CN116414664A - Log behavior event generation method, device, equipment and storage medium - Google Patents

Log behavior event generation method, device, equipment and storage medium Download PDF

Info

Publication number
CN116414664A
CN116414664A CN202111618228.3A CN202111618228A CN116414664A CN 116414664 A CN116414664 A CN 116414664A CN 202111618228 A CN202111618228 A CN 202111618228A CN 116414664 A CN116414664 A CN 116414664A
Authority
CN
China
Prior art keywords
login
information
behavior
behavior information
log
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111618228.3A
Other languages
Chinese (zh)
Inventor
邢超
袁立迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
360 Digital Security Technology Group Co Ltd
Original Assignee
360 Digital Security Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 360 Digital Security Technology Group Co Ltd filed Critical 360 Digital Security Technology Group Co Ltd
Priority to CN202111618228.3A priority Critical patent/CN116414664A/en
Publication of CN116414664A publication Critical patent/CN116414664A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3438Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment monitoring of user actions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention relates to the technical field of data processing, and discloses a method, a device, equipment and a storage medium for generating log behavior events, wherein the method comprises the following steps: when a system login operation instruction is detected, login behavior information is obtained according to the system login operation instruction; extracting features of the login behavior information to obtain a plurality of login feature information; determining log characteristic information from a plurality of login characteristic information according to a preset audit strategy; extracting target login behavior information from the login behavior information according to the log characteristic information; and generating a log behavior event according to the target login behavior information. In the prior art, user login information in a terminal safety response system is required to be counted manually, but the method and the device determine target login behavior information from the login behavior information based on the preset audit strategy, and then generate log behavior events according to the target login behavior information, so that accurate log behavior event acquisition is realized, and further log behavior event generation efficiency is improved.

Description

日志行为事件生成方法、装置、设备及存储介质Log behavior event generation method, device, equipment and storage medium

技术领域technical field

本发明涉及数据处理技术领域,尤其涉及一种日志行为事件生成方法、装置、设备及存储介质。The present invention relates to the technical field of data processing, in particular to a log behavior event generation method, device, equipment and storage medium.

背景技术Background technique

目前,在终端安全响应系统中用户登录等相关事件是很重要的一类上报事件,工程师可以针对用户登录等相关事件分析终端安全响应系统中所产生的问题,现有技术中仅仅通过人工在特定的时间采集终端安全响应系统中的多个用户登录信息,并利用人工组合多个用户登录信息,但这种方式不仅仅会导致生成的日志行为事件不精准,还会降低日志行为事件生成效率。At present, user login and other related events are very important reported events in the terminal security response system. Engineers can analyze problems in the terminal security response system for user login and other related events. Collecting multiple user login information in the terminal security response system in a short time, and combining multiple user login information manually, but this method will not only lead to inaccurate generated log behavior events, but also reduce the generation efficiency of log behavior events.

上述内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。The above content is only used to assist in understanding the technical solution of the present invention, and does not mean that the above content is admitted as prior art.

发明内容Contents of the invention

本发明的主要目的在于提供了一种日志行为事件生成方法、装置、设备及存储介质,旨在解决如何在提高日志行为事件生成效率的同时,精准获取日志行为事件的技术问题。The main purpose of the present invention is to provide a log behavior event generation method, device, equipment and storage medium, aiming to solve the technical problem of how to accurately obtain log behavior events while improving the efficiency of log behavior event generation.

为实现上述目的,本发明提供了一种日志行为事件生成方法,所述日志行为事件生成方法包括以下步骤:To achieve the above object, the present invention provides a log behavior event generation method, the log behavior event generation method includes the following steps:

在检测到系统登录操作指令时,根据所述系统登录操作指令获取登录行为信息;When the system login operation instruction is detected, the login behavior information is obtained according to the system login operation instruction;

对所述登录行为信息进行特征提取,以获得多个登录特征信息;performing feature extraction on the login behavior information to obtain a plurality of login feature information;

按照预设审计策略从多个所述登录特征信息中确定日志特征信息;Determining log feature information from a plurality of log feature information according to a preset audit policy;

根据所述日志特征信息从所述登录行为信息中提取目标登录行为信息;extracting target login behavior information from the login behavior information according to the log feature information;

根据所述目标登录行为信息生成日志行为事件。A log behavior event is generated according to the target login behavior information.

可选地,所述对所述登录行为信息进行特征提取,以获得多个登录特征信息的步骤,包括:Optionally, the step of performing feature extraction on the login behavior information to obtain multiple login feature information includes:

获取所述登录行为信息对应的行为类型;Obtain the behavior type corresponding to the login behavior information;

根据所述行为类型确定对应的预设提取策略;determining a corresponding preset extraction strategy according to the behavior type;

基于所述预设提取策略对所述登录行为信息进行特征提取,以获得多个登录特征信息。Feature extraction is performed on the login behavior information based on the preset extraction strategy to obtain a plurality of login feature information.

可选地,所述根据所述行为类型确定对应的预设提取策略的步骤,包括:Optionally, the step of determining a corresponding preset extraction strategy according to the behavior type includes:

根据所述行为类型确定所述登录行为信息对应的行为字段;determining a behavior field corresponding to the login behavior information according to the behavior type;

根据所述行为字段确定对应的预设提取策略。A corresponding preset extraction strategy is determined according to the behavior field.

可选地,所述根据所述行为字段确定对应的预设提取策略的步骤,包括:Optionally, the step of determining a corresponding preset extraction strategy according to the behavior field includes:

根据所述行为字段生成登录行为编码;Generate a login behavior code according to the behavior field;

根据所述登录行为编码从预设策略映射关系表中匹配对应的样本提取策略,所述预设策略映射关系表中存在多个登录行为编码和多个样本提取策略;Matching a corresponding sample extraction strategy from a preset policy mapping relationship table according to the login behavior code, where there are multiple login behavior codes and multiple sample extraction strategies in the preset policy mapping relationship table;

将所述样本提取策略作为所述登录行为信息对应的预设提取策略。The sample extraction policy is used as a preset extraction policy corresponding to the login behavior information.

可选地,所述基于所述预设提取策略对所述登录行为信息进行特征提取,以获得多个登录特征信息的步骤,包括:Optionally, the step of performing feature extraction on the login behavior information based on the preset extraction strategy to obtain a plurality of login feature information includes:

基于所述预设提取策略对所述登录行为信息进行特征提取,获得多个待确定登录特征信息;performing feature extraction on the login behavior information based on the preset extraction strategy to obtain a plurality of login feature information to be determined;

确定多个所述待确定登录特征信息对应的特征数量;determining the number of features corresponding to the plurality of login feature information to be determined;

判断所述特征数量是否大于或等于预设特征阈值;judging whether the number of features is greater than or equal to a preset feature threshold;

在所述特征数量大于或等于所述预设特征阈值时,将多个所述待确定登录特征信息作为所述登录行为信息对应的多个登录特征信息。When the number of features is greater than or equal to the preset feature threshold, the plurality of login feature information to be determined is used as a plurality of login feature information corresponding to the login behavior information.

可选地,所述根据所述目标登录行为信息生成日志行为事件的步骤之前,还包括:Optionally, before the step of generating a log behavior event according to the target login behavior information, it may further include:

确定所述目标登录行为信息对应的存储量;Determine the storage capacity corresponding to the target login behavior information;

判断所述存储量是否满足预设存储条件;judging whether the storage capacity satisfies a preset storage condition;

在所述存储量满足所述预设存储条件时,执行所述根据所述目标登录行为信息生成日志行为事件的步骤。When the storage amount satisfies the preset storage condition, the step of generating a log behavior event according to the target login behavior information is executed.

可选地,所述判断所述存储量是否满足预设存储条件的步骤之后,还包括:Optionally, after the step of judging whether the storage amount satisfies a preset storage condition, it further includes:

在所述存储量不满足所述预设存储条件时,根据所述目标登录行为信息确定缺失登录信息;When the storage amount does not meet the preset storage condition, determine missing login information according to the target login behavior information;

获取所述缺失登录信息对应的登录时间信息;Acquiring login time information corresponding to the missing login information;

根据所述登录时间信息获取所述缺失登录信息对应的待处理登录行为信息;Obtaining pending login behavior information corresponding to the missing login information according to the login time information;

根据所述目标登录行为信息及所述待处理登录行为信息确定待确认登录行为信息;determining the login behavior information to be confirmed according to the target login behavior information and the pending login behavior information;

获取所述待确认登录行为信息对应的行为类型。Obtain the behavior type corresponding to the login behavior information to be confirmed.

可选地,所述根据所述目标登录行为信息生成日志行为事件的步骤,包括:Optionally, the step of generating a log behavior event according to the target login behavior information includes:

对所述目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息;Splitting and processing the target login behavior information to obtain multiple login behavior information to be spliced;

根据多个所述待拼接登录行为信息确定预设拼接策略;determining a preset splicing strategy according to multiple pieces of login behavior information to be spliced;

基于所述预设拼接策略对多个所述待拼接登录行为信息进行组合,获得日志行为事件。Based on the preset splicing strategy, multiple pieces of the login behavior information to be spliced are combined to obtain log behavior events.

可选地,所述对所述目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息的步骤之前,还包括:Optionally, before the step of splitting the target login behavior information to obtain a plurality of login behavior information to be spliced, further includes:

获取所述目标登录行为信息对应的登录格式信息;Acquiring login format information corresponding to the target login behavior information;

判断所述登录格式信息是否满足预设格式条件;judging whether the login format information satisfies a preset format condition;

在所述登录格式信息满足所述预设格式条件时,执行所述对所述目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息的步骤。When the login format information satisfies the preset format condition, the step of splitting the target login behavior information to obtain multiple login behavior information to be spliced is performed.

可选地,所述根据多个所述待拼接登录行为信息确定预设拼接策略的步骤,包括:Optionally, the step of determining a preset splicing strategy according to a plurality of login behavior information to be spliced includes:

分别确定各待拼接登录行为信息对应的行为等级;Respectively determine the behavior levels corresponding to the login behavior information to be spliced;

根据所述行为等级对多个所述待拼接登录行为信息进行排序,以获得对应的登录排序结果;sorting the plurality of login behavior information to be spliced according to the behavior level to obtain a corresponding login sorting result;

根据所述登录排序结果确定预设拼接策略。A preset mosaic strategy is determined according to the login sorting result.

可选地,所述根据所述登录排序结果确定预设拼接策略的步骤,包括:Optionally, the step of determining a preset splicing strategy according to the login sorting result includes:

根据所述登录排序结果从多个待拼接登录行为信息中确定第一登录行为信息和第二登录行为信息;determining first login behavior information and second login behavior information from a plurality of login behavior information to be spliced according to the login sorting result;

确定所述第一登录行为信息与所述第二登录行为信息之间的距离分值;determining a distance score between the first login behavior information and the second login behavior information;

根据所述距离分值确定预设拼接策略。A preset splicing strategy is determined according to the distance score.

此外,为实现上述目的,本发明还提出一种日志行为事件生成装置,所述日志行为事件生成装置包括:In addition, in order to achieve the above object, the present invention also proposes a log behavior event generation device, the log behavior event generation device includes:

获取模块,用于在检测到系统登录操作指令时,根据所述系统登录操作指令获取登录行为信息;An acquisition module, configured to acquire login behavior information according to the system login operation instruction when a system login operation instruction is detected;

提取模块,用于对所述登录行为信息进行特征提取,以获得多个登录特征信息;An extraction module, configured to perform feature extraction on the login behavior information to obtain multiple login feature information;

确定模块,用于按照预设审计策略从多个所述登录特征信息中确定日志特征信息;A determining module, configured to determine log feature information from a plurality of log feature information according to a preset audit strategy;

所述提取模块,还用于根据所述日志特征信息从所述登录行为信息中提取目标登录行为信息;The extraction module is further configured to extract target login behavior information from the login behavior information according to the log feature information;

生成模块,用于根据所述目标登录行为信息生成日志行为事件。A generating module, configured to generate a log behavior event according to the target login behavior information.

可选地,所述提取模块,还用于获取所述登录行为信息对应的行为类型;Optionally, the extracting module is also used to obtain the behavior type corresponding to the login behavior information;

所述提取模块,还用于根据所述行为类型确定对应的预设提取策略;The extraction module is further configured to determine a corresponding preset extraction strategy according to the behavior type;

所述提取模块,还用于基于所述预设提取策略对所述登录行为信息进行特征提取,以获得多个登录特征信息。The extraction module is further configured to perform feature extraction on the login behavior information based on the preset extraction strategy, so as to obtain a plurality of login feature information.

可选地,所述提取模块,还用于根据所述行为类型确定所述登录行为信息对应的行为字段;Optionally, the extraction module is further configured to determine the behavior field corresponding to the login behavior information according to the behavior type;

所述提取模块,还用于根据所述行为字段确定对应的预设提取策略。The extraction module is further configured to determine a corresponding preset extraction strategy according to the behavior field.

可选地,所述提取模块,还用于根据所述行为字段生成登录行为编码;Optionally, the extraction module is further configured to generate a login behavior code according to the behavior field;

所述提取模块,还用于根据所述登录行为编码从预设策略映射关系表中匹配对应的样本提取策略,所述预设策略映射关系表中存在多个登录行为编码和多个样本提取策略;The extraction module is further configured to match a corresponding sample extraction strategy from a preset policy mapping relationship table according to the login behavior code, and there are multiple login behavior codes and multiple sample extraction strategies in the preset policy mapping relationship table ;

所述提取模块,还用于将所述样本提取策略作为所述登录行为信息对应的预设提取策略。The extraction module is further configured to use the sample extraction policy as a preset extraction policy corresponding to the login behavior information.

可选地,所述提取模块,还用于基于所述预设提取策略对所述登录行为信息进行特征提取,获得多个待确定登录特征信息;Optionally, the extraction module is further configured to perform feature extraction on the login behavior information based on the preset extraction strategy to obtain a plurality of login feature information to be determined;

所述提取模块,还用于确定多个所述待确定登录特征信息对应的特征数量;The extraction module is also used to determine the number of features corresponding to the plurality of login feature information to be determined;

所述提取模块,还用于判断所述特征数量是否大于或等于预设特征阈值;The extraction module is also used to judge whether the number of features is greater than or equal to a preset feature threshold;

所述提取模块,还用于在所述特征数量大于或等于所述预设特征阈值时,将多个所述待确定登录特征信息作为所述登录行为信息对应的多个登录特征信息。The extraction module is further configured to use the plurality of login characteristic information to be determined as the plurality of login characteristic information corresponding to the login behavior information when the characteristic number is greater than or equal to the preset characteristic threshold.

可选地,所述生成模块,还用于对所述目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息;Optionally, the generating module is further configured to split and process the target login behavior information to obtain multiple login behavior information to be spliced;

所述生成模块,还用于根据多个所述待拼接登录行为信息确定预设拼接策略;The generating module is further configured to determine a preset splicing strategy according to a plurality of login behavior information to be spliced;

所述生成模块,还用于基于所述预设拼接策略对多个所述待拼接登录行为信息进行组合,获得日志行为事件。The generating module is further configured to combine a plurality of login behavior information to be spliced based on the preset splicing strategy to obtain log behavior events.

可选地,所述生成模块,还用于获取所述目标登录行为信息对应的登录格式信息;Optionally, the generating module is further configured to acquire login format information corresponding to the target login behavior information;

所述生成模块,还用于判断所述登录格式信息是否满足预设格式条件;The generating module is also used to judge whether the login format information satisfies a preset format condition;

所述生成模块,还用于在所述登录格式信息满足所述预设格式条件时,执行所述对所述目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息的操作。The generating module is further configured to perform the operation of splitting the target login behavior information to obtain multiple login behavior information to be spliced when the login format information satisfies the preset format condition.

此外,为实现上述目的,本发明还提出一种日志行为事件生成设备,所述设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的日志行为事件生成程序,所述日志行为事件生成程序配置为实现如上文所述的日志行为事件生成方法的步骤。In addition, in order to achieve the above object, the present invention also proposes a log behavior event generation device, which includes: a memory, a processor, and a log behavior event generation program stored on the memory and operable on the processor , the log behavior event generation program is configured to implement the steps of the log behavior event generation method as described above.

此外,为实现上述目的,本发明还提出一种存储介质,所述存储介质上存储有日志行为事件生成程序,所述日志行为事件生成程序被处理器执行时实现如上文所述的日志行为事件生成方法的步骤。In addition, in order to achieve the above object, the present invention also proposes a storage medium, on which a log behavior event generation program is stored, and when the log behavior event generation program is executed by a processor, the log behavior event as described above is realized The steps to generate the method.

本发明在检测到系统登录操作指令时,首先根据系统登录操作指令获取登录行为信息,然后对登录行为信息进行特征提取,以获得多个登录特征信息,之后按照预设审计策略从多个登录特征信息中确定日志特征信息,最后根据日志特征信息从多个登录行为信息中提取目标登录行为信息,并根据目标登录行为信息生成日志行为事件。由于现有技术中,需要人工统计终端安全响应系统中用户登录信息,而本发明中基于预设审计策略从登录行为信息中确定目标登录行为信息,之后根据目标登录行为信息生成日志行为事件,从而实现了精准获取日志行为事件,提高了日志行为事件生成效率,进而提高了用户体验。When the present invention detects a system login operation instruction, it first obtains the login behavior information according to the system login operation instruction, then performs feature extraction on the login behavior information to obtain multiple login feature information, and then selects from multiple login feature information according to the preset audit strategy. The log characteristic information is determined in the information, and finally the target login behavior information is extracted from multiple login behavior information according to the log characteristic information, and a log behavior event is generated according to the target login behavior information. In the prior art, it is necessary to manually count the user login information in the terminal security response system, but in the present invention, the target login behavior information is determined from the login behavior information based on the preset audit strategy, and then log behavior events are generated according to the target login behavior information, so that It realizes accurate acquisition of log behavior events, improves the generation efficiency of log behavior events, and improves user experience.

附图说明Description of drawings

图1是本发明实施例方案涉及的硬件运行环境的日志行为事件生成设备的结构示意图;Fig. 1 is a schematic structural diagram of a log behavior event generating device of a hardware operating environment involved in the solution of an embodiment of the present invention;

图2为本发明日志行为事件生成方法第一实施例的流程示意图;FIG. 2 is a schematic flow chart of the first embodiment of the log behavior event generation method of the present invention;

图3为本发明日志行为事件生成方法第二实施例的流程示意图;Fig. 3 is a schematic flow chart of the second embodiment of the log behavior event generation method of the present invention;

图4为本发明日志行为事件生成方法第三实施例的流程示意图;FIG. 4 is a schematic flowchart of a third embodiment of the method for generating log behavior events of the present invention;

图5为本发明日志行为事件生成装置第一实施例的结构框图。Fig. 5 is a structural block diagram of the first embodiment of the device for generating log behavior events according to the present invention.

本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。The realization of the purpose of the present invention, functional characteristics and advantages will be further described in conjunction with the embodiments and with reference to the accompanying drawings.

具体实施方式Detailed ways

应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.

参照图1,图1为本发明实施例方案涉及的硬件运行环境的日志行为事件生成设备结构示意图。Referring to FIG. 1 , FIG. 1 is a schematic structural diagram of a device for generating log behavior events in a hardware operating environment according to an embodiment of the present invention.

如图1所示,该日志行为事件生成设备可以包括:处理器1001,例如中央处理器(Central Processing Unit,CPU),通信总线1002、用户接口1003,网络接口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如无线保真(WIreless-FIdelity,WI-FI)接口)。存储器1005可以是高速的随机存取存储器(RandomAccess Memory,RAM)存储器,也可以是稳定的非易失性存储器(Non-Volatile Memory,NVM),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。As shown in FIG. 1 , the device for generating log behavior events may include: a processor 1001 , such as a central processing unit (Central Processing Unit, CPU), a communication bus 1002 , a user interface 1003 , a network interface 1004 , and a memory 1005 . Wherein, the communication bus 1002 is used to realize connection and communication between these components. The user interface 1003 may include a display screen (Display), an input unit such as a keyboard (Keyboard), and the optional user interface 1003 may also include a standard wired interface and a wireless interface. The network interface 1004 may optionally include a standard wired interface and a wireless interface (such as a wireless fidelity (WIreless-FIdelity, WI-FI) interface). The memory 1005 may be a high-speed random access memory (Random Access Memory, RAM) memory, or a stable non-volatile memory (Non-Volatile Memory, NVM), such as a disk memory. Optionally, the memory 1005 may also be a storage device independent of the aforementioned processor 1001 .

本领域技术人员可以理解,图1中示出的结构并不构成对日志行为事件生成设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。Those skilled in the art can understand that the structure shown in Figure 1 does not constitute a limitation on the log behavior event generating device, and may include more or less components than those shown in the illustration, or combine some components, or arrange different components .

如图1所示,作为一种存储介质的存储器1005中可以包括操作系统、数据存储模块、网络通信模块、用户接口模块以及日志行为事件生成程序。As shown in FIG. 1 , the memory 1005 as a storage medium may include an operating system, a data storage module, a network communication module, a user interface module, and a program for generating log behavior events.

在图1所示的日志行为事件生成设备中,网络接口1004主要用于与网络服务器进行数据通信;用户接口1003主要用于与用户进行数据交互;本发明日志行为事件生成设备中的处理器1001、存储器1005可以设置在日志行为事件生成设备中,所述日志行为事件生成设备通过处理器1001调用存储器1005中存储的日志行为事件生成程序,并执行本发明实施例提供的日志行为事件生成方法。In the log behavior event generation device shown in Figure 1, the network interface 1004 is mainly used for data communication with the network server; the user interface 1003 is mainly used for data interaction with the user; the processor 1001 in the log behavior event generation device of the present invention . The memory 1005 can be set in the log behavior event generation device, and the log behavior event generation device calls the log behavior event generation program stored in the memory 1005 through the processor 1001, and executes the log behavior event generation method provided by the embodiment of the present invention.

本发明实施例提供了一种日志行为事件生成方法,参照图2,图2为本发明日志行为事件生成方法第一实施例的流程示意图。An embodiment of the present invention provides a method for generating a log behavior event. Referring to FIG. 2 , FIG. 2 is a schematic flowchart of a first embodiment of the method for generating a log behavior event according to the present invention.

本实施例中,所述日志行为事件生成方法包括以下步骤:In this embodiment, the log behavior event generation method includes the following steps:

步骤S10:在检测到系统登录操作指令时,根据所述系统登录操作指令获取登录行为信息。Step S10: when a system login operation instruction is detected, obtain login behavior information according to the system login operation instruction.

易于理解的是,本实施例的执行主体可以是具有数据处理、网络通讯和程序运行等功能的日志行为事件生成设备,也可以为其他具有相似功能的计算机设备,本实施例并不加以限制。It is easy to understand that the execution subject of this embodiment may be a log behavior event generation device with functions such as data processing, network communication, and program operation, or other computer devices with similar functions, which is not limited in this embodiment.

可以理解的是,系统登录操作指令可以理解为用户在进入终端安全响应系统中所进行的登录操作或浏览操作,之后可以根据登录操作或浏览操作分别生成对应的系统登录操作指令或系统浏览操作指令等。It can be understood that the system login operation instruction can be understood as the login operation or browsing operation performed by the user when entering the terminal security response system, and then the corresponding system login operation instruction or system browsing operation instruction can be generated respectively according to the login operation or browsing operation wait.

还需要说明的是,系统登录操作指令中包括用户的登录行为信息,其中登录行为信息中包括登录账号、登录设备、登录密码、登录时间、登录地点等;系统浏览操作指令中包括用户在终端安全响应系统中的浏览行为信息,浏览网页、浏览文件、浏览时间、浏览设备、浏览地点等。It should also be noted that the system login operation instruction includes the user's login behavior information, and the login behavior information includes login account, login device, login password, login time, login location, etc.; the system browsing operation instruction includes the user's terminal security information. Respond to browsing behavior information in the system, such as browsing web pages, browsing files, browsing time, browsing equipment, browsing location, etc.

在本实施例中,在检测到系统登录操作指令时,可以通过可插拔认证模块(Pluggable Authentication Modules,PAM)获取用户的登录行为信息,并将登录行为信息发送至审计模块(audit)的用户(user)审计中。In this embodiment, when a system login operation instruction is detected, the user's login behavior information can be obtained through a pluggable authentication module (Pluggable Authentication Modules, PAM), and the login behavior information is sent to the user of the audit module (audit) (user) auditing.

步骤S20:对所述登录行为信息进行特征提取,以获得多个登录特征信息。Step S20: Perform feature extraction on the login behavior information to obtain a plurality of login feature information.

应理解的是,登录特征信息可以为登录行为信息中存在的特征信息,例如账号特征信息、设备特征信息、时间特征信息及地点特征信息等。It should be understood that the login feature information may be feature information existing in the login behavior information, such as account feature information, device feature information, time feature information, location feature information, and the like.

在具体实现中,对登录行为信息进行特征提取,以获得多个登录特征信息的处理方式可以为获取登录行为信息对应的行为类型,根据行为类型确定对应的预设提取策略,基于预设提取策略对登录行为信息进行特征提取,以获得多个登录特征信息。行为类型可以为登录类型,还可以为浏览类型等。预设提取策略可以为用户自定义设置,例如特征全部提取或特征部分提取等。In a specific implementation, the feature extraction of login behavior information to obtain multiple login feature information can be performed by obtaining the behavior type corresponding to the login behavior information, determining the corresponding preset extraction strategy according to the behavior type, and Feature extraction is performed on the login behavior information to obtain multiple login feature information. The behavior type may be a login type, or a browsing type, etc. The preset extraction strategy can be customized by the user, such as all feature extraction or feature partial extraction.

进一步地,根据行为类型确定对应的预设提取策略的处理方式可以为根据行为类型确定登录行为信息对应的行为字段,之后根据行为字段确定对应的预设提取策略。Further, the processing manner of determining the corresponding preset extraction strategy according to the behavior type may be to determine the behavior field corresponding to the login behavior information according to the behavior type, and then determine the corresponding preset extraction strategy according to the behavior field.

需要说明的是,行为字段可以理解为登录行为信息中包含专题的信息,需要说明的是,每个字段包含某一专题的信息。例如“通讯录”数据库中,“姓名”、“联系电话”这些都是表中所有行共有的属性,可以把这些列称为“姓名”字段和“联系电话”字段等。It should be noted that the behavior field can be understood as including information of a topic in the login behavior information, and it should be noted that each field contains information of a certain topic. For example, in the "Contacts" database, "Name" and "Contact Number" are attributes common to all rows in the table. These columns can be called "Name" field and "Contact Number" field, etc.

为了能够更加精准的确定预设提取策略,根据行为字段确定对应的预设提取策略的处理方式可以为根据行为字段生成登录行为编码,之后根据登录行为编码从预设策略映射关系表中匹配对应的样本提取策略,预设策略映射关系表中存在多个登录行为编码和多个样本提取策略,登录行为编码和样本提取策略存在一一对应的关系,之后将样本提取策略作为登录行为信息对应的预设提取策略。登录行为编码可以为数字的形式存在,还可以为字符的形式存在等。In order to determine the preset extraction strategy more accurately, the processing method of determining the corresponding preset extraction strategy according to the behavior field can be to generate a login behavior code according to the behavior field, and then match the corresponding default strategy mapping relationship table according to the login behavior code. Sample extraction strategy, there are multiple login behavior codes and multiple sample extraction strategies in the preset policy mapping relationship table, and there is a one-to-one correspondence between login behavior codes and sample extraction strategies, and then the sample extraction strategy is used as the corresponding preset for login behavior information. Set extraction strategy. The login behavior code can exist in the form of numbers or characters.

假设行为字段分别为姓名字段和账号字段,姓名字段和账号字段对应的登录行为编码分别为XZ,则可以根据登录行为编码XZ在预设策略映射关系表中匹配对应的样本提取策略,若该样本提取策略为特征全部提取,则将样本提取策略作为登录行为信息对应的预设提取策略等。Assuming that the behavior fields are the name field and the account field respectively, and the login behavior codes corresponding to the name field and the account field are respectively XZ, the corresponding sample extraction strategy can be matched in the default policy mapping relationship table according to the login behavior code XZ, if the sample If the extraction strategy is to extract all features, then the sample extraction strategy is used as the default extraction strategy corresponding to the login behavior information.

在具体实现中,基于预设提取策略对登录行为信息进行特征提取,以获得多个登录特征信息的处理方式可以为基于预设提取策略对登录行为信息进行特征提取,获得多个待确定登录特征信息,然后确定多个待确定登录特征信息对应的特征数量,判断特征数量是否大于或等于预设特征阈值,在特征数量大于或等于预设特征阈值时,将多个待确定登录特征信息作为登录行为信息对应的多个登录特征信息。预设特征阈值可以为用户根据登录行为信息对应的行为类型自定义设置的阈值,可以为5、还可以为7等。In a specific implementation, the feature extraction of the login behavior information based on the preset extraction strategy to obtain multiple login feature information can be based on the preset extraction strategy to perform feature extraction on the login behavior information to obtain multiple login features to be determined information, and then determine the number of features corresponding to the multiple to-be-determined login feature information, judge whether the feature number is greater than or equal to the preset feature threshold, and when the feature number is greater than or equal to the preset feature threshold, use the multiple pending login feature information as the login Multiple login feature information corresponding to behavior information. The preset feature threshold may be a threshold custom-set by the user according to the behavior type corresponding to the login behavior information, and may be 5, or 7, and so on.

假设通过PAM模块获得用户登录行为信息,将用户的登录行为信息发送至审计模块中,通过审计模块中的审计日志分析引擎对登录行为信息进行分析。例如确定登录行为信息对应的行为类型为登录类型,登录类型对应的预设特征阈值为3,则登录行为信息中的多个待确定登录特征信息分别为设备特征信息、账号特征信息、密码特征信息、地点特征信息,可知多个待确定登录特征信息对应的特征数量为4,特征数量大于预设特征阈值,可将多个待确定登录特征信息作为登录行为信息对应的多个登录特征信息等。Assuming that the user login behavior information is obtained through the PAM module, the user login behavior information is sent to the audit module, and the login behavior information is analyzed through the audit log analysis engine in the audit module. For example, it is determined that the behavior type corresponding to the login behavior information is the login type, and the preset feature threshold corresponding to the login type is 3, then the multiple login feature information to be determined in the login behavior information are respectively device feature information, account feature information, and password feature information , location feature information, it can be seen that the number of features corresponding to the multiple to-be-determined login feature information is 4, and the number of features is greater than the preset feature threshold, and the multiple to-be-determined login feature information can be used as the multiple login feature information corresponding to the login behavior information.

假设登录类型对应的预设特征阈值为3,登录行为信息中的多个待确定登录特征信息分别为设备特征信息、账号特征信息,可知多个待确定登录特征信息对应的特征数量为2,特征数量小于预设特征阈值,需要通过可插拔认证模块重新获取用户的登录行为信息等。Assuming that the preset feature threshold corresponding to the login type is 3, and the multiple login feature information to be determined in the login behavior information are device feature information and account feature information respectively, it can be seen that the number of features corresponding to the multiple login feature information to be determined is 2, and the feature If the number is less than the preset feature threshold, it is necessary to re-obtain the user's login behavior information through the pluggable authentication module.

步骤S30:按照预设审计策略从多个所述登录特征信息中确定日志特征信息。Step S30: Determine log characteristic information from a plurality of log characteristic information according to a preset audit policy.

需要说明的是,预设审计策略可以为用户自定义设置,用户可以从多个登录特征信息中选取感兴趣的日志特征信息,还可以将所有的多个登录特征信息作为日志特征信息等。It should be noted that the preset audit policy can be customized by the user, and the user can select the log characteristic information of interest from multiple login characteristic information, and can also use all the multiple login characteristic information as log characteristic information.

在具体实现中,需要通过审计模块中的审计日志分析引擎根据用户预先设置感兴趣的特征信息从多个登录特征信息中确定日志特征信息等。In a specific implementation, the audit log analysis engine in the audit module needs to determine the log characteristic information from multiple login characteristic information according to the characteristic information of interest preset by the user.

步骤S40:根据所述日志特征信息从所述登录行为信息中提取目标登录行为信息。Step S40: Extract target login behavior information from the login behavior information according to the log characteristic information.

为了避免获取的目标登录行为信息不完整,根据日志特征信息从多个登录行为信息中提取目标登录行为信息的步骤之前还需要确定目标登录行为信息对应的存储量,判断存储量是否满足预设存储条件,在存储量满足预设存储条件时,再根据目标登录行为信息生成日志行为事件;在存储量不满足预设存储条件时,需要通过可插拔认证模块重新获取用户的登录行为信息等。预设存储条件可以为用户自定义设置,例如存储量大于预设存储阈值,预设存储阈值可以为7KB,还可以为1M等。In order to avoid obtaining incomplete target login behavior information, before the step of extracting target login behavior information from multiple login behavior information according to log feature information, it is necessary to determine the storage capacity corresponding to the target login behavior information, and determine whether the storage capacity meets the preset storage Conditions, when the storage capacity meets the preset storage conditions, log behavior events are generated according to the target login behavior information; when the storage capacity does not meet the preset storage conditions, the user’s login behavior information needs to be obtained again through the pluggable authentication module. The preset storage condition can be customized by the user, for example, the storage amount is greater than the preset storage threshold, and the preset storage threshold can be 7KB or 1M.

假设日志特征信息为设备特征信息、地点特征信息、账号特征信息及时间特征信息,登录行为信息为账号5226461利用设备AS中午十一点在B路口进行登录,则目标登录行为信息为账号:5226461、设备:AS、时间:十一点、地点:B路口。Assume that the log feature information is device feature information, location feature information, account feature information, and time feature information, and the login behavior information is account 5226461. Use the device AS to log in at intersection B at 11:00 noon, and the target login behavior information is account number: 5226461, Equipment: AS, time: eleven o'clock, location: B intersection.

在本实施例中,在存储量不满足预设存储条件时,根据目标登录行为信息确定缺失登录信息,然后获取缺失登录信息对应的登录时间信息,根据登录时间信息获取缺失登录信息对应的待处理登录行为信息,之后根据目标登录行为信息及待处理登录行为信息确定待确认登录行为信息,获取待确认登录行为信息对应的行为类型。In this embodiment, when the storage capacity does not meet the preset storage conditions, the missing login information is determined according to the target login behavior information, and then the login time information corresponding to the missing login information is obtained, and the pending processing corresponding to the missing login information is obtained according to the login time information. The login behavior information, and then determine the login behavior information to be confirmed according to the target login behavior information and the login behavior information to be processed, and obtain the behavior type corresponding to the login behavior information to be confirmed.

假设登录行为信息为账号2546,其登录行为信息对应的存储量为1KB,该存储量不满足预设存储条件时,目标登录行为信息为账号2546,根据目标登录行为信息对应的日志特征信息为账号特征信息,用户需要获取设备特征信息、地点特征信息、账号特征信息及时间特征信息,则用户需要根据登录行为信息对应的登录时间信息确定缺失登录行为信息,缺失登录行为信息包括设备信息、地点信息及时间信息,并将重新获取的设备信息、地点信息、时间信息及账号信息作为待确认登录行为信息,并将待确认登录信息发送至审计模块进行分析等。Assume that the login behavior information is account number 2546, and the storage capacity corresponding to the login behavior information is 1KB. When the storage capacity does not meet the preset storage conditions, the target login behavior information is account number 2546. Feature information, the user needs to obtain device feature information, location feature information, account feature information and time feature information, then the user needs to determine the missing login behavior information according to the login time information corresponding to the login behavior information, the missing login behavior information includes device information, location information and time information, and use the newly acquired device information, location information, time information and account information as the login behavior information to be confirmed, and send the login information to be confirmed to the audit module for analysis.

步骤S50:根据所述目标登录行为信息生成日志行为事件。Step S50: Generate a log behavior event according to the target login behavior information.

为了便于用户清晰理解目标登录行为信息之间的联系,根据目标登录行为信息生成日志行为事件的处理方式可以为对目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息,根据多个待拼接登录行为信息确定预设拼接策略,基于预设拼接策略对多个待拼接登录行为信息进行组合,获得日志行为事件。预设拼接策略可以为用户自定义设置,可以根据待拼接登录行为信息对应的等级进行拼接,还可以为随机拼接等。In order to facilitate users to clearly understand the connection between the target login behavior information, the processing method of generating log behavior events based on the target login behavior information can be to split and process the target login behavior information to obtain multiple login behavior information to be spliced. The login behavior information to be spliced determines a preset splicing strategy, and multiple login behavior information to be spliced is combined based on the preset splicing strategy to obtain log behavior events. The preset mosaic strategy can be customized by the user. It can be spliced according to the level corresponding to the login behavior information to be spliced, or it can be randomly spliced.

进一步地,对目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息的步骤之前还需要获取目标登录行为信息对应的登录格式信息,判断登录格式信息是否满足预设格式条件,在登录格式信息满足预设格式条件时,再对目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息。预设格式条件为目标登录行为信息对应的登录格式信息不存在乱码情况等。Furthermore, the target login behavior information is split and processed, and before the step of obtaining multiple login behavior information to be spliced, it is necessary to obtain the login format information corresponding to the target login behavior information, and determine whether the login format information meets the preset format conditions. When the format information satisfies the preset format condition, the target login behavior information is split and processed to obtain multiple login behavior information to be spliced. The preset format condition is that the login format information corresponding to the target login behavior information does not have garbled characters, etc.

假设目标登录行为信息为账号:5226461、设备:AS、时间:十一点、地点:B路口,则目标登录行为信息中的登录格式信息满足预设格式条件,可以对目标登录行为信息拆分为账号:5226461;设备:AS;时间:十一点;地点:B路口,其中账号:5226461;设备:AS;时间:十一点;地点:B路口作为多个待拼接登录行为信息等。Assuming that the target login behavior information is account number: 5226461, device: AS, time: 11 o'clock, location: intersection B, then the login format information in the target login behavior information meets the preset format conditions, and the target login behavior information can be split into Account: 5226461; Equipment: AS; Time: 11:00; Location: Crossroad B, of which account number: 5226461; Equipment: AS; Time: 11:00;

在具体实现中,根据多个待拼接登录行为信息确定预设拼接策略的处理方式可以为分别确定各待拼接登录行为信息对应的行为等级,然后根据行为等级对多个待拼接登录行为信息进行排序,以获得对应的登录排序结果,根据登录排序结果确定预设拼接策略。In a specific implementation, the processing method of determining the preset splicing strategy according to the multiple login behavior information to be spliced can be to respectively determine the behavior level corresponding to each login behavior information to be spliced, and then sort the multiple login behavior information to be spliced according to the behavior level , to obtain the corresponding login ranking results, and determine the preset splicing strategy according to the login ranking results.

假设多个待拼接登录行为信息分别为待拼接登录行为信息A、待拼接登录行为信息B及待拼接登录行为信息C,待拼接登录行为信息A对应的等级为十级、待拼接登录行为信息B对应的等级为八级、待拼接登录行为信息C对应的等级为七级,十级高于八级,且八级高于七级,则登录排序结果为待拼接登录行为信息A—待拼接登录行为信息B—待拼接登录行为信息C等。Assuming that the multiple login behavior information to be spliced are respectively login behavior information to be spliced A, login behavior information to be spliced B, and login behavior information to be spliced C, the corresponding level of login behavior information A to be spliced is level ten, and login behavior information to be spliced B The corresponding level is level eight, and the corresponding level of login behavior information C to be spliced is level seven, and level ten is higher than level eight, and level eight is higher than level seven, then the login sorting result is login behavior information to be spliced A—login to be spliced Behavior information B—login behavior information C to be spliced, etc.

在本实施例中根据登录排序结果确定预设拼接策略的处理方式可以为根据登录排序结果从多个待拼接登录行为信息中确定第一登录行为信息和第二登录行为信息,之后确定第一登录行为信息与第二登录行为信息之间的距离分值,根据距离分值确定预设拼接策略。In this embodiment, the processing method of determining the preset splicing strategy according to the login sorting result may be to determine the first login behavior information and the second login behavior information from a plurality of login behavior information to be spliced according to the login sorting result, and then determine the first login behavior information. A distance score between the behavior information and the second login behavior information, and a preset splicing strategy is determined according to the distance score.

假设登录排序结果为待拼接登录行为信息A—待拼接登录行为信息B—待拼接登录行为信息C,待拼接登录行为信息A对应的等级为十级,十级对应的分值为10、待拼接登录行为信息B对应的等级为八级,八级对应的分值为8、待拼接登录行为信息C对应的等级为七级,七级对应的分值为7,则第一登录行为信息为待拼接登录行为信息A,第二登录行为信息为待拼接登录行为信息C,则第一登录行为信息与第二登录行为信息之间的距离分值为3,则距离分值小于或等于预设距离阈值,预设拼接策略可以为随机拼接;距离分值大于预设距离阈值,预设拼接策略可以为根据等级对多个待拼接登录行为信息进行拼接等。预设距离阈值可以为用户自定义设置,例如3或5等。Assume that the login sorting result is login behavior information to be spliced A—login behavior information to be spliced B—login behavior information to be spliced C. The level corresponding to the login behavior information B is eighth, and the score corresponding to the eighth level is 8. The level corresponding to the login behavior information C to be spliced is seven, and the score corresponding to the seventh level is 7. The login behavior information A is spliced, the second login behavior information is the login behavior information C to be spliced, then the distance score between the first login behavior information and the second login behavior information is 3, and the distance score is less than or equal to the preset distance Threshold, the preset splicing strategy can be random splicing; if the distance score is greater than the preset distance threshold, the preset splicing strategy can be splicing multiple login behavior information to be spliced according to the level. The preset distance threshold can be customized by the user, such as 3 or 5, etc.

在具体实现中,还需要审计模块按照预设拼接策略对多个待拼接登录行为进行组合,获得日志行为事件,并将日志行为事件发送至负责人,负责人可根据日志行为事件进行系统登录分析,例如可以得到其启动的进程链,和操作的文件信息等信息等。In the specific implementation, it is also necessary for the audit module to combine multiple login behaviors to be spliced according to the preset splicing strategy, obtain log behavior events, and send the log behavior events to the person in charge, and the person in charge can perform system login analysis based on the log behavior events , for example, you can get information such as the process chain it starts, and the file information it operates.

在本实施例中,在检测到系统登录操作指令时,首先根据系统登录操作指令获取登录行为信息,然后对登录行为信息进行特征提取,以获得多个登录特征信息,之后按照预设审计策略从多个登录特征信息中确定日志特征信息,最后根据日志特征信息从多个登录行为信息中提取目标登录行为信息,并根据目标登录行为信息生成日志行为事件。由于现有技术中,需要人工统计终端安全响应系统中用户登录信息,而本实施例中基于预设审计策略从登录行为信息中确定目标登录行为信息,之后根据目标登录行为信息生成日志行为事件,从而实现了精准获取日志行为事件,提高了日志行为事件生成效率,进而提高了用户体验。In this embodiment, when a system login operation instruction is detected, the login behavior information is first obtained according to the system login operation instruction, and then feature extraction is performed on the login behavior information to obtain multiple login feature information, and then according to the preset audit strategy from Log feature information is determined from multiple log feature information, and finally target login behavior information is extracted from multiple log feature information according to the log feature information, and log behavior events are generated according to the target login behavior information. In the prior art, it is necessary to manually count the user login information in the terminal security response system, but in this embodiment, the target login behavior information is determined from the login behavior information based on the preset audit policy, and then log behavior events are generated according to the target login behavior information, In this way, the accurate acquisition of log behavior events is realized, the generation efficiency of log behavior events is improved, and the user experience is further improved.

参考图3,图3为本发明日志行为事件生成方法第二实施例的流程示意图。Referring to FIG. 3 , FIG. 3 is a schematic flowchart of a second embodiment of a method for generating log behavior events according to the present invention.

基于上述第一实施例,在本实施例中,所述步骤S20步骤,包括:Based on the first embodiment above, in this embodiment, the step S20 includes:

步骤S201:获取所述登录行为信息对应的行为类型。Step S201: Obtain the behavior type corresponding to the login behavior information.

需要说明的是,行为类型可以为登录类型,还可以为浏览类型等。例如登录行为信息为账号5226461利用设备AS中午十一点在B路口进行登录,则登录行为信息对应的行为类型为登录类型;登录行为信息为用户浏览A文件,则登录行为信息对应的行为类型为浏览类型等。It should be noted that the behavior type may be a login type, or a browsing type, etc. For example, if the login behavior information is account number 5226461 and the device AS is used to log in at intersection B at 11:00 noon, then the behavior type corresponding to the login behavior information is the login type; if the login behavior information is the user browsing file A, then the behavior type corresponding to the login behavior information is Browsing type etc.

步骤S202:根据所述行为类型确定对应的预设提取策略。Step S202: Determine a corresponding preset extraction strategy according to the behavior type.

进一步地,根据行为类型确定对应的预设提取策略的处理方式可以为根据行为类型确定登录行为信息对应的行为字段,之后根据行为字段确定对应的预设提取策略。预设提取策略可以为用户自定义设置,例如特征全部提取或特征部分提取等。Further, the processing manner of determining the corresponding preset extraction strategy according to the behavior type may be to determine the behavior field corresponding to the login behavior information according to the behavior type, and then determine the corresponding preset extraction strategy according to the behavior field. The preset extraction strategy can be customized by the user, such as all feature extraction or feature partial extraction.

需要说明的是,行为字段可以理解为登录行为信息中包含专题的信息,需要说明的是,每个字段包含某一专题的信息。例如“通讯录”数据库中,“姓名”、“联系电话”这些都是表中所有行共有的属性,可以把这些列称为“姓名”字段和“联系电话”字段等。It should be noted that the behavior field can be understood as including information of a topic in the login behavior information, and it should be noted that each field contains information of a certain topic. For example, in the "Contacts" database, "Name" and "Contact Number" are attributes common to all rows in the table. These columns can be called "Name" field and "Contact Number" field, etc.

为了能够更加精准的确定预设提取策略,根据行为字段确定对应的预设提取策略的处理方式可以为根据行为字段生成登录行为编码,之后根据登录行为编码从预设策略映射关系表中匹配对应的样本提取策略,预设策略映射关系表中存在多个登录行为编码和多个样本提取策略,登录行为编码和样本提取策略存在一一对应的关系,之后将样本提取策略作为登录行为信息对应的预设提取策略。登录行为编码可以为数字的形式存在,还可以为字符的形式存在等。In order to determine the preset extraction strategy more accurately, the processing method of determining the corresponding preset extraction strategy according to the behavior field can be to generate a login behavior code according to the behavior field, and then match the corresponding default strategy mapping relationship table according to the login behavior code. Sample extraction strategy, there are multiple login behavior codes and multiple sample extraction strategies in the preset policy mapping relationship table, and there is a one-to-one correspondence between login behavior codes and sample extraction strategies, and then the sample extraction strategy is used as the corresponding preset for login behavior information. Set extraction strategy. The login behavior code can exist in the form of numbers or characters.

假设行为字段分别为姓名字段和账号字段,姓名字段和账号字段对应的登录行为编码分别为XZ,则可以根据登录行为编码XZ在预设策略映射关系表中匹配对应的样本提取策略,若该样本提取策略为特征全部提取,则将样本提取策略作为登录行为信息对应的预设提取策略等。Assuming that the behavior fields are the name field and the account field respectively, and the login behavior codes corresponding to the name field and the account field are respectively XZ, the corresponding sample extraction strategy can be matched in the default policy mapping relationship table according to the login behavior code XZ, if the sample If the extraction strategy is to extract all features, then the sample extraction strategy is used as the default extraction strategy corresponding to the login behavior information.

步骤S203:基于所述预设提取策略对所述登录行为信息进行特征提取,以获得多个登录特征信息。Step S203: Perform feature extraction on the login behavior information based on the preset extraction strategy to obtain a plurality of login feature information.

应理解的是,登录特征信息可以为登录行为信息中存在的特征信息,例如账号特征信息、设备特征信息、时间特征信息及地点特征信息等。It should be understood that the login feature information may be feature information existing in the login behavior information, such as account feature information, device feature information, time feature information, location feature information, and the like.

在具体实现中,基于预设提取策略对登录行为信息进行特征提取,以获得多个登录特征信息的处理方式可以为基于预设提取策略对登录行为信息进行特征提取,获得多个待确定登录特征信息,然后确定多个待确定登录特征信息对应的特征数量,判断特征数量是否大于或等于预设特征阈值,在特征数量大于或等于预设特征阈值时,将多个待确定登录特征信息作为登录行为信息对应的多个登录特征信息。预设特征阈值可以为用户根据登录行为信息对应的行为类型自定义设置的阈值,可以为5、还可以为7等。In a specific implementation, the feature extraction of the login behavior information based on the preset extraction strategy to obtain multiple login feature information can be based on the preset extraction strategy to perform feature extraction on the login behavior information to obtain multiple login features to be determined information, and then determine the number of features corresponding to the multiple to-be-determined login feature information, judge whether the feature number is greater than or equal to the preset feature threshold, and when the feature number is greater than or equal to the preset feature threshold, use the multiple pending login feature information as the login Multiple login characteristic information corresponding to behavior information. The preset feature threshold may be a threshold custom-set by the user according to the behavior type corresponding to the login behavior information, and may be 5, or 7, and so on.

假设登录类型对应的预设特征阈值为3,登录行为信息中的多个待确定登录特征信息分别为设备特征信息、账号特征信息,可知多个待确定登录特征信息对应的特征数量为2,特征数量小于预设特征阈值,需要通过可插拔认证模块重新获取用户的登录行为信息等。Assuming that the preset feature threshold corresponding to the login type is 3, and the multiple login feature information to be determined in the login behavior information are device feature information and account feature information respectively, it can be seen that the number of features corresponding to the multiple login feature information to be determined is 2, and the feature If the number is less than the preset feature threshold, it is necessary to re-obtain the user's login behavior information through the pluggable authentication module.

假设通过PAM模块获得用户登录行为信息,将用户的登录行为信息发送至审计模块中,通过审计模块中的审计日志分析引擎对登录行为信息进行分析。例如确定登录行为信息对应的行为类型为登录类型,登录类型对应的预设特征阈值为3,则登录行为信息中的多个待确定登录特征信息分别为设备特征信息、账号特征信息、密码特征信息、地点特征信息,可知多个待确定登录特征信息对应的特征数量为4,特征数量大于预设特征阈值,可将多个待确定登录特征信息作为登录行为信息对应的多个登录特征信息等。Assuming that the user login behavior information is obtained through the PAM module, the user login behavior information is sent to the audit module, and the login behavior information is analyzed through the audit log analysis engine in the audit module. For example, it is determined that the behavior type corresponding to the login behavior information is the login type, and the preset feature threshold corresponding to the login type is 3, then the multiple login feature information to be determined in the login behavior information are respectively device feature information, account feature information, and password feature information , location feature information, it can be seen that the number of features corresponding to the multiple to-be-determined login feature information is 4, and the number of features is greater than the preset feature threshold, and the multiple to-be-determined login feature information can be used as the multiple login feature information corresponding to the login behavior information.

在本实施中,首先获取登录行为信息对应的行为类型,然后根据行为类型确定对应的预设提取策略,之后基于预设提取策略对登录行为信息进行特征提取,以获得多个登录特征信息,相较于现有技术中预先设置固定的登录特征信息,导致不同类型对应的登录行为信息不能精准获取日志登录行为信息,而本实施例中根据登录行为信息对应的行为类型确定对应的预设提取策略,最后根据预设提取策略从登录行为信息中提取多个登录特征信息,从而提高了登录行为信息的工作效率。In this implementation, first obtain the behavior type corresponding to the login behavior information, then determine the corresponding preset extraction strategy according to the behavior type, and then perform feature extraction on the login behavior information based on the preset extraction strategy to obtain multiple login feature information. Compared with the preset fixed login feature information in the prior art, the log login behavior information corresponding to different types cannot be accurately obtained, but in this embodiment, the corresponding preset extraction strategy is determined according to the behavior type corresponding to the login behavior information , and finally extract a plurality of login feature information from the login behavior information according to a preset extraction strategy, thereby improving the work efficiency of the login behavior information.

参考图4,图4为本发明日志行为事件生成方法第三实施例的流程示意图。Referring to FIG. 4 , FIG. 4 is a schematic flowchart of a third embodiment of a method for generating log behavior events according to the present invention.

基于上述第一实施例,在本实施例中,所述步骤S50步骤,包括:Based on the first embodiment above, in this embodiment, the step S50 includes:

步骤S501:对所述目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息。Step S501: Splitting the target login behavior information to obtain multiple login behavior information to be spliced.

进一步地,对目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息的步骤之前还需要获取目标登录行为信息对应的登录格式信息,判断登录格式信息是否满足预设格式条件,在登录格式信息满足预设格式条件时,再对目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息。预设格式条件为目标登录行为信息对应的登录格式信息不存在乱码情况等。Furthermore, the target login behavior information is split and processed, and before the step of obtaining multiple login behavior information to be spliced, it is necessary to obtain the login format information corresponding to the target login behavior information, and determine whether the login format information meets the preset format conditions. When the format information satisfies the preset format condition, the target login behavior information is split and processed to obtain multiple login behavior information to be spliced. The preset format condition is that the login format information corresponding to the target login behavior information does not have garbled characters, etc.

假设目标登录行为信息为账号:964、设备:D、时间:十二点、地点:C路口,则对目标登录行为信息拆分为多个待拼接登录行为信息账号:964;设备:D;时间:十二点;地点:C路口等。Assuming that the target login behavior information is account number: 964, device: D, time: 12:00, location: intersection C, then the target login behavior information is split into multiple login behavior information to be spliced account number: 964; device: D; time : 12 o'clock; location: intersection C, etc.

步骤S502:根据多个所述待拼接登录行为信息确定预设拼接策略。Step S502: Determine a preset splicing strategy according to a plurality of pieces of login behavior information to be spliced.

在具体实现中,根据多个待拼接登录行为信息确定预设拼接策略的处理方式可以为分别确定各待拼接登录行为信息对应的行为等级,然后根据行为等级对多个待拼接登录行为信息进行排序,以获得对应的登录排序结果,根据登录排序结果确定预设拼接策略。In a specific implementation, the processing method of determining the preset splicing strategy according to the multiple login behavior information to be spliced can be to respectively determine the behavior level corresponding to each login behavior information to be spliced, and then sort the multiple login behavior information to be spliced according to the behavior level , to obtain the corresponding login ranking results, and determine the preset splicing strategy according to the login ranking results.

假设多个待拼接登录行为信息分别为待拼接登录行为信息A、待拼接登录行为信息B及待拼接登录行为信息C,待拼接登录行为信息A对应的等级为十级、待拼接登录行为信息B对应的等级为八级、待拼接登录行为信息C对应的等级为七级,十级高于八级,且八级高于七级,则登录排序结果为待拼接登录行为信息A—待拼接登录行为信息B—待拼接登录行为信息C等。Assuming that the multiple login behavior information to be spliced are respectively login behavior information to be spliced A, login behavior information to be spliced B, and login behavior information to be spliced C, the corresponding level of login behavior information A to be spliced is level ten, and login behavior information to be spliced B The corresponding level is level eight, and the corresponding level of login behavior information C to be spliced is level seven, and level ten is higher than level eight, and level eight is higher than level seven, then the login sorting result is login behavior information to be spliced A—login to be spliced Behavior information B—login behavior information C to be spliced, etc.

在本实施例中根据登录排序结果确定预设拼接策略的处理方式可以为根据登录排序结果从多个待拼接登录行为信息中确定第一登录行为信息和第二登录行为信息,之后确定第一登录行为信息与第二登录行为信息之间的距离分值,根据距离分值确定预设拼接策略。In this embodiment, the processing method of determining the preset splicing strategy according to the login sorting result may be to determine the first login behavior information and the second login behavior information from a plurality of login behavior information to be spliced according to the login sorting result, and then determine the first login behavior information. A distance score between the behavior information and the second login behavior information, and a preset splicing strategy is determined according to the distance score.

假设登录排序结果为待拼接登录行为信息A—待拼接登录行为信息B—待拼接登录行为信息C,待拼接登录行为信息A对应的等级为十级,十级对应的分值为10、待拼接登录行为信息B对应的等级为八级,八级对应的分值为8、待拼接登录行为信息C对应的等级为七级,七级对应的分值为7,则第一登录行为信息为待拼接登录行为信息A,第二登录行为信息为待拼接登录行为信息C,则第一登录行为信息与第二登录行为信息之间的距离分值为3,则距离分值小于或等于预设距离阈值,预设拼接策略可以为随机拼接;距离分值大于预设距离阈值,预设拼接策略可以为根据等级对多个待拼接登录行为信息进行拼接等。预设距离阈值可以为用户自定义设置,例如3或5等。Assume that the login sorting result is login behavior information to be spliced A—login behavior information to be spliced B—login behavior information to be spliced C. The level corresponding to the login behavior information B is eighth, and the score corresponding to the eighth level is 8. The level corresponding to the login behavior information C to be spliced is seven, and the score corresponding to the seventh level is 7. The login behavior information A is spliced, the second login behavior information is the login behavior information C to be spliced, then the distance score between the first login behavior information and the second login behavior information is 3, and the distance score is less than or equal to the preset distance Threshold, the preset splicing strategy can be random splicing; if the distance score is greater than the preset distance threshold, the preset splicing strategy can be splicing multiple login behavior information to be spliced according to the level. The preset distance threshold can be customized by the user, such as 3 or 5, etc.

步骤S503:基于所述预设拼接策略对多个所述待拼接登录行为信息进行组合,获得日志行为事件。Step S503: Based on the preset splicing strategy, combine the multiple login behavior information to be spliced to obtain log behavior events.

在具体实现中,还需要审计模块按照预设拼接策略对多个待拼接登录行为进行组合,获得日志行为事件,并将日志行为事件发送至负责人,负责人可根据日志行为事件进行系统登录分析,例如可以得到其启动的进程链,和操作的文件信息等信息等。In the specific implementation, it is also necessary for the audit module to combine multiple login behaviors to be spliced according to the preset splicing strategy, obtain log behavior events, and send the log behavior events to the person in charge, and the person in charge can perform system login analysis based on the log behavior events , for example, you can get information such as the process chain it starts, and the file information it operates.

假设多个待拼接登录行为信息账号:964;设备:D;时间:十二点;地点:C路口,预设拼接策略为随机拼接,则日志行为事件可以为设备:D、时间:十二点、地点:C路口、账号:964。Assuming multiple login behavior information accounts to be spliced: 964; device: D; time: 12:00; place: intersection C, and the default splicing strategy is random splicing, then the log behavior event can be device: D, time: 12:00 , Location: Intersection C, account number: 964.

在本实施例中,首先对目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息,然后根据多个待拼接登录行为信息确定预设拼接策略,之后基于预设拼接策略对多个待拼接登录行为信息进行组合,获得日志行为事件,相较于现有技术中直接根据登录行为信息生成日志行为事件,而本实施例中需要根据登录行为信息确定多个待拼接登录行为信息,之后基于预设拼接策略对多个待拼接登录行为信息进行组合,从而实现了精准获得日志行为事件。In this embodiment, the target login behavior information is first split and processed to obtain multiple login behavior information to be spliced, and then the preset splicing strategy is determined according to the multiple login behavior information to be spliced, and then multiple The login behavior information to be spliced is combined to obtain log behavior events. Compared with the prior art that directly generates log behavior events based on the login behavior information, in this embodiment, multiple login behavior information to be spliced needs to be determined according to the login behavior information, and then Based on the preset splicing strategy, multiple login behavior information to be spliced is combined to achieve accurate acquisition of log behavior events.

参照图5,图5为本发明日志行为事件生成装置第一实施例的结构框图。Referring to FIG. 5 , FIG. 5 is a structural block diagram of a first embodiment of an apparatus for generating log behavior events according to the present invention.

如图5所示,本发明实施例提出的日志行为事件生成装置包括:As shown in Figure 5, the log behavior event generation device proposed by the embodiment of the present invention includes:

获取模块5001,用于在检测到系统登录操作指令时,根据所述系统登录操作指令获取登录行为信息。The acquiring module 5001 is configured to acquire login behavior information according to the system login operation instruction when the system login operation instruction is detected.

可以理解的是,系统登录操作指令可以理解为用户在进入终端安全响应系统中所进行的登录操作或浏览操作,之后可以根据登录操作或浏览操作分别生成对应的系统登录操作指令或系统浏览操作指令等。It can be understood that the system login operation instruction can be understood as the login operation or browsing operation performed by the user when entering the terminal security response system, and then the corresponding system login operation instruction or system browsing operation instruction can be generated respectively according to the login operation or browsing operation wait.

还需要说明的是,系统登录操作指令中包括用户的登录行为信息,其中登录行为信息中包括登录账号、登录设备、登录密码、登录时间、登录地点等;系统浏览操作指令中包括用户在终端安全响应系统中的浏览行为信息,浏览网页、浏览文件、浏览时间、浏览设备、浏览地点等。It should also be noted that the system login operation instruction includes the user's login behavior information, and the login behavior information includes login account, login device, login password, login time, login location, etc.; the system browsing operation instruction includes the user's terminal security information. Respond to browsing behavior information in the system, such as browsing web pages, browsing files, browsing time, browsing equipment, browsing location, etc.

在本实施例中,在检测到系统登录操作指令时,可以通过可插拔认证模块(Pluggable Authentication Modules,PAM)获取用户的登录行为信息,并将登录行为信息发送至审计模块(audit)的用户(user)审计中。In this embodiment, when a system login operation instruction is detected, the user's login behavior information can be obtained through a pluggable authentication module (Pluggable Authentication Modules, PAM), and the login behavior information is sent to the user of the audit module (audit) (user) auditing.

提取模块5002,用于对所述登录行为信息进行特征提取,以获得多个登录特征信息。The extraction module 5002 is configured to perform feature extraction on the login behavior information to obtain a plurality of login feature information.

应理解的是,登录特征信息可以为登录行为信息中存在的特征信息,例如账号特征信息、设备特征信息、时间特征信息及地点特征信息等。It should be understood that the login feature information may be feature information existing in the login behavior information, such as account feature information, device feature information, time feature information, location feature information, and the like.

在具体实现中,对登录行为信息进行特征提取,以获得多个登录特征信息的处理方式可以为获取登录行为信息对应的行为类型,根据行为类型确定对应的预设提取策略,基于预设提取策略对登录行为信息进行特征提取,以获得多个登录特征信息。行为类型可以为登录类型,还可以为浏览类型等。预设提取策略可以为用户自定义设置,例如特征全部提取或特征部分提取等。In a specific implementation, the feature extraction of login behavior information to obtain multiple login feature information can be performed by obtaining the behavior type corresponding to the login behavior information, determining the corresponding preset extraction strategy according to the behavior type, and Feature extraction is performed on the login behavior information to obtain multiple login feature information. The behavior type may be a login type, or a browsing type, etc. The preset extraction strategy can be customized by the user, such as all feature extraction or feature partial extraction.

进一步地,根据行为类型确定对应的预设提取策略的处理方式可以为根据行为类型确定登录行为信息对应的行为字段,之后根据行为字段确定对应的预设提取策略。Further, the processing manner of determining the corresponding preset extraction strategy according to the behavior type may be to determine the behavior field corresponding to the login behavior information according to the behavior type, and then determine the corresponding preset extraction strategy according to the behavior field.

需要说明的是,行为字段可以理解为登录行为信息中包含专题的信息,需要说明的是,每个字段包含某一专题的信息。例如“通讯录”数据库中,“姓名”、“联系电话”这些都是表中所有行共有的属性,可以把这些列称为“姓名”字段和“联系电话”字段等。It should be noted that the behavior field can be understood as including information of a topic in the login behavior information, and it should be noted that each field contains information of a certain topic. For example, in the "Contacts" database, "Name" and "Contact Number" are attributes common to all rows in the table. These columns can be called "Name" field and "Contact Number" field, etc.

为了能够更加精准的确定预设提取策略,根据行为字段确定对应的预设提取策略的处理方式可以为根据行为字段生成登录行为编码,之后根据登录行为编码从预设策略映射关系表中匹配对应的样本提取策略,预设策略映射关系表中存在多个登录行为编码和多个样本提取策略,登录行为编码和样本提取策略存在一一对应的关系,之后将样本提取策略作为登录行为信息对应的预设提取策略。登录行为编码可以为数字的形式存在,还可以为字符的形式存在等。In order to determine the preset extraction strategy more accurately, the processing method of determining the corresponding preset extraction strategy according to the behavior field can be to generate a login behavior code according to the behavior field, and then match the corresponding default strategy mapping relationship table according to the login behavior code. Sample extraction strategy, there are multiple login behavior codes and multiple sample extraction strategies in the preset policy mapping relationship table, and there is a one-to-one correspondence between login behavior codes and sample extraction strategies, and then the sample extraction strategy is used as the corresponding preset for login behavior information. Set extraction strategy. The login behavior code can exist in the form of numbers or characters.

假设行为字段分别为姓名字段和账号字段,姓名字段和账号字段对应的登录行为编码分别为XZ,则可以根据登录行为编码XZ在预设策略映射关系表中匹配对应的样本提取策略,若该样本提取策略为特征全部提取,则将样本提取策略作为登录行为信息对应的预设提取策略等。Assuming that the behavior fields are the name field and the account field respectively, and the login behavior codes corresponding to the name field and the account field are respectively XZ, the corresponding sample extraction strategy can be matched in the default policy mapping relationship table according to the login behavior code XZ, if the sample If the extraction strategy is to extract all features, then the sample extraction strategy is used as the default extraction strategy corresponding to the login behavior information.

在具体实现中,基于预设提取策略对登录行为信息进行特征提取,以获得多个登录特征信息的处理方式可以为基于预设提取策略对登录行为信息进行特征提取,获得多个待确定登录特征信息,然后确定多个待确定登录特征信息对应的特征数量,判断特征数量是否大于或等于预设特征阈值,在特征数量大于或等于预设特征阈值时,将多个待确定登录特征信息作为登录行为信息对应的多个登录特征信息。预设特征阈值可以为用户根据登录行为信息对应的行为类型自定义设置的阈值,可以为5、还可以为7等。In a specific implementation, the feature extraction of the login behavior information based on the preset extraction strategy to obtain multiple login feature information can be based on the preset extraction strategy to perform feature extraction on the login behavior information to obtain multiple login features to be determined information, and then determine the number of features corresponding to the multiple to-be-determined login feature information, judge whether the feature number is greater than or equal to the preset feature threshold, and when the feature number is greater than or equal to the preset feature threshold, use the multiple pending login feature information as the login Multiple login characteristic information corresponding to behavior information. The preset feature threshold may be a threshold custom-set by the user according to the behavior type corresponding to the login behavior information, and may be 5, or 7, and so on.

假设通过PAM模块获得用户登录行为信息,将用户的登录行为信息发送至审计模块中,通过审计模块中的审计日志分析引擎对登录行为信息进行分析。例如确定登录行为信息对应的行为类型为登录类型,登录类型对应的预设特征阈值为3,则登录行为信息中的多个待确定登录特征信息分别为设备特征信息、账号特征信息、密码特征信息、地点特征信息,可知多个待确定登录特征信息对应的特征数量为4,特征数量大于预设特征阈值,可将多个待确定登录特征信息作为登录行为信息对应的多个登录特征信息等。Assuming that the user login behavior information is obtained through the PAM module, the user login behavior information is sent to the audit module, and the login behavior information is analyzed through the audit log analysis engine in the audit module. For example, it is determined that the behavior type corresponding to the login behavior information is the login type, and the preset feature threshold corresponding to the login type is 3, then the multiple login feature information to be determined in the login behavior information are respectively device feature information, account feature information, and password feature information , location feature information, it can be seen that the number of features corresponding to the multiple to-be-determined login feature information is 4, and the number of features is greater than the preset feature threshold, and the multiple to-be-determined login feature information can be used as the multiple login feature information corresponding to the login behavior information.

假设登录类型对应的预设特征阈值为3,登录行为信息中的多个待确定登录特征信息分别为设备特征信息、账号特征信息,可知多个待确定登录特征信息对应的特征数量为2,特征数量小于预设特征阈值,需要通过可插拔认证模块重新获取用户的登录行为信息等。Assuming that the preset feature threshold corresponding to the login type is 3, and the multiple login feature information to be determined in the login behavior information are device feature information and account feature information respectively, it can be seen that the number of features corresponding to the multiple login feature information to be determined is 2, and the feature If the number is less than the preset feature threshold, it is necessary to re-obtain the user's login behavior information through the pluggable authentication module.

确定模块5003,用于按照预设审计策略从多个所述登录特征信息中确定日志特征信息。A determining module 5003, configured to determine log feature information from a plurality of log feature information according to a preset audit policy.

需要说明的是,预设审计策略可以为用户自定义设置,用户可以从多个登录特征信息中选取感兴趣的日志特征信息,还可以将所有的多个登录特征信息作为日志特征信息等。It should be noted that the preset audit policy can be customized by the user, and the user can select the log characteristic information of interest from multiple login characteristic information, and can also use all the multiple login characteristic information as log characteristic information.

在具体实现中,需要通过审计模块中的审计日志分析引擎根据用户预先设置感兴趣的特征信息从多个登录特征信息中确定日志特征信息等。In a specific implementation, the audit log analysis engine in the audit module needs to determine the log characteristic information from multiple login characteristic information according to the characteristic information of interest preset by the user.

所述提取模块5002,还用于根据所述日志特征信息从所述登录行为信息中提取目标登录行为信息。The extraction module 5002 is further configured to extract target login behavior information from the login behavior information according to the log feature information.

为了避免获取的目标登录行为信息不完整,根据日志特征信息从多个登录行为信息中提取目标登录行为信息的步骤之前还需要确定目标登录行为信息对应的存储量,判断存储量是否满足预设存储条件,在存储量满足预设存储条件时,再根据目标登录行为信息生成日志行为事件;在存储量不满足预设存储条件时,需要通过可插拔认证模块重新获取用户的登录行为信息等。预设存储条件可以为用户自定义设置,例如存储量大于预设存储阈值,预设存储阈值可以为7KB,还可以为1M等。In order to avoid obtaining incomplete target login behavior information, before the step of extracting target login behavior information from multiple login behavior information according to log feature information, it is necessary to determine the storage capacity corresponding to the target login behavior information, and determine whether the storage capacity meets the preset storage Conditions, when the storage capacity meets the preset storage conditions, log behavior events are generated according to the target login behavior information; when the storage capacity does not meet the preset storage conditions, the user’s login behavior information needs to be obtained again through the pluggable authentication module. The preset storage condition can be customized by the user, for example, the storage amount is greater than the preset storage threshold, and the preset storage threshold can be 7KB or 1M.

假设日志特征信息为设备特征信息、地点特征信息、账号特征信息及时间特征信息,登录行为信息为账号5226461利用设备AS中午十一点在B路口进行登录,则目标登录行为信息为账号:5226461、设备:AS、时间:十一点、地点:B路口。Assume that the log feature information is device feature information, location feature information, account feature information, and time feature information, and the login behavior information is account 5226461. Use the device AS to log in at intersection B at 11:00 noon, and the target login behavior information is account number: 5226461, Equipment: AS, time: eleven o'clock, location: B intersection.

在本实施例中,在存储量不满足预设存储条件时,根据目标登录行为信息确定缺失登录信息,然后获取缺失登录信息对应的登录时间信息,根据登录时间信息获取缺失登录信息对应的待处理登录行为信息,之后根据目标登录行为信息及待处理登录行为信息确定待确认登录行为信息,获取待确认登录行为信息对应的行为类型。In this embodiment, when the storage capacity does not meet the preset storage conditions, the missing login information is determined according to the target login behavior information, and then the login time information corresponding to the missing login information is obtained, and the pending processing corresponding to the missing login information is obtained according to the login time information. The login behavior information, and then determine the login behavior information to be confirmed according to the target login behavior information and the login behavior information to be processed, and obtain the behavior type corresponding to the login behavior information to be confirmed.

假设登录行为信息为账号2546,其登录行为信息对应的存储量为1KB,该存储量不满足预设存储条件时,目标登录行为信息为账号2546,根据目标登录行为信息对应的日志特征信息为账号特征信息,用户需要获取设备特征信息、地点特征信息、账号特征信息及时间特征信息,则用户需要根据登录行为信息对应的登录时间信息确定缺失登录行为信息,缺失登录行为信息包括设备信息、地点信息及时间信息,并将重新获取的设备信息、地点信息、时间信息及账号信息作为待确认登录行为信息,并将待确认登录信息发送至审计模块进行分析等。Assume that the login behavior information is account number 2546, and the storage capacity corresponding to the login behavior information is 1KB. When the storage capacity does not meet the preset storage conditions, the target login behavior information is account number 2546. Feature information, the user needs to obtain device feature information, location feature information, account feature information and time feature information, then the user needs to determine the missing login behavior information according to the login time information corresponding to the login behavior information, the missing login behavior information includes device information, location information and time information, and use the newly acquired device information, location information, time information and account information as the login behavior information to be confirmed, and send the login information to be confirmed to the audit module for analysis.

生成模块5004,用于根据所述目标登录行为信息生成日志行为事件。A generating module 5004, configured to generate a log behavior event according to the target login behavior information.

为了便于用户清晰理解目标登录行为信息之间的联系,根据目标登录行为信息生成日志行为事件的处理方式可以为对目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息,根据多个待拼接登录行为信息确定预设拼接策略,基于预设拼接策略对多个待拼接登录行为信息进行组合,获得日志行为事件。预设拼接策略可以为用户自定义设置,可以根据待拼接登录行为信息对应的等级进行拼接,还可以为随机拼接等。In order to facilitate users to clearly understand the connection between the target login behavior information, the processing method of generating log behavior events based on the target login behavior information can be to split and process the target login behavior information to obtain multiple login behavior information to be spliced. The login behavior information to be spliced determines a preset splicing strategy, and multiple login behavior information to be spliced is combined based on the preset splicing strategy to obtain log behavior events. The preset mosaic strategy can be customized by the user. It can be spliced according to the level corresponding to the login behavior information to be spliced, or it can be randomly spliced.

进一步地,对目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息的步骤之前还需要获取目标登录行为信息对应的登录格式信息,判断登录格式信息是否满足预设格式条件,在登录格式信息满足预设格式条件时,再对目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息。预设格式条件为目标登录行为信息对应的登录格式信息不存在乱码情况等。Furthermore, the target login behavior information is split and processed, and before the step of obtaining multiple login behavior information to be spliced, it is necessary to obtain the login format information corresponding to the target login behavior information, and determine whether the login format information meets the preset format conditions. When the format information satisfies the preset format condition, the target login behavior information is split and processed to obtain multiple login behavior information to be spliced. The preset format condition is that the login format information corresponding to the target login behavior information does not have garbled characters, etc.

假设目标登录行为信息为账号:5226461、设备:AS、时间:十一点、地点:B路口,则目标登录行为信息中的登录格式信息满足预设格式条件,可以对目标登录行为信息拆分为账号:5226461;设备:AS;时间:十一点;地点:B路口,其中账号:5226461;设备:AS;时间:十一点;地点:B路口作为多个待拼接登录行为信息等。Assuming that the target login behavior information is account number: 5226461, device: AS, time: 11 o'clock, location: intersection B, then the login format information in the target login behavior information meets the preset format conditions, and the target login behavior information can be split into Account: 5226461; Equipment: AS; Time: 11:00; Location: Crossroad B, of which account number: 5226461; Equipment: AS; Time: 11:00;

在具体实现中,根据多个待拼接登录行为信息确定预设拼接策略的处理方式可以为分别确定各待拼接登录行为信息对应的行为等级,然后根据行为等级对多个待拼接登录行为信息进行排序,以获得对应的登录排序结果,根据登录排序结果确定预设拼接策略。In a specific implementation, the processing method of determining the preset splicing strategy according to the multiple login behavior information to be spliced can be to respectively determine the behavior level corresponding to each login behavior information to be spliced, and then sort the multiple login behavior information to be spliced according to the behavior level , to obtain the corresponding login ranking results, and determine the preset splicing strategy according to the login ranking results.

假设多个待拼接登录行为信息分别为待拼接登录行为信息A、待拼接登录行为信息B及待拼接登录行为信息C,待拼接登录行为信息A对应的等级为十级、待拼接登录行为信息B对应的等级为八级、待拼接登录行为信息C对应的等级为七级,十级高于八级,且八级高于七级,则登录排序结果为待拼接登录行为信息A—待拼接登录行为信息B—待拼接登录行为信息C等。Assuming that the multiple login behavior information to be spliced are respectively login behavior information to be spliced A, login behavior information to be spliced B, and login behavior information to be spliced C, the corresponding level of login behavior information A to be spliced is level ten, and login behavior information to be spliced B The corresponding level is level eight, and the corresponding level of login behavior information C to be spliced is level seven, and level ten is higher than level eight, and level eight is higher than level seven, then the login sorting result is login behavior information to be spliced A—login to be spliced Behavior information B—login behavior information C to be spliced, etc.

在本实施例中根据登录排序结果确定预设拼接策略的处理方式可以为根据登录排序结果从多个待拼接登录行为信息中确定第一登录行为信息和第二登录行为信息,之后确定第一登录行为信息与第二登录行为信息之间的距离分值,根据距离分值确定预设拼接策略。In this embodiment, the processing method of determining the preset splicing strategy according to the login sorting result may be to determine the first login behavior information and the second login behavior information from a plurality of login behavior information to be spliced according to the login sorting result, and then determine the first login behavior information. A distance score between the behavior information and the second login behavior information, and a preset splicing strategy is determined according to the distance score.

假设登录排序结果为待拼接登录行为信息A—待拼接登录行为信息B—待拼接登录行为信息C,待拼接登录行为信息A对应的等级为十级,十级对应的分值为10、待拼接登录行为信息B对应的等级为八级,八级对应的分值为8、待拼接登录行为信息C对应的等级为七级,七级对应的分值为7,则第一登录行为信息为待拼接登录行为信息A,第二登录行为信息为待拼接登录行为信息C,则第一登录行为信息与第二登录行为信息之间的距离分值为3,则距离分值小于或等于预设距离阈值,预设拼接策略可以为随机拼接;距离分值大于预设距离阈值,预设拼接策略可以为根据等级对多个待拼接登录行为信息进行拼接等。预设距离阈值可以为用户自定义设置,例如3或5等。Assume that the login sorting result is login behavior information to be spliced A—login behavior information to be spliced B—login behavior information to be spliced C. The level corresponding to the login behavior information B is eighth, and the score corresponding to the eighth level is 8. The level corresponding to the login behavior information C to be spliced is seven, and the score corresponding to the seventh level is 7. The login behavior information A is spliced, the second login behavior information is the login behavior information C to be spliced, then the distance score between the first login behavior information and the second login behavior information is 3, and the distance score is less than or equal to the preset distance Threshold, the preset splicing strategy can be random splicing; if the distance score is greater than the preset distance threshold, the preset splicing strategy can be splicing multiple login behavior information to be spliced according to the level. The preset distance threshold can be customized by the user, such as 3 or 5, etc.

在具体实现中,还需要审计模块按照预设拼接策略对多个待拼接登录行为进行组合,获得日志行为事件,并将日志行为事件发送至负责人,负责人可根据日志行为事件进行系统登录分析,例如可以得到其启动的进程链,和操作的文件信息等信息等。In the specific implementation, it is also necessary for the audit module to combine multiple login behaviors to be spliced according to the preset splicing strategy, obtain log behavior events, and send the log behavior events to the person in charge, and the person in charge can perform system login analysis based on the log behavior events , for example, you can get information such as the process chain it starts, and the file information it operates.

在本实施例中,在检测到系统登录操作指令时,首先根据系统登录操作指令获取登录行为信息,然后对登录行为信息进行特征提取,以获得多个登录特征信息,之后按照预设审计策略从多个登录特征信息中确定日志特征信息,最后根据日志特征信息从多个登录行为信息中提取目标登录行为信息,并根据目标登录行为信息生成日志行为事件。由于现有技术中,需要人工统计终端安全响应系统中用户登录信息,而本实施例中基于预设审计策略从登录行为信息中确定目标登录行为信息,之后根据目标登录行为信息生成日志行为事件,从而实现了精准获取日志行为事件,提高了日志行为事件生成效率,进而提高了用户体验。In this embodiment, when a system login operation instruction is detected, the login behavior information is first obtained according to the system login operation instruction, and then feature extraction is performed on the login behavior information to obtain multiple login feature information, and then according to the preset audit strategy from Log feature information is determined from multiple log feature information, and finally target login behavior information is extracted from multiple log feature information according to the log feature information, and log behavior events are generated according to the target login behavior information. In the prior art, it is necessary to manually count the user login information in the terminal security response system, but in this embodiment, the target login behavior information is determined from the login behavior information based on the preset audit policy, and then log behavior events are generated according to the target login behavior information, In this way, the accurate acquisition of log behavior events is realized, the generation efficiency of log behavior events is improved, and the user experience is further improved.

本发明日志行为事件生成装置的其他实施例或具体实现方式可参照上述各方法实施例,此处不再赘述。For other embodiments or specific implementations of the device for generating log behavior events of the present invention, reference may be made to the above-mentioned method embodiments, which will not be repeated here.

需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。It should be noted that, as used herein, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or system comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or system. Without further limitations, an element defined by the phrase "comprising a..." does not preclude the presence of additional identical elements in the process, method, article or system comprising that element.

上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。The serial numbers of the above embodiments of the present invention are for description only, and do not represent the advantages and disadvantages of the embodiments.

通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器/随机存取存储器、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。Through the description of the above embodiments, those skilled in the art can clearly understand that the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation. Based on this understanding, the technical solution of the present invention can be embodied in the form of software products in essence or in other words, the part that contributes to the prior art, and the computer software products are stored in a storage medium (such as read-only memory/random access memory, magnetic disk, optical disk), including several instructions to make a terminal device (which can be a mobile phone, computer, server, air conditioner, or network equipment, etc.) execute the methods described in various embodiments of the present invention.

以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above are only preferred embodiments of the present invention, and are not intended to limit the patent scope of the present invention. Any equivalent structure or equivalent process conversion made by using the description of the present invention and the contents of the accompanying drawings, or directly or indirectly used in other related technical fields , are all included in the scope of patent protection of the present invention in the same way.

本发明还公开了A1、一种日志行为事件生成方法,所述日志行为事件生成方法包括以下步骤:The present invention also discloses A1, a log behavior event generation method, the log behavior event generation method comprising the following steps:

在检测到系统登录操作指令时,根据所述系统登录操作指令获取登录行为信息;When the system login operation instruction is detected, the login behavior information is obtained according to the system login operation instruction;

对所述登录行为信息进行特征提取,以获得多个登录特征信息;performing feature extraction on the login behavior information to obtain a plurality of login feature information;

按照预设审计策略从多个所述登录特征信息中确定日志特征信息;Determining log feature information from a plurality of log feature information according to a preset audit policy;

根据所述日志特征信息从所述登录行为信息中提取目标登录行为信息;extracting target login behavior information from the login behavior information according to the log feature information;

根据所述目标登录行为信息生成日志行为事件。A log behavior event is generated according to the target login behavior information.

A2、如A1所述的方法,所述对所述登录行为信息进行特征提取,以获得多个登录特征信息的步骤,包括:A2. The method as described in A1, the step of performing feature extraction on the login behavior information to obtain multiple login feature information includes:

获取所述登录行为信息对应的行为类型;Obtain the behavior type corresponding to the login behavior information;

根据所述行为类型确定对应的预设提取策略;determining a corresponding preset extraction strategy according to the behavior type;

基于所述预设提取策略对所述登录行为信息进行特征提取,以获得多个登录特征信息。Feature extraction is performed on the login behavior information based on the preset extraction strategy to obtain a plurality of login feature information.

A3、如A2所述的方法,所述根据所述行为类型确定对应的预设提取策略的步骤,包括:A3. The method as described in A2, the step of determining the corresponding preset extraction strategy according to the behavior type includes:

根据所述行为类型确定所述登录行为信息对应的行为字段;determining a behavior field corresponding to the login behavior information according to the behavior type;

根据所述行为字段确定对应的预设提取策略。A corresponding preset extraction strategy is determined according to the behavior field.

A4、如A3所述的方法,所述根据所述行为字段确定对应的预设提取策略的步骤,包括:A4. The method as described in A3, the step of determining the corresponding preset extraction strategy according to the behavior field includes:

根据所述行为字段生成登录行为编码;Generate a login behavior code according to the behavior field;

根据所述登录行为编码从预设策略映射关系表中匹配对应的样本提取策略,所述预设策略映射关系表中存在多个登录行为编码和多个样本提取策略;Matching a corresponding sample extraction strategy from a preset policy mapping relationship table according to the login behavior code, where there are multiple login behavior codes and multiple sample extraction strategies in the preset policy mapping relationship table;

将所述样本提取策略作为所述登录行为信息对应的预设提取策略。The sample extraction policy is used as a preset extraction policy corresponding to the login behavior information.

A5、如A2所述的方法,所述基于所述预设提取策略对所述登录行为信息进行特征提取,以获得多个登录特征信息的步骤,包括:A5. The method as described in A2, the step of performing feature extraction on the login behavior information based on the preset extraction strategy to obtain multiple login feature information includes:

基于所述预设提取策略对所述登录行为信息进行特征提取,获得多个待确定登录特征信息;performing feature extraction on the login behavior information based on the preset extraction strategy to obtain a plurality of login feature information to be determined;

确定多个所述待确定登录特征信息对应的特征数量;determining the number of features corresponding to the plurality of login feature information to be determined;

判断所述特征数量是否大于或等于预设特征阈值;judging whether the number of features is greater than or equal to a preset feature threshold;

在所述特征数量大于或等于所述预设特征阈值时,将多个所述待确定登录特征信息作为所述登录行为信息对应的多个登录特征信息。When the number of features is greater than or equal to the preset feature threshold, the plurality of login feature information to be determined is used as a plurality of login feature information corresponding to the login behavior information.

A6、如A1-A5任一项所述的方法,所述根据所述目标登录行为信息生成日志行为事件的步骤之前,还包括:A6. The method according to any one of A1-A5, before the step of generating a log behavior event according to the target login behavior information, it also includes:

确定所述目标登录行为信息对应的存储量;Determine the storage capacity corresponding to the target login behavior information;

判断所述存储量是否满足预设存储条件;judging whether the storage capacity satisfies a preset storage condition;

在所述存储量满足所述预设存储条件时,执行所述根据所述目标登录行为信息生成日志行为事件的步骤。When the storage amount satisfies the preset storage condition, the step of generating a log behavior event according to the target login behavior information is executed.

A7、如A6所述的方法,所述判断所述存储量是否满足预设存储条件的步骤之后,还包括:A7. The method as described in A6, after the step of judging whether the storage capacity satisfies the preset storage condition, further includes:

在所述存储量不满足所述预设存储条件时,根据所述目标登录行为信息确定缺失登录信息;When the storage amount does not meet the preset storage condition, determine missing login information according to the target login behavior information;

获取所述缺失登录信息对应的登录时间信息;Acquiring login time information corresponding to the missing login information;

根据所述登录时间信息获取所述缺失登录信息对应的待处理登录行为信息;Obtaining pending login behavior information corresponding to the missing login information according to the login time information;

根据所述目标登录行为信息及所述待处理登录行为信息确定待确认登录行为信息;determining the login behavior information to be confirmed according to the target login behavior information and the pending login behavior information;

获取所述待确认登录行为信息对应的行为类型。Obtain the behavior type corresponding to the login behavior information to be confirmed.

A8、如A1-A5任一项所述的方法,所述根据所述目标登录行为信息生成日志行为事件的步骤,包括:A8. The method according to any one of A1-A5, the step of generating a log behavior event according to the target login behavior information includes:

对所述目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息;Splitting and processing the target login behavior information to obtain multiple login behavior information to be spliced;

根据多个所述待拼接登录行为信息确定预设拼接策略;determining a preset splicing strategy according to multiple pieces of login behavior information to be spliced;

基于所述预设拼接策略对多个所述待拼接登录行为信息进行组合,获得日志行为事件。Based on the preset splicing strategy, multiple pieces of the login behavior information to be spliced are combined to obtain log behavior events.

A9、如A8所述的方法,所述对所述目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息的步骤之前,还包括:A9. The method as described in A8, before the step of splitting and processing the target login behavior information to obtain multiple login behavior information to be spliced, it also includes:

获取所述目标登录行为信息对应的登录格式信息;Acquiring login format information corresponding to the target login behavior information;

判断所述登录格式信息是否满足预设格式条件;judging whether the login format information satisfies a preset format condition;

在所述登录格式信息满足所述预设格式条件时,执行所述对所述目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息的步骤。When the login format information satisfies the preset format condition, the step of splitting the target login behavior information to obtain multiple login behavior information to be spliced is performed.

A10、如A9所述的方法,所述根据多个所述待拼接登录行为信息确定预设拼接策略的步骤,包括:A10. The method as described in A9, the step of determining a preset splicing strategy according to a plurality of login behavior information to be spliced includes:

分别确定各待拼接登录行为信息对应的行为等级;Respectively determine the behavior levels corresponding to the login behavior information to be spliced;

根据所述行为等级对多个所述待拼接登录行为信息进行排序,以获得对应的登录排序结果;sorting the plurality of login behavior information to be spliced according to the behavior level to obtain a corresponding login sorting result;

根据所述登录排序结果确定预设拼接策略。A preset mosaic strategy is determined according to the login sorting result.

A11、如A10所述的方法,所述根据所述登录排序结果确定预设拼接策略的步骤,包括:A11, the method as described in A10, the step of determining a preset splicing strategy according to the login sorting result includes:

根据所述登录排序结果从多个待拼接登录行为信息中确定第一登录行为信息和第二登录行为信息;determining first login behavior information and second login behavior information from a plurality of login behavior information to be spliced according to the login sorting result;

确定所述第一登录行为信息与所述第二登录行为信息之间的距离分值;determining a distance score between the first login behavior information and the second login behavior information;

根据所述距离分值确定预设拼接策略。A preset splicing strategy is determined according to the distance score.

本发明还公开了B12、一种日志行为事件生成装置,所述日志行为事件生成装置包括:The present invention also discloses B12, a log behavior event generation device, and the log behavior event generation device includes:

获取模块,用于在检测到系统登录操作指令时,根据所述系统登录操作指令获取登录行为信息;An acquisition module, configured to acquire login behavior information according to the system login operation instruction when a system login operation instruction is detected;

提取模块,用于对所述登录行为信息进行特征提取,以获得多个登录特征信息;An extraction module, configured to perform feature extraction on the login behavior information to obtain multiple login feature information;

确定模块,用于按照预设审计策略从多个所述登录特征信息中确定日志特征信息;A determining module, configured to determine log feature information from a plurality of log feature information according to a preset audit policy;

所述提取模块,还用于根据所述日志特征信息从所述登录行为信息中提取目标登录行为信息;The extraction module is further configured to extract target login behavior information from the login behavior information according to the log feature information;

生成模块,用于根据所述目标登录行为信息生成日志行为事件。A generating module, configured to generate a log behavior event according to the target login behavior information.

B13、如B12所述的装置,所述提取模块,还用于获取所述登录行为信息对应的行为类型;B13. The device as described in B12, the extracting module is further configured to obtain the behavior type corresponding to the login behavior information;

所述提取模块,还用于根据所述行为类型确定对应的预设提取策略;The extraction module is further configured to determine a corresponding preset extraction strategy according to the behavior type;

所述提取模块,还用于基于所述预设提取策略对所述登录行为信息进行特征提取,以获得多个登录特征信息。The extraction module is further configured to perform feature extraction on the login behavior information based on the preset extraction strategy, so as to obtain a plurality of login feature information.

B14、如B13所述的装置,所述提取模块,还用于根据所述行为类型确定所述登录行为信息对应的行为字段;B14. The device as described in B13, the extracting module is further configured to determine the behavior field corresponding to the login behavior information according to the behavior type;

所述提取模块,还用于根据所述行为字段确定对应的预设提取策略。The extraction module is further configured to determine a corresponding preset extraction strategy according to the behavior field.

B15、如B14所述的装置,所述提取模块,还用于根据所述行为字段生成登录行为编码;B15, the device as described in B14, the extraction module is also used to generate login behavior codes according to the behavior field;

所述提取模块,还用于根据所述登录行为编码从预设策略映射关系表中匹配对应的样本提取策略,所述预设策略映射关系表中存在多个登录行为编码和多个样本提取策略;The extraction module is further configured to match a corresponding sample extraction strategy from a preset policy mapping relationship table according to the login behavior code, and there are multiple login behavior codes and multiple sample extraction strategies in the preset policy mapping relationship table ;

所述提取模块,还用于将所述样本提取策略作为所述登录行为信息对应的预设提取策略。The extraction module is further configured to use the sample extraction policy as a preset extraction policy corresponding to the login behavior information.

B16、如B13所述的装置,所述提取模块,还用于基于所述预设提取策略对所述登录行为信息进行特征提取,获得多个待确定登录特征信息;B16. The device as described in B13, the extraction module is further configured to perform feature extraction on the login behavior information based on the preset extraction strategy, and obtain a plurality of login feature information to be determined;

所述提取模块,还用于确定多个所述待确定登录特征信息对应的特征数量;The extraction module is also used to determine the number of features corresponding to the plurality of login feature information to be determined;

所述提取模块,还用于判断所述特征数量是否大于或等于预设特征阈值;The extraction module is also used to judge whether the number of features is greater than or equal to a preset feature threshold;

所述提取模块,还用于在所述特征数量大于或等于所述预设特征阈值时,将多个所述待确定登录特征信息作为所述登录行为信息对应的多个登录特征信息。The extraction module is further configured to use the plurality of login characteristic information to be determined as the plurality of login characteristic information corresponding to the login behavior information when the characteristic number is greater than or equal to the preset characteristic threshold.

B17、如B12-B16任一项所述的装置,所述生成模块,还用于对所述目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息;B17. The device according to any one of B12-B16, the generating module is also used to split and process the target login behavior information to obtain multiple login behavior information to be spliced;

所述生成模块,还用于根据多个所述待拼接登录行为信息确定预设拼接策略;The generating module is further configured to determine a preset splicing strategy according to a plurality of login behavior information to be spliced;

所述生成模块,还用于基于所述预设拼接策略对多个所述待拼接登录行为信息进行组合,获得日志行为事件。The generating module is further configured to combine a plurality of login behavior information to be spliced based on the preset splicing strategy to obtain log behavior events.

B18、如B17所述的装置,所述生成模块,还用于获取所述目标登录行为信息对应的登录格式信息;B18. The device as described in B17, the generating module is further configured to obtain login format information corresponding to the target login behavior information;

所述生成模块,还用于判断所述登录格式信息是否满足预设格式条件;The generating module is also used to judge whether the login format information satisfies a preset format condition;

所述生成模块,还用于在所述登录格式信息满足所述预设格式条件时,执行所述对所述目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息的操作。The generating module is further configured to perform the operation of splitting the target login behavior information to obtain multiple login behavior information to be spliced when the login format information satisfies the preset format condition.

本发明还公开了C19、一种日志行为事件生成设备,所述日志行为事件生成设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的日志行为事件生成程序,所述日志行为事件生成程序配置有实现如上文所述的日志行为事件生成方法的步骤。The present invention also discloses C19, a log behavior event generation device, the log behavior event generation device includes: a memory, a processor, and a log behavior event generation program stored on the memory and operable on the processor , the log behavior event generation program is configured with the steps of realizing the log behavior event generation method as described above.

本发明还公开了D20、一种存储介质,所述存储介质上存储有日志行为事件生成程序,所述日志行为事件生成程序被处理器执行时实现如上文所述的日志行为事件生成方法的步骤。The present invention also discloses D20, a storage medium, on which a log behavior event generation program is stored, and when the log behavior event generation program is executed by a processor, the steps of the log behavior event generation method as described above are realized .

Claims (10)

1.一种日志行为事件生成方法,其特征在于,所述日志行为事件生成方法包括以下步骤:1. A log behavior event generation method is characterized in that, the log behavior event generation method comprises the following steps: 在检测到系统登录操作指令时,根据所述系统登录操作指令获取登录行为信息;When the system login operation instruction is detected, the login behavior information is obtained according to the system login operation instruction; 对所述登录行为信息进行特征提取,以获得多个登录特征信息;performing feature extraction on the login behavior information to obtain a plurality of login feature information; 按照预设审计策略从多个所述登录特征信息中确定日志特征信息;Determining log feature information from a plurality of log feature information according to a preset audit policy; 根据所述日志特征信息从所述登录行为信息中提取目标登录行为信息;extracting target login behavior information from the login behavior information according to the log feature information; 根据所述目标登录行为信息生成日志行为事件。A log behavior event is generated according to the target login behavior information. 2.如权利要求1所述的方法,其特征在于,所述对所述登录行为信息进行特征提取,以获得多个登录特征信息的步骤,包括:2. The method according to claim 1, wherein the step of performing feature extraction on the login behavior information to obtain multiple login feature information comprises: 获取所述登录行为信息对应的行为类型;Obtain the behavior type corresponding to the login behavior information; 根据所述行为类型确定对应的预设提取策略;determining a corresponding preset extraction strategy according to the behavior type; 基于所述预设提取策略对所述登录行为信息进行特征提取,以获得多个登录特征信息。Feature extraction is performed on the login behavior information based on the preset extraction strategy to obtain a plurality of login feature information. 3.如权利要求2所述的方法,其特征在于,所述根据所述行为类型确定对应的预设提取策略的步骤,包括:3. The method according to claim 2, wherein the step of determining a corresponding preset extraction strategy according to the behavior type includes: 根据所述行为类型确定所述登录行为信息对应的行为字段;determining a behavior field corresponding to the login behavior information according to the behavior type; 根据所述行为字段确定对应的预设提取策略。A corresponding preset extraction strategy is determined according to the behavior field. 4.如权利要求3所述的方法,其特征在于,所述根据所述行为字段确定对应的预设提取策略的步骤,包括:4. The method according to claim 3, wherein the step of determining a corresponding preset extraction strategy according to the behavior field comprises: 根据所述行为字段生成登录行为编码;Generate a login behavior code according to the behavior field; 根据所述登录行为编码从预设策略映射关系表中匹配对应的样本提取策略,所述预设策略映射关系表中存在多个登录行为编码和多个样本提取策略;Matching a corresponding sample extraction strategy from a preset policy mapping relationship table according to the login behavior code, where there are multiple login behavior codes and multiple sample extraction strategies in the preset policy mapping relationship table; 将所述样本提取策略作为所述登录行为信息对应的预设提取策略。The sample extraction policy is used as a preset extraction policy corresponding to the login behavior information. 5.如权利要求2所述的方法,其特征在于,所述基于所述预设提取策略对所述登录行为信息进行特征提取,以获得多个登录特征信息的步骤,包括:5. The method according to claim 2, wherein the step of performing feature extraction on the login behavior information based on the preset extraction strategy to obtain a plurality of login feature information comprises: 基于所述预设提取策略对所述登录行为信息进行特征提取,获得多个待确定登录特征信息;performing feature extraction on the login behavior information based on the preset extraction strategy to obtain a plurality of login feature information to be determined; 确定多个所述待确定登录特征信息对应的特征数量;determining the number of features corresponding to the plurality of login feature information to be determined; 判断所述特征数量是否大于或等于预设特征阈值;judging whether the number of features is greater than or equal to a preset feature threshold; 在所述特征数量大于或等于所述预设特征阈值时,将多个所述待确定登录特征信息作为所述登录行为信息对应的多个登录特征信息。When the number of features is greater than or equal to the preset feature threshold, the plurality of login feature information to be determined is used as a plurality of login feature information corresponding to the login behavior information. 6.如权利要求1-5任一项所述的方法,其特征在于,所述根据所述目标登录行为信息生成日志行为事件的步骤,包括:6. The method according to any one of claims 1-5, wherein the step of generating a log behavior event according to the target login behavior information comprises: 对所述目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息;Splitting and processing the target login behavior information to obtain multiple login behavior information to be spliced; 根据多个所述待拼接登录行为信息确定预设拼接策略;determining a preset splicing strategy according to multiple pieces of login behavior information to be spliced; 基于所述预设拼接策略对多个所述待拼接登录行为信息进行组合,获得日志行为事件。Based on the preset splicing strategy, multiple pieces of the login behavior information to be spliced are combined to obtain log behavior events. 7.如权利要求6所述的方法,其特征在于,所述对所述目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息的步骤之前,还包括:7. The method according to claim 6, characterized in that, before the step of splitting the target login behavior information to obtain multiple login behavior information to be spliced, further comprising: 获取所述目标登录行为信息对应的登录格式信息;Acquiring login format information corresponding to the target login behavior information; 判断所述登录格式信息是否满足预设格式条件;judging whether the login format information satisfies a preset format condition; 在所述登录格式信息满足所述预设格式条件时,执行所述对所述目标登录行为信息进行拆分处理,获得多个待拼接登录行为信息的步骤。When the login format information satisfies the preset format condition, the step of splitting the target login behavior information to obtain multiple login behavior information to be spliced is performed. 8.一种日志行为事件生成装置,其特征在于,所述日志行为事件生成装置包括:8. A log behavior event generating device, characterized in that, the log behavior event generating device comprises: 获取模块,用于在检测到系统登录操作指令时,根据所述系统登录操作指令获取登录行为信息;An acquisition module, configured to acquire login behavior information according to the system login operation instruction when a system login operation instruction is detected; 提取模块,用于对所述登录行为信息进行特征提取,以获得多个登录特征信息;An extraction module, configured to perform feature extraction on the login behavior information to obtain multiple login feature information; 确定模块,用于按照预设审计策略从多个所述登录特征信息中确定日志特征信息;A determining module, configured to determine log feature information from a plurality of log feature information according to a preset audit policy; 所述提取模块,还用于根据所述日志特征信息从所述登录行为信息中提取目标登录行为信息;The extraction module is further configured to extract target login behavior information from the login behavior information according to the log feature information; 生成模块,用于根据所述目标登录行为信息生成日志行为事件。A generating module, configured to generate a log behavior event according to the target login behavior information. 9.一种日志行为事件生成设备,其特征在于,所述日志行为事件生成设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的日志行为事件生成程序,所述日志行为事件生成程序配置有实现如权利要求1至7中任一项所述的日志行为事件生成方法的步骤。9. A log behavior event generation device, characterized in that, the log behavior event generation device includes: a memory, a processor and a log behavior event generation program that is stored on the memory and can run on the processor, The log behavior event generation program is configured with steps for realizing the log behavior event generation method according to any one of claims 1-7. 10.一种存储介质,其特征在于,所述存储介质上存储有日志行为事件生成程序,所述日志行为事件生成程序被处理器执行时实现如权利要求1至7中任一项所述的日志行为事件生成方法的步骤。10. A storage medium, characterized in that a log behavior event generation program is stored on the storage medium, and when the log behavior event generation program is executed by a processor, the method according to any one of claims 1 to 7 is realized. Steps in the logging behavior event generation method.
CN202111618228.3A 2021-12-27 2021-12-27 Log behavior event generation method, device, equipment and storage medium Pending CN116414664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111618228.3A CN116414664A (en) 2021-12-27 2021-12-27 Log behavior event generation method, device, equipment and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111618228.3A CN116414664A (en) 2021-12-27 2021-12-27 Log behavior event generation method, device, equipment and storage medium

Publications (1)

Publication Number Publication Date
CN116414664A true CN116414664A (en) 2023-07-11

Family

ID=87056414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111618228.3A Pending CN116414664A (en) 2021-12-27 2021-12-27 Log behavior event generation method, device, equipment and storage medium

Country Status (1)

Country Link
CN (1) CN116414664A (en)

Similar Documents

Publication Publication Date Title
CN112417439B (en) Account detection method, device, server and storage medium
CN110378749B (en) Client similarity assessment method, device, terminal equipment and storage medium
CN111506498A (en) Automatic generation method and device of test case, computer equipment and storage medium
CN109669795B (en) Crash information processing method and device
CN112632537A (en) Malicious code detection method, device, equipment and storage medium
CN107894889A (en) Bury point methods, equipment and computer-readable recording medium
CN109547426B (en) Service response method and server
CN109194689B (en) Abnormal behavior recognition method, device, server and storage medium
CN113051183B (en) A test data recommendation method, system, electronic device and storage medium
CN115618355A (en) Injection attack result determination method, device, equipment and storage medium
CN113641767A (en) Entity relationship extraction method, device, equipment and storage medium
CN109299592B (en) Man-machine behavior characteristic boundary construction method, system, server and storage medium
CN113032836B (en) Data desensitization method and apparatus
CN108304310B (en) Log analysis method and computing device
CN112817816B (en) Embedded point processing method and device, computer equipment and storage medium
CN116414664A (en) Log behavior event generation method, device, equipment and storage medium
CN110706221A (en) Verification method, verification device, storage medium and device for customizing pictures
CN111046393A (en) Vulnerability information uploading method and device, terminal equipment and storage medium
CN111151008B (en) Verification method and device for game operation data, configuration background and medium
CN108287992A (en) A kind of malicious program detection system of the computer learning based on Android
CN113194191A (en) Fault processing method, device and equipment based on cloud mobile phone and storage medium
CN109359462B (en) Virtual standby identification method, equipment, storage medium and device
CN112328614B (en) Virus library updating method, device, storage medium and apparatus
CN112434293B (en) File feature extraction method, device, storage medium and apparatus
CN112445760B (en) File classification method, device, storage medium and apparatus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination