CN116413930A - 热光相移器、马曾干涉仪及光计算网络 - Google Patents

热光相移器、马曾干涉仪及光计算网络 Download PDF

Info

Publication number
CN116413930A
CN116413930A CN202210801050.4A CN202210801050A CN116413930A CN 116413930 A CN116413930 A CN 116413930A CN 202210801050 A CN202210801050 A CN 202210801050A CN 116413930 A CN116413930 A CN 116413930A
Authority
CN
China
Prior art keywords
layer
lithium niobate
waveguide layer
thermo
phase shifter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210801050.4A
Other languages
English (en)
Inventor
彭传艳
杨乐思
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Turing Quantum Technology Beijing Co ltd
Shanghai Turing Intelligent Computing Quantum Technology Co Ltd
Original Assignee
Turing Quantum Technology Beijing Co ltd
Shanghai Turing Intelligent Computing Quantum Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Turing Quantum Technology Beijing Co ltd, Shanghai Turing Intelligent Computing Quantum Technology Co Ltd filed Critical Turing Quantum Technology Beijing Co ltd
Priority to CN202210801050.4A priority Critical patent/CN116413930A/zh
Publication of CN116413930A publication Critical patent/CN116413930A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明公开了一种热光相移器、马曾干涉仪及光计算网络。热光相移器包括:铌酸锂波导层、包覆层、加热件;包覆层覆盖于铌酸锂波导层的外围,包覆层的折射率小于铌酸锂波导层的折射率;加热件设于包覆层;铌酸锂波导层盘设于加热件的热影响区。通过利用加热件对铌酸锂波导层加热,从而可以提高铌酸锂波导层的温度,进而调整铌酸锂波导层的折射率,实现对热光相移器内传输的光波相位的调整。通过将波导层盘设在加热件的加热区,可以有效地提高铌酸锂波导层的长度,并将铌酸锂波导层限制在较小的区域内,从而便于加热件对铌酸锂波导层加热,可以降低相移功率,也可以实现光波信号在较小的相移功率下实现稳定的输出。

Description

热光相移器、马曾干涉仪及光计算网络
技术领域
本发明涉及集成光子领域,特别涉及一种热光相移器、马曾干涉仪及光计算网络。
背景技术
马赫-曾德尔干涉仪(Mach–Zehnder interferometer,简写MZI或马曾干涉仪)是一种常用的干涉仪,可以用来观测从单独光源发射的光波分裂成两道波导之后,经过不同路径与介质所产生的相对相移变化。
在马曾干涉仪中,输入光波经过一段光路后,首先在一个Y分支处被分成两个光波,两个光波分别通过两个波导传输,随后两个光波到达第二个Y分支,两个光波会合成一个光波。
鉴于两个波导的制作工艺等,光波经马曾干涉仪的两个波导传播后会不可避免地出现误差,使得到达第二个Y分支的两个光波产生不符预期的相位差。
发明内容
本发明要解决的技术问题是为了克服现有技术中输入马曾干涉仪的光束在到达第二个Y分支会产生不符预期的相位差的上述缺陷,提供一种热光调制器及马曾干涉仪。
本发明是通过下述技术方案来解决上述技术问题:
一种热光相移器,所述热光相移器包括:铌酸锂波导层、包覆层、加热件,所述铌酸锂波导层用于传输光波;所述包覆层覆盖于所述铌酸锂波导层的外围,所述包覆层的折射率小于所述铌酸锂波导层的折射率;所述加热件设于所述包覆层,所述加热件被设置为加热所述铌酸锂波导层,以使所述铌酸锂波导层调节所述光波的相位;所述铌酸锂波导层盘设于所述加热件的热影响区。
在本方案中,通过采用以上结构,通过利用加热件对铌酸锂波导层加热,从而可以提高铌酸锂波导层的温度,进而调整铌酸锂波导层的折射率,实现对热光相移器内传输的光波相位的调整。通过将波导层盘设在加热件的加热区,可以有效地提高铌酸锂波导层的长度,并将铌酸锂波导层限制在较小的区域内,从而便于加热件对铌酸锂波导层加热,可以降低相移功率,也可以实现光波信号在较小的相移功率下实现稳定的输出。
较佳地,所述铌酸锂波导层沿直线和/或曲线设置。
在本方案中,通过采用以上结构,沿直线设置的铌酸锂波导层便于制作,可以减少光波在传播过程中的损耗。
沿曲线设置的铌酸锂波导层可以提高铌酸锂波导层的长度,从而可以降低对加热件的要求。
较佳地,所述铌酸锂波导层包括若干顺次连通的直线波导段和曲线波导段,一个所述直线波导段和一个所述曲线波导段组成基本段,若干所述基本段往复间隔设置。
在本方案中,通过采用以上结构,若干基本段往复间隔设置,可以有效地提高铌酸锂波导层的长度,并将铌酸锂波导层限制在较小的区域内,从而便于加热件对铌酸锂波导层加热,可以降低相移功率,也可以实现光波信号在较小的相移功率下实现稳定的输出。
较佳地,所述铌酸锂波导层整体呈“之”字形设置,组成“之”字的所述直线波导段之间设有所述曲线波导段。
在本方案中,通过采用以上结构,直线波导段之间设有曲线波导段,从而组成“之”字形,可以简化铌酸锂波导盘设方式,可以提高铌酸锂波导层的设置密度。
较佳地,所述铌酸锂波导层包括顺次连通的第一旋向段和第二旋向段,所述第一旋向段沿第一方向盘设,所述第一旋向段自光波射入端至光波射出端的曲率半径逐渐变大,所述第二旋向段自光波射入端至光波射出端的曲率半径逐渐变小,所述第二旋向段设于所述第一旋向段的间隔内。
在本方案中,通过采用以上结构,铌酸锂波导层设置为包括顺次连通的第一旋向段和第二旋向段,使得光波在铌酸锂波导内迂回传播,可以有效地延长铌酸锂波导的长度,也便于第一旋向段和第二旋向段间隔排布,提高铌酸锂波导的密度。
较佳地,所述铌酸锂波导层整体呈圆环状,所述第一旋向段和所述第二旋向段盘旋设置。
在本方案中,通过采用以上结构,圆环状的铌酸锂波导层可以进一步提高布置密度,便于对铌酸锂波导层加热调节。
较佳地,所述加热件整体呈圆弧状,圆弧状的所述加热件对应设于所述第一旋向段和所述第二旋向段上方。
在本方案中,通过采用以上结构,圆弧状的加热件与铌酸锂波导层相应设置,便于更好地对铌酸锂波导层加热。
较佳地,所述铌酸锂波导层包括基层和凸起层,所述凸起层设于所述基层的侧面,所述加热件的热影响区覆盖所述凸起层。
在本方案中,通过采用以上结构,将铌酸锂波导层设置为包括基层和凸起层,可以有效地降低光波传播过程中的损耗。加热件的热影响区覆盖所述凸起层,使得加热件产生的热量可以更快地传导至凸起层,从而更快地对光波进行调整。
较佳地,所述加热件沿所述铌酸锂波导层延伸的方向设置,所述加热件相对于所述铌酸锂波导层的中心线对称设置。
在本方案中,通过采用以上结构,加热件形成的热影响区可以更好地对铌酸锂波导层加热,便于更快地对光波进行调整。
一种马曾干涉仪,所述马曾干涉仪包括如上所述的热光相移器。
在本方案中,通过采用以上结构,马曾干涉仪可以利用热光相移器实现对内部光波相位的调整,从而使得光波在到达第二个Y分支不会产生相位差或者产生预设的相位差,可以提高马曾干涉仪的精度,还可以降低马曾干涉仪内不同波导之间的热串扰。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明的积极进步效果在于:
本发明通过利用加热件对铌酸锂波导层加热,从而可以提高铌酸锂波导层的温度,进而调整铌酸锂波导层的折射率,实现对热光相移器内传输的光波相位的调整。通过在包覆层设置隔热槽,并将隔热槽设置在加热件和铌酸锂波导层的侧面,从而可以有效降低加热件、铌酸锂波导层的热量穿过隔热槽,可以提高热量的束缚能力,可以降低对其他部件造成的热串扰。
附图说明
图1为本发明实施例1中第一种马曾干涉仪的示意图。
图2为图1马曾干涉仪中热光相移器的示意图。
图3为图1马曾干涉仪中热光相移器的横截面示意图。
图4为本发明实施例1中第二种马曾干涉仪的示意图。
图5为图4马曾干涉仪中热光相移器的横截面示意图。
图6为图4马曾干涉仪中另一种热光相移器的横截面示意图。
图7为本发明实施例1中第三种马曾干涉仪的示意图。
图8为图7马曾干涉仪中热光相移器的示意图。
图9为图7马曾干涉仪中热光相移器的横截面示意图。
图10为本发明实施例1中第四种马曾干涉仪的示意图。
图11为本发明实施例1中第五种马曾干涉仪的示意图。
图12为本发明实施例2中波导接头剖视的结构示意图。
图13为图12波导接头中热光相移器剖视的结构示意图。
图14为图13热光相移器另一剖视的结构示意图。
图15为图13热光相移器Ppi随非晶硅厚度变化的示意图。
附图标记说明:
马曾干涉仪900
分束器91
合束器92
隔热槽80
左侧槽81
右侧槽82
底槽83
直线波导段71
曲线波导段72
第一旋向段73
第二旋向段74
基层75
凸起层76
波导接头100
波导段11
过渡段12
过渡压缩层121
热光相移器200
波导层21
铌酸锂波导层211
压缩层22
非晶硅层221
加热件23
包覆层24
上包覆层241
下包覆层242
衬底25
附加层26
具体实施方式
下面通过实施例的方式并结合附图来更清楚完整地说明本发明,但并不因此将本发明限制在实施例的范围之中。
实施例1
如图1-图11所示,本实施例包括热光相移器200、马曾干涉仪900及光计算网络。马曾干涉仪900可以包括一个或两个热光相移器200,光计算网络可以包括多个马曾干涉仪900。
光计算网络包括如下文的马曾干涉仪900。光计算网络具体可以包括如下文的热光相移器200组成的MZI(马曾干涉仪900)基本单元。光计算网络具体还可以包括:光输入单元、基于热光相移器200组成的相位调制和强度调制的MZI单元、光接受探测单元。光输入单元的输出光注入光计算网络,光波通过热光相移器200形成附加相位差,再与MZI的另一路光波发生干涉,从而形成光波的强度调制,这样逐级通过光网络,实现向量矩阵的乘法,并达到计算的目的。
在图1-图3中,图中显示了一种具体的马曾干涉仪900及热光相移器200,马曾干涉仪900包括如下文的热光相移器200。马曾干涉仪900可以利用热光相移器200实现对内部光波相位的调整,从而使得光波在到达第二个Y分支不会产生相位差或者产生预设的相位差,可以提高马曾干涉仪900的精度。
在图1中,第一个Y分支也可以称为分束器91,第二个Y分支也可以称为合束器92。光波经分束器91后变成两束光波,两束光波分别沿不同的光路进入合束器92输出。在两个不同的光路中,可以在其中的一个或两个设置热光相移器200,热光相移器200可以对光波的相位进行调节,使得两束光波的相位相同或产生预期的相位差。
如图2-图3所示,图中显示了一种热光相移器200,热光相移器200包括:铌酸锂波导层211、加热件23,铌酸锂波导层211用于传输光波;加热件23被设置为加热铌酸锂波导层211,以使铌酸锂波导层211调节光波的相位。通过利用加热件23对铌酸锂波导层211加热,从而可以提高铌酸锂波导层211的温度,进而调整铌酸锂波导层211的折射率,实现对热光相移器200内传输的光波相位的调整。采用热光相移器200的马曾干涉仪900可以有效地避免光波在到达第二个Y分支会产生不符预期的相位差。
铌酸锂波导层211包括基层75和凸起层76,凸起层76设于基层75的侧面。将铌酸锂波导层211设置为包括基层75和凸起层76,可以有效地降低光波传播过程中的损耗。
加热件23的热影响区覆盖凸起层76。加热件23产生的热量可以更快地传导至凸起层76,从而更快地对光波进行调整。
加热件23沿铌酸锂波导层211延伸的方向设置,加热件23相对于铌酸锂波导层211的中心线对称设置。加热件23形成的热影响区可以更好地对铌酸锂波导层211加热,便于更快地对光波进行调整。
在图2中,铌酸锂波导层211沿直线设置,沿直线设置的铌酸锂波导层211便于制作,可以减少光波在传播过程中的损耗。
在其他实施例中,铌酸锂波导层211可以沿曲线设置。沿曲线设置的铌酸锂波导层211可以提高铌酸锂波导层211的长度,从而可以降低对加热件23的功率需求。
热光相移器200还包括包覆层24,包覆层24覆盖于铌酸锂波导层211的外围,包覆层24的折射率小于铌酸锂波导层211的折射率。利用折射率较小的包覆层24围住铌酸锂波导层211,可以更好地将光波限制在铌酸锂波导层211,可以避免光波逸出,减少光波损耗。
包覆层24包括上包覆层241和下包覆层242,铌酸锂波导层211设于上包覆层241与下包覆层242之间,加热件23设于上包覆层241远离铌酸锂波导层211的侧面。包覆层24包括上包覆层241和下包覆层242,便于热光相移器200的制造,也可以更好地围住铌酸锂波导层211,更好地将光波限制在铌酸锂波导层211。
在本实施例中,包覆层24具体可以包括上包覆层241和下包覆层242,上包覆层241和下包覆层242之间形成空腔,铌酸锂波导层211设于空腔内。
热光相移器200的包覆层24包括二氧化硅、氮氧化硅中的一种,也可以为其他材质的聚合物光学包层材料。本实施例的包覆层24为PECVD二氧化硅(即等离子体增强化学的气相沉积法制成的二氧化硅),厚度约为1μm。在其他实施例中,包覆层24的材质可以为其他材料。
加热件23设于包覆层24的外侧面,加热件23通过包覆层24加热铌酸锂波导层211。加热件23设置在包覆层24的外侧面,可以避免加热件23导致的光波逸出,也便于热光相移器200的制造。加热件23越近,其对光波的吸收就越大,因此加热件23不宜直接铺设在压缩层22上,包覆层24提高了加热件23与压缩层22之间的距离,可以避免光波被加热件23吸收。
热光相移器200还包括衬底25,包覆层24设于衬底25上,加热件23设于包覆层24远离衬底25的侧面。加热件23设于包覆层24远离衬底25的侧面,便于热光相移器200的制造。
作为一种实施方式,衬底25具体可以为硅、石英等材料。本实施例中衬底25为硅。
在其他实施例中,加热件23上方还可以设置附加层,该附加层可以根据实际需要设置,比如可以具体设置为二氧化硅、氮氧化硅、聚合物、空气等光学包层材料。
作为一种实施方式,加热件23可以理解为能够提高铌酸锂波导层211温度的部件。加热件23可以接收外部能量,并产生热量,产生的热量可以直接或间接传递至压缩层22,从而提高压缩层22的温度,进而实现压缩层22折射率的调整。
加热件23的热影响区可以理解为加热件23产生的热量传递的范围。在热影响区内,热量传递至铌酸锂波导层211,实现对铌酸锂波导层211的折射率的调整。
加热件23在压缩层22的上侧面的投影覆盖压缩层22的上侧面。加热件23产生的热量可以更快地传导至压缩层22,从而更快地对光波进行调整。
加热件23具体可以包括但不限于氮化钛、铝等金属;加热件23长度根据实际需求可在数十到数百微米间;加热件23的宽度可以大于铌酸锂波导层211的宽度。
作为一种具体的实施方式,可以对氮化钛制成的加热件23施加电压,从而氮化钛产生热量,该热量传递至压缩层22,从而提高压缩层22的温度,进而实现压缩层22折射率的调整。
结合图2及图3,加热件23整体可以为长方形状,加热件23设于铌酸锂波导层211的上方。图2中,加热件23的长度可以与铌酸锂波导层211的长度一致。加热件23的宽度也可以大于铌酸锂波导层211的宽度。在其他实施例中,加热件23的宽度也可以不大于压缩层22的宽度。
本实施例的热光相移器200相位稳定,且尺寸小,易集成化。热光相移器200结构紧凑,制作工艺简单,同时可以有效的抑制直流漂移问题。
热光相移器200包括铌酸锂波导层211,铌酸锂波导层211的损耗小,可以很好地解决电光相移器相位漂移的问题。热光相移器200可以确保信息传输的稳定性。
热光相移器200可以大量被制作在光计算网络中。热光相移器200可以用来调制相关输入对应的输出,实现光波信号的定向、定量可调,并且还可以实现准确稳定的输出,可以极大地提高光波传输的效率。
在图1中,马曾干涉仪900可以对加热件23施加电压,加热件23产生热量并将热量传递至下方的铌酸锂波导层211,从而实现铌酸锂波导层211折射率的调节,进而实现对光波相位的调节。通过合束器92将两相位不同的光束进行合并。马曾干涉仪900可以实现在750-1560nm通信波段可控的光波信号输出,可使Pπ(也是Ppi,表示将光波的相位从初始相位增加π所需的功率)下降到32mW。
在图1中,Pin可以理解为输入功率,Pout可以理解为输出功率。具体而言,Pin处输入光波,Pout处输出经调制后的光波。
结合图4-图6,图中显示了马曾干涉仪900和热光相移器200,图4-图6中的马曾干涉仪900及热光相移器200与图1-图3中的马曾干涉仪900及热光相移器200基本相同,不同之处在于,图4-图6中的热光相移器200包括隔热槽80,具体如下文。
热光相移器200包括:铌酸锂波导层211、包覆层24、加热件23及隔热槽80,铌酸锂波导层211用于传输光波;包覆层24覆盖于铌酸锂波导层211的外围,包覆层24的折射率小于铌酸锂波导层211的折射率;加热件23设于包覆层24,加热件23被设置为加热铌酸锂波导层211,以使铌酸锂波导层211调节光波的相位;隔热槽80设于包覆层24,隔热槽80位于加热件23和铌酸锂波导层211的侧面。通过利用加热件23对铌酸锂波导层211加热,从而可以提高铌酸锂波导层211的温度,进而调整铌酸锂波导层211的折射率,实现对热光相移器200内传输的光波相位的调整。通过在包覆层24设置隔热槽80,并将隔热槽80设置在加热件23和铌酸锂波导层211的侧面,从而可以有效降低加热件23、铌酸锂波导层211的热量穿过隔热槽80,可以提高热量的束缚能力,可以降低对其他部件造成的热串扰。
隔热槽80可以理解为具有阻隔或减少热量传递的槽口。槽口内可以为空气。在其他实施例中,槽口内也可以填充隔热效果更好的材料。
如图5所示,隔热槽80包括相对设置的左侧槽81和右侧槽82,左侧槽81及右侧槽82分别设于铌酸锂波导层211的两侧。左侧槽81及右侧槽82分别设于铌酸锂波导层211的两侧,使得铌酸锂波导层211的热量被束缚在左侧槽81及右侧槽82之间,可以提高热量的束缚能力,可以减少热量流失,避免热量向两侧传递,可以降低对其他部件造成的热串扰,可以降低底热光相移器200的Pπ。
如图6所示,隔热槽80还包括若干间隔设置的底槽83,底槽83分别与左侧槽81、右侧槽82相连通,底槽83与铌酸锂波导层211远离加热件23的侧面相间隔。底槽83分别与左侧槽81、右侧槽82相连通,从而对铌酸锂波导层211的三个侧面形成包围,可以进一步提高热量的束缚能力,可以避免热量向两侧及底部传递,可以进一步减少热量流失,可以进一步降低对其他部件造成的热串扰,可以进一步降低底热光相移器200的Pπ。
在其他实施例中,左侧槽81、右侧槽82及底槽83均可以单独设置,也可以选择其中的两个或多个设置。
加热件23设于左侧槽81和右侧槽82之间。可以将加热件23产生的热量限制在左侧槽81和右侧槽82之间,可以减少热量流失。在其他实施例中,加热件23也可以设置在其他位置。
如图4所示,图中为一种马曾干涉仪900,马曾干涉仪900包括两个如图6中的热光相移器200。马曾干涉仪900可以更好地隔离加热件23及铌酸锂波导层211的热量,将热量束缚在铌酸锂波导层211中,避免热量在不同的热光相移器200之间流动,避免发生热串扰。通过设置隔热槽80,也可以使得不同的热光相移器200之间的距离更加接近,可以提高热光相移器200的设置密度,便于集成制造。
结合图7-图11,图中显示了马曾干涉仪900和热光相移器200,图7-图9中的马曾干涉仪900及热光相移器200与图1-图3中的马曾干涉仪900及热光相移器200基本相同,不同之处在于,图7-图11中的热光相移器200的铌酸锂波导层211为盘设,具体如下文。
热光相移器200包括:铌酸锂波导层211、包覆层24、加热件23,铌酸锂波导层211用于传输光波;包覆层24覆盖于铌酸锂波导层211的外围,包覆层24的折射率小于铌酸锂波导层211的折射率;加热件23设于包覆层24,加热件23被设置为加热铌酸锂波导层211,以使铌酸锂波导层211调节光波的相位;铌酸锂波导层211盘设于加热件23的热影响区。通过利用加热件23对铌酸锂波导层211加热,从而可以提高铌酸锂波导层211的温度,进而调整铌酸锂波导层211的折射率,实现对热光相移器200内传输的光波相位的调整。通过将波导层21盘设在加热件23的加热区,可以有效地提高铌酸锂波导层211的长度,并将铌酸锂波导层211限制在较小的区域内,从而便于加热件23对铌酸锂波导层211加热,可以降低相移功率,也可以实现光波信号在较小的相移功率下实现稳定的输出。
盘设可以理解为铌酸锂波导层211整体为盘状,同一个铌酸锂波导层211曲折往复,形成盘状。盘状的具体形状还可以为圆形、长圆形、矩形等,可以有效地增加铌酸锂波导层211的设置密度,从而可以提高单位面积内铌酸锂波导层211的长度,进而加热件23可以对铌酸锂波导层211传递热量,实现铌酸锂波导层211的折射率的调整。
铌酸锂波导层211沿直线或曲线的一种或两种设置。沿直线设置的铌酸锂波导层211便于制作,可以减少光波在传播过程中的损耗。沿曲线设置的铌酸锂波导层211可以提高铌酸锂波导层211的长度,从而可以降低对加热件23的要求。在图7和图11中,铌酸锂波导层211同时包括沿直线设置和曲线设置,在图10中,铌酸锂波导层211沿曲线设置。
铌酸锂波导层211包括若干顺次连通的直线波导段71和曲线波导段72,一个直线波导段71和一个曲线波导段72组成基本段,若干基本段往复间隔设置。若干基本段往复间隔设置,可以有效地提高铌酸锂波导层211的长度,并将铌酸锂波导层211限制在较小的区域内,从而便于加热件23对铌酸锂波导层211加热,可以降低相移功率,也可以实现光波信号在较小的相移功率下实现稳定的输出。
铌酸锂波导层211整体呈“之”字形设置,组成“之”字的直线波导段71之间设有曲线波导段72。直线波导段71之间设有曲线波导段72,从而组成“之”字形,可以简化铌酸锂波导层211盘设方式,可以提高铌酸锂波导层211的设置密度。在图7和图11中,可以理解为铌酸锂波导层211呈“之”字形设置。
在图7中,马曾干涉仪900的一个铌酸锂波导层211包括3个直线波导段71和2个曲线波导段72,加热件23可以同时对3个直线波导段71和2个曲线波导段72加热,铌酸锂波导层211长度大大增加,热光相移器200的Pπ大大降低。通过将铌酸锂波导层211折叠加热,可以实现光波信号的稳定输出。
如图10所示,马曾干涉仪900的铌酸锂波导层211包括顺次连通的第一旋向段73和第二旋向段74,第一旋向段73沿第一方向盘设,第一旋向段73自光波射入端至光波射出端的曲率半径逐渐变大,第二旋向段74自光波射入端至光波射出端的曲率半径逐渐变小,第二旋向段74设于第一旋向段73的间隔内。铌酸锂波导层211设置为包括顺次连通的第一旋向段73和第二旋向段74,使得光波在铌酸锂波导层211内迂回传播,可以有效地延长铌酸锂波导层211的长度,也便于第一旋向段73和第二旋向段74间隔排布,提高铌酸锂波导层211的密度。
在图10中,铌酸锂波导层211的第一旋向段73沿逆时针方向呈螺旋状设置,第一旋向段73的曲率半径逐渐变大。第二旋向段74与第一旋向段73相连通,第二旋向段74沿顺时针方向呈螺旋状设置,第二旋向段74的曲率半径逐渐变小。第二旋向段74盘在第一旋向段73的间隔空间内。
铌酸锂波导层211整体呈圆环状,第一旋向段73和第二旋向段74盘旋设置。圆环状的铌酸锂波导层211可以进一步提高布置密度,便于对铌酸锂波导层211加热调节。
加热件23整体呈圆弧状,圆弧状的加热件23对应设于第一旋向段73和第二旋向段74上方。圆弧状的加热件23与铌酸锂波导层211相应设置,便于更好地对铌酸锂波导层211加热。在图10中,加热件23整体呈圆弧状,在其他实施例中,加热件23也可以呈U形、“一”字型、“十”字形等。
作为一种实施方式,还可以将图4-图6热光相移器200中的隔热槽80设置到图8-图9的热光相移器200或者图10中的马曾干涉仪900中。在图7中,热光相移器200中设置了左侧槽81和右侧槽82。在图11中,热光相移器200中设置了左侧槽81、右侧槽82及底槽83。
实施例2
如图12至图15所示,本实施例公开了热光相移器200、波导接头100及光计算网络。本实施例2与实施例1基本相同,不同之处在于本实施例的热光相移器200设有压缩层22,具体如下文。
在图12中,图中显示了一种波导接头100,波导接头100包括顺次连接的波导段11、过渡段12及如下文的热光相移器200,过渡段12设于波导段11与热光相移器200之间,波导段11的波导层、过渡段12的波导层及热光相移器200的波导层21相连通,过渡段12还设有过渡压缩层121,过渡压缩层121贴设于过渡段12的波导层,过渡压缩层121与热光相移器200的压缩层22相连通,过渡压缩层121的横截面沿自热光相移器200向波导段11的方向变小。利用过渡段12连接波导段11和热光相移器200,可以有效地避免因模式突变造成的额外损耗,可以使得光波更加顺利地在波导接头100内传播。
作为一种实施方式,过渡压缩层121整体为三角形状,三角形状的过渡压缩层121的角朝向波导段11,三角形状的过渡压缩层121的底朝向热光相移器200。利用三角形状的过渡压缩层121,可以有效地防止因模式突变造成的额外损耗。图12中过渡压缩层121具体可以为等腰三角形状,在其他实施例中,过渡压缩层121也可以为其他形状,比如可以将图12中三角形状的两个侧边替换为曲线,曲线具体可以为双曲线、圆弧线、椭圆线的一部分。过渡压缩层121也可以为四边形,该四边形靠近波导段11的边的长度可以小于四边形靠近热光相移器200的边的长度,具体可以为梯形,梯形的过渡压缩层121的上底朝向波导段11,梯形的过渡压缩层121的下底朝向热光相移器200,过渡压缩层121具体可以为等腰梯形。
在图12中,图中为波导接头100的剖视图,视角为俯视,图中的虚线只是示意地表示波导段11、过渡段12及如热光相移器200之间的界限,实际的波导接头100中并不存在该虚线。在本实施例中,过渡压缩层121与压缩层22可以为一整体结构。波导段11的波导层、过渡段12的波导层及热光相移器200的波导层21也可以为一整体结构。
光波可以自热光相移器200的一端入射至波导接头100。光波首先被压缩至压缩层22,然后经过渡压缩层121传递至波导段11。
作为一种实施方式,波导段11可以理解为通常意义上的波导,可以用来传导光波。过渡段12可以理解为热光相移器200与波导段11之间的过渡。结果上看,过渡段12在波导段11的波导层21设置过渡压缩层121。过渡压缩层121可以将热光相移器200中压缩层22内的光波传导至波导段11的波导层21。
本实施例还揭示了一种光计算网络,光计算网络包括如下文的热光相移器200。
光计算网络具体可以包括如下文的热光相移器200组成的MZI(马曾干涉仪)基本单元。光计算网络具体还可以包括:光输入单元、基于热光相移器200组成的相位调制和强度调制MZI单元、光接受探测单元。光输入单元的输出光注入光计算网络,光波通过热光相移器200形成附加相位差,再与MZI的另一路光波发生干涉,从而形成光波的强度调制,这样逐级通过光网络,实现向量矩阵的乘法,并达到计算的目的。
本实施例还揭示了一种激光雷达,激光雷达包括如下文的热光相移器200或如上文的波导接头100中的一个或全部。
激光雷达具体还可以包括:光发送单元、光学天线、光外差接收机以及信号处理单元。光发送单元输出发送光和作为连续振荡光的局部振荡光。光学天线将由光发送单元输出的发送光放射到空间中,接收关于该发送光的后向散射光作为接收光。光外差接收机使用由光发送单元输出的局部振荡光和由光学天线接收到的接收光进行光外差检测;以及信号处理单元对光外差接收机的检测结果进行频率分析。其中,光发送单元具体包括热光相移器200或波导接头100,热光相移器200或波导接头100对连续振荡光进行相位调制。光发送单元还可以包括光强度调制部,光强度调制部对由热光相移器200或波导接头100进行相位调制后的光进行脉冲调制,而后作为发送光。
如图13至图14所示,图中为上文提及的热光相移器200,热光相移器200包括:波导层21、压缩层22及加热件23,波导层21用于通入光波;压缩层22贴设于波导层21,压缩层22的折射率大于波导层21的折射率,压缩层22的热光系数大于波导层21的热光系数;加热件23被设置为加热压缩层22,以使压缩层22调节光波的相位。通过设置相贴合的波导层21及压缩层22,并将压缩层22的折射率设置为大于波导层21的折射率,从而进入波导层21的光波可以被压缩至压缩层22。同时将压缩层22的热光系数设置为大于波导层21的热光系数,并利用加热件23对压缩层22加热,从而压缩层22的温度可以提高,进而可以调节压缩层22的折射率,进而实现对光波相位的调整。热光系数较大的压缩层22可以有效地降低热光相移器200的Ppi,降低光学回路的功耗。
压缩层22可以理解为对光波的限制。光波在折射率不同的波导层21和压缩层22传导时,由于压缩层22的折射率大于波导层21的折射率,光波被限制在折射率更高的压缩层22,形成对光波的压缩。需要指出的是,压缩层22可以对进入波导层21的全部光波进行压缩,压缩层22也可以对进入波导层21的部分光波进行压缩。
作为一种实施方式,压缩层22可以包括非晶硅层221,非晶硅层221与波导层21相贴合。非晶硅层221具有较大的折射率,便于实现对光波的压缩。非晶硅层221也具有较大的热光系数,便于通过加热件23调节非晶硅层221的折射率,实现对光波相位的调整。
非晶硅层221的宽度与波导层21的宽度相适配。非晶硅层221的宽度与波导层21的宽度相适配,可以避免波导层21的光波逸出,减少光波损耗,可以更好地压缩光波。具体的,非晶硅层221的宽度不小于波导层21的宽度。如图14所示,非晶硅层221的宽度等于波导层21的宽度,此处的宽度可以为图14中非晶硅层221、波导层21相邻的面的尺寸。
作为一种实施方式,非晶硅层221的长度可以在数十到数百微米之间。在本实施例中,非晶硅层221具体为矩形薄膜状,在其他实施例中,非晶硅层221也可以为其他形状。
非晶硅层221具体可以为氢化非晶硅。氢化非晶硅包含了大量的Si:H链,Si:H链的存在能够减小光学损耗。在其他实施例中,非晶硅层221也可以为其他形式非晶硅。
非晶硅层221的厚度的范围为40-350nm。非晶硅层221的厚度的范围设置为40-350nm,可以有效地降低热光相移器200的Ppi,还可以避免非晶硅层221过厚,导致过渡段12太长,也容易造成光波在传导过程中发生突变,增强损耗。换言之,如果非晶硅层221的厚度小于40nm,则热光相移器200的Ppi降低不明显,热光相移器200功耗偏大,另外,非晶硅层221的厚度过薄,也难以有效地压缩光波,无法形成对光波的有效约束。
结合图15可知,随着非晶硅层221厚度的增加,热光相移器200的Ppi逐渐减小。具体的,非晶硅层221的厚度可以40-350nm之间整数值或以5、0结尾的整数值,优选50nm、100nm、150nm、200nm、250nm或300nm。本领域技术人员应当知晓,非晶硅层221的厚度设定为经过大量实验验证得来的,可以产生较好的技术效果。但是并不是用来限定非晶硅层221的厚度,其他可实施的厚度的数据变化也在本实施例的保护范围之内。
如图15所示,在铌酸锂波导层211上设置厚度50nm的非晶硅层221,热光相移器200的Ppi可以下降约33%。当非晶硅层221的厚度增加至200nm,热光相移器200的Ppi可以从64mW降低至12.4mW;Ppi下降非常明显。以上数值计算的条件中,热光相移器200的长度为200μm。由此可见,本实施例避免了热光相移器200Ppi较大的问题。
波导层21可以理解为传递光波的介质层。作为一种实施方式,波导层21包括铌酸锂波导层211,压缩层22贴设于铌酸锂波导层211。如图14所示,铌酸锂波导层211的横截面可以为梯形,在其他实施例中,铌酸锂波导层211的横截面也可以为其他形状。
在本实施例中,压缩层22具体可以为非晶硅层221,波导层21具体可以为铌酸锂波导层211,非晶硅层221的折射率大致为3.6,铌酸锂波导层211的折射率约为2.2,光波将压缩在非晶硅层221。同时,非晶硅层221的热光系数约为2.2x10-4,铌酸锂波导层211的热光系数约为10-5,非晶硅层221的热光系数远大于铌酸锂波导层211的热光系数,可以有效地降低热光相移器200的Ppi。
作为一种实施方式,波导层21选为铌酸锂波导层211,铌酸锂波导层211可以是一种铌酸锂薄膜。压缩层22选为非晶硅层221,加热件23可以对非晶硅层221和铌酸锂波导层211同时加热,从而非晶硅层221和铌酸锂波导层211的温度可以提高,进而可以调节非晶硅层221和铌酸锂波导层211的折射率,进而实现对光波相位的调整。
作为一种实施方式,可以在铌酸锂波导层211上生长一层非晶硅层221,并将非晶硅层221刻蚀成图12、图13、图14中的形状。
在其他实施例中,根据波导层21的材质,压缩层22的材质也可以选择为其他材料,比如:波导层21选为氮化硅(SixNy)、五氧化二钽(Ta2O5)、氮化铝(AlN)压缩层22可以为硅(Si),锗(Ge),砷化镓(GaAs)等,形成不同的组合,均可以满足折射率及热光系数的条件。
作为一种实施方式,加热件23可以理解为能够提高压缩层22温度的部件。加热件23可以接收外部能量,并产生热量,产生的热量可以直接或间接传递至压缩层22,从而提高压缩层22的温度,进而实现压缩层22折射率的调整。
加热件23在压缩层22的上侧面的投影覆盖压缩层22的上侧面。加热件23产生的热量可以更快地传导至压缩层22,从而更快地对光波进行调整。如图14所示,加热件23的上侧面的投影大于压缩层22的上侧面,加热件23可以完全覆盖压缩层22,从而加热件23有效的热影响区可以充分地对压缩层22进行加热,可以提高光波调整效率。在其他实施例中,加热件23在压缩层22的上侧面的投影也可以进覆盖压缩层22的上侧面的一部分。
加热件23具体可以包括但不限于氮化钛、铝等金属;加热件23长度根据实际需求可在数十到数百微米间;加热件23的宽度可以大于压缩层22的宽度。本实施例中例中,加热件23为氮化钛,长度为200μm,宽度为3μm,厚度为100nm。
作为一种具体的实施方式,可以对氮化钛制成的加热件23施加电压,从而氮化钛产生热量,该热量传递至压缩层22,可以提高压缩层22的温度,进而实现压缩层22折射率的调整。
结合图13及图14,加热件23整体可以为长方形状,加热件23设于压缩层22的上方。图13中,加热件23的长度可以与压缩层22的长度一致。图14中,加热件23的宽度可以大于压缩层22的宽度。在其他实施例中,加热件23的宽度也可以不大于压缩层22的宽度。
热光相移器200还包括包覆层24,包覆层24覆盖于波导层21及压缩层22的外围,包覆层24的折射率小于波导层21的折射率。利用折射率较小的包覆层24围住波导层21及压缩层22,可以更好地将光波限制在波导层21和压缩层22,可以避免光波逸出,减少光波损耗。
在本实施例中,包覆层24具体可以包括上包覆层241和下包覆层242,上包覆层241和下包覆层242之间形成空腔,波导层21和压缩层22设于空腔内。
热光相移器200的包覆层24包括二氧化硅、氮氧化硅中的一种,也可以为其他材质的聚合物光学包层材料。本实施例的包覆层24为PECVD二氧化硅(即等离子体增强化学的气相沉积法制成的二氧化硅),厚度约为1μm。在其他实施例中,包覆层24的材质可以为其他材料。
加热件23设于包覆层24的外侧面,加热件23通过包覆层24加热压缩层22。加热件23设置在包覆层24的外侧面,可以避免加热件23紧邻压缩层22导致的光波逸出,也便于热光相移器200的制造。加热件23离压缩层22越近,其对光波的吸收就越大,加热件23不宜直接铺设在压缩层22上,包覆层24提高了加热件23与压缩层22之间的距离,可以避免光波被加热件23吸收。
热光相移器200还包括衬底25,包覆层24设于衬底25上,加热件23设于包覆层24远离衬底25的侧面。加热件23设于包覆层24远离衬底25的侧面,便于热光相移器200的制造。在本实施例中,加热件23设于包覆层24的上方,在其他实施例中,加热件23也可以设置在包覆层24的其他区域,比如加热件23设置在包覆层24的左侧面、右侧面。
作为一种实施方式,衬底25具体可以为硅、石英等材料。本实施例中衬底25为硅。
在图13及图14中,加热件23上方设有附加层26,该附加层26可以根据实际需要设置,比如可以具体设置为二氧化硅、氮氧化硅、聚合物、空气等光学包层材料;本实施例中,附加层26为空气。
作为一种实施方式,本实施例2中热光相移器200也可以参照实施例1中的热光相移器200设置隔热槽80、将铌酸锂波导层211盘设等,不再复述。本实施例2也公开了一种马曾干涉仪,具体设置可以参照实施例1,不再复述。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (10)

1.一种热光相移器,其特征在于,所述热光相移器包括:
铌酸锂波导层,所述铌酸锂波导层用于传输光波;
包覆层,所述包覆层覆盖于所述铌酸锂波导层的外围,所述包覆层的折射率小于所述铌酸锂波导层的折射率;
加热件,所述加热件设于所述包覆层,所述加热件被设置为加热所述铌酸锂波导层,以使所述铌酸锂波导层调节所述光波的相位;
所述铌酸锂波导层盘设于所述加热件的热影响区。
2.如权利要求1所述热光相移器,其特征在于,所述铌酸锂波导层沿直线和/或曲线设置。
3.如权利要求1所述热光相移器,其特征在于,所述铌酸锂波导层包括若干顺次连通的直线波导段和曲线波导段,一个所述直线波导段和一个所述曲线波导段组成基本段,若干所述基本段往复间隔设置。
4.如权利要求3所述热光相移器,其特征在于,所述铌酸锂波导层整体呈“之”字形设置,组成“之”字的所述直线波导段之间设有所述曲线波导段。
5.如权利要求1所述热光相移器,其特征在于,所述铌酸锂波导层包括顺次连通的第一旋向段和第二旋向段,所述第一旋向段沿第一方向盘设,所述第一旋向段自光波射入端至光波射出端的曲率半径逐渐变大,所述第二旋向段自光波射入端至光波射出端的曲率半径逐渐变小,所述第二旋向段设于所述第一旋向段的间隔内。
6.如权利要求5所述热光相移器,其特征在于,所述铌酸锂波导层整体呈圆环状,所述第一旋向段和所述第二旋向段盘旋设置。
7.如权利要求5所述热光相移器,其特征在于,所述加热件整体呈圆弧状,圆弧状的所述加热件对应设于所述第一旋向段和所述第二旋向段上方。
8.如权利要求1所述热光相移器,其特征在于,所述铌酸锂波导层包括基层和凸起层,所述凸起层设于所述基层的侧面,所述加热件的热影响区覆盖所述凸起层。
9.如权利要求1所述热光相移器,其特征在于,所述加热件沿所述铌酸锂波导层延伸的方向设置,所述加热件相对于所述铌酸锂波导层的中心线对称设置。
10.一种马曾干涉仪,其特征在于,所述马曾干涉仪包括如权利要求1-9中任意一项所述的热光相移器。
CN202210801050.4A 2022-07-08 2022-07-08 热光相移器、马曾干涉仪及光计算网络 Pending CN116413930A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210801050.4A CN116413930A (zh) 2022-07-08 2022-07-08 热光相移器、马曾干涉仪及光计算网络

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210801050.4A CN116413930A (zh) 2022-07-08 2022-07-08 热光相移器、马曾干涉仪及光计算网络

Publications (1)

Publication Number Publication Date
CN116413930A true CN116413930A (zh) 2023-07-11

Family

ID=87048584

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210801050.4A Pending CN116413930A (zh) 2022-07-08 2022-07-08 热光相移器、马曾干涉仪及光计算网络

Country Status (1)

Country Link
CN (1) CN116413930A (zh)

Similar Documents

Publication Publication Date Title
US9575256B2 (en) Optical reflector based on a directional coupler and a coupled optical loop
CN115576120A (zh) 热光相移器、马曾干涉仪及光计算网络
EP1226460B1 (en) Tunable add-drop and cross-connect devices
EP3904902A1 (en) Multi-layer phased array lidar transmission chip, manufacturing method, and lidar
US9829630B2 (en) Tunable reflectors based on multi-cavity interference
US20020018507A1 (en) Channel-switched tunable laser for dwdm communications
US8610994B1 (en) Silicon photonics thermal phase shifter with reduced temperature range
CN217767101U (zh) 热光相移器、马曾干涉仪及光计算网络
JP7019950B2 (ja) レーザレーダ装置
CN116088244B (zh) 一种级联式相控阵光学扫描系统
Tsilipakos et al. Squeezing a prism into a surface: Emulating bulk optics with achromatic metasurfaces
US11262606B2 (en) Nonreciprocal optical transmission device and optical apparatus including the same
Sun et al. Broadband 1× 8 optical beamforming network based on anti-resonant microring delay lines
US20050196092A1 (en) Optical modulator and communications system
CN112147740A (zh) 一种基于集成硅波导的多工作频段、可编程微波光子滤波器
TW201143237A (en) Intracavity conversion utilizing narrow band reflective SOA
CN116544780A (zh) 一种基于氮化硅外腔的高性能可调谐半导体激光器
CN116413930A (zh) 热光相移器、马曾干涉仪及光计算网络
US11733455B2 (en) Amplitude and phase light modulator based on miniature optical resonators
CN111220964A (zh) 混合材料相控阵激光雷达发射芯片、制作方法及激光雷达
CN218037581U (zh) 热光相移器、波导接头及光计算网络
CN218037580U (zh) 热光相移器及马曾干涉仪
CN217767100U (zh) 热光相移器、马曾干涉仪及光计算网络
US4693549A (en) Optically buffered waveguide modulator
CN116413931A (zh) 热光相移器、波导接头及光计算网络

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination