CN116387481A - Preparation method and application of a heterogeneous structure yolk-shell type double transition metal selenide composite material - Google Patents
Preparation method and application of a heterogeneous structure yolk-shell type double transition metal selenide composite material Download PDFInfo
- Publication number
- CN116387481A CN116387481A CN202310323734.2A CN202310323734A CN116387481A CN 116387481 A CN116387481 A CN 116387481A CN 202310323734 A CN202310323734 A CN 202310323734A CN 116387481 A CN116387481 A CN 116387481A
- Authority
- CN
- China
- Prior art keywords
- transition metal
- composite material
- sodium
- shell type
- yolk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 40
- 229910052723 transition metal Inorganic materials 0.000 title claims abstract description 40
- -1 transition metal selenide Chemical class 0.000 title claims abstract description 26
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 229910001415 sodium ion Inorganic materials 0.000 claims abstract description 21
- 210000002969 egg yolk Anatomy 0.000 claims abstract description 18
- 239000003792 electrolyte Substances 0.000 claims abstract description 17
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000002245 particle Substances 0.000 claims abstract description 6
- 239000000126 substance Substances 0.000 claims abstract description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 26
- 230000007704 transition Effects 0.000 claims description 17
- 102000002322 Egg Proteins Human genes 0.000 claims description 16
- 108010000912 Egg Proteins Proteins 0.000 claims description 16
- 239000003153 chemical reaction reagent Substances 0.000 claims description 16
- 239000012621 metal-organic framework Substances 0.000 claims description 16
- 235000013345 egg yolk Nutrition 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 238000001816 cooling Methods 0.000 claims description 14
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 claims description 13
- 150000003624 transition metals Chemical class 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 12
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 12
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 11
- 229910052742 iron Inorganic materials 0.000 claims description 11
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 claims description 10
- 238000005119 centrifugation Methods 0.000 claims description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- 239000002033 PVDF binder Substances 0.000 claims description 9
- 239000006230 acetylene black Substances 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 9
- 239000003365 glass fiber Substances 0.000 claims description 9
- 239000007773 negative electrode material Substances 0.000 claims description 9
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 8
- 239000013110 organic ligand Substances 0.000 claims description 7
- 239000011669 selenium Substances 0.000 claims description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 5
- 239000004202 carbamide Substances 0.000 claims description 5
- 239000001530 fumaric acid Substances 0.000 claims description 5
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 5
- 229910052573 porcelain Inorganic materials 0.000 claims description 5
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 4
- 239000005711 Benzoic acid Substances 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 4
- 229910002651 NO3 Inorganic materials 0.000 claims description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 4
- 229910019142 PO4 Inorganic materials 0.000 claims description 4
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 4
- ZMVMBTZRIMAUPN-UHFFFAOYSA-H [Na+].[V+5].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O Chemical compound [Na+].[V+5].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O ZMVMBTZRIMAUPN-UHFFFAOYSA-H 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 239000012298 atmosphere Substances 0.000 claims description 4
- 235000010233 benzoic acid Nutrition 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 235000006408 oxalic acid Nutrition 0.000 claims description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 4
- 239000010452 phosphate Substances 0.000 claims description 4
- 238000004321 preservation Methods 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000012300 argon atmosphere Substances 0.000 claims description 3
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 235000011087 fumaric acid Nutrition 0.000 claims description 3
- 230000001376 precipitating effect Effects 0.000 claims description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 3
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 claims description 2
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 claims description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 claims description 2
- 235000019270 ammonium chloride Nutrition 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 239000007774 positive electrode material Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims 1
- 238000001556 precipitation Methods 0.000 claims 1
- 230000002195 synergetic effect Effects 0.000 abstract description 6
- 238000009792 diffusion process Methods 0.000 abstract description 2
- 239000012466 permeate Substances 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 239000011267 electrode slurry Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 239000011521 glass Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229910052708 sodium Inorganic materials 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 239000013082 iron-based metal-organic framework Substances 0.000 description 6
- 239000002091 nanocage Substances 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- 238000011056 performance test Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000001291 vacuum drying Methods 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- GAIMSHOTKWOMOB-UHFFFAOYSA-N [Se]=[Co]=[Se] Chemical compound [Se]=[Co]=[Se] GAIMSHOTKWOMOB-UHFFFAOYSA-N 0.000 description 4
- 239000010405 anode material Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- XIMIGUBYDJDCKI-UHFFFAOYSA-N diselenium Chemical compound [Se]=[Se] XIMIGUBYDJDCKI-UHFFFAOYSA-N 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000009830 intercalation Methods 0.000 description 3
- 230000002687 intercalation Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000027756 respiratory electron transport chain Effects 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229910020598 Co Fe Inorganic materials 0.000 description 2
- 229910020630 Co Ni Inorganic materials 0.000 description 2
- 229910002519 Co-Fe Inorganic materials 0.000 description 2
- 229910002440 Co–Ni Inorganic materials 0.000 description 2
- 229910002551 Fe-Mn Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229960004887 ferric hydroxide Drugs 0.000 description 2
- IEECXTSVVFWGSE-UHFFFAOYSA-M iron(3+);oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Fe+3] IEECXTSVVFWGSE-UHFFFAOYSA-M 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000013099 nickel-based metal-organic framework Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- QHASIAZYSXZCGO-UHFFFAOYSA-N selanylidenenickel Chemical compound [Se]=[Ni] QHASIAZYSXZCGO-UHFFFAOYSA-N 0.000 description 2
- 150000003346 selenoethers Chemical class 0.000 description 2
- VPQBLCVGUWPDHV-UHFFFAOYSA-N sodium selenide Chemical compound [Na+].[Na+].[Se-2] VPQBLCVGUWPDHV-UHFFFAOYSA-N 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 229910021094 Co(NO3)2-6H2O Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910018590 Ni(NO3)2-6H2O Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 210000003278 egg shell Anatomy 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Conductive Materials (AREA)
Abstract
Description
技术领域technical field
本发明涉及电化学能源材料技术领域,具体是一种异质结构蛋黄壳型双过渡金属硒化物复合材料的制备方法及其在钠离子电池负极材料中的应用。The invention relates to the technical field of electrochemical energy materials, in particular to a method for preparing a yolk-shell double-transition metal selenide composite material with a heterogeneous structure and its application in negative electrode materials for sodium-ion batteries.
背景技术Background technique
随着全球对高效、清洁能源的需求日益增多,风能、太阳能、潮汐能等新能源的应用前景越发广阔。在电网系统快速普及、便携新能源走进日常的同时,储能设备作为其中最为关键的一环而备受关注。在过去几十年间,锂离子电池得到了广泛研究和应用,电化学储能技术的优势已逐渐显露。然而锂离子电池的极大规模推广却受到锂离子资源有限这一问题的制约,使得电池成本居高不下。钠与锂属于同一主族的元素,化学性质相近且丰度高、环境友好,应用前景广阔。但是由于钠离子半径较大,锂离子电池石墨负极用于钠离子电池负极材料时无法在有效电位窗口可逆插嵌/脱嵌,而目前常见的碳基、钛基负极材料等存在着诸如钠离子插嵌困难、导电性差等问题。With the increasing global demand for efficient and clean energy, the application prospects of wind energy, solar energy, tidal energy and other new energy sources are becoming more and more broad. With the rapid popularization of the power grid system and the introduction of portable new energy into daily life, energy storage equipment, as the most critical part of it, has attracted much attention. In the past few decades, lithium-ion batteries have been widely studied and applied, and the advantages of electrochemical energy storage technology have gradually emerged. However, the extremely large-scale promotion of lithium-ion batteries is restricted by the problem of limited lithium-ion resources, which makes the cost of batteries remain high. Sodium and lithium belong to the same main group of elements, with similar chemical properties, high abundance, environmental friendliness, and broad application prospects. However, due to the large radius of sodium ions, graphite anodes for lithium-ion batteries cannot be reversibly intercalated/deintercalated in the effective potential window when they are used as anode materials for sodium-ion batteries. Difficulty in inserting and embedding, poor conductivity and other problems.
近年来,人们发现过渡金属硒化物具有较高的理论比容量、较稳定的结构、较窄的能量带隙等优点,且过渡金属-硒化学键相对于硫化物和氧化物中的化学键更弱,十分有利于钠离子在结构中进行快速地插嵌/脱嵌,因此该材料可以被广泛地运用到钠离子电池负极材料中。然而,过渡金属硒化物的电子导电性差,且在钠离子插嵌/脱出的过程中容易造成较大的体积变化。电子导电性差导致了过渡金属硒化物在应用过程中的实际比容量较理论比容量低得多,不利于工业化生产高容量电池;大的体积变化容易降低电池的循环稳定性,如果应用在大规模储能技术中甚至可能带来安全问题。申请号为CN201910976902.1的发明专利采用了钴/铁双金属异质结构提高电子的传导,但是用以提高稳定性的碳包覆手段对体积膨胀的抑制作用并不明显,且非钠离子储存单元的碳层容易导致比容量的降低。In recent years, it has been found that transition metal selenides have the advantages of higher theoretical specific capacity, more stable structure, narrower energy band gap, etc., and the transition metal-selenium chemical bond is weaker than that in sulfide and oxide, It is very conducive to the rapid intercalation/deintercalation of sodium ions in the structure, so this material can be widely used in anode materials for sodium ion batteries. However, transition metal selenides have poor electronic conductivity and tend to cause large volume changes during the intercalation/extraction of sodium ions. Poor electronic conductivity leads to the fact that the actual specific capacity of transition metal selenides in the application process is much lower than the theoretical specific capacity, which is not conducive to the industrial production of high-capacity batteries; large volume changes will easily reduce the cycle stability of the battery, if applied in large-scale There may even be safety concerns in energy storage technology. The invention patent with the application number CN201910976902.1 uses a cobalt/iron bimetallic heterostructure to improve the conduction of electrons, but the carbon coating method used to improve the stability does not significantly inhibit the volume expansion, and the non-sodium ion storage The carbon layer of the cell tends to cause a decrease in specific capacity.
发明内容Contents of the invention
本发明提供了一种异质结构蛋黄壳型双过渡金属硒化物钠离子电池负极材料的制备方法和应用,该材料电子传导好、储钠容量高、体积变化小、比表面积大、颗粒均匀,具有优秀的倍率和循环性能。本发明提出的异质结构蛋黄壳型双过渡金属硒化物钠离子电池负极材料通过双过渡金属的协同作用,促进了电子的传导,同时材料独特的蛋黄壳结构使其能够减少体积变化,获得较大的比表面积,增加了电极材料与电解质的接触面积,促进了反应动力学。The invention provides a preparation method and application of a heterogeneous structure yolk-shell type double transition metal selenide sodium ion battery negative electrode material. The material has good electronic conduction, high sodium storage capacity, small volume change, large specific surface area and uniform particles. Has excellent rate and cycle performance. The heterogeneous structure egg yolk shell type double transition metal selenide sodium ion battery negative electrode material proposed by the present invention promotes the conduction of electrons through the synergistic effect of double transition metals. The large specific surface area increases the contact area between the electrode material and the electrolyte and promotes the reaction kinetics.
一种异质结构蛋黄壳型双过渡金属硒化物复合材料的制备方法,包括以下步骤:A method for preparing a yolk-shell type double-transition metal selenide composite material with a heterogeneous structure, comprising the following steps:
S1、将有机配体试剂和TM1源溶解在试剂中,将溶液依次经过水热反应、冷却、离心、洗涤和干燥处理后,得到过渡金属-有机框架;其中,所述TM1源为Ti、Cr、Mn、Fe、Co、Ni、Cu或Zn的硝酸盐、磷酸盐、硫酸盐和氯化物中的一种或多种;S1. Dissolving the organic ligand reagent and TM 1 source in the reagent, and sequentially subjecting the solution to hydrothermal reaction, cooling, centrifugation, washing and drying, to obtain a transition metal-organic framework; wherein the TM 1 source is Ti One or more of nitrate, phosphate, sulfate and chloride of Cr, Mn, Fe, Co, Ni, Cu or Zn;
S2、将S1中制备的过渡金属-有机框架均匀分散于试剂中,得到溶液A;将TM2源与沉淀剂溶解在试剂中,得到溶液B;将溶液A与溶液B进行混合后,依次经过保温、冷却、离心、洗涤和干燥处理,得到蛋黄壳结构的双过渡金属氢氧化物包覆的过渡金属-有机框架材料;所述TM2源为Ti、Cr、Mn、Fe、Co、Ni、Cu或Zn的硝酸盐、磷酸盐、硫酸盐和氯化物中的一种或多种;S2. Uniformly disperse the transition metal-organic framework prepared in S1 in the reagent to obtain solution A; dissolve the TM2 source and the precipitating agent in the reagent to obtain solution B; after mixing solution A and solution B, pass through heat preservation, cooling, centrifugation, washing and drying to obtain a transition metal-organic framework material coated with a double transition metal hydroxide of egg yolk shell structure; the TM source is Ti, Cr, Mn, Fe, Co, Ni, One or more of nitrate, phosphate, sulfate and chloride of Cu or Zn;
S3、在惰性气体保护下,将S2中制备的双过渡金属氢氧化物包覆的过渡金属-有机框架材料与一定比例的硒粉进行退火热处理,随炉冷却后,得到复合材料TM1Se2@TM1Se2/TM2Se2。S3. Under the protection of an inert gas, the transition metal-organic framework material coated with double transition metal hydroxide prepared in S2 is annealed and heat-treated with a certain proportion of selenium powder, and after cooling in the furnace, the composite material TM 1 Se 2 is obtained @TM 1 Se 2 /TM 2 Se 2 .
进一步地,S1中所述TM1源与所述有机配体试剂的物质的量之比为1~5:5,水热反应的温度为100~160℃,时间为1~5h,干燥的温度条件为60~100℃,时间条件为8~24h。Further, the ratio of the amount of the TM1 source to the organic ligand reagent in S1 is 1-5:5, the temperature of the hydrothermal reaction is 100-160°C, the time is 1-5h, and the drying temperature The condition is 60-100°C, and the time condition is 8-24h.
进一步地,S2中所述沉淀剂、所述过渡金属-有机框架、所述TM2源的质量比为1~5:0.24:1,保温处理的温度条件为60~90℃,时间条件为4~12h,干燥的温度条件为60~100℃,时间条件为8~24h。Further, the mass ratio of the precipitating agent, the transition metal-organic framework, and the TM source in S2 is 1-5:0.24:1, the temperature condition of the heat preservation treatment is 60-90°C, and the time condition is 4 ~12h, the drying temperature condition is 60~100℃, and the time condition is 8~24h.
进一步地,在S3中,所述双过渡金属氢氧化物包覆的过渡金属-有机框架材料与所述硒粉的质量比为1:1~4;Further, in S3, the mass ratio of the double-transition metal hydroxide-coated transition metal-organic framework material to the selenium powder is 1:1-4;
将盛放所述双过渡金属氢氧化物包覆的过渡金属-有机框架材料与所述硒粉的瓷舟置于管式炉中,首先在氢/氩或氢/氮混合气氛下加热到200~400℃,保温1~6h;随后在氮气或氩气气氛下加热到400~800℃,保温1~6h,两段升温速率为2~8℃/min。Place the porcelain boat containing the transition metal-organic framework material coated with the double transition metal hydroxide and the selenium powder in a tube furnace, and first heat it to 200 °C in a hydrogen/argon or hydrogen/nitrogen mixed atmosphere. ~400°C, keep warm for 1~6h; then heat to 400~800°C under nitrogen or argon atmosphere, keep warm for 1~6h, the two-stage heating rate is 2~8°C/min.
进一步地,所述有机配体试剂为富马酸、苯甲酸、草酸、吡嗪中的一种或多种;Further, the organic ligand reagent is one or more of fumaric acid, benzoic acid, oxalic acid, and pyrazine;
S1和S2中的试剂均为去离子水、甲醇、乙醇、N,N-二甲基甲酰胺、N,N-二乙基甲酰胺、乙腈、丙酮中的一种或多种;The reagents in S1 and S2 are one or more of deionized water, methanol, ethanol, N,N-dimethylformamide, N,N-diethylformamide, acetonitrile, and acetone;
所述沉淀剂包括氯化铵、尿素、氢氧化钠、碳酸钠中的一种或多种。The precipitant includes one or more of ammonium chloride, urea, sodium hydroxide, and sodium carbonate.
上述制备方法制得的异质结构蛋黄壳型双过渡金属硒化物复合材料。The heterogeneous structure egg yolk shell type double transition metal selenide composite material prepared by the above preparation method.
进一步地,所述复合材料具有中空的蛋黄-蛋壳结构,粒径为1~2微米。Further, the composite material has a hollow egg yolk-eggshell structure with a particle size of 1-2 microns.
上述的制备方法得到的异质结构蛋黄壳型双过渡金属硒化物复合材料在制备钠离子电池负极活性材料中的应用。Application of the heterostructure yolk-shell type double-transition metal selenide composite material obtained by the above preparation method in the preparation of negative electrode active materials for sodium ion batteries.
一种钠离子电池,包括电极片、对电极、隔膜和电解液,其中,所述电极片为由上述的异质结构蛋黄壳型双过渡金属硒化物复合材料与乙炔黑、聚偏二氟乙烯以质量比为5~7:1~2:1混合制得,所述对电极为钠金属片,所述隔膜为玻璃纤维隔膜,所述电解液由1mol·L-1六氟磷酸钠溶于二乙二醇甲醚制得。A sodium ion battery, comprising an electrode sheet, a counter electrode, a diaphragm and an electrolyte, wherein the electrode sheet is made of the above-mentioned heterostructure egg yolk shell type double transition metal selenide composite material and acetylene black, polyvinylidene fluoride It is prepared by mixing at a mass ratio of 5-7:1-2:1, the counter electrode is a sodium metal sheet, the diaphragm is a glass fiber diaphragm, and the electrolyte is dissolved in 1mol·L - 1 sodium hexafluorophosphate Diethylene glycol methyl ether in the system.
一种钠离子电池,包括电极片、对电极、隔膜和电解液,其中,所述电极片为由上述的异质结构蛋黄壳型双过渡金属硒化物复合材料与乙炔黑、聚偏二氟乙烯以质量比为5~7:1~2:1混合制得,所述对电极为磷酸钒钠正极材料,所述隔膜为玻璃纤维隔膜,所述电解液由1mol·L-1六氟磷酸钠溶于二乙二醇甲醚制得。A sodium ion battery, comprising an electrode sheet, a counter electrode, a diaphragm and an electrolyte, wherein the electrode sheet is made of the above-mentioned heterostructure egg yolk shell type double transition metal selenide composite material and acetylene black, polyvinylidene fluoride It is prepared by mixing at a mass ratio of 5-7:1-2:1, the counter electrode is a sodium vanadium phosphate positive electrode material, the diaphragm is a glass fiber diaphragm, and the electrolyte is composed of 1mol L -1 sodium hexafluorophosphate Soluble in diethylene glycol methyl ether in the system.
相比于现有技术,本发明包括以下有益效果:Compared with the prior art, the present invention includes the following beneficial effects:
(1)本发明制备的异质结构蛋黄壳型双过渡金属硒化物复合材料,为微米中空蛋黄-蛋壳结构颗粒,其尺寸约为1-2μm。引入了连接紧密的双金属异质结,其具有的协同效应和多电子反应为降低电子传导的阻碍、提高钠的容量提供了有利条件;创新性设计的中空蛋黄壳结构不仅增加了电极材料与电解液的接触面积,而且能够在不损失其振实密度和体积比容量的前提下减少插钠/脱钠过程的体积变化,增大比表面积,在提升了倍率性能的同时提高了安全性,还提高了负极材料的循环性能。(1) The yolk-shell double-transition metal selenide composite material with heterogeneous structure prepared by the present invention is a micron hollow egg yolk-eggshell structure particle, and its size is about 1-2 μm. The introduction of a tightly connected bimetallic heterojunction, which has a synergistic effect and multi-electron reaction, provides favorable conditions for reducing the hindrance of electron conduction and increasing the capacity of sodium; the innovatively designed hollow yolk shell structure not only increases the electrode material and The contact area of the electrolyte can reduce the volume change of the intercalation/de-sodium process without losing its tap density and volume specific capacity, increase the specific surface area, and improve the safety while improving the rate performance. The cycle performance of the negative electrode material is also improved.
(2)以本发明的复合材料材料作为钠离子电池负极材料,在一定电压区间内,于不同的电流密度大小下进行充放电测试。由于双过渡金属的协同效应,促进了电子转移和钠离子扩散动力学,双过渡金属异质结构的蛋壳层在稳定结构的同时不使其容量损失,使该材料表现出优异的倍率和循环性能,是实现高容量、高功率、长寿命钠离子电池可靠的负极材料。(2) Using the composite material of the present invention as the negative electrode material of the sodium ion battery, charge and discharge tests are carried out under different current densities within a certain voltage range. Due to the synergistic effect of double-transition metals, which facilitate electron transfer and sodium ion diffusion kinetics, the eggshell layer of the double-transition metal heterostructure stabilizes the structure without losing its capacity, enabling the material to exhibit excellent rate and cycling It is a reliable anode material for realizing high capacity, high power and long life sodium ion battery.
(3)本发明采用引入双金属协同效应以促进电子转移、设计双金属硒化物的蛋黄壳结构为体积变化提供缓冲空间。双金属协同效应的引入是通过使用两种过渡金属元素的硒化物,通过丰富的多电子反应和独特的内建电场减少电荷转移的阻碍,促进电子转移;双金属硒化物蛋黄壳结构是在核与壳之间留有一定的空心区域,这种结构不仅能够缓解体积变化对循环性能造成的危害,且由于壳层也含有钠离子储存位点而不损失其容量,此外,大的比表面积使电解液充分接触负极材料,倍率性能提高。(3) The present invention adopts the introduction of bimetallic synergistic effect to promote electron transfer, and designs the egg yolk shell structure of bimetallic selenide to provide a buffer space for volume change. The introduction of the bimetallic synergistic effect is through the use of selenides of two transition metal elements, which reduce the hindrance of charge transfer and promote electron transfer through abundant multi-electron reactions and unique built-in electric fields; There is a certain hollow area between the shell and the shell. This structure can not only alleviate the harm caused by the volume change to the cycle performance, but also do not lose its capacity because the shell also contains sodium ion storage sites. In addition, the large specific surface area enables The electrolyte fully contacts the negative electrode material, and the rate performance is improved.
(4)本发明的制备方法制备条件温和,首先采用水热法合成过渡金属-有机框架材料,之后引入另一过渡金属源,在一定温度下使其反应形成蛋黄壳结构双过渡金属氢氧化物包覆的过渡金属-有机框架材料,最后将该材料置于管式炉中硒化获得目标材料。(4) The preparation method of the present invention has mild preparation conditions. First, a transition metal-organic framework material is synthesized by a hydrothermal method, and then another transition metal source is introduced to react at a certain temperature to form a double transition metal hydroxide with a yolk-shell structure. The coated transition metal-organic framework material is finally selenized in a tube furnace to obtain the target material.
附图说明Description of drawings
图1a-d均为本发明实施例1所制备的异质结构蛋黄壳型二硒化钴/二硒化铁材料的SEM图。Figures 1a-d are all SEM images of the heterostructured yolk-shell type cobalt diselenide/iron diselenide material prepared in Example 1 of the present invention.
图2a-b均为本发明实施例1所制备的异质结构蛋黄壳型二硒化钴/二硒化铁材料的TEM图。Figures 2a-b are TEM images of the heterostructure yolk-shell type cobalt diselenide/iron diselenide material prepared in Example 1 of the present invention.
图3为本发明实施例1所制备的异质结构蛋黄壳型二硒化钴/二硒化铁材料组装成的电池的倍率性能图。Fig. 3 is a graph of the rate performance of a battery assembled from heterogeneous yolk-shell type cobalt diselenide/iron diselenide materials prepared in Example 1 of the present invention.
图4为本发明实施例1与对比例1所制备的材料组装成的电池分别在低电流密度0.2Ag-1下的循环性能图。Fig. 4 is a cycle performance diagram of batteries assembled from materials prepared in Example 1 and Comparative Example 1 of the present invention at a low current density of 0.2 Ag −1 .
图5为本发明实施例1所制备的异质结构蛋黄壳型二硒化钴/二硒化铁材料组装成的电池在大电流密度2Ag-1下的循环性能图。Fig. 5 is a diagram of the cycle performance of a battery assembled from the heterostructured yolk-shell type cobalt diselenide/iron diselenide material prepared in Example 1 of the present invention at a high current density of 2Ag -1 .
具体实施方式Detailed ways
下面将通过实施例与对比例,对本发明中采用的技术方案进行清晰、具体的描述,所述实施例与对比例仅是对本发明的举例证实,不代表全部实施例,不限制本发明的范围。本发明中的实施例,以及本领域技术人员根据本发明作出各种改动或修改,这些等价形式同样属于本发明所保护的范围。除特殊说明,本发明使用的设备和试剂为本技术领域常规市购产品。The technical solutions adopted in the present invention will be clearly and specifically described below through the examples and comparative examples. The examples and comparative examples are only examples of the present invention, do not represent all examples, and do not limit the scope of the present invention. . Embodiments in the present invention, as well as various changes or modifications made by those skilled in the art according to the present invention, these equivalent forms also belong to the protection scope of the present invention. Unless otherwise specified, the equipment and reagents used in the present invention are conventional commercially available products in the technical field.
<实施例1><Example 1>
S1、将0.233g富马酸和0.325g FeCl3·6H2O溶解在20mL N,N-二甲基甲酰胺中,剧烈搅拌,形成透明的黄色溶液,然后将溶液转移到50mL聚四氟乙烯内衬不锈钢高压釜中,120℃加热2h,冷却后离心收集样品,用水和乙醇交替洗涤3次,60℃干燥12h,得到铁基金属-有机骨架。S1. Dissolve 0.233g fumaric acid and 0.325g FeCl 3 6H 2 O in 20mL N,N-dimethylformamide, stir vigorously to form a transparent yellow solution, then transfer the solution to 50mL polytetrafluoroethylene In a lined stainless steel autoclave, heat at 120°C for 2h, collect the sample by centrifugation after cooling, alternately wash with water and ethanol three times, and dry at 60°C for 12h to obtain an iron-based metal-organic framework.
S2、将60mg铁基金属-有机骨架在20mL乙醇中超声分散5min,形成溶液A,再将250mg Co(NO3)2·6H2O和750mg尿素溶解在30mL蒸馏水中,形成溶液B,将A、B溶液混合后倒入100mL带盖玻璃瓶中,然后将玻璃瓶放入烤箱中,无搅拌条件下90℃加热5h,冷却后,将棕色产物离心收集,用水和乙醇多次洗涤至无杂质,在60℃下干燥12h,得到Co-Fe LDH蛋黄壳纳米笼。S2. Ultrasonic disperse 60 mg of iron-based metal-organic framework in 20 mL of ethanol for 5 min to form solution A, then dissolve 250 mg of Co(NO 3 ) 2 6H 2 O and 750 mg of urea in 30 mL of distilled water to form solution B, and dissolve A , B solution is mixed and poured into a 100mL glass bottle with a cover, then put the glass bottle in an oven, heat at 90°C for 5 hours without stirring, after cooling, centrifuge the brown product, wash it with water and ethanol for many times until there is no impurity , and dried at 60°C for 12h to obtain Co-Fe LDH yolk-shell nanocages.
S3、将Co-Fe LDH蛋黄壳纳米笼和硒粉以1:2的质量比放在同一瓷舟中,硒粉放置在管式炉气路的上游端,之后先在氢/氩混合气氛下以2℃ min-1的升温速率在350℃下保温4h,然后在氮气气氛下以2℃ min-1的升温速率在400℃保温1.5h,最后随炉冷却,获得复合材料FeSe2@CoSe2/FeSe2异质结构蛋黄壳多面体。S3. Put Co-Fe LDH egg yolk shell nanocages and selenium powder in the same porcelain boat with a mass ratio of 1:2. The temperature was kept at 350°C for 4h at a heating rate of 2°C min -1 , then kept at 400°C for 1.5h at a heating rate of 2°C min -1 under a nitrogen atmosphere, and finally cooled with the furnace to obtain the composite material FeSe 2 @CoSe 2 /FeSe 2 heterostructure yolk-shell polyhedra.
<实施例2><Example 2>
S1、将0.245g苯甲酸和0.581g Ni(NO3)2·6H2O溶解在20mL无水乙醇中,剧烈搅拌,形成透明的绿色溶液,然后将溶液转移到50mL聚四氟乙烯内衬不锈钢高压釜中,110℃加热5h,冷却后离心收集样品,用水和乙醇交替洗涤3次,80℃干燥24h,得到镍基金属-有机骨架。S1. Dissolve 0.245g benzoic acid and 0.581g Ni(NO 3 ) 2 6H 2 O in 20mL absolute ethanol, stir vigorously to form a transparent green solution, then transfer the solution to 50mL PTFE-lined stainless steel In an autoclave, heat at 110° C. for 5 h, collect the sample by centrifugation after cooling, alternately wash with water and ethanol three times, and dry at 80° C. for 24 h to obtain a nickel-based metal-organic framework.
S2、将60mg镍基金属-有机骨架在20mL甲醇中超声分散5min,形成溶液A。再将250mg Co(NO3)2·6H2O和1250mg碳酸钠溶解在30mL蒸馏水中,形成溶液B,将A、B溶液混合后倒入100mL带盖玻璃瓶中,然后将玻璃瓶放入烤箱中,无搅拌条件下90℃加热5h,冷却后,将产物离心收集,用水和乙醇多次洗涤至无杂质,在60℃下干燥24h,得到Co-Ni LDH蛋黄壳纳米笼。S2. Ultrasonic dispersion of 60 mg of nickel-based metal-organic framework in 20 mL of methanol for 5 min to form solution A. Dissolve 250mg Co(NO 3 ) 2 ·6H 2 O and 1250mg sodium carbonate in 30mL distilled water to form solution B. Mix A and B solutions and pour them into a 100mL glass bottle with a cover, then put the glass bottle into the oven , heated at 90°C for 5h without stirring, and after cooling, the product was collected by centrifugation, washed with water and ethanol several times until free of impurities, and dried at 60°C for 24h to obtain Co-Ni LDH yolk-shell nanocages.
S3、将Co-Ni LDH蛋黄壳纳米笼和硒粉以1:4的质量比放在同一瓷舟中,硒粉放置在管式炉气路的上游端。之后先在氢/氩混合气氛下以5℃ min-1的升温速率在300℃下保温4h,然后在氩气气氛下以5℃ min-1的升温速率在500℃保温5h,最后随炉冷却,获得复合材料NiSe2@CoSe2/NiSe2异质结构蛋黄壳多面体。S3. Put Co-Ni LDH yolk-shell nanocages and selenium powder in the same ceramic boat with a mass ratio of 1:4, and the selenium powder is placed at the upstream end of the tube furnace gas path. Afterwards, it was firstly kept at 300°C for 4 hours at a heating rate of 5°C min -1 under a hydrogen/argon mixed atmosphere, then kept at 500°C at a heating rate of 5°C min -1 under an argon atmosphere for 5 hours, and finally cooled in the furnace , to obtain composite NiSe 2 @CoSe 2 /NiSe 2 heterostructure yolk-shell polyhedra.
<实施例3><Example 3>
S1、将0.180g乙二酸和0.108g FeCl3·6H2O溶解在20mL去离子水中,剧烈搅拌,形成透明的黄色溶液,然后将溶液转移到50mL聚四氟乙烯内衬不锈钢高压釜中,120℃加热3h,冷却后离心收集样品,用水和乙醇交替洗涤3次,60℃干燥8h,得到铁基金属-有机骨架。S1. Dissolve 0.180g oxalic acid and 0.108g FeCl 3 6H 2 O in 20mL deionized water, stir vigorously to form a transparent yellow solution, then transfer the solution to a 50mL polytetrafluoroethylene-lined stainless steel autoclave, Heating at 120°C for 3 hours, centrifuging to collect samples after cooling, washing with water and ethanol three times alternately, and drying at 60°C for 8 hours to obtain iron-based metal-organic frameworks.
S2、将60mg铁基金属-有机骨架在20mL乙醇中超声分散5min,形成溶液A,再将250mg C4H14MnO8和250mg尿素溶解在30mL蒸馏水中,形成溶液B,将A、B溶液混合后倒入100mL带盖玻璃瓶中。然后将玻璃瓶放入烤箱中,无搅拌条件下60℃加热12h,冷却后,将产物离心收集,用水和乙醇多次洗涤至无杂质,在60℃下干燥8h,得到Fe-Mn LDH蛋黄壳纳米笼。S2. Ultrasonic disperse 60 mg of iron-based metal-organic framework in 20 mL of ethanol for 5 minutes to form solution A, then dissolve 250 mg of C 4 H 14 MnO 8 and 250 mg of urea in 30 mL of distilled water to form solution B, and mix A and B solutions Then pour it into a 100mL glass bottle with a lid. Then put the glass bottle into the oven and heat it at 60°C for 12h without stirring. After cooling, the product was collected by centrifugation, washed with water and ethanol several times until no impurities, and dried at 60°C for 8h to obtain the Fe-Mn LDH egg yolk shell nanocage.
S3、将Fe-Mn LDH蛋黄壳纳米笼和硒粉以1:1的质量比放在同一瓷舟中,硒粉放置在管式炉气路的上游端,之后先在氢/氮混合气氛下以3℃ min-1的升温速率在350℃下保温6h,然后在氮气气氛下以3℃ min-1的升温速率在500℃保温6h,最后随炉冷却,获得复合材料FeSe2@MnSe2/FeSe2异质结构蛋黄壳多面体。S3. Put Fe-Mn LDH yolk-shell nanocages and selenium powder in the same porcelain boat with a mass ratio of 1:1. The temperature was kept at 350 °C for 6 h at a heating rate of 3 °C min -1 , and then kept at 500 °C for 6 h at a heating rate of 3 °C min -1 under a nitrogen atmosphere, and finally cooled in the furnace to obtain the composite material FeSe 2 @MnSe 2 / FeSe 2 heterostructure yolk-shell polyhedra.
实施例1、2、3中所选取的双过渡金属分别为铁/钴、镍/钴、铁/锰,选取的有机配体试剂分别为富马酸、苯甲酸和乙二酸。The double transition metals selected in Examples 1, 2, and 3 were iron/cobalt, nickel/cobalt, and iron/manganese, respectively, and the organic ligand reagents selected were fumaric acid, benzoic acid, and oxalic acid, respectively.
<实施例4><Example 4>
S1、按照质量之比为7:2:1,分别称取由实施例1所述方法制备的复合材料、乙炔黑、聚偏二氟乙烯0.14g、0.04g、0.02g,溶解于1mL NMP中,在混料机中混合均匀,得到电极浆料。S1. According to the mass ratio of 7:2:1, weigh the composite material prepared by the method described in Example 1, acetylene black, and polyvinylidene fluoride 0.14g, 0.04g, and 0.02g respectively, and dissolve them in 1mL NMP , and mix uniformly in a mixer to obtain electrode slurry.
S2、将混合好的电极浆料均匀地涂覆于铝箔上,置于真空干燥箱中在100℃温度下干燥12h,切成载量约为1mg的电极圆片后采用CR2032型纽扣电池进行组装。S2. Coat the mixed electrode slurry evenly on the aluminum foil, place it in a vacuum drying oven and dry it at 100°C for 12 hours, cut into electrode discs with a loading capacity of about 1 mg, and assemble them with CR2032 button cells .
S3、以复合材料制成的负极片为工作电极,金属钠片为对电极,采用玻璃纤维隔膜和1mol·L-1六氟磷酸钠(NaPF6)溶于二乙二醇甲醚(DME)为电解液组装成电池并进行性能测试。S3. The negative electrode sheet made of composite material is used as the working electrode, the metal sodium sheet is used as the counter electrode, and the glass fiber diaphragm and 1mol L - 1 sodium hexafluorophosphate (NaPF 6 ) are dissolved in diethylene glycol methyl ether (DME). Assemble a battery for the electrolyte and conduct a performance test.
<实施例5><Example 5>
S1、按照质量之比为5:1:1,分别称取由实施例1所述方法制备的复合材料、乙炔黑、聚偏二氟乙烯0.10g、0.02g、0.02g,溶解于1mL NMP中,在混料机中混合均匀,得到电极浆料。S1. According to the mass ratio of 5:1:1, weigh the composite material prepared by the method described in Example 1, acetylene black, and polyvinylidene fluoride 0.10g, 0.02g, and 0.02g respectively, and dissolve them in 1mL NMP , and mix uniformly in a mixer to obtain electrode slurry.
S2、将混合好的电极浆料均匀地涂覆于铝箔上,置于真空干燥箱中在100℃温度下干燥12h,切成载量约为1mg的电极圆片后采用CR2032型纽扣电池进行组装。S2. Coat the mixed electrode slurry evenly on the aluminum foil, place it in a vacuum drying oven and dry it at 100°C for 12 hours, cut into electrode discs with a loading capacity of about 1 mg, and assemble them with CR2032 button cells .
S3、以复合材料制成的负极片为工作电极,金属钠片为对电极,采用玻璃纤维隔膜和1mol·L-1六氟磷酸钠(NaPF6)溶于二乙二醇甲醚(DME)为电解液组装成电池并进行性能测试。S3. The negative electrode sheet made of composite material is used as the working electrode, the metal sodium sheet is used as the counter electrode, and the glass fiber diaphragm and 1mol L - 1 sodium hexafluorophosphate (NaPF 6 ) are dissolved in diethylene glycol methyl ether (DME). Assemble a battery for the electrolyte and conduct a performance test.
<实施例6><Example 6>
S1、按照质量之比为5:1:1,分别称取由实施例1所述方法制备的复合材料、乙炔黑、聚偏二氟乙烯0.10g、0.02g、0.02g,溶解于1mL NMP中,在混料机中混合均匀,得到电极浆料。S1. According to the mass ratio of 5:1:1, weigh the composite material prepared by the method described in Example 1, acetylene black, and polyvinylidene fluoride 0.10g, 0.02g, and 0.02g respectively, and dissolve them in 1mL NMP , and mix uniformly in a mixer to obtain electrode slurry.
S2、将混合好的电极浆料均匀地涂覆于铝箔上,置于真空干燥箱中在100℃温度下干燥12h,切成载量约为1mg的电极圆片后采用CR2032型纽扣电池进行组装。S2. Coat the mixed electrode slurry evenly on the aluminum foil, place it in a vacuum drying oven and dry it at 100°C for 12 hours, cut into electrode discs with a loading capacity of about 1 mg, and assemble them with CR2032 button cells .
S3、以复合材料制成的负极片为工作电极,磷酸钒钠材料为对电极,采用玻璃纤维隔膜和1mol·L-1六氟磷酸钠(NaPF6)溶于二乙二醇甲醚(DME)为电解液组装成电池并进行性能测试。S3. The negative plate made of composite material is used as the working electrode, the sodium vanadium phosphate material is used as the counter electrode, and the glass fiber diaphragm and 1mol L -1 sodium hexafluorophosphate (NaPF 6 ) are dissolved in diethylene glycol methyl ether (DME ) for the electrolyte to assemble into a battery and perform a performance test.
<实施例7><Example 7>
S1、按照质量之比为7:2:1,分别称取由实施例1所述方法制备的复合材料、乙炔黑、聚偏二氟乙烯0.14g、0.04g、0.02g,溶解于1mL NMP中,在混料机中混合均匀,得到电极浆料。S1. According to the mass ratio of 7:2:1, weigh the composite material prepared by the method described in Example 1, acetylene black, and polyvinylidene fluoride 0.14g, 0.04g, and 0.02g respectively, and dissolve them in 1mL NMP , and mix uniformly in a mixer to obtain electrode slurry.
S2、将混合好的电极浆料均匀地涂覆于铝箔上,置于真空干燥箱中在100℃温度下干燥12h,切成载量约为1mg的电极圆片后采用CR2032型纽扣电池进行组装。S2. Coat the mixed electrode slurry evenly on the aluminum foil, place it in a vacuum drying oven and dry it at 100°C for 12 hours, cut into electrode discs with a loading capacity of about 1 mg, and assemble them with CR2032 button cells .
S3、以复合材料制成的负极片为工作电极,磷酸钒钠材料为对电极,采用玻璃纤维隔膜和1mol·L-1六氟磷酸钠(NaPF6)溶于二乙二醇甲醚(DME)为电解液组装成电池并进行性能测试。S3. The negative plate made of composite material is used as the working electrode, the sodium vanadium phosphate material is used as the counter electrode, and the glass fiber diaphragm and 1mol L -1 sodium hexafluorophosphate (NaPF 6 ) are dissolved in diethylene glycol methyl ether (DME ) for the electrolyte to assemble into a battery and perform a performance test.
<对比例1><Comparative example 1>
S1、将0.233g富马酸和0.325g FeCl3·6H2O溶解在20mL N,N-二甲基甲酰胺中,剧烈搅拌,形成透明的黄色溶液,然后将溶液转移到50mL特氟龙内衬不锈钢高压釜中,120℃加热2h,冷却后离心收集样品,用水和乙醇交替洗涤3次,60℃干燥12h,得到铁基金属-有机骨架。S1. Dissolve 0.233g fumaric acid and 0.325g FeCl 3 6H 2 O in 20mL N,N-dimethylformamide, stir vigorously to form a transparent yellow solution, then transfer the solution into 50mL Teflon In a stainless-steel-lined autoclave, heat at 120°C for 2 hours, collect the sample by centrifugation after cooling, alternately wash with water and ethanol three times, and dry at 60°C for 12 hours to obtain an iron-based metal-organic framework.
S2、将60mg铁基金属-有机骨架在20mL乙醇中超声分散5min,形成溶液A,再将750mg尿素溶解在30mL蒸馏水中,形成溶液B,将A、B溶液混合后倒入100mL带盖玻璃瓶中,然后将玻璃瓶放入烤箱中,无搅拌条件下90℃加热5h,冷却后,将棕色产物离心收集,用水和乙醇多次洗涤,在60℃下干燥12h,得到氢氧化铁。S2. Ultrasonic disperse 60 mg of iron-based metal-organic framework in 20 mL of ethanol for 5 minutes to form solution A, then dissolve 750 mg of urea in 30 mL of distilled water to form solution B, mix A and B solutions and pour them into a 100 mL glass bottle with a cover Then put the glass bottle into the oven and heat at 90°C for 5h without stirring. After cooling, the brown product was collected by centrifugation, washed with water and ethanol several times, and dried at 60°C for 12h to obtain ferric hydroxide.
S3、氢氧化铁和硒粉以1:2的质量比放在同一瓷舟中,硒粉放置在管式炉的上游端附近。之后先在氢和氩混合气氛下以2℃ min-1的升温速率在350℃下保温4h,然后在氮气气氛下以2℃ min-1的升温速率在400℃保温1.5h。最后随炉冷却,获得目标材料FeSe2。S3, ferric hydroxide and selenium powder are placed in the same porcelain boat with a mass ratio of 1:2, and the selenium powder is placed near the upstream end of the tube furnace. Afterwards, it was firstly incubated at 350°C for 4 hours at a heating rate of 2°C min -1 under a mixed atmosphere of hydrogen and argon, and then kept at 400°C for 1.5 hours at a heating rate of 2°C min -1 under a nitrogen atmosphere. Finally, it is cooled with the furnace to obtain the target material FeSe 2 .
<对比例2><Comparative example 2>
S1、按照质量之比为7:2:1,分别称取由对比例1所述方法制备的复合材料、乙炔黑、聚偏二氟乙烯0.14g、0.04g、0.02g,溶解于1mL NMP中,在混料机中混合均匀,得到电极浆料。S1. According to the mass ratio of 7:2:1, weigh the composite material prepared by the method described in Comparative Example 1, acetylene black, and polyvinylidene fluoride 0.14g, 0.04g, and 0.02g, respectively, and dissolve them in 1mL NMP , and mix uniformly in a mixer to obtain electrode slurry.
S2、将混合好的电极浆料均匀地涂覆于铝箔上,置于真空干燥箱中在100℃温度下干燥12h,切成载量约为1mg的电极圆片后采用CR2032型纽扣电池进行组装。S2. Coat the mixed electrode slurry evenly on the aluminum foil, place it in a vacuum drying oven and dry it at 100°C for 12 hours, cut into electrode discs with a loading capacity of about 1 mg, and assemble them with CR2032 button cells .
S3、以复合材料制成的负极片为工作电极,金属钠片为对电极,采用玻璃纤维隔膜和1mol·L-1六氟磷酸钠(NaPF6)溶于二乙二醇甲醚(DME)为电解液组装成电池并进行性能测试。S3. The negative electrode sheet made of composite material is used as the working electrode, the metal sodium sheet is used as the counter electrode, and the glass fiber diaphragm and 1mol L - 1 sodium hexafluorophosphate (NaPF 6 ) are dissolved in diethylene glycol methyl ether (DME). Assemble a battery for the electrolyte and conduct a performance test.
以实施例1得到的复合材料FeSe2@CoSe2/FeSe2为例,其颗粒大小约为1-2μm,其扫描电子显微镜(SEM)和透射电子显微镜(TEM)分别如图1和图2所示。Taking the composite material FeSe 2 @CoSe 2 /FeSe 2 obtained in Example 1 as an example, its particle size is about 1-2 μm, and its scanning electron microscope (SEM) and transmission electron microscope (TEM) are shown in Figure 1 and Figure 2 respectively Show.
如图3所示为实施例4组装成的电池的倍率性能图,电压区间在0.3~2.9V,在0.1Ag-1,0.2Ag-1,0.5Ag-1,1Ag-1,2Ag-1,3Ag-1以及5Ag-1电流密度下进行恒电流充放电测试,其放电比容量别为708.8,550.4,539.2,533.6,522.8,512.5和495.4mAh g-1,表现出优异的倍率性能。As shown in Figure 3, the rate performance diagram of the battery assembled in Example 4, the voltage range is 0.3-2.9V, at 0.1Ag -1 , 0.2Ag -1 , 0.5Ag -1 , 1Ag -1 , 2Ag -1 , The galvanostatic charge and discharge tests were carried out under the current density of 3Ag -1 and 5Ag -1 , and the discharge specific capacities were 708.8, 550.4, 539.2, 533.6, 522.8, 512.5 and 495.4mAh g -1 , showing excellent rate performance.
如图4所示为实施例4与对比例2所制备组装成的电池分别在低电流密度0.2Ag-1下的循环性能图,由图4可知,由实施例1中制备的异质结构蛋黄壳型复合材料FeSe2@CoSe2/FeSe2作为电池负极材料,可使得电池的容量更高、稳定性更好。As shown in Figure 4, the cycle performance diagrams of the assembled batteries prepared in Example 4 and Comparative Example 2 at a low current density of 0.2Ag The shell-type composite material FeSe 2 @CoSe 2 /FeSe 2 is used as the negative electrode material of the battery, which can make the battery have higher capacity and better stability.
如图5所示为实施例4组装成的电池在2Ag-1大电流密度下的循环性能图,由图5可知,在充放电1800次后材料仍具有529mAh g-1的比容量,容量保持率高达为78%,表现出优异的循环性能和长寿命,是实现高容量、高功率钠离子电池的理想负极材料。As shown in Figure 5, it is the cycle performance diagram of the battery assembled in Example 4 at a high current density of 2Ag -1 . It can be seen from Figure 5 that the material still has a specific capacity of 529mAh g -1 after charging and discharging for 1800 times, and the capacity remains The efficiency is as high as 78%, showing excellent cycle performance and long life, and is an ideal anode material for realizing high-capacity, high-power sodium-ion batteries.
在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位与图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。In this article, the orientation words such as front, back, upper, and lower involved are defined by the positions of the parts in the drawings and the positions between the parts in the drawings, and the positions between the parts are only for the clarity and convenience of expressing the technical solution. It should be understood that the use of the location words should not limit the scope of protection claimed in this application.
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。In the case of no conflict, the above-mentioned embodiments and features in the embodiments herein may be combined with each other.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310323734.2A CN116387481A (en) | 2023-03-28 | 2023-03-28 | Preparation method and application of a heterogeneous structure yolk-shell type double transition metal selenide composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310323734.2A CN116387481A (en) | 2023-03-28 | 2023-03-28 | Preparation method and application of a heterogeneous structure yolk-shell type double transition metal selenide composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116387481A true CN116387481A (en) | 2023-07-04 |
Family
ID=86964095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310323734.2A Pending CN116387481A (en) | 2023-03-28 | 2023-03-28 | Preparation method and application of a heterogeneous structure yolk-shell type double transition metal selenide composite material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116387481A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118004978A (en) * | 2024-04-10 | 2024-05-10 | 洛阳理工学院 | A metal selenide material containing multiple heterogeneous interfaces and its preparation method and application |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113314714A (en) * | 2021-05-18 | 2021-08-27 | 广州大学 | Bimetallic selenide material and preparation method and application thereof |
CN113629245A (en) * | 2021-08-05 | 2021-11-09 | 肇庆市华师大光电产业研究院 | Novel compounding method of carbon material and transition metal compound, composite material and application |
-
2023
- 2023-03-28 CN CN202310323734.2A patent/CN116387481A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113314714A (en) * | 2021-05-18 | 2021-08-27 | 广州大学 | Bimetallic selenide material and preparation method and application thereof |
CN113629245A (en) * | 2021-08-05 | 2021-11-09 | 肇庆市华师大光电产业研究院 | Novel compounding method of carbon material and transition metal compound, composite material and application |
Non-Patent Citations (2)
Title |
---|
HUI SHAN等: "Controllable Heterojunctions with a Semicoherent Phase Boundary Boosting the Potassium Storage of CoSe2/FeSe2", ADV. MATER., vol. 33, 2 August 2021 (2021-08-02), pages 1 - 12 * |
SEUNG-KEUN PARK等: "Metal–organic framework-derived CoSe2/(NiCo)Se2 box-in-box hollow nanocubes with enhanced electrochemical properties for sodium-ion storage and hydrogen evolution", J. MATER. CHEM. A, vol. 5, 11 August 2017 (2017-08-11), pages 18823 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118004978A (en) * | 2024-04-10 | 2024-05-10 | 洛阳理工学院 | A metal selenide material containing multiple heterogeneous interfaces and its preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106684369B (en) | Sodium ion battery anode material embedded and coated with sodium fast ion conductor and synthetic method thereof | |
CN110571416B (en) | Transition metal selenium-sulfur compound and preparation method thereof | |
WO2022062320A1 (en) | Negative electrode material on which metal element is gradient-doped and application thereof | |
CN113839038A (en) | MOF-derived Bi @ C nano composite electrode material and preparation method thereof | |
CN108258223B (en) | Preparation method of spherical N-doped C-coated metal oxide negative electrode material with multilevel structure | |
CN111564629B (en) | Sulfur-doped Co 3 S 4 Preparation method of lithium ion battery anode material | |
CN108306059A (en) | The preparation method of environmentally protective high power water system Zinc ion battery | |
CN102324497A (en) | A kind of preparation method of lithium battery negative electrode material of graphene supported carbon coating tin antimony | |
CN109473666A (en) | A kind of graphene-supported SbVO4 nanoparticle composite material and preparation method thereof | |
CN114050265B (en) | Nickel selenide/manganese selenide nanocomposite loaded by crosslinked nano carbon sheet, preparation method of nickel selenide/manganese selenide nanocomposite and sodium ion battery negative electrode | |
CN118867156A (en) | Transition metal and metal-poor sulfur-selenium-tellurium composite materials and their preparation and application | |
Sun et al. | Review on layered manganese‐based metal oxides cathode materials for potassium‐ion batteries: from preparation to modification | |
CN115425209A (en) | Preparation method and application of a bayberry-shaped iron-doped cobalt-based chalcogenide nitrogen-doped carbon porous composite material | |
CN113363460B (en) | Preparation method of lithium ion battery negative electrode material zinc nickelate bimetallic oxide | |
CN116387481A (en) | Preparation method and application of a heterogeneous structure yolk-shell type double transition metal selenide composite material | |
CN109950503A (en) | Preparation method of CoMoOx/carbon/sulfur composite nanomaterial, negative electrode of lithium ion battery and lithium ion half battery | |
CN113410460A (en) | Three-dimensional ordered macroporous carbon-coated nickel selenide nanocrystalline material, preparation and application | |
CN108091835A (en) | Lithium-sulfur battery composite cathode material of cobalt ferrite sulfur loaded and preparation method thereof | |
CN115172678B (en) | A sodium ion battery tin-iron-carbon composite negative electrode material and preparation method thereof | |
CN114420916B (en) | Positive electrode material of lithium-sulfur battery, and preparation method and application thereof | |
CN116525795A (en) | Prussian blue sodium ion battery positive electrode material, preparation method and sodium battery | |
CN114506876A (en) | A kind of preparation method and application of hollow open-hole nano-cube cobalt tetrasulfide material | |
WO2018195837A1 (en) | Metal-sulfur battery and preparation method therefor | |
CN114784243B (en) | Nitrogen-doped reduced graphene oxide-supported nickel phosphide composite material and preparation method thereof | |
CN108862403A (en) | A kind of preparation method and applications of cobalt acid zinc nanometer sheet material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |