CN116395732A - A method and device for preparing anhydrous calcium chloride by self-catalytic coupling dehydration of carbon-containing mixed gas and calcium chloride hydrate - Google Patents
A method and device for preparing anhydrous calcium chloride by self-catalytic coupling dehydration of carbon-containing mixed gas and calcium chloride hydrate Download PDFInfo
- Publication number
- CN116395732A CN116395732A CN202310376819.7A CN202310376819A CN116395732A CN 116395732 A CN116395732 A CN 116395732A CN 202310376819 A CN202310376819 A CN 202310376819A CN 116395732 A CN116395732 A CN 116395732A
- Authority
- CN
- China
- Prior art keywords
- gas
- calcium chloride
- carbon
- mixed gas
- containing mixed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 title claims abstract description 45
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 43
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000018044 dehydration Effects 0.000 title claims abstract description 27
- 238000006297 dehydration reaction Methods 0.000 title claims abstract description 27
- WMFHUUKYIUOHRA-UHFFFAOYSA-N (3-phenoxyphenyl)methanamine;hydrochloride Chemical compound Cl.NCC1=CC=CC(OC=2C=CC=CC=2)=C1 WMFHUUKYIUOHRA-UHFFFAOYSA-N 0.000 title claims abstract description 22
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 title claims abstract description 14
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 12
- 230000008878 coupling Effects 0.000 title claims abstract description 11
- 238000010168 coupling process Methods 0.000 title claims abstract description 11
- 239000007789 gas Substances 0.000 claims abstract description 109
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 29
- 238000006243 chemical reaction Methods 0.000 claims abstract description 26
- 239000001257 hydrogen Substances 0.000 claims abstract description 25
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 25
- 230000035484 reaction time Effects 0.000 claims abstract description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 63
- 238000004519 manufacturing process Methods 0.000 claims description 20
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 18
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 16
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 12
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 238000002407 reforming Methods 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 6
- 238000005457 optimization Methods 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000004321 preservation Methods 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 3
- 238000009834 vaporization Methods 0.000 claims description 2
- 230000008016 vaporization Effects 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 claims 2
- 239000010959 steel Substances 0.000 claims 2
- 238000001816 cooling Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 7
- 239000000843 powder Substances 0.000 abstract description 6
- 238000005844 autocatalytic reaction Methods 0.000 abstract description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052791 calcium Inorganic materials 0.000 abstract description 3
- 239000011575 calcium Substances 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000005660 chlorination reaction Methods 0.000 abstract description 2
- 230000036571 hydration Effects 0.000 abstract description 2
- 238000006703 hydration reaction Methods 0.000 abstract description 2
- 229910017053 inorganic salt Inorganic materials 0.000 abstract description 2
- LLSDKQJKOVVTOJ-UHFFFAOYSA-L calcium chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Ca+2] LLSDKQJKOVVTOJ-UHFFFAOYSA-L 0.000 description 12
- 229940052299 calcium chloride dihydrate Drugs 0.000 description 12
- 239000000047 product Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 229960002713 calcium chloride Drugs 0.000 description 6
- 239000001110 calcium chloride Substances 0.000 description 6
- 229910001628 calcium chloride Inorganic materials 0.000 description 6
- 239000010453 quartz Substances 0.000 description 5
- 239000012495 reaction gas Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000006392 deoxygenation reaction Methods 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 229960005069 calcium Drugs 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 239000012452 mother liquor Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000012024 dehydrating agents Substances 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000007908 dry granulation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 238000005649 metathesis reaction Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009461 vacuum packaging Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/20—Halides
- C01F11/24—Chlorides
- C01F11/30—Concentrating; Dehydrating; Preventing the adsorption of moisture or caking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/2415—Tubular reactors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/56—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
- C01B3/58—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明提供了一种利用含碳混合气与水合氯化钙自催化耦合脱水制备无水氯化钙方法及装置,具体步骤如下:(1)将水合氯化钙研磨成粉末状,置于石英管中,(2)在50‑250oC下利用含碳混合气与水合氯化钙接触进行反应,控制气体流量为1mL/min‑100mL/min,反应时间为0.5‑20h,(3)在反应气氛中将样品降至室温取出,并用真空包装袋收集、密封保存,得到无水氯化钙产物,(4)将反应后的气氛收集得到氢气。本发明提出的利用含碳混合气与水合氯化钙自催化耦合脱水制备无水氯化钙的技术,建立以耦合自催化为基本原理的无机盐脱水自催化作用新理论,形成对水合氯化钙脱水过程的新认知。The invention provides a method and device for preparing anhydrous calcium chloride by self-catalytic coupling dehydration of carbon-containing mixed gas and calcium chloride hydrate. The specific steps are as follows: (1) Grinding calcium chloride hydrate into powder and placing In the tube, (2) use carbon-containing mixed gas to contact calcium chloride hydrate at 50-250oC to react, control the gas flow to 1mL/min-100mL/min, and the reaction time is 0.5-20h, (3) in the reaction atmosphere In the process, the sample is lowered to room temperature and taken out, collected in a vacuum bag, sealed and stored to obtain anhydrous calcium chloride product, and (4) collecting the atmosphere after the reaction to obtain hydrogen. The technology proposed by the present invention utilizes carbon-containing mixed gas and calcium chloride hydrate autocatalytic coupling dehydration to prepare anhydrous calcium chloride, and establishes a new theory of inorganic salt dehydration autocatalysis based on the principle of coupled autocatalysis, forming a hydration chlorination New insights into the process of calcium dehydration.
Description
技术领域technical field
本发明涉及一种利用含碳混合气与水合氯化钙自催化耦合脱水制备无水氯化钙方法及装置。The invention relates to a method and a device for preparing anhydrous calcium chloride by self-catalyzing coupled dehydration of carbon-containing mixed gas and calcium chloride hydrate.
背景技术Background technique
无水氯化钙可以广泛应用于食品制造、建筑材料、医学、生物学等领域,可用做干燥剂、脱水剂、防冻剂,也是生产钙盐的原料,是生产生活中十分重要的一种化学试剂。目前,国内工业上最常见的制备无水氯化钙的工艺方法主要包括(1)二水氯化钙(脱水法)法;(2)喷雾干燥脱水法;(3)母液法;(4)复分解法:(5)精制法。二水氯化钙(脱水法)法、喷雾干燥法为高温加热干燥得无水氯化钙,但能耗较高,导致工业生产时的经济效益不大,例如在中国专利CN210058176中设计了一种实用于无水氯化钙流化床干燥造粒的雾化喷头装置,温度达到250℃以上才可以进行造粒生产;在中国专利CN104495903中,母液法生产氯化钙实现了废物回收利用,但是由于废液的氯化钙含量低,蒸发需要消耗大量的蒸汽,并且摊晒占用大量的土地;复分解法多用于副产盐酸的地区,例如在中国专利CN104773750中利用工业废盐酸生产无水氯化钙,但成本较高,产品竞争力低;精制法生产成本较低、产品质量好,但资源有限,不适用于工业化生产。因此,变革现有的高能耗制备无水氯化钙的过程,通过优化生产条件实现低成本、高效率地大量生产无水氯化钙,具有重要的意义。Anhydrous calcium chloride can be widely used in food manufacturing, building materials, medicine, biology and other fields. It can be used as a desiccant, dehydrating agent, antifreeze, and is also a raw material for the production of calcium salts. reagent. At present, the most common processing method for preparing anhydrous calcium chloride in the domestic industry mainly includes (1) calcium chloride dihydrate (dehydration method) method; (2) spray drying dehydration method; (3) mother liquor method; (4) Double decomposition method: (5) Refining method. Calcium chloride dihydrate (dehydration method) method and spray drying method are heated and dried at high temperature to obtain anhydrous calcium chloride, but the energy consumption is relatively high, resulting in little economic benefit during industrial production. For example, a design is made in Chinese patent CN210058176 An atomizing nozzle device suitable for dry granulation of anhydrous calcium chloride fluidized bed, granulation production can only be carried out when the temperature reaches above 250°C; in Chinese patent CN104495903, the production of calcium chloride by mother liquor method realizes waste recycling, But because the calcium chloride content of waste liquid is low, evaporation needs to consume a large amount of steam, and tanning takes up a large amount of land; Metathesis method is mostly used in the area of by-product hydrochloric acid, for example utilizes industrial waste hydrochloric acid to produce anhydrous chlorine in Chinese patent CN104773750 Calcium, but the cost is high and the product competitiveness is low; the production cost of the refining method is low, the product quality is good, but the resources are limited, and it is not suitable for industrial production. Therefore, it is of great significance to change the existing process of preparing anhydrous calcium chloride with high energy consumption and achieve low-cost and high-efficiency mass production of anhydrous calcium chloride by optimizing production conditions.
水煤气变换反应是指CO与H2O形成CO2和H2的适度放热反应。类似地,甲醇、甲烷、乙烷等含碳小分子也可与H2O在低温区间发生催化反应产生H2。如能将此类过程与水合氯化钙脱水过程耦合,利用氯化钙脱水产物自催化含碳气体与结晶水的变换耦合反应在具有热力学优势的低温区间高效发生,可望在有效降低脱水温度的同时将H2O转变为H2,提高该过程的经济价值。另外,含碳混合气可来源于甲醇重整制氢及其下游用氢工业,为工业中去除甲醇重整制氢尾气中大量的一氧化碳、甲醇等含碳气体提供了新渠道。The water gas shift reaction refers to the moderately exothermic reaction of CO with H2O to form CO2 and H2 . Similarly, small carbon-containing molecules such as methanol, methane, and ethane can also undergo a catalytic reaction with H 2 O in the low temperature range to generate H 2 . If this kind of process can be coupled with the dehydration process of calcium chloride hydrate, and the transformation coupling reaction of the dehydration product of calcium chloride to self-catalyze carbon-containing gas and crystal water occurs efficiently in the low temperature range with thermodynamic advantages, it is expected to effectively reduce the dehydration temperature While converting H 2 O into H 2 , the economic value of the process is improved. In addition, the carbon-containing mixed gas can be derived from methanol reforming hydrogen production and its downstream hydrogen use industry, which provides a new channel for industrial removal of a large amount of carbon monoxide, methanol and other carbon-containing gases in the methanol reforming hydrogen production tail gas.
发明内容Contents of the invention
本发明针对氯化钙在低温条件下脱水制备无水氯化钙的空白,提供了一种利用含碳混合气与水合氯化钙自催化耦合脱水制备无水氯化钙方法及装置。此技术大幅度地降低了氯化钙脱水的温度,在更温和的条件下制备了高纯无水氯化钙,很大程度上降低了工业能耗,同时这一方法可以有效地去除甲醇重整制氢及其下游用氢工业中大量的CO同时制备氢气,具有较高的经济价值。Aiming at the blank of preparing anhydrous calcium chloride by dehydration of calcium chloride under low temperature conditions, the present invention provides a method and device for preparing anhydrous calcium chloride by self-catalyzed coupling dehydration of carbon-containing mixed gas and calcium chloride hydrate. This technology greatly reduces the dehydration temperature of calcium chloride, and prepares high-purity anhydrous calcium chloride under milder conditions, which greatly reduces industrial energy consumption. At the same time, this method can effectively remove heavy methanol The whole production of hydrogen and its downstream use of a large amount of CO in the hydrogen industry produce hydrogen at the same time, which has high economic value.
本发明提供了一种利用含碳混合气与水合氯化钙自催化耦合脱水制备无水氯化钙方法及装置。具体制备步骤如下:The invention provides a method and a device for preparing anhydrous calcium chloride by self-catalyzing coupled dehydration of carbon-containing mixed gas and calcium chloride hydrate. Concrete preparation steps are as follows:
A.使用含碳混合气为原料,并对含碳混合气进行除氧优化处理,得到处理后的含碳混合气;A. Use carbon-containing mixed gas as raw material, and optimize the deoxygenation treatment of carbon-containing mixed gas to obtain the treated carbon-containing mixed gas;
所述的含碳混合气选自甲醇、甲烷、乙烷、一氧化碳中的至少一种,剩余气体为平衡气,通常选自N2或惰性气体,该混合气体可来源于甲醇重整制氢及其下游用氢工业,含碳气体的含量在1-100%。The carbon-containing mixed gas is selected from at least one of methanol, methane, ethane, and carbon monoxide, and the remaining gas is a balance gas, usually selected from N 2 or an inert gas, and the mixed gas can be derived from the reforming of methanol to produce hydrogen and For its downstream hydrogen industry, the content of carbon-containing gas is 1-100%.
所述的除氧优化处理步骤具体即利用401锰系脱氧剂进行脱氧,401锰系除氧剂是锰系金属氧化物,应用于氮气、惰性气体等气体除氧净化。The deoxidation optimization treatment step specifically uses 401 manganese deoxidizer to deoxidize. 401 manganese deoxidizer is a manganese metal oxide, which is applied to deoxygenation and purification of nitrogen, inert gas and other gases.
B.将步骤A处理后的含碳混合气与水合氯化钙接触进行反应,然后在反应气氛下冷却、收集,得到无水氯化钙,同时收集尾气可得到氢气。B. The carbon-containing mixed gas treated in step A is contacted with calcium chloride hydrate for reaction, then cooled and collected under the reaction atmosphere to obtain anhydrous calcium chloride, and hydrogen gas can be obtained by collecting tail gas at the same time.
所述水合氯化钙是指带有两个及以上结晶水的CaCl2;所述无水氯化钙是指带有小于一个结晶水的CaCl2;The calcium chloride hydrate refers to CaCl 2 with two or more waters of crystallization; the anhydrous calcium chloride refers to CaCl 2 with less than one water of crystallization;
所述处理后含碳混合气与水合氯化钙接触进行反应时,气体的流量为1mL/min-1000L/min,优选10mL/min-100mL/min。When the treated carbon-containing mixed gas is contacted with calcium chloride hydrate for reaction, the flow rate of the gas is 1mL/min-1000L/min, preferably 10mL/min-100mL/min.
所述处理后的含碳气体的浓度为1%-100%,剩余的气体为平衡气,平衡气通常选自N2或惰性气体,该混合气体可来源于甲醇重整制氢及其下游用氢工业。The concentration of the treated carbon-containing gas is 1%-100%, and the remaining gas is a balance gas. The balance gas is usually selected from N2 or an inert gas. This mixed gas can be derived from methanol reforming for hydrogen production and its downstream use hydrogen industry.
所述反应过程中,采用程序升温加热,升温速率为0.1-100℃/min,反应温度为50-250℃,优选为100-200℃,时间为0.5-20h,优选为0.5-4h。During the reaction process, temperature programming is adopted, the heating rate is 0.1-100°C/min, the reaction temperature is 50-250°C, preferably 100-200°C, and the time is 0.5-20h, preferably 0.5-4h.
所述反应过程中,冷却至室温快速取出,并用真空包装袋收集、密封保存。During the reaction process, it was cooled to room temperature and quickly taken out, collected in vacuum packaging bags, and sealed for storage.
所述反应过程中,所得到的无水氯化钙中含CaCl2的质量分数≥96%。In the reaction process, the obtained anhydrous calcium chloride contains CaCl 2 mass fraction ≥ 96%.
所述反应过程中,水合氯化钙的平均产氢量为10-2000umol/g。During the reaction process, the average hydrogen production of calcium chloride hydrate is 10-2000umol/g.
一种利用含碳混合气与水合氯化钙自催化耦合脱水制备无水氯化钙的方法,其特征在于所用装置如下:包括两个或三个气体钢瓶,其中之一为平衡气,另一个或两个为含碳气体;A method for preparing anhydrous calcium chloride by self-catalytic coupling dehydration of carbon-containing mixed gas and calcium chloride hydrate, characterized in that the device used is as follows: it includes two or three gas cylinders, one of which is a balance gas, and the other or both are carbonaceous gases;
含碳气体为甲烷、乙烷、一氧化碳,平衡气为N2或惰性气体;The carbon-containing gas is methane, ethane, carbon monoxide, and the balance gas is N2 or inert gas;
气体钢瓶连接除氧装置,除氧装置连接反应器,反应器前后设有压力表,反应器后设有气体收集罐。The gas cylinder is connected to the oxygen removal device, and the oxygen removal device is connected to the reactor. Pressure gauges are installed before and after the reactor, and a gas collection tank is installed behind the reactor.
一种利用含碳混合气与水合氯化钙自催化耦合脱水制备无水氯化钙的方法,其特征在于所用装置如下:A method for preparing anhydrous calcium chloride by self-catalytic coupling dehydration of carbon-containing mixed gas and calcium chloride hydrate, characterized in that the device used is as follows:
当含碳气体为甲醇时,有两个气体钢瓶,其中之一为平衡气,另一个为含碳气体;When the carbon-containing gas is methanol, there are two gas cylinders, one of which is balance gas and the other is carbon-containing gas;
甲醇液体经汽化装置、保温气路得到甲醇气体;Methanol liquid gets methanol gas through vaporization device and heat preservation gas path;
气体钢瓶以及保温气路连接除氧装置,除氧装置连接反应器,反应器前后设有压力表,反应器后设有气体收集罐。该制备方法的特点是:本发明提供了利用含碳混合气与水合氯化钙自催化耦合脱水制备无水氯化钙方法及装置,首次利用含碳混合气实现自催化反应协同脱水,从而高效制备无水氯化钙。通过此方法,可有效降低氯化钙脱水的温度,大幅度降低能耗,并有望大幅度降低制备无水氯化钙的生产成本。另外,本方法使用的含碳混合气可来源于甲醇重整制氢及其下游用氢工业,大大提高了本方法的经济效益,同时制得氢气,开拓了一种由含结晶水的无机物制备氢气的新思路,为工业中去除甲醇重整制氢尾气中大量的含碳气体提供了新渠道。The gas cylinder and the heat preservation gas path are connected to the oxygen removal device, and the oxygen removal device is connected to the reactor. Pressure gauges are installed before and after the reactor, and a gas collection tank is installed behind the reactor. The characteristics of the preparation method are: the present invention provides a method and device for preparing anhydrous calcium chloride by self-catalytic coupling dehydration of carbon-containing mixed gas and calcium chloride hydrate. Prepare anhydrous calcium chloride. Through this method, the dehydration temperature of calcium chloride can be effectively reduced, energy consumption can be greatly reduced, and the production cost of preparing anhydrous calcium chloride is expected to be greatly reduced. In addition, the carbon-containing mixed gas used in this method can come from methanol reforming hydrogen production and its downstream hydrogen use industry, which greatly improves the economic benefits of this method, and at the same time produces hydrogen, which opens up a new method of producing hydrogen from inorganic substances containing crystal water. The new idea of hydrogen production provides a new channel for removing a large amount of carbon-containing gases in the tail gas of methanol reforming hydrogen production in industry.
由图1的XRD谱图可以看出成功制备得到无水氯化钙;As can be seen from the XRD spectrum of Fig. 1, anhydrous calcium chloride was successfully prepared;
由表1的EDTA滴定分析可以看出制备得到的无水氯化钙中CaCl2的质量分数≥96%,达到了工业级一级要求。As can be seen from the EDTA titration analysis in Table 1, the mass fraction of CaCl in the prepared anhydrous calcium chloride ≥ 96%, which meets the requirements of the first grade of industrial grade.
由表2的产氢分析可以看出本方法可以制备得到氢气,平均产氢量为10-2000umol/g。From the hydrogen production analysis in Table 2, it can be seen that this method can produce hydrogen, and the average hydrogen production is 10-2000umol/g.
本发明提出的利用含碳混合气与水合氯化钙自催化耦合脱水制备无水氯化钙的技术,建立以耦合自催化为基本原理的无机盐脱水自催化作用新理论,形成对水合氯化钙脱水过程的新认知。The technology proposed by the present invention utilizes carbon-containing mixed gas and calcium chloride hydrate autocatalytic coupling dehydration to prepare anhydrous calcium chloride, establishes a new theory of inorganic salt dehydration autocatalysis based on the principle of coupled autocatalysis, and forms a hydration chlorination New insights into the process of calcium dehydration.
附图说明:Description of drawings:
图1为实施例2-5制备的无水氯化钙XRD谱图。Fig. 1 is the anhydrous calcium chloride XRD pattern that embodiment 2-5 prepares.
图2是本发明含碳混合气与水合氯化钙反应脱水制备无水氯化钙的装置。Fig. 2 is the device for preparing anhydrous calcium chloride by reacting dehydration of carbon-containing mixed gas and calcium chloride hydrate in the present invention.
具体实施方式:Detailed ways:
在以下实施例中气体百分含量为体积百分含量。In the following examples, gas percentages are volume percentages.
实施例1Example 1
A.首先,将二水氯化钙研磨为粉末状,称取0.4g二水氯化钙到石英管中,并将甲醇加热汽化得到甲醇气体,并通入一氧化碳,且在进入管式炉前反应气进行严格的除氧优化处理,即利用401锰系脱氧剂进行除氧;A. First, grind calcium chloride dihydrate into powder, weigh 0.4g calcium chloride dihydrate into a quartz tube, heat and vaporize methanol to obtain methanol gas, and pass in carbon monoxide, and before entering the tube furnace The reaction gas is subjected to strict deoxidation optimization treatment, that is, 401 manganese deoxidizer is used for deoxidation;
B.将步骤A中的甲醇气体浓度选定为5%CH3OH/5%CO/N2(平衡气);气体流量为80mL/min;以10℃/min升温速率升温至200℃,反应时间为2h。B. The methanol gas concentration in step A is selected as 5% CH 3 OH/5% CO/N 2 (balance gas); the gas flow rate is 80mL/min; the temperature is raised to 200°C at a heating rate of 10°C/min, and the reaction The time is 2h.
C.将步骤B中的样品在反应气氛中降至室温取出,并用真空包装袋收集、密封保存,得到无水氯化钙产物,将反应后的气氛收集即可得到氢气。C. The sample in step B is lowered to room temperature in the reaction atmosphere and taken out, and collected with a vacuum bag, sealed and preserved to obtain anhydrous calcium chloride product, and the hydrogen gas can be obtained by collecting the atmosphere after the reaction.
实施例2Example 2
A.首先,将二水氯化钙研磨为粉末状,称取0.4g二水氯化钙到石英管中,并通入甲烷气体,在进入管式炉前反应气进行严格得除氧优化处理气体,处理步骤同实施例1;A. First, grind calcium chloride dihydrate into powder, weigh 0.4g calcium chloride dihydrate into a quartz tube, and pass methane gas into it. Before entering the tube furnace, the reaction gas is subjected to strict oxygen removal optimization treatment. Gas, processing steps are with embodiment 1;
B.将步骤A中的甲烷气体浓度选定为20%CH4/N2(平衡气),气体流量为40mL/min,以10℃/min升温速率升温至50℃,反应时间为6h。B. The methane gas concentration in step A is selected as 20% CH 4 /N 2 (balance gas), the gas flow rate is 40mL/min, the temperature is raised to 50°C at a heating rate of 10°C/min, and the reaction time is 6h.
C.将步骤B中的样品在反应气氛中降至室温取出,并用真空包装袋收集、密封保存,得到无水氯化钙产物,将反应后的气氛收集即可得到氢气。C. The sample in step B is lowered to room temperature in the reaction atmosphere and taken out, and collected with a vacuum bag, sealed and preserved to obtain anhydrous calcium chloride product, and the hydrogen gas can be obtained by collecting the atmosphere after the reaction.
实施例3Example 3
A.首先,将二水氯化钙研磨为粉末状,称取0.2g二水氯化钙到石英管中,并通入一氧化碳气体,且在进入管式炉前反应气进行严格得除氧优化处理气体,处理步骤同实施例1;A. First, grind calcium chloride dihydrate into powder, weigh 0.2g calcium chloride dihydrate into a quartz tube, and pass in carbon monoxide gas, and the reaction gas is strictly optimized for oxygen removal before entering the tube furnace Processing gas, processing step is with embodiment 1;
B.将步骤A中的一氧化碳气体浓度选定为70%CO/N2(平衡气);气体流量为10mL/min;以5℃/min升温速率升温至100℃,反应时间为4h。B. The carbon monoxide gas concentration in step A is selected as 70% CO/N 2 (balance gas); the gas flow rate is 10mL/min; the temperature is raised to 100°C at a heating rate of 5°C/min, and the reaction time is 4h.
C.将步骤B中的样品在反应气氛中降至室温取出,并用真空包装袋收集、密封保存,得到无水氯化钙产物,将反应后的气氛收集即可得到氢气。C. The sample in step B is lowered to room temperature in the reaction atmosphere and taken out, and collected with a vacuum bag, sealed and preserved to obtain anhydrous calcium chloride product, and the hydrogen gas can be obtained by collecting the atmosphere after the reaction.
实施例4Example 4
A.首先,将二水氯化钙研磨为粉末状,称取0.4g二水氯化钙到石英管中,并通入一氧化碳和甲烷混合气,且在进入管式炉前反应气进行严格得除氧优化处理气体,处理步骤同实施例1;A. First, grind calcium chloride dihydrate into powder, weigh 0.4g calcium chloride dihydrate into a quartz tube, and pass in a mixed gas of carbon monoxide and methane, and the reaction gas is strictly tested before entering the tube furnace. Deoxygenation optimization treatment gas, treatment steps with embodiment 1;
B.将步骤A中的一氧化碳和甲烷混合气的比例为1:1,15%CO/15%CH4/N2(平衡气);气体流量为60mL/min;以5℃/min升温速率升温至200℃,反应时间为3h。B. The ratio of carbon monoxide and methane mixture in step A is 1:1, 15% CO/15% CH 4 /N 2 (balance gas); the gas flow rate is 60mL/min; the temperature is raised at a heating rate of 5°C/min To 200°C, the reaction time is 3h.
C.将步骤B中的样品在反应气氛中降至室温取出,并用真空包装袋收集、密封保存,得到无水氯化钙产物,将反应后的气氛收集即可得到氢气。C. The sample in step B is lowered to room temperature in the reaction atmosphere and taken out, and collected with a vacuum bag, sealed and preserved to obtain anhydrous calcium chloride product, and the hydrogen gas can be obtained by collecting the atmosphere after the reaction.
实施例5Example 5
A.首先,将二水氯化钙研磨为粉末状,称取0.4g二水氯化钙到石英管中,并通入一氧化碳和乙烷混合气,且在进入管式炉前反应气进行严格得除氧优化处理气体,处理步骤同实施例1;A. First, grind calcium chloride dihydrate into powder, weigh 0.4g calcium chloride dihydrate into a quartz tube, and pass in a mixed gas of carbon monoxide and ethane, and the reaction gas is strictly controlled before entering the tube furnace. Obtain oxygen removal optimization treatment gas, and processing step is with embodiment 1;
B.将步骤A中的一氧化碳和乙烷混合气的比例为1:1,1%CO/1%C2H6/N2(平衡气);气体流量为100mL/min;以10℃/min升温速率升温至150℃,反应时间为8h。B. The ratio of carbon monoxide and ethane mixture in step A is 1:1, 1% CO/1% C 2 H 6 /N 2 (balance gas); the gas flow rate is 100mL/min; at 10°C/min The heating rate was raised to 150°C, and the reaction time was 8h.
C.将步骤B中的样品在反应气氛中降至室温取出,并用真空包装袋收集、密封保存,得到无水氯化钙产物,将反应后的气氛收集即可得到氢气。C. The sample in step B is lowered to room temperature in the reaction atmosphere and taken out, and collected with a vacuum bag, sealed and preserved to obtain anhydrous calcium chloride product, and the hydrogen gas can be obtained by collecting the atmosphere after the reaction.
表1:实施例1-5制备的无水氯化钙EDTA滴定分析Table 1: Anhydrous calcium chloride EDTA titration analysis prepared by embodiment 1-5
表2:实施例1-5制备无水氯化钙时产氢情况Table 2: Hydrogen production situation when preparing anhydrous calcium chloride in embodiment 1-5
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310376819.7A CN116395732B (en) | 2023-04-11 | 2023-04-11 | A method and device for preparing anhydrous calcium chloride by autocatalytic coupling dehydration of carbon-containing mixed gas and hydrated calcium chloride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310376819.7A CN116395732B (en) | 2023-04-11 | 2023-04-11 | A method and device for preparing anhydrous calcium chloride by autocatalytic coupling dehydration of carbon-containing mixed gas and hydrated calcium chloride |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116395732A true CN116395732A (en) | 2023-07-07 |
CN116395732B CN116395732B (en) | 2024-11-12 |
Family
ID=87009951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310376819.7A Active CN116395732B (en) | 2023-04-11 | 2023-04-11 | A method and device for preparing anhydrous calcium chloride by autocatalytic coupling dehydration of carbon-containing mixed gas and hydrated calcium chloride |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116395732B (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050108941A1 (en) * | 2003-11-22 | 2005-05-26 | Nielsen Poul E.H. | Process for the preparation of hydrogen and synthesis gas |
CN101362973A (en) * | 2008-08-28 | 2009-02-11 | 西南化工研究设计院 | Technique for preparing mixed fuel of hydrogen and dimethyl ether from methanol |
CN101439844A (en) * | 2008-12-16 | 2009-05-27 | 中国科学院广州能源研究所 | Chemical link coupling catalytic reforming hydrogen making method and device |
CN102674247A (en) * | 2012-04-28 | 2012-09-19 | 浙江大学 | Decarburization and dehydrogenation double-intensification methane and steam reforming hydrogen production method and device |
CN103979594A (en) * | 2014-05-26 | 2014-08-13 | 江苏井神盐化股份有限公司 | Method for preparing calcium chloride product from high-calcium brine obtained by exploiting well and rock salt by using sodium carbonate waste liquid |
CN105130766A (en) * | 2015-09-10 | 2015-12-09 | 沈阳化工大学 | Method for removing trace water in anisole by using CO gas |
CN110963464A (en) * | 2019-12-31 | 2020-04-07 | 四川天采科技有限责任公司 | Method for producing hydrogen by coupling natural gas direct cracking and steam reforming |
CN111333477A (en) * | 2018-12-18 | 2020-06-26 | 中国科学院大连化学物理研究所 | Method for preparing olefin, aromatic hydrocarbon and hydrogen by co-catalytic conversion of methane and ethane |
CN112624041A (en) * | 2021-01-19 | 2021-04-09 | 宋金文 | Method for producing hydrogen by using waste biomass carbon |
CN112993346A (en) * | 2019-12-14 | 2021-06-18 | 中国科学院大连化学物理研究所 | Method and device for treating methanol-containing tail gas in methanol reforming device |
-
2023
- 2023-04-11 CN CN202310376819.7A patent/CN116395732B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050108941A1 (en) * | 2003-11-22 | 2005-05-26 | Nielsen Poul E.H. | Process for the preparation of hydrogen and synthesis gas |
CN101362973A (en) * | 2008-08-28 | 2009-02-11 | 西南化工研究设计院 | Technique for preparing mixed fuel of hydrogen and dimethyl ether from methanol |
CN101439844A (en) * | 2008-12-16 | 2009-05-27 | 中国科学院广州能源研究所 | Chemical link coupling catalytic reforming hydrogen making method and device |
CN102674247A (en) * | 2012-04-28 | 2012-09-19 | 浙江大学 | Decarburization and dehydrogenation double-intensification methane and steam reforming hydrogen production method and device |
CN103979594A (en) * | 2014-05-26 | 2014-08-13 | 江苏井神盐化股份有限公司 | Method for preparing calcium chloride product from high-calcium brine obtained by exploiting well and rock salt by using sodium carbonate waste liquid |
CN105130766A (en) * | 2015-09-10 | 2015-12-09 | 沈阳化工大学 | Method for removing trace water in anisole by using CO gas |
CN111333477A (en) * | 2018-12-18 | 2020-06-26 | 中国科学院大连化学物理研究所 | Method for preparing olefin, aromatic hydrocarbon and hydrogen by co-catalytic conversion of methane and ethane |
CN112993346A (en) * | 2019-12-14 | 2021-06-18 | 中国科学院大连化学物理研究所 | Method and device for treating methanol-containing tail gas in methanol reforming device |
CN110963464A (en) * | 2019-12-31 | 2020-04-07 | 四川天采科技有限责任公司 | Method for producing hydrogen by coupling natural gas direct cracking and steam reforming |
CN112624041A (en) * | 2021-01-19 | 2021-04-09 | 宋金文 | Method for producing hydrogen by using waste biomass carbon |
Also Published As
Publication number | Publication date |
---|---|
CN116395732B (en) | 2024-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Okoye et al. | Stabilized ladle furnace steel slag for glycerol carbonate synthesis via glycerol transesterification reaction with dimethyl carbonate | |
Xia et al. | Recovery of CaO from CaSO4 via CO reduction decomposition under different atmospheres | |
JP2006517900A (en) | Process and apparatus for producing precipitated silica from rice husk ash | |
JP6715985B2 (en) | Method for producing lithium sulfide | |
CN102191374A (en) | Method for recycling traditional chromium residue | |
CN103626135B (en) | The method and apparatus of sulphur trioxide and sulfur cream sulfur dioxide liquid | |
Zhong et al. | Highly efficient water splitting and carbon dioxide reduction into formic acid with iron and copper powder | |
CN106831315A (en) | A kind of continuous production method of chloroethanes | |
Zhang et al. | A solid thermal and fast synthesis of MgAl-hydrotalcite nanosheets and their applications in the catalytic elimination of carbonyl sulfide and hydrogen sulfide | |
WO2025001404A1 (en) | System and method for recovering alkali by carbonizing red mud | |
Wu et al. | Fusiform CuC2O4 loaded porous biochar derived from phosphoric acid-activated bagasse for gaseous ammonia capture | |
CN101747176B (en) | Method for preparation of trifluoro acetyl chloride with trifluoroethane chlorinated mixture | |
CN103408082B (en) | Recovery method and device for formic acid solvent in metronidazole production process | |
CN105347703A (en) | Calcium magnesium carbonate salt mine decomposition method | |
CN108706610B (en) | A kind of method for recovering ammonia and high-quality gypsum from ammonium sulfate | |
CN116395732A (en) | A method and device for preparing anhydrous calcium chloride by self-catalytic coupling dehydration of carbon-containing mixed gas and calcium chloride hydrate | |
CN105540648A (en) | Preparation method of stannic oxide mesoporous spheres | |
CN103626206B (en) | Sodium carbonate-vinyl chloride coproduction technique based on ammonium chloride chemical looping | |
CN105967192A (en) | Process and device for preparing gas-phase white carbon black and recycling metal by taking industrial waste residues containing silicate as raw materials | |
CN113896214A (en) | A method for preparing high-purity lithium carbonate by adsorption and carbonization of lithium sulfate solution | |
CN108569812A (en) | A kind of processing system and processing method of the waste water containing low-concentration sulfuric acid | |
CN112573556A (en) | Method for preparing nano calcium carbonate from calcium-containing solid waste residues and waste acids | |
CN108067216A (en) | The recovery method of base metal catalysts in a kind of catalytic coal gasifaction lime-ash | |
CN109231168B (en) | Method and device for reducing sulfuric acid content in hydrochloric acid and acetic acid by-products in chloroacetic acid production | |
CN203437120U (en) | Deamination and dehydration device for sodium persulfate (persulfate) synthetic fluid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20241104 Address after: 100029, No. 15 East Third Ring Road, Chaoyang District, Beijing Applicant after: BEIJING University OF CHEMICAL TECHNOLOGY Country or region after: China Applicant after: Quzhou Resource Chemical Innovation Research Institute Address before: 100029, No. 15 East Third Ring Road, Chaoyang District, Beijing Applicant before: BEIJING University OF CHEMICAL TECHNOLOGY Country or region before: China |