CN116398250A - Structure for improving low-pressure turbine blade cascade aerodynamic efficiency - Google Patents
Structure for improving low-pressure turbine blade cascade aerodynamic efficiency Download PDFInfo
- Publication number
- CN116398250A CN116398250A CN202310437147.6A CN202310437147A CN116398250A CN 116398250 A CN116398250 A CN 116398250A CN 202310437147 A CN202310437147 A CN 202310437147A CN 116398250 A CN116398250 A CN 116398250A
- Authority
- CN
- China
- Prior art keywords
- blade
- concave
- cascade
- structures
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000926 separation method Methods 0.000 claims abstract description 14
- 238000011144 upstream manufacturing Methods 0.000 claims description 15
- 230000001965 increasing effect Effects 0.000 claims description 5
- 230000002708 enhancing effect Effects 0.000 claims description 3
- 230000002401 inhibitory effect Effects 0.000 claims description 2
- 230000008859 change Effects 0.000 abstract description 3
- 239000012530 fluid Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000000994 depressogenic effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000003313 weakening effect Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
- F01D5/145—Means for influencing boundary layers or secondary circulations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/147—Construction, i.e. structural features, e.g. of weight-saving hollow blades
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Architecture (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
本发明提供了一种用于提高低压涡轮叶栅气动效率的结构,包括:端壁和叶片本体;端壁为与叶片本体相垂直的叶栅通道表面;端壁上设置有若干个第一凹陷结构,若干个第一凹陷结构位于相邻两个叶片本体之间,第一凹陷结构用于增强边界层流动与外界主流的动量交换,增强近壁面流动动能,并改变近壁面流动方向;叶片本体上设置有叶片吸力面和叶片压力面,叶片吸力面为叶片本体的外凸面,叶片压力面为叶片本体的内凹面;叶片吸力面设置有若干个第二凹陷结构,第二凹陷结构用于抑制叶片吸力面上流动分离及避免产生分离涡。本发明运用叶片吸力面上与端壁上的凹陷结构,能显著改善叶栅通道的流动,以减少低压涡轮叶栅气动损失,提高涡轮的气动效率。
The invention provides a structure for improving the aerodynamic efficiency of a low-pressure turbine blade cascade, comprising: an end wall and a blade body; the end wall is a surface of the blade cascade channel perpendicular to the blade body; several first depressions are arranged on the end wall Structure, several first concave structures are located between two adjacent blade bodies, the first concave structures are used to enhance the momentum exchange between the boundary layer flow and the external mainstream, enhance the kinetic energy of the flow near the wall, and change the direction of the flow near the wall; the blade body A blade suction surface and a blade pressure surface are arranged on the blade, the blade suction surface is the convex surface of the blade body, and the blade pressure surface is the inner concave surface of the blade body; the blade suction surface is provided with several second concave structures, and the second concave structures are used to suppress The flow separation on the blade suction surface and the avoidance of separation vortices. The invention utilizes the concave structure on the blade suction surface and the end wall to significantly improve the flow of the cascade passage, reduce the aerodynamic loss of the low-pressure turbine blade cascade, and improve the aerodynamic efficiency of the turbine.
Description
技术领域technical field
本发明涉及航空动力设备技术领域,具体地,涉及一种用于提高低压涡轮叶栅气动效率的结构。The invention relates to the technical field of aerodynamic equipment, in particular to a structure for improving the aerodynamic efficiency of a low-pressure turbine cascade.
背景技术Background technique
在航空涡扇发动机中,低压涡轮输出功用来驱动涡扇发动机的风扇,风扇驱动大流量空气流过发动机并产生主要的发动机推力。因此,低压涡轮的工作效率和气动性能对发动机性能有着重要的影响。In an aviation turbofan engine, the output of the low-pressure turbine is used to drive the turbofan engine's fan, which drives a large volume of air through the engine and generates the main engine thrust. Therefore, the working efficiency and aerodynamic performance of the low-pressure turbine have an important influence on the engine performance.
现代航空发动机的发展对低压涡轮提出了轻量化和高效率要求,因此低压涡轮的叶片数量需要减少,低压涡轮叶片上的负荷在不断增加,这带来的后果是,低压涡轮叶片间的间距增加,叶片间的流动更加复杂,叶栅端壁上的二次流损失增加,因此使得低压涡轮叶栅气动损失增加,以及低压涡轮的气动效率降低,这会降低低压涡轮的通流能力,降低了涡轮能量转换效率,增加了发动机油耗。The development of modern aero-engines puts forward lightweight and high-efficiency requirements for low-pressure turbines. Therefore, the number of blades of low-pressure turbines needs to be reduced, and the load on the blades of low-pressure turbines is increasing. As a result, the distance between blades of low-pressure turbines increases. , the flow between the blades is more complicated, and the secondary flow loss on the end wall of the cascade increases, so the aerodynamic loss of the low-pressure turbine cascade increases, and the aerodynamic efficiency of the low-pressure turbine decreases, which will reduce the flow capacity of the low-pressure turbine and reduce the Turbo energy conversion efficiency increases engine fuel consumption.
公开号为CN105507955A的专利文献公开了一种高压涡轮跨音速导向叶片叶栅设计方法,高压涡轮跨音速导向叶片叶栅设计方法包括如下步骤:增强叶栅通道进口至叶栅通道几何喉部前区域的载荷;将叶栅划分为前部区域、喉部区域以及扩散区域;提高前部区域气流的加速性,并增加扩散区域长度;减弱喉部区域中超音速气流的膨胀加速;减低扩散区域气流的加速性;在扩散区域中靠近通道出口位置处构造压缩波进行减速;根据叶栅11参数造型方法完成叶栅设计。但是该专利文献不适用于低压涡轮,且技术方案与本申请不同。The patent document with the publication number CN105507955A discloses a design method of a high-pressure turbine transonic guide vane cascade. The design method of a high-pressure turbine transonic guide vane cascade includes the following steps: Enhancing the inlet of the cascade channel to the area in front of the geometric throat of the cascade channel The load of the cascade is divided into the front area, the throat area and the diffusion area; the acceleration of the airflow in the front area is improved, and the length of the diffusion area is increased; the expansion acceleration of the supersonic air flow in the throat area is weakened; the airflow in the diffusion area is reduced Acceleration; in the diffusion area, a compression wave is constructed near the exit of the channel for deceleration; the design of the cascade is completed according to the cascade 11 parameter modeling method. But this patent document is not applicable to the low-pressure turbine, and the technical solution is different from the present application.
发明内容Contents of the invention
针对现有技术中的缺陷,本发明的目的是提供一种用于提高低压涡轮叶栅气动效率的结构。In view of the defects in the prior art, the purpose of the present invention is to provide a structure for improving the aerodynamic efficiency of the low-pressure turbine blade cascade.
根据本发明提供的一种用于提高低压涡轮叶栅气动效率的结构,包括:端壁和叶片本体;所述端壁为与所述叶片本体相垂直的叶栅通道表面;A structure for improving the aerodynamic efficiency of a low-pressure turbine blade cascade according to the present invention includes: an end wall and a blade body; the end wall is a surface of a cascade passage perpendicular to the blade body;
所述端壁上设置有若干个第一凹陷结构,若干个所述第一凹陷结构位于相邻两个所述叶片本体之间,所述第一凹陷结构用于增强边界层流动与外界主流的动量交换;The end wall is provided with several first recessed structures, and the several first recessed structures are located between two adjacent blade bodies, and the first recessed structures are used to enhance the connection between the boundary layer flow and the external mainstream. momentum exchange;
所述叶片本体上设置有叶片吸力面和叶片压力面,所述叶片吸力面为所述叶片本体的外凸面,所述叶片压力面为所述叶片本体的内凹面;The blade body is provided with a blade suction surface and a blade pressure surface, the blade suction surface is an outer convex surface of the blade body, and the blade pressure surface is an inner concave surface of the blade body;
所述叶片吸力面设置有若干个第二凹陷结构,所述第二凹陷结构用于抑制叶片吸力面上流动分离及避免产生分离涡。The suction surface of the blade is provided with several second concave structures, and the second concave structures are used to suppress flow separation on the suction surface of the blade and avoid generation of separation vortices.
优选的,若干个所述第一凹陷结构沿排列线设置,所述排列线与所述叶片本体的中弧线平行。Preferably, several of the first concave structures are arranged along an arrangement line, and the arrangement line is parallel to the middle arc of the blade body.
优选的,所述第二凹陷结构设置为多个,第二凹陷的深度为0~6.0mm;Preferably, there are multiple second depression structures, and the depth of the second depression is 0-6.0mm;
每两个所述第二凹陷结构为一对形成V字形结构,所述叶片吸力面上形成有若干个所述V字形结构。Every pair of the second concave structures forms a V-shaped structure, and several V-shaped structures are formed on the suction surface of the blade.
优选的,所述第二凹陷结构靠近所述叶片本体最凸位置处设置,并位于最凸位置处的下游0.1~10倍于凹陷直径d的距离表面上。Preferably, the second concave structure is arranged close to the most convex position of the blade body, and is located downstream of the most convex position on the surface at a distance of 0.1 to 10 times the diameter d of the depression.
优选的,所述第一凹陷结构的凹陷直径d与所述叶片本体的叶片节距P之比为0.01~0.2;Preferably, the ratio of the concave diameter d of the first concave structure to the blade pitch P of the blade body is 0.01-0.2;
所述第一凹陷结构的凹陷深度h与所述第一凹陷结构的凹陷直径d之比为0.05~0.3。The ratio of the recess depth h of the first recess structure to the recess diameter d of the first recess structure is 0.05˜0.3.
优选的,所述第一凹陷结构的轴向布置间距sx与所述第一凹陷结构的凹陷直径d之比为1.1~1.5;Preferably, the ratio of the axial arrangement spacing s x of the first concave structure to the concave diameter d of the first concave structure is 1.1-1.5;
从上游起,所述排列线上第一个所述第一凹陷结构的中心点与叶栅进口截面的距离为1.0~1.5d;From the upstream, the distance between the central point of the first one of the first concave structures on the arrangement line and the inlet section of the cascade is 1.0-1.5d;
所述排列线上首尾的两个所述第一凹陷结构的中心点之间的轴向距离为L=5~10d,并且尾部的所述第一凹陷结构与所述叶栅出口截面的轴向距离为0.25~0.5倍的弦长Cx。The axial distance between the center points of the first and last two first concave structures on the arrangement line is L=5-10d, and the axial distance between the first concave structure at the tail and the outlet section of the cascade is The distance is 0.25 to 0.5 times the chord length Cx.
优选的,所述第一凹陷结构排列布置在叶栅通道内周向0.5P~0.8P的位置,P为所述叶片本体的叶片节距,所述第一凹陷结构排列距离相邻的叶片压力面更近。Preferably, the first concave structures are arranged at a position of 0.5P to 0.8P in the circumferential direction of the cascade channel, P is the blade pitch of the blade body, and the distance between the first concave structures and the adjacent blade pressure face closer.
优选的,从上游起,所述第一个所述第一凹陷结构位于叶栅入口截面的上游1.0d~1.5d的位置,最下游的所述第一凹陷结构位于叶栅出口截面的上游0.2~0.5倍弦长cx的位置;Preferably, from upstream, the first one of the first recessed structures is located 1.0d to 1.5d upstream of the inlet section of the cascade, and the most downstream first recessed structure is located 0.2d upstream of the outlet section of the cascade. ~0.5 times the position of the chord length c x ;
d为所述第一凹陷结构的凹陷直径,d取值为1.0-50mm;cx为所述叶片本体在叶栅轴向上的长度,cx长度5~20倍于凹陷直径d。d is the concave diameter of the first concave structure, and the value of d is 1.0-50mm; c x is the length of the blade body in the cascade axial direction, and the length of c x is 5-20 times the concave diameter d.
与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、本发明通过在低压涡轮叶片吸力面上布置第二凹陷结构和在涡轮叶栅端壁上布置第一凹陷结构,改变了近壁流体的运动方向,实现了低压涡轮叶栅气动效率提升,通过在低压涡轮叶片吸力面上布置第二凹陷结构,第二凹陷结构的内部弧面与较低速的近壁流体发生相互作用,在第二凹陷结构下游诱导形成了近壁流向涡系,增大了近壁流动与主流的动量交换,同时,近壁流向涡系诱发的流动剪切促使近壁流动发生转捩,增强了近壁流体克服逆压梯度的能力,最终使叶片吸力面上发生的层流分离现象减弱或消失,从而减少层流分离回流区与主流的剪切,缩小叶栅的流动尾迹,从而降低叶型两者带来的叶型损失;1. In the present invention, by arranging the second concave structure on the suction surface of the low-pressure turbine blade and the first concave structure on the end wall of the turbine blade cascade, the movement direction of the fluid near the wall is changed, and the aerodynamic efficiency of the low-pressure turbine blade cascade is improved. By arranging the second concave structure on the suction surface of the low-pressure turbine blade, the inner arc surface of the second concave structure interacts with the relatively low-speed near-wall fluid, and a near-wall flow direction vortex system is induced downstream of the second concave structure, increasing The momentum exchange between the near-wall flow and the mainstream flow is increased. At the same time, the flow shear induced by the near-wall flow to the vortex system promotes the transition of the near-wall flow, which enhances the ability of the near-wall fluid to overcome the reverse pressure gradient, and finally causes the flow on the blade suction surface The laminar flow separation phenomenon weakens or disappears, thereby reducing the shear of the laminar flow separation backflow area and the main flow, reducing the flow wake of the cascade, thereby reducing the loss of the blade shape caused by both blade shapes;
2、本发明通过低压涡轮叶栅端壁表面上的第一凹陷结构与端壁表面上的二次涡流相互作用,产生涡流,增强近壁流体运动能量,并改变了涡流的运动方向,抑制了涡流向相邻的叶片吸力侧积聚;减弱了叶片前缘根部的马蹄涡强度,使其之后发展及诱导形成的通道涡、角涡、尾缘脱落涡等叶栅端区二次流涡系强度也减弱,从而降低其带来的二次流损失;2. The present invention interacts with the secondary vortex on the surface of the end wall of the low-pressure turbine blade cascade to generate a vortex, enhance the movement energy of the fluid near the wall, and change the direction of movement of the vortex, suppressing The vortex accumulates toward the suction side of the adjacent blade; weakens the strength of the horseshoe vortex at the root of the leading edge of the blade, making it develop and induce the secondary vortex system at the end of the cascade, such as the channel vortex, corner vortex, and trailing edge shedding vortex. is also weakened, thereby reducing the secondary flow loss caused by it;
3、本发明通过低压涡轮叶栅端壁表面上的第一凹陷排列线平行于叶片中弧线的设计,抑制或减弱了端壁横向流动,抑制了马蹄涡在叶栅通道中对端壁上二次流发展的作用,同样使得叶栅端区二次流涡系强度也减弱,从而降低其带来的二次流损失;3. The present invention suppresses or weakens the lateral flow of the end wall through the design that the first concave arrangement line on the surface of the end wall of the low-pressure turbine cascade is parallel to the arc of the blade, and suppresses the horseshoe vortex on the opposite end wall in the cascade passage. The effect of the development of the secondary flow also weakens the strength of the secondary flow vortex system in the end area of the blade cascade, thereby reducing the loss of the secondary flow caused by it;
4、本发明解决了低压涡轮叶栅端壁二次流引起的气动效率降低问题,同时本发明使用的凹陷排列加工工艺简单,在较宽的来流雷诺数条件下均有效,特别是对超高负荷低压涡轮叶栅的气动效率具有明显改善。4. The present invention solves the problem of the reduction of aerodynamic efficiency caused by the secondary flow on the end wall of the low-pressure turbine blade cascade. At the same time, the concave arrangement used in the present invention has a simple processing technology and is effective under the condition of a wide incoming flow Reynolds number, especially for super The aerodynamic efficiency of the high-load low-pressure turbine cascade has been significantly improved.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other characteristics, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1为本发明的用于提高低压涡轮叶栅气动效率的结构的尺寸结构示意图;Fig. 1 is the dimensional structure schematic diagram of the structure for improving the aerodynamic efficiency of low-pressure turbine cascade of the present invention;
图2为本发明的用于提高低压涡轮叶栅气动效率的结构的流动示意图一;Fig. 2 is a flow schematic diagram 1 of a structure for improving the aerodynamic efficiency of a low-pressure turbine cascade according to the present invention;
图3为本发明的用于提高低压涡轮叶栅气动效率的结构的流动示意图二;Fig. 3 is the flow diagram II of the structure for improving the aerodynamic efficiency of the low-pressure turbine cascade of the present invention;
图4为突出显示本发明的用于提高低压涡轮叶栅气动效率的结构的第二凹陷结构的示意图;Fig. 4 is a schematic diagram highlighting the second concave structure of the structure for improving the aerodynamic efficiency of the low-pressure turbine cascade of the present invention;
图5为突出显示本发明的用于提高低压涡轮叶栅气动效率的结构的第一凹陷结构的示意图。FIG. 5 is a schematic diagram highlighting the first concave structure of the structure for improving the aerodynamic efficiency of the low-pressure turbine cascade of the present invention.
图中示出:The figure shows:
叶片本体1 第一凹陷结构201
叶片吸力面101 排列线3
第二凹陷结构1011 中弧线4Arc
叶片压力面102 叶栅入口截面5
端壁2 叶栅出口截面6
具体实施方式Detailed ways
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。The present invention will be described in detail below in conjunction with specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that those skilled in the art can make several changes and improvements without departing from the concept of the present invention. These all belong to the protection scope of the present invention.
实施例1:Example 1:
如图1~4所示,本实施例提供一种用于提高低压涡轮叶栅气动效率的结构,包括:端壁2和叶片本体1,端壁2为与叶片本体1相垂直的叶栅通道表面,端壁2上设置有若干个第一凹陷结构201,若干个第一凹陷结构201位于相邻两个叶片本体1之间,第一凹陷结构201用于增强边界层流动与外界主流的动量交换以及改变近壁流动方向,叶片本体1上设置有叶片吸力面101和叶片压力面102,叶片吸力面101为叶片本体1的外凸面,叶片压力面102为叶片本体1的内凹面,叶片吸力面101设置有若干个第二凹陷结构1011,第二凹陷结构1011用于抑制叶片吸力面101上流动分离及避免产生分离涡。As shown in Figures 1 to 4, this embodiment provides a structure for improving the aerodynamic efficiency of a low-pressure turbine cascade, including: an
叶片本体1的前缘与叶栅入口截面5相切,叶片本体1的后缘与叶栅出口截面6相切。The leading edge of the
第二凹陷结构1011设置为多个,第二凹陷的深度为0~6.0mm,每两个第二凹陷结构1011为一对形成V字形结构,叶片吸力面101上形成有若干个V字形结构。第二凹陷结构1011靠近叶片本体1最凸位置处设置,并位于最凸位置处的下游0.1~10倍于凹陷直径d的距离表面上。There are multiple second recessed
若干个第一凹陷结构201沿排列线3设置,排列线3与叶片本体1的中弧线4平行。Several first
第一凹陷结构201的轴向布置间距sx与第一凹陷结构201的凹陷直径d之比为1.1~1.5,从上游起,排列线3上第一个第一凹陷结构201的中心点与叶栅进口截面的距离为1.0~1.5d,排列线3上首尾的两个第一凹陷结构201的中心点之间的轴向距离为L=5~10d,并且尾部的第一凹陷结构201与叶栅出口截面6的轴向距离为0.25~0.5倍的弦长Cx。The ratio of the axial arrangement distance s x of the first
第一凹陷结构201的凹陷直径d与叶片本体1的叶片节距P之比为0.01~0.1,第一凹陷结构201的凹陷深度h与第一凹陷结构201的凹陷直径d之比为0.05~0.3。The ratio of the concave diameter d of the first
从上游起,第一个第一凹陷结构201位于叶栅入口截面5的上游1.0d~1.5d的位置,最下游的第一凹陷结构201位于叶栅出口截面6的上游0.2~0.5倍弦长cx的位置,d为第一凹陷结构201的凹陷直径,d取值为1.0~50mm,cx为叶片本体1在叶栅轴向上的长度,cx长度5~20倍于凹陷直径d。From the upstream, the first first
第一凹陷结构201排列布置在叶栅通道内周向0.5P~0.8P的位置,P为叶片本体1的叶片节距,第一凹陷结构201排列距离相邻的叶片压力面更近。The first
本实施例能够减少低压涡轮叶栅端区二次流损失,提高低压涡轮叶栅气动效率,能够抑制低压涡轮叶栅端区二次流涡系,或减弱二次流涡系强度,减少叶栅端区二次流损失,提高低压涡轮叶栅的气动效率。This embodiment can reduce the secondary flow loss in the end area of the low-pressure turbine cascade, improve the aerodynamic efficiency of the low-pressure turbine cascade, suppress the secondary flow vortex system in the end area of the low-pressure turbine cascade, or weaken the intensity of the secondary flow vortex system, and reduce the Secondary flow loss in the end zone, improving the aerodynamic efficiency of the low pressure turbine cascade.
本实施例的结构中,第一凹陷结构201排列设置在端壁2上,第一凹陷结构201的排列曲线与叶片中弧线4平行,如图2和图3所示,当气流A流过端壁2并冲击叶片本体1前缘根部时,由于边界层内流速较低,边界层流动将在叶片前缘根部形成多层马蹄涡结构,马蹄涡将发展成为斜向流动的通道涡B,并诱导相邻叶片吸力面101根部的角涡和该叶片尾缘脱落涡D,这些涡结构称为叶栅端区二次流涡系。In the structure of this embodiment, the first
本实施例的结构中,端壁2的壁面上的第一凹陷结构201能够增强边界层流动与外界主流的动量交换,壁面附近边界层流动的动能得以增强。当来自叶片压力面102的二次流掠过端壁2上的第一凹陷结构201,将冲入第一凹陷结构201内部并与第一凹陷结构201的弯曲壁面产生相互作用,第一凹陷结构201改变近壁涡流的流动方向,使近壁涡流流入主流并获得向下游流动的能量,这减少了该二次流与相邻叶片吸力面101附近低能流动的积聚和侵扰,因此减弱了端壁2横向流动,抑制或减弱马蹄涡结构和涡强度,从而减弱叶栅端区二次流涡系及其带来的二次流损失。In the structure of this embodiment, the first
本实施例的结构中,涡轮叶片吸力面101上布置有第二凹陷结构1011,第二凹陷结构1011成对地成V字形设置在叶片吸力面101上,第二凹陷结构1011与气流之间具有倾角β,通常,第二凹陷结构1011布置在叶片吸力面101的最凸位置的下游附近。第二凹陷形状为长圆形或球形。In the structure of this embodiment, a second
本实施例的结构中,叶片吸力面101上的第二凹陷结构1011起到抑制叶片吸力面101上流动分离及避免产生分离涡的作用,并减少因为该分离涡产生的气动损失,也起到抑制叶片吸力面101上分离涡对通道涡B的卷吸作用,降低气动损失,显著改善了叶栅通道的流动,提高了涡轮的气动效率。In the structure of this embodiment, the second
在超高负荷低压涡轮叶栅上应用时优选的凹陷结的具体几何参数:Specific geometrical parameters of the preferred dimpled junction for applications on ultra-highly loaded low-pressure turbine cascades:
a、凹陷结构的相对直径d/P(凹陷结构直径/叶片节距)=0.077,0.01~0.1;a. The relative diameter of the concave structure d/P (diameter of the concave structure/blade pitch) = 0.077, 0.01 ~ 0.1;
b、凹陷结构的深径比h/d(凹陷结构深度/凹陷结构直径)=0.15,0.1~0.2;b. Depth-to-diameter ratio of the depressed structure h/d (depth of depressed structure/diameter of depressed structure) = 0.15, 0.1 to 0.2;
c、凹陷结构在轴向的相对布置间距sx/d(凹陷结构轴向布置间距/凹陷结构直径)=1.2;c. The relative arrangement distance of the recessed structure in the axial direction s x /d (the axial arrangement distance of the recessed structure/the diameter of the recessed structure) = 1.2;
d、凹陷结构在周向的相对布置间距sθ/P(凹陷结构周向布置间距/叶片节距)=0.1;d. The relative arrangement spacing of the concave structure in the circumferential direction s θ /P (circumferential arrangement spacing of the concave structure/blade pitch) = 0.1;
e、针对第一凹陷结构201,以上游第一个凹陷的中心点计算,第一个第一凹陷结构201自叶栅进口截面前出1.2d;e. For the first recessed
f、针对第一凹陷结构201,以首尾凹陷的中心点距离计算,第一凹陷结构201排列轴向长度为7.2d;f. For the first
g、第一凹陷结构201排列布置在叶栅通道内周向0.6P的位置布置,更靠近压力侧;g. The first
h、第一凹陷结构201的排列曲线与叶片中弧线4平行。h. The arrangement curve of the first
实施例2:Example 2:
本领域技术人员可以将本实施例理解为实施例1的一种具体说明。Those skilled in the art may understand this embodiment as a specific description of
如图1所示,在叶片吸力面101上布置一排第二凹陷结构1011,在端壁2上布置一排第一凹陷结构201。第一个第二凹陷结构1011距叶栅入口截面5的叶栅轴向距离为xb。针对第一凹陷结构201,单个第一凹陷结构201的直径为d,相邻第一凹陷结构201在叶栅轴向上的间距为sx。一排第一凹陷结构201在叶栅轴向上的总长度为L=7.2d,从叶栅入口截面5向上游前出长度为l。As shown in FIG. 1 , a row of second recessed
第一凹陷结构201沿排列线3布置,排列线3与叶片中弧线4平行,排列线3与叶片中弧线4在叶栅周向的距离为p。叶片本体1在叶栅周向上的布置间距为P,叶片本体1在叶栅轴向上的长度为cx。叶片本体1与叶栅入口截面5相切于叶片前缘,叶片本体1于叶栅出口截面6相切于叶片后缘。The first
端壁2的壁面上排列布置的第一凹陷结构201诱导主流与之相互作用,并产生近壁螺旋形涡流,促进近壁边界层低速流体与主流高速流体的动量交换,增强近壁流体动能,以抵抗叶栅通道内的横向压力梯度,减少近壁流体向吸力侧的偏转,从而减少流动向叶片吸力侧马蹄涡汇入,减弱吸力侧马蹄涡的强度。The first
第一凹陷结构201的排列线3与叶片中弧线4平行,其形成的近壁螺旋形涡流阻挡了压力侧向吸力侧的横流流动,促使这部分近壁流体沿叶片中弧线4方向流动,改善近壁区域的流动组织结构。The
第一凹陷结构201排列的展向位置恰好拦截到压力侧马蹄涡薄弱处,压力侧马蹄涡内旋流流动将冲入第一凹陷结构201并与第一凹陷结构201壁面相互作用后产生涡流,使压力侧马蹄涡的动能发生扩散,减弱压力侧马蹄涡的强度。The spanwise position of the arrangement of the first
上述对吸力侧马蹄涡、压力侧马蹄涡、近壁区域流动组织结构的作用将最终减弱通道涡等二次流涡系的强度,减少其产生不必要的流动剪切,最终降低二次流损失,改善叶栅通道内的流速、流向分布及通流性能,提高低压涡轮效率。The above effects on the suction-side horseshoe vortex, the pressure-side horseshoe vortex, and the flow organization structure in the near-wall region will eventually weaken the strength of the channel vortex and other secondary flow vortex systems, reduce the unnecessary flow shear, and finally reduce the secondary flow loss , improve the flow velocity, flow direction distribution and flow performance in the cascade channel, and improve the efficiency of the low-pressure turbine.
排列布置的第一凹陷结构201从叶栅入口截面5前出,在前方边界层较薄处开始对边界层流动施加影响,形成近壁螺旋形涡流的能力更强,能够更大限度地阻挡端壁2上的横流流动,抑制端壁2近壁区域流体向吸力侧冲撞的趋势。The arranged first
第一凹陷结构201为下凹结构,凹陷深度与近壁边界层厚度接近,其不侵入高速主流区域,仅对近壁边界层内流体施加影响,不影响主流的流速,不产生额外的形状阻力,较传统上凸结构具有显著优势。The first
第一凹陷结构201的长度,第1个第一凹陷结构201位于叶栅入口截面5的上游1.0d~1.5d的位置,最下游的第一凹陷结构201位于叶栅出口截面6的上游0.2~0.5倍弦长cx的位置。端壁2上第一凹陷结构201的排列线3平行于叶栅中弧线4,第一凹陷结构201的排列越过排列线3的最凸处。由于在叶栅通道下游,由于近壁边界层发展加厚,通道涡已靠近吸力侧且逐渐抬高脱离端壁2,在叶栅通道下游端壁2的第一凹陷结构201将无法对厚度较大的边界层及远离端壁2的二次流涡系施加影响,而且会因为自身诱发的湍流而增大流动损失。The length of the first recessed
第一凹陷结构201的壁面形状是球形或圆锥形,第一凹陷结构201的形状也可以是长圆形,如第一凹陷结构201为长圆形形状,并且该长圆形凹陷的指向顺着排列线3的方向。The shape of the wall surface of the first
第一凹陷结构201排列布置在叶栅通道的端壁2上,第一凹陷结构201的排列线3与中弧线4的距离为0.5P~0.8P,第一凹陷结构201的排列线3更靠近相邻叶片的压力侧,如图1所示,第一凹陷结构201的排列线3更靠近上方叶片本体1的叶片压力面102。The first recessed
本发明运用叶片吸力面上与端壁上的凹陷结构,能显著改善叶栅通道的流动,提高涡轮的气动效率。The invention utilizes the concave structure on the blade suction surface and the end wall, which can significantly improve the flow of the cascade channel and improve the aerodynamic efficiency of the turbine.
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。In the description of this application, it should be understood that the terms "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top", The orientation or positional relationship indicated by "bottom", "inner", "outer", etc. is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the application and simplifying the description, rather than indicating or implying the referred device Or elements must have a certain orientation, be constructed and operate in a certain orientation, and thus should not be construed as limiting the application.
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the specific embodiments described above, and those skilled in the art may make various changes or modifications within the scope of the claims, which do not affect the essence of the present invention. In the case of no conflict, the embodiments of the present application and the features in the embodiments can be combined with each other arbitrarily.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310437147.6A CN116398250A (en) | 2023-04-21 | 2023-04-21 | Structure for improving low-pressure turbine blade cascade aerodynamic efficiency |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310437147.6A CN116398250A (en) | 2023-04-21 | 2023-04-21 | Structure for improving low-pressure turbine blade cascade aerodynamic efficiency |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116398250A true CN116398250A (en) | 2023-07-07 |
Family
ID=87014090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310437147.6A Pending CN116398250A (en) | 2023-04-21 | 2023-04-21 | Structure for improving low-pressure turbine blade cascade aerodynamic efficiency |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116398250A (en) |
-
2023
- 2023-04-21 CN CN202310437147.6A patent/CN116398250A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102483072B (en) | Compressor blade for an axial compressor | |
CN105650032B (en) | The diffuser of centrifugal compressor | |
US6776582B2 (en) | Turbine blade and turbine | |
US10697427B2 (en) | Vortex generator and wind turbine blade assembly | |
CN113153446B (en) | Turbine guider and centripetal turbine with high expansion ratio | |
CN107050542B (en) | A miniature centrifugal blood pump for preventing blood cell damage and its circulating blood supply method | |
CN108661947A (en) | Using the axial flow compressor blade of Condar jet and using its axial flow compressor | |
Chen et al. | Location effect of boundary layer suction on compressor hub-corner separation | |
JP3988723B2 (en) | Turbine blade | |
CN113153815B (en) | Supersonic adsorption type compressor blade based on multiple holes | |
Chen et al. | Experimental study of the impact of hole-type suction on the flow characteristics in a high-load compressor cascade with a clearance | |
CN113320683B (en) | Anti-cavitation blades with jet and wall rolling structures | |
CN106368741A (en) | Blade with small wing rib blade tip and turbine utilizing blade | |
CN116398250A (en) | Structure for improving low-pressure turbine blade cascade aerodynamic efficiency | |
WO2020220498A1 (en) | Low-pressure turbine blade having wavy suction surface | |
CN113847277B (en) | Supersonic porous adsorption compressor blade with corrugated grooves on the suction surface | |
Chen et al. | Effects of boundary layer suction on the performance of compressor cascades | |
CN117902051A (en) | Air inlet using embedded microchannel array and its design method | |
CN113446261B (en) | Tandem stator blades of a supersonic adsorption compressor | |
JP2002349201A (en) | Turbin rotor blade | |
CN115388038A (en) | Diffuser | |
CN114109913A (en) | Compressor stator blade cascade with small oblique ribs at end wall of leading edge of blade root | |
US11608745B2 (en) | Structure for improving aerodynamic efficiency of low-pressure turbine blade and working method thereof | |
CN112228403B (en) | Compressor stator blade cascade with equal-depth grooves formed in end wall | |
CN114934914B (en) | Symmetrical blade and end surface bionic structure thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |