CN116401932B - 一种基于激光雷达和毫米波雷达的海雾消散时间估算方法 - Google Patents
一种基于激光雷达和毫米波雷达的海雾消散时间估算方法 Download PDFInfo
- Publication number
- CN116401932B CN116401932B CN202310676599.XA CN202310676599A CN116401932B CN 116401932 B CN116401932 B CN 116401932B CN 202310676599 A CN202310676599 A CN 202310676599A CN 116401932 B CN116401932 B CN 116401932B
- Authority
- CN
- China
- Prior art keywords
- sea fog
- data
- sea
- radar
- millimeter wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000004088 simulation Methods 0.000 claims abstract description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000007788 liquid Substances 0.000 claims abstract description 18
- 238000003062 neural network model Methods 0.000 claims abstract description 18
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 14
- 238000007781 pre-processing Methods 0.000 claims abstract description 13
- 238000012549 training Methods 0.000 claims abstract description 13
- 230000005855 radiation Effects 0.000 claims abstract description 10
- 230000005540 biological transmission Effects 0.000 claims abstract description 8
- 238000002310 reflectometry Methods 0.000 claims description 16
- 230000008033 biological extinction Effects 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 11
- 241000132092 Aster Species 0.000 claims description 10
- 238000002592 echocardiography Methods 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 4
- 238000011161 development Methods 0.000 claims description 4
- 238000001556 precipitation Methods 0.000 claims description 4
- 235000007164 Oryza sativa Nutrition 0.000 claims description 3
- 230000002159 abnormal effect Effects 0.000 claims description 3
- 238000007689 inspection Methods 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 3
- 235000009566 rice Nutrition 0.000 claims description 3
- 230000000452 restraining effect Effects 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims description 2
- 240000007594 Oryza sativa Species 0.000 claims 1
- 239000003595 mist Substances 0.000 abstract description 4
- 238000001514 detection method Methods 0.000 abstract description 2
- 229940115089 sea mist Drugs 0.000 abstract description 2
- 230000008034 disappearance Effects 0.000 abstract 1
- 238000013528 artificial neural network Methods 0.000 description 6
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 241000209094 Oryza Species 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000009364 mariculture Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000031864 metaphase Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/95—Lidar systems specially adapted for specific applications for meteorological use
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/86—Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
- G01S13/865—Combination of radar systems with lidar systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/95—Radar or analogous systems specially adapted for specific applications for meteorological use
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/411—Identification of targets based on measurements of radar reflectivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/417—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section involving the use of neural networks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/4802—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/25—Design optimisation, verification or simulation using particle-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/05—Geographic models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/20—Finite element generation, e.g. wire-frame surface description, tesselation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/04—Constraint-based CAD
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/08—Fluids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Theoretical Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Geometry (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Electromagnetism (AREA)
- Computer Graphics (AREA)
- Computer Hardware Design (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Radar Systems Or Details Thereof (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
本发明涉及一种基于激光雷达和毫米波雷达的海雾消散时间估算方法,属于气象雷达探测技术领域,包括:获取海雾出现位置及周边地区的同化数据以及高空间分辨率的高程数据进行预处理,得到三维格点输入数据;将三维格点输入数据输入到RAMS模式中得到三维海雾模拟数据,再输入到雷达辐射传输模拟模型并设置参数计算出激光和毫米波雷达发反射率因子和液态水含量以及计算海雾的能见度;构建激光雷达和毫米波雷达与海雾消散时间数据集输入到循环神经网络模型中进行训练,构建海雾消散预测循环神经网络模型估算出海雾消散时间。本发明充分利用了激光雷达观测薄雾和毫米波观测浓雾的优势,使得估算方法更为稳定、可靠,估算的海雾消失时间精度更高。
Description
技术领域
本发明涉及气象雷达探测技术领域,尤其涉及一种基于激光雷达和毫米波雷达的海雾消散时间估算方法。
背景技术
海雾经常发生在海面上或近海区域,是一种海面边界层大气水汽凝结或者凝华致使大气能见度不足1 km的灾害性天气现象。持续时间较长且能见度极低的海雾常常严重威胁着海上各种船只的运行安全,此外海雾还会对海水养殖产业造成严重的影响。海雾的生消往往与湍流输送、辐射降温、雾滴沉降、风切变、雾顶夹卷等复杂物理过程有关。目前,海雾的形成机制复杂且种类较多,如平流雾、辐射雾、混合雾等。海雾在海上形成后,会向风的下游区域扩展。在新的环境影响下,海雾很快变性消散,或变成低云。在近海处,登陆的海雾虽不断消散,却又不断有新的海雾从海上补充,所以沿海地区有时海雾会持续几天。因此,海雾的消散时间受到很多因素的影响。
海雾能见度的可靠预报是精准估算海雾消散时间的关键,但对其准确的预报是气象预报领域的难点问题。目前,对海雾能见度预测的研究不多,但已有通过逐小时地面观测资料,如温、湿、压、风、能见度、降水量等结合机器学习模型对海雾能见度进行初步预测。然而,此技术多采用被动遥感仪器观测资料,且观测资料时间分辨率低,将会导致海雾能见度预测准确性不高。此外,该技术没有对海雾的类型进行区分考虑,这将不利于提高对多种类型海雾能见度的预测水平。目前对海雾消散时间的研究很少,而能见度与海雾消散时间的关系不是严格等价的。因此,现有的技术方法存在无法对海雾消散时间进行精准预测的问题。
需要说明的是,在上述背景技术部分公开的信息只用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本发明的目的在于克服现有技术的缺点,提供了一种基于激光雷达和毫米波雷达的海雾消散时间估算方法,解决了现有的技术无法对海雾消散时间进行精准预测的问题。
本发明的目的通过以下技术方案来实现:一种基于激光雷达和毫米波雷达的海雾消散时间估算方法,所述估算方法包括:
步骤一、获取海雾出现位置及周边地区的ERA5同化数据以及ASTER高空间分辨率的高程数据,并通过区域大气建模系统RAMS模式进行预处理,得到RAMS规范化的三维格点输入数据;
步骤二、将三维格点输入数据输入到区域大气建模系统RAMS模式中,对收集的数据输入模型对模拟的变量进行约束得到三维海雾模拟数据,并将三维海雾模拟数据输入到雷达辐射传输模拟模型并设置参数计算出激光雷达和毫米波雷达发反射率因子和液态水含量,以及利用米散射模型计算海雾的能见度;
步骤三、构建激光雷达和毫米波雷达与海雾消散时间数据集,将训练数据集输入到循环神经网络模型中进行训练,构建海雾消散预测循环神经网络模型,并估算出海雾消散时间。
所述步骤一具体包括以下内容:
A1、基于海雾历史数据库收集沿海地区海雾监测站所观测的海雾个例数据,根据海雾历史个例的观测时间和位置信息,提取海雾出现位置及周边地区的ERA5同化数据;
A2、收集卫星ASTER高空间分辨率的高程数据,将A1步骤获取的ERA5同化数据输入到区域大气建模系统中的RAMS模式预处理系统进行插值处理,对数据进行气候值临界检验并去除异常值,将ERA5同化数据和ASTER高程数据处理为纬度和经度空间分辨率为0.25°网格,垂直方向从地表延伸至Nkm且分辨率为200m的坐标,将数据输入RAMS模式预处理系统生成RAMS规范化的三维格点netcdf格式输入数据。
所述海雾个例数据包括:海雾观测站经度、纬度、海拔高度、能见度、天气现象、温度、露点、3小时变压、风速、风向、云量和云状数据;
所述ERA5同化数据包括ERA5同化模型的大气温度、湿度廓线、云、降水、海面温度和海面风速。
所述步骤二具体包括以下内容:
B1、将RAMS规范化的三维格点netcdf格式输入数据输入RAMS模式预处理系统中,将收集的海雾观测站经度、纬度、海拔高度、能见度、天气现象、温度、露点、3小时变压、风速、风向、云量和云状输入RAMS模式预处理系统中对模拟的变量进行约束,利用三层嵌套模式生成高分辨率的三维海雾在生成、发展和消亡不同阶段的大气、海雾宏观和微观物理特性模拟数据;
B2、将模拟的三维大气温度和湿度、海雾厚度、海雾范围、海雾相对湿度、海雾粒子半径和粒子数浓度、风速以及海面温度数据输入到雷达辐射传输模拟模型中,同时设置激光雷达和毫米波雷达的观测频率、天线增益、噪声、观测角度和扫描方式,运行雷达辐射传输模拟模型仿真计算出激光和毫米波雷达的反射率因子与液态水含量,根据B2步骤获取的海雾宏观和微观物理特性模拟数据,利用米散射模型计算海雾的550nm消光系数,并利用550nm消光系数计算海雾的能见度。
所述步骤三具体包括以下内容:
C1、将计算的激光雷达和毫米波雷达反射率因子与液态含水量数据进行垂直方向的累加,对海雾高度范围内雷达反射率因子与液态含水量进行求和,将时间分辨率设置为1分钟、设定时刻前的10分钟激光雷达和毫米波雷达累加反射率因子与液态含水量作为循环神经网络模型的输入,设定时刻至海雾能见度大于预设值为海雾消散时间作为循环神经网络模型的输出,根据B1和B2步骤模拟计算的数据构建激光雷达和毫米波雷达与海雾消散时间数据集;
C2、将C1步骤得到的训练数据集输入到循环神经网络模型中,对模型进行训练、误差分析和模型性能评估,构建海雾消散预测循环神经网络模型,将实测的激光雷达和毫米波雷达数据进行垂直方向累加,在海雾高度范围内回波求和,输入到构建的海雾消散预测循环神经网络模型中即可估算出海雾消散时间。
本发明具有以下优点:一种基于激光雷达和毫米波雷达的海雾消散时间估算方法,充分利用了激光雷达观测薄雾和毫米波观测浓雾的优势,使得估算方法更为稳定、可靠,估算的海雾消失时间精度更高。
附图说明
图1为本发明的流程示意图;
图2为本发明通过辐射传输模拟模型PAMTRA仿真计算累加雷达反射率因子和液态含水量的流程示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下结合附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的保护范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。下面结合附图对本发明做进一步的描述。
本发明具体涉及一种基于激光雷达和毫米波雷达的海雾消散时间估算方法,该方法包括:
基于海雾历史数据库收集沿海地区所观测的海雾个例,根据海雾历史个例的观测时间和位置信息,提取海雾出现位置及周边地区的ERA5(欧洲中期天气预报中心)同化数据。收集卫星ASTER高空间分辨率的高程数据,设置海雾边界层方案和海雾云微物理方案,利用RAMS模式模拟生成海雾在生成、发展和消亡不同阶段的大气、海雾宏观和微观物理特性数据。利用PAMTRA模型仿真计算550nm激光雷达和ka波段毫米波雷达反射率因子和液态含水量,利用米散射模型计算海雾的能见度。将时间分辨率为1分钟、特定时刻前的10分钟550nm激光雷达和ka波段毫米波累加反射率因子和液态含水量作为海雾消散模型神经网络模型的输入,特定时刻至海雾能见度大于1000m为海雾消散时间,海雾消散时间为模型的输出。将训练数据集输入到循环神经网络,对模型进行训练、误差分析和模型性能评估,构建海雾消散预测循环神经网络。将实测的激光雷达和毫米波雷达数据进行垂直方向累加,在海雾高度范围内回波求和,输入到构建的海雾消散预测循环神经网络,实现海雾消散时间的估算。
如图1和图2所示,具体包括以下内容:
步骤1:基于海雾历史数据库收集沿海地区海雾监测站所观测的海雾个例数据,根据海雾历史个例的观测时间和位置信息,提取海雾出现位置及周边地区的ERA5同化数据。
其中,海雾个例数据包括:海雾观测站经度、纬度、海拔高度、能见度、天气现象、温度、露点、3小时变压、风速、风向、云量和云状。
其中,ERA5同化数据主要包括ERA5同化模型的大气温度、湿度廓线、云、降水、海面温度和海面风速。
步骤2:收集ASTER高空间分辨率的高程数据,结合步骤S1获取的ERA5同化资料输入到区域大气建模系统RAMS模式预处理系统进行插值处理,对数据进行气候值临界检验并去除异常值,将ERA5和ASTER数据处理为纬度和经度空间分辨率为0.25°网格,垂直方向从地表附近延伸至20 km的坐标且分辨率为200 m,将数据输入RAMS模式预处理系统运行进一步生成RAMS规范化的三维格点netcdf格式输入数据。
步骤3:将步骤2收集的RAMS规范化的ERA5和ASTER三维格点netcdf格式输入RAMS模式,同时设置海雾边界层方案和海雾云微物理方案,并将步骤1收集的海雾观测站经度、纬度、海拔高度、能见度、天气现象、温度、露点、3小时变压、风速、风向、云量和云状输入RAMS模式预处理系统中对模拟的变量进行约束,利用三层嵌套模式生成高分辨率的三维海雾在生成、发展和消亡不同阶段的大气、海雾宏观和微观物理特性模拟数据。
其中,海雾宏观和微观物理特性数据包括:三维大气温度和湿度、海雾厚度、海雾范围、海雾相对湿度、海雾粒子半径和粒子数浓度、风速和海面温度。
步骤4:将步骤3模拟的三维大气温度和湿度、海雾厚度、海雾范围、海雾相对湿度、海雾粒子半径和粒子数浓度、风速和海面温度数据输入到雷达辐射传输模拟模型PAMTRA,同时设置激光雷达和毫米波雷达的观测频率、天线增益、噪声、观测角度和扫描方式,运行PAMTRA仿真计算出550nm激光雷达和ka波段毫米波雷达的反射率因子和液态水含量。结合步骤3获取的海雾宏观和微观物理特性数据,利用米散射模型计算海雾的550 nm消光系数,进一步利用550 nm消光系数计算海雾的能见度,当能见度大于1000米时认为海雾已消散。
其中,海雾能见度是海雾粒子550 nm消光系数的函数,具体由公式(1)计算得到:
(1)
式中EXT550是海雾粒子的550 nm消光系数, 0.01159 km-1是海雾粒子瑞利散射系数,ln表示对数运算。
步骤5:将模拟的550nm激光雷达和ka波段毫米波雷达反射率因子和液态含水量数据进行垂直方向的累加,对海雾高度范围内雷达反射率因子和液态含水量进行求和,将时间分辨率为1分钟、特定时刻前的10分钟550nm激光雷达和ka波段毫米波雷达累加反射率因子和液态含水量作为海雾消散模型神经网络模型的输入,特定时刻至海雾能见度大于1000m为海雾消散时间,海雾消散时间为模型的输出。根据步骤S3和S4模拟和计算的数据,利用上述步骤构建550nm激光雷达、ka波段毫米波雷达和海雾消散时间数据集。
步骤6:将步骤5得到的训练数据集输入到循环神经网络,对模型进行训练、误差分析和模型性能评估,构建海雾消散预测循环神经网络。将实测的550nm激光雷达和ka波段毫米波雷达数据进行垂直方向累加,在海雾高度范围内回波求和,输入到构建的海雾消散预测循环神经网络即可估算出海雾消散时间。
以上所述仅是本发明的优选实施方式,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。
Claims (4)
1.一种基于激光雷达和毫米波雷达的海雾消散时间估算方法,其特征在于:所述估算方法包括:
步骤一、获取海雾出现位置及周边地区的ERA5同化数据以及ASTER高空间分辨率的高程数据,并通过区域大气建模系统RAMS模式进行预处理,得到RAMS规范化的三维格点输入数据;
步骤二、将三维格点输入数据输入到区域大气建模系统RAMS模式中,对收集的数据输入模型对模拟的变量进行约束得到三维海雾模拟数据,并将三维海雾模拟数据输入到雷达辐射传输模拟模型并设置参数计算出激光雷达和毫米波雷达的反射率因子和液态水含量,以及利用米散射模型计算海雾的能见度;
步骤三、构建激光雷达和毫米波雷达与海雾消散时间数据集,将训练数据集输入到循环神经网络模型中进行训练,构建海雾消散预测循环神经网络模型,并估算出海雾消散时间;
所述步骤三具体包括以下内容:
C1、将计算的激光雷达和毫米波雷达反射率因子与液态含水量数据进行垂直方向的累加,对海雾高度范围内雷达反射率因子与液态含水量进行求和,将时间分辨率设置为1分钟、设定时刻前的10分钟激光雷达和毫米波雷达累加反射率因子与液态含水量作为循环神经网络模型的输入,设定时刻至海雾能见度大于预设值为海雾消散时间作为循环神经网络模型的输出,根据步骤二模拟计算的数据构建激光雷达和毫米波雷达与海雾消散时间数据集;
C2、将C1步骤得到的训练数据集输入到循环神经网络模型中,对模型进行训练、误差分析和模型性能评估,构建海雾消散预测循环神经网络模型,将实测的激光雷达和毫米波雷达数据进行垂直方向累加,在海雾高度范围内回波求和,输入到构建的海雾消散预测循环神经网络模型中即可估算出海雾消散时间。
2.根据权利要求1所述的一种基于激光雷达和毫米波雷达的海雾消散时间估算方法,其特征在于:所述步骤一具体包括以下内容:
A1、基于海雾历史数据库收集沿海地区海雾监测站所观测的海雾个例数据,根据海雾历史个例的观测时间和位置信息,提取海雾出现位置及周边地区的ERA5同化数据;
A2、收集卫星ASTER高空间分辨率的高程数据,将A1步骤获取的ERA5同化数据输入到区域大气建模系统中的RAMS模式预处理系统进行插值处理,对数据进行气候值临界检验并去除异常值,将ERA5同化数据和ASTER高程数据处理为纬度和经度空间分辨率为0.25°网格,垂直方向从地表延伸至Nkm且分辨率为200m的坐标,将数据输入RAMS模式预处理系统生成RAMS规范化的三维格点netcdf格式输入数据。
3.根据权利要求2所述的一种基于激光雷达和毫米波雷达的海雾消散时间估算方法,其特征在于:所述海雾个例数据包括:海雾观测站经度、纬度、海拔高度、能见度、天气现象、温度、露点、3小时变压、风速、风向、云量和云状数据;
所述ERA5同化数据包括ERA5同化模型的大气温度、湿度廓线、云、降水、海面温度和海面风速。
4.根据权利要求2所述的一种基于激光雷达和毫米波雷达的海雾消散时间估算方法,其特征在于:所述步骤二具体包括以下内容:
B1、将RAMS规范化的三维格点netcdf格式输入数据输入RAMS模式预处理系统中,将收集的海雾观测站经度、纬度、海拔高度、能见度、天气现象、温度、露点、3小时变压、风速、风向、云量和云状输入RAMS模式预处理系统中对模拟的变量进行约束,利用三层嵌套模式生成高分辨率的三维海雾在生成、发展和消亡不同阶段的大气、海雾宏观和微观物理特性模拟数据;
B2、将模拟的三维大气温度和湿度、海雾厚度、海雾范围、海雾相对湿度、海雾粒子半径和粒子数浓度、风速以及海面温度数据输入到雷达辐射传输模拟模型中,同时设置激光雷达和毫米波雷达的观测频率、天线增益、噪声、观测角度和扫描方式,运行雷达辐射传输模拟模型仿真计算出激光和毫米波雷达的反射率因子与液态水含量,根据B2步骤获取的海雾宏观和微观物理特性模拟数据,利用米散射模型计算海雾的550nm消光系数,并利用550nm消光系数计算海雾的能见度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310676599.XA CN116401932B (zh) | 2023-06-08 | 2023-06-08 | 一种基于激光雷达和毫米波雷达的海雾消散时间估算方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310676599.XA CN116401932B (zh) | 2023-06-08 | 2023-06-08 | 一种基于激光雷达和毫米波雷达的海雾消散时间估算方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116401932A CN116401932A (zh) | 2023-07-07 |
CN116401932B true CN116401932B (zh) | 2023-08-15 |
Family
ID=87012783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310676599.XA Active CN116401932B (zh) | 2023-06-08 | 2023-06-08 | 一种基于激光雷达和毫米波雷达的海雾消散时间估算方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116401932B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117409335B (zh) * | 2023-12-14 | 2024-02-23 | 成都远望探测技术有限公司 | 一种基于可见光图像的气象雷达降水率降尺度方法 |
CN117761698B (zh) * | 2023-12-22 | 2024-09-20 | 国家卫星气象中心(国家空间天气监测预警中心) | 一种适用于gpm dpr的三维降水检测方法及系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102122168B1 (ko) * | 2020-01-08 | 2020-06-11 | (주)유에스티21 | 해무 소산 예측 모델 학습 방법 선택 장치, 해무 소산 예측 모델 학습 방법 선택 방법, 해무 소산 예측 장치 및 해무 소산 예측 방법 |
CN113313914A (zh) * | 2021-05-28 | 2021-08-27 | 谢静芳 | 团雾监测方法、装置、系统及存储介质 |
CN114564513A (zh) * | 2022-02-23 | 2022-05-31 | 大连市气象台 | 基于神经网络的海雾预测方法、装置、设备及存储介质 |
CN115616520A (zh) * | 2022-12-20 | 2023-01-17 | 成都远望探测技术有限公司 | 一种基于激光和毫米波云雷达的卷云冰晶形状识别方法 |
CN115616597A (zh) * | 2022-09-14 | 2023-01-17 | 长春理工大学 | 一种无人船透雾成像避障装置及其使用方法 |
-
2023
- 2023-06-08 CN CN202310676599.XA patent/CN116401932B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102122168B1 (ko) * | 2020-01-08 | 2020-06-11 | (주)유에스티21 | 해무 소산 예측 모델 학습 방법 선택 장치, 해무 소산 예측 모델 학습 방법 선택 방법, 해무 소산 예측 장치 및 해무 소산 예측 방법 |
CN113313914A (zh) * | 2021-05-28 | 2021-08-27 | 谢静芳 | 团雾监测方法、装置、系统及存储介质 |
CN114564513A (zh) * | 2022-02-23 | 2022-05-31 | 大连市气象台 | 基于神经网络的海雾预测方法、装置、设备及存储介质 |
CN115616597A (zh) * | 2022-09-14 | 2023-01-17 | 长春理工大学 | 一种无人船透雾成像避障装置及其使用方法 |
CN115616520A (zh) * | 2022-12-20 | 2023-01-17 | 成都远望探测技术有限公司 | 一种基于激光和毫米波云雷达的卷云冰晶形状识别方法 |
Non-Patent Citations (1)
Title |
---|
Sea Fog Dissipation Prediction in Incheon Port and Haeundae Beach Using Machine Learning and Deep Learning;Jin Hyun Han et al.;sensors;1-22 * |
Also Published As
Publication number | Publication date |
---|---|
CN116401932A (zh) | 2023-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116401932B (zh) | 一种基于激光雷达和毫米波雷达的海雾消散时间估算方法 | |
Floors et al. | The wind profile in the coastal boundary layer: Wind lidar measurements and numerical modelling | |
Träumner et al. | Turbulent structures and coherence in the atmospheric surface layer | |
Larsén et al. | Extreme winds from the NCEP/NCAR reanalysis data | |
CN115408962B (zh) | 基于cfd模拟和测风激光雷达的风场重建方法及系统 | |
Pryor | Progress and developments of downburst prediction applications of GOES | |
Squitieri et al. | On the forecast sensitivity of MCS cold pools and related features to horizontal grid spacing in convection-allowing WRF simulations | |
Deng et al. | Evaluation of interregional transport using the MM5–SCIPUFF system | |
Demirdjian et al. | A case study of the physical processes associated with the atmospheric river initial-condition sensitivity from an adjoint model | |
Vel’tishchev et al. | Short-range forecast of heavy precipitation and strong wind using the convection-allowing WRF models | |
Liu et al. | COAMPS real-time dust storm forecasting during Operation Iraqi Freedom | |
Chan et al. | Some observations of low level wind shear at the Hong Kong International Airport in association with tropical cyclones | |
Večenaj et al. | Near-surface characteristics of the turbulence structure during a mountain-wave event | |
CN115201938A (zh) | 基于雷暴高压分析的强对流天气临近预报方法及系统 | |
Hou et al. | Evaluation of radar and automatic weather station data assimilation for a heavy rainfall event in southern China | |
Lee et al. | Multifractal analysis of rainfall-rate datasets obtained by radar and numerical model: The case study of Typhoon Bolaven (2012) | |
Kato et al. | Very short time range forecasting using CReSS-3DVAR for a meso-γ-scale, localized, extremely heavy rainfall event: Comparison with an extrapolation-based nowcast | |
Chan | Atmospheric turbulence in complex terrain: verifying numerical model results with observations by remote-sensing instruments | |
Kishore Kumar et al. | VHF/UHF radar observations of tropical mesoscale convective systems over southern India | |
Bischoff et al. | An approach and discussion of a simulation based measurement uncertainty estimation for a floating lidar system | |
Sommerfeld et al. | Improving mid-altitude mesoscale wind speed forecasts using LiDAR-based observation nudging for Airborne Wind Energy Systems | |
Chan et al. | Low-level windshear associated with atmospheric boundary layer jets-Case studies | |
Mu et al. | The optimization of maritime search and rescue simulation system based on CPS | |
De Bruijn et al. | Rainfall prediction for a flooding event in Ireland caused by the remnants of Hurricane Charley | |
Chen et al. | Predicting Convectively Induced Turbulence With Regionally Convection-Permitting Simulations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |