第一端口;
29第二端口;
27第三端口;
26色散设备;
30色散设备26的输出,其中100飞秒量级的脉冲是可用的;
35,37其他非线性光学透明设备
Claims (15)
1.一种用于压缩纳秒级激光脉冲,并随后生成持续时间短至100飞秒级的超短脉冲(33)的设备,包括振荡器(32),所述振荡器(32)由以下形成:
所述振荡器的反射端元件(10和17);
第一和第二非重叠传输带通滤波器(11和16);
具有不等于零的非线性克尔系数χ(3)的光学透明装置(13,15),被配置为通过对通过这些装置(13,15)传输的信号的自相位调制来实现频谱展宽;
有源光波导(14),产生正增益;
节点(12),被配置为接收被设计为建立所述振荡器(32)的操作的触发信号;
触发信号生成设备(31),其特征在于所述触发信号生成设备(31)包括:
激光源(21),被配置为生成具有持续时间为纳秒级的激光脉冲,所述激光脉冲是触发所述振荡器(32)所需要的;
耦合系统(22),被设计为将所述激光脉冲引入由以不等于零的非线性克尔系数χ(3)为特征的光学透明材料制成的波导(23)内,所述波导(23)被配置为产生两种不同的效应,以便在光谱上展宽由所述激光源(21)生成的脉冲,所述两种不同的效应具体地为:
a)自相位调制(SPM),以及
b)四波混频(FWM);
所述波导(23)的输出向所述节点(12)提供所述触发信号。
2.根据权利要求1所述的设备,其中所述振荡器的反射端元件(10和17)的至少一个包含相应的带通滤波器(11和/或16)的功能。
3.根据权利要求1所述的设备,其中所述振荡器的反射端元件(10和17)由不同于所述第一和第二非重叠传输带通滤波器(11和16)的组件制成。
4.根据权利要求1所述的设备,其中所述有源波导由通过电流发生器(19)驱动的泵浦激光二极管(18)照明的光纤制成。
5.根据权利要求1所述的设备,其中光学循环器或旋转器(25)被插入到所述节点(12)和所述触发信号生成设备(31)之间,以将所述振荡器的输出信号与由所述设备(31)生成的所述触发信号分离;所述光学循环器或旋转器(25)被配置为允许将所述触发信号从所述触发信号生成设备(31)传输到所述节点(12),以及将所述振荡器(32)产生的输出信号从与所述节点(12)连接的第一端口(28)传输到作为输出的第二端口(29)。
6.根据权利要求5所述的设备,其中所述第二端口连接到色散设备(26),所述色散设备(26)被配置为将在所述循环器或旋转器(25)的第二端口(29)处可用的脉冲压缩到100飞秒量级的最终持续时间。
7.根据权利要求1所述的设备,其中色散设备(26)被配置为将来自所述振荡器(32)的任何一个输出的可用脉冲压缩到100飞秒级的最终持续时间。
8.根据权利要求1所述的设备,其中所述波导(23)由单模光纤制成。
9.根据权利要求8所述的设备,其中所述单模光纤的长度在5到15米之间。
10.根据权利要求1所述的设备,其中所述波导具有与非线性折射率n2>2x10-16cm2/W相关联的非线性克尔系数χ(3)。
11.根据权利要求1所述的设备,其中所述激光源被配置为生成具有持续时间为纳秒级并且由傅里叶限制限定的最小带宽约等于其时间持续时间的倒数的激光脉冲。
12.根据权利要求1所述的设备,其中所述激光源由微芯片激光器制成。
13.根据权利要求1所述的设备,其中所述激光源在Q开关模式中操作。
14.根据权利要求1所述的设备,其中所述激光源(21)具有大于100w的峰值功率。
15.一种用于将纳秒级的激光脉冲压缩为持续时间为100飞秒级的超短脉冲(33)的设备,其中振荡器(32)被提供有环路径(34),在所述环路径(34)中提供有以下:
第一和第二非重叠传输带通滤波器(11和16);
具有不等于零的非线性克尔系数χ(3)的光学透明装置(13,15),被配置为通过对通过这些装置(13,15)传输的信号的自相位调制来实现频谱展宽;
有源光波导(14),产生正增益;
节点(12),被配置为接收被设计为建立所述振荡器(32)的操作的触发信号;
具有不等于零的非线性克尔系数χ(3)的其他光学透明非线性装置(35,36);
隔离器(36),布置在沿所述环路径的任何一个位置,配置用于所述环路径内的光辐射的特定传播方向;
第二光学放大器(38),放置在所述其他光学透明非线性装置(35)和(37)之间;
触发信号生成设备(31),其特征在于包括:
激光源(21),被配置为生成具有持续时间为纳秒级的激光脉冲,所述激光秒冲是触发所述振荡器(34)所需要的;
耦合系统(22),被设计为将所述激光脉冲(21)引入由以不等于零的非线性克尔系数χ(3)为特征的光学透明材料制成的波导(23)内,所述波导(23)被配置为实现两种不同的效应,以便在光谱上展宽所述触发激光(21)的脉冲,所述两种不同的效应具体地为:
a)自相位调制(SPM),以及
b)四波混频(FWM);
所述波导(23)的输出向所述节点(12)提供所述触发信号。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT102022000000167 | 2022-01-07 | ||
IT102022000000167A IT202200000167A1 (it) | 2022-01-07 | 2022-01-07 | Dispositivo per la compressione di impulsi laser dell'ordine del nanosecondo e conseguente generazione di impulsi ultracorti dell'ordine di cento femtosecondi |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116417877A true CN116417877A (zh) | 2023-07-11 |
Family
ID=80933412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310024634.XA Pending CN116417877A (zh) | 2022-01-07 | 2023-01-09 | 压缩纳秒级的激光脉冲并生成100飞秒级的超短脉冲的设备 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230223730A1 (zh) |
EP (1) | EP4210183A1 (zh) |
KR (1) | KR20230107142A (zh) |
CN (1) | CN116417877A (zh) |
IT (1) | IT202200000167A1 (zh) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7330301B2 (en) * | 2003-05-14 | 2008-02-12 | Imra America, Inc. | Inexpensive variable rep-rate source for high-energy, ultrafast lasers |
LT6261B (lt) * | 2014-08-06 | 2016-04-11 | Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras | Ultratrumpųjų šviesos impulsų generavimo būdas ir generatorius |
-
2022
- 2022-01-07 IT IT102022000000167A patent/IT202200000167A1/it unknown
-
2023
- 2023-01-03 EP EP23150123.0A patent/EP4210183A1/en active Pending
- 2023-01-04 US US18/150,079 patent/US20230223730A1/en active Pending
- 2023-01-06 KR KR1020230002438A patent/KR20230107142A/ko unknown
- 2023-01-09 CN CN202310024634.XA patent/CN116417877A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
EP4210183A1 (en) | 2023-07-12 |
IT202200000167A1 (it) | 2023-07-07 |
US20230223730A1 (en) | 2023-07-13 |
KR20230107142A (ko) | 2023-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2978360C (en) | Passive mode-locked laser system and method for generation of long pulses | |
US10014645B2 (en) | Inexpensive variable rep-rate source for high-energy, ultrafast lasers | |
US20090003391A1 (en) | Low-repetition-rate ring-cavity passively mode-locked fiber laser | |
US10859888B2 (en) | System for generating brief or ultra-brief light pulses | |
JP2021510930A (ja) | 極高繰り返し率を有するレーザパルスを生成するためのレーザシステム及び方法 | |
Thoen et al. | Erbium-ytterbium waveguide laser mode-locked with a semiconductor saturable absorber mirror | |
WO2010008693A2 (en) | High-repetition-rate guided-mode femtosecond laser | |
WO2019053487A1 (en) | LASER OR STABILIZED OPTICAL AMPLIFIER AND METHOD OF STABILIZATION | |
Vazquez-Zuniga et al. | Wavelength-tunable, passively mode-locked erbium-doped fiber master-oscillator incorporating a semiconductor saturable absorber mirror | |
CN116417877A (zh) | 压缩纳秒级的激光脉冲并生成100飞秒级的超短脉冲的设备 | |
KR100928242B1 (ko) | 전광식 펄스형 광섬유 레이저 모듈 | |
CN113725705B (zh) | 一种基于光谱整形的绿光脉冲源 | |
Class et al. | Patent application title: PASSIVE MODE-LOCKED LASER SYSTEM AND METHOD FOR GENERATION OF LONG PULSES | |
Dong et al. | Femtosecond Chirped-Pulse Kerr Resonator Solitons | |
CN107706732B (zh) | 基于群速度匹配光子晶体光纤的主动锁模光纤激光器 | |
Galvanauskas | Compact ultrahigh-power laser systems | |
Wang et al. | A 1.7 nJ 978 nm Core-Pumped All-Polarization-Maintaining Ytterbium-Doped Femtosecond Fiber Laser | |
Dmitriev et al. | Microresonator-Based Mode-Locked Laser with Tunable Pulse Repetition Rates | |
Nikodem et al. | Actively mode-locked fiber laser using acousto-optic modulator | |
Semaan | Soliton dynamics in fiber lasers: from dissipative soliton to dissipative soliton resonance | |
CN117937212A (zh) | 一种915nm低重频全光纤结构的九字腔超快激光器 | |
DULING III | Ultrashort Pulse Fiber Lasers | |
SET et al. | Multi-gigahertz pulse train generation in a figure-8 laser incorporating a sampled fiber Bragg grating | |
Pasquazi et al. | Novel architecture for ultra-stable micro-ring resonator based optical frequency combs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication |