CN116384237A - Thermal infrared atmospheric parameter inversion method and device and electronic equipment - Google Patents
Thermal infrared atmospheric parameter inversion method and device and electronic equipment Download PDFInfo
- Publication number
- CN116384237A CN116384237A CN202310327016.2A CN202310327016A CN116384237A CN 116384237 A CN116384237 A CN 116384237A CN 202310327016 A CN202310327016 A CN 202310327016A CN 116384237 A CN116384237 A CN 116384237A
- Authority
- CN
- China
- Prior art keywords
- neural network
- atmospheric
- short
- term memory
- network model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000003062 neural network model Methods 0.000 claims abstract description 79
- 239000013598 vector Substances 0.000 claims abstract description 42
- 230000007774 longterm Effects 0.000 claims abstract description 32
- 230000006403 short-term memory Effects 0.000 claims abstract description 32
- 238000012549 training Methods 0.000 claims abstract description 25
- 238000013528 artificial neural network Methods 0.000 claims abstract description 21
- 230000007246 mechanism Effects 0.000 claims abstract description 14
- 230000002457 bidirectional effect Effects 0.000 claims description 70
- 230000015654 memory Effects 0.000 claims description 65
- 238000000605 extraction Methods 0.000 claims description 24
- 230000006870 function Effects 0.000 claims description 19
- 238000004422 calculation algorithm Methods 0.000 claims description 14
- 238000010276 construction Methods 0.000 claims description 12
- 238000004088 simulation Methods 0.000 claims description 12
- 230000004913 activation Effects 0.000 claims description 11
- 230000003595 spectral effect Effects 0.000 claims description 5
- 238000001228 spectrum Methods 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 2
- 238000007418 data mining Methods 0.000 abstract description 4
- 230000007787 long-term memory Effects 0.000 abstract description 3
- 238000012545 processing Methods 0.000 abstract description 3
- 230000008569 process Effects 0.000 description 10
- 230000005855 radiation Effects 0.000 description 7
- 238000002834 transmittance Methods 0.000 description 7
- 238000013507 mapping Methods 0.000 description 4
- 238000004590 computer program Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000000802 evaporation-induced self-assembly Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- -1 vegetation Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
- G01W1/02—Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover or wind speed
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
- G06N3/0442—Recurrent networks, e.g. Hopfield networks characterised by memory or gating, e.g. long short-term memory [LSTM] or gated recurrent units [GRU]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Environmental Sciences (AREA)
- Ecology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Geometry (AREA)
- Computer Hardware Design (AREA)
- Atmospheric Sciences (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Radiation Pyrometers (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Image Analysis (AREA)
Abstract
本发明属于遥感图像处理技术领域,涉及热红外大气参数反演方法、装置及电子设备,该方法包括:提取地表发射率信息和大气信息;确定大气参数,建立模拟数据集;构建双向长短期记忆神经网络模型;模型训练确定模型的结构参数;利用注意力机制对双向长短期记忆神经网络模型的输出特征向量的各个通道信息进行加权;模型训练;迭代更新直至模型的输出收敛,得到大气参数反演模型;得到热红外大气参数反演结果。本发明有效地解决了深度神经网络对数据挖掘能力较弱的问题,提出双向长短期记忆神经网络结构,利用通道注意力模块对不同的通道信息进行加权,获取不同通道辐亮度数据的相关性特征,得到热红外大气参数反演结果。
The invention belongs to the technical field of remote sensing image processing, and relates to a thermal infrared atmospheric parameter inversion method, device and electronic equipment. The method includes: extracting surface emissivity information and atmospheric information; determining atmospheric parameters and establishing a simulated data set; constructing a two-way long-term short-term memory Neural network model; model training to determine the structural parameters of the model; use the attention mechanism to weight the information of each channel of the output feature vector of the two-way long-term short-term memory neural network model; model training; update iteratively until the output of the model converges, and obtain the atmospheric parameter feedback Inversion model; obtain thermal infrared atmospheric parameter inversion results. The present invention effectively solves the problem that the deep neural network has weak data mining ability, proposes a two-way long-term and short-term memory neural network structure, uses the channel attention module to weight different channel information, and obtains the correlation characteristics of the radiance data of different channels , to obtain the inversion results of thermal infrared atmospheric parameters.
Description
技术领域technical field
本发明属于遥感图像处理技术领域,具体而言,涉及一种基于注意力机制的长短期记忆神经网络热红外大气参数反演方法、装置及电子设备。The invention belongs to the technical field of remote sensing image processing, and in particular relates to an attention mechanism-based long-short-term memory neural network thermal infrared atmospheric parameter inversion method, device and electronic equipment.
背景技术Background technique
大气参数反演近年来受到了广泛的关注,在多个学科领域具有广泛应用。大气参数的反演也引起了很多学者的兴趣,例如对不同波长的大气透过率相关关系进行建模,反演计算临近波长辐射的大气透过率;通过建模不同波段水汽和大气透过率的统计关系,对透过率进行获取。现有大气参数反演方法在实际应用中,观测亮温为微波辐射计实际观测所得,其空间分辨率较低,导致大气参数反演精度不高,深度神经网络存在数据挖掘能力较弱的问题。Atmospheric parameter inversion has received extensive attention in recent years and has been widely used in many disciplines. The inversion of atmospheric parameters has also aroused the interest of many scholars, such as modeling the correlation of atmospheric transmittance at different wavelengths, inverting and calculating the atmospheric transmittance of radiation near wavelengths; by modeling water vapor and atmospheric transmittance in different bands The statistical relationship of the rate is used to obtain the transmittance. In the actual application of the existing atmospheric parameter inversion method, the observed brightness temperature is obtained from the actual observation of the microwave radiometer, and its spatial resolution is low, resulting in low accuracy of the atmospheric parameter inversion, and the deep neural network has the problem of weak data mining ability .
发明内容Contents of the invention
为了解决上述技术问题,本发明提供热红外大气参数反演方法、装置及电子设备。In order to solve the above technical problems, the present invention provides a thermal infrared atmospheric parameter inversion method, device and electronic equipment.
第一方面,本发明提供了热红外大气参数反演方法,包括:In the first aspect, the present invention provides a thermal infrared atmospheric parameter inversion method, including:
提取地物波谱库和大气廓线库的地表发射率信息和大气信息;Extract the surface emissivity information and atmospheric information from the object spectral library and atmospheric profile library;
根据所述地表发射率信息和所述大气信息,确定大气参数,建立模拟数据集;determining atmospheric parameters and establishing a simulation data set according to the surface emissivity information and the atmospheric information;
构建双向长短期记忆神经网络模型;Construct a bidirectional long-short-term memory neural network model;
利用所述模拟数据集中的高光谱数据对所述双向长短期记忆神经网络模型进行训练,确定所述双向长短期记忆神经网络模型的结构参数;Using the hyperspectral data in the simulation data set to train the bidirectional long-short-term memory neural network model, and determine the structural parameters of the bidirectional long-term short-term memory neural network model;
利用注意力机制对所述双向长短期记忆神经网络模型的输出特征向量的各个通道信息进行加权,得到目标双向长短期记忆神经网络模型;Using the attention mechanism to weight each channel information of the output feature vector of the two-way long-short-term memory neural network model to obtain the target two-way long-short-term memory neural network model;
通过所述模拟数据集中的所述大气参数对所述目标双向长短期记忆神经网络模型进行数据训练;performing data training on the target bidirectional long-short-term memory neural network model through the atmospheric parameters in the simulated data set;
采用反向传播算法对训练后的所述目标双向长短期记忆神经网络模型参数不断迭代更新直至所述目标双向长短期记忆神经网络模型的输出收敛,得到大气参数反演模型;Using a backpropagation algorithm to continuously iteratively update the parameters of the trained target bidirectional long-short-term memory neural network model until the output of the target bidirectional long-short-term memory neural network model converges to obtain an atmospheric parameter inversion model;
获取热红外高光谱辐亮度数据并作为所述大气参数反演模型的输入,得到热红外大气参数反演结果。The thermal infrared hyperspectral radiance data is obtained and used as the input of the atmospheric parameter inversion model to obtain the thermal infrared atmospheric parameter inversion result.
第二方面,本发明提供了热红外大气参数反演装置,包括提取单元、模拟数据集建立单元、第一模型构建单元、第一模型训练单元、第二模型构建单元、第二模型训练单元、迭代更新单元、输入单元与输出单元;In a second aspect, the present invention provides a thermal infrared atmospheric parameter inversion device, including an extraction unit, a simulated data set establishment unit, a first model construction unit, a first model training unit, a second model construction unit, a second model training unit, Iterative update unit, input unit and output unit;
所述提取单元,用于提取地物波谱库和大气廓线库的地表发射率信息和大气信息;The extraction unit is used to extract the surface emissivity information and atmospheric information of the surface object spectrum library and the atmospheric profile library;
所述模拟数据集建立单元,用于根据所述地表发射率信息和所述大气信息,确定大气参数,建立模拟数据集;The simulation data set establishment unit is used to determine atmospheric parameters and establish a simulation data set according to the surface emissivity information and the atmospheric information;
所述第一模型构建单元,用于构建双向长短期记忆神经网络模型;The first model construction unit is configured to construct a bidirectional long-short-term memory neural network model;
所述第一模型训练单元,用于利用所述模拟数据集中的高光谱数据对所述双向长短期记忆神经网络模型进行训练,确定所述双向长短期记忆神经网络模型的结构参数;The first model training unit is configured to use the hyperspectral data in the simulated data set to train the bidirectional long-short-term memory neural network model, and determine structural parameters of the bidirectional long-short-term memory neural network model;
所述第二模型构建单元,用于利用注意力机制对所述双向长短期记忆神经网络模型的输出特征向量的各个通道信息进行加权,得到目标双向长短期记忆神经网络模型;The second model construction unit is configured to use an attention mechanism to weight each channel information of the output feature vector of the bidirectional long-short-term memory neural network model to obtain a target bidirectional long-short-term memory neural network model;
所述第二模型训练单元,用于通过所述模拟数据集中的所述大气参数对所述目标双向长短期记忆神经网络模型进行数据训练;The second model training unit is configured to perform data training on the target bidirectional long-short-term memory neural network model through the atmospheric parameters in the simulated data set;
所述迭代更新单元,用于采用反向传播算法对训练后的所述目标双向长短期记忆神经网络模型参数不断迭代更新直至所述目标双向长短期记忆神经网络模型的输出收敛,得到大气参数反演模型;The iterative update unit is used to continuously iteratively update the parameters of the trained target bidirectional long-short-term memory neural network model by using a back-propagation algorithm until the output of the target bidirectional long-term short-term memory neural network model converges to obtain atmospheric parameter responses. play model;
所述输入单元,用于获取热红外高光谱辐亮度数据并作为所述大气参数反演模型的输入;The input unit is used to obtain thermal infrared hyperspectral radiance data and serve as the input of the atmospheric parameter inversion model;
所述输出单元,用于输出热红外大气参数反演结果。The output unit is used to output the inversion results of thermal infrared atmospheric parameters.
第三方面,本发明公开了一种电子设备,包括:In a third aspect, the present invention discloses an electronic device, comprising:
处理器和存储器;processor and memory;
所述存储器,用于存储计算机操作指令;The memory is used to store computer operation instructions;
所述处理器,用于通过调用所述计算机操作指令,执行所述的热红外大气参数反演方法。The processor is configured to execute the thermal infrared atmospheric parameter inversion method by invoking the computer operation instruction.
本发明的有益效果是:本发明不仅有效地解决了深度神经网络对数据挖掘能力较弱的问题,同时加强了网络在反演过程中对高光谱相邻通道数据间相关性信息的重视程度。本发明提出双向长短期记忆神经网络结构,用于提取不同通道的相关性特征;然后利用通道注意力模块对不同的通道信息进行加权,使得权值较高的通道在特征中的比重提高;最后采用全连接结构将特征映射到样本标记空间,并将特征转化为各通道的大气上行辐射、下行辐射以及透射率的估算结果;本发明利用遥感图像的辐亮度信息,利用具有双向长短期记忆神经网络的循环神经网络模块添加注意力机制,获取辐亮度和大气参数的相关性,反演得到大气上行辐射、下行辐射和透过率。The beneficial effects of the present invention are: the present invention not only effectively solves the problem of weak data mining ability of the deep neural network, but also strengthens the network's emphasis on the correlation information between hyperspectral adjacent channel data during the inversion process. The present invention proposes a two-way long-term and short-term memory neural network structure, which is used to extract the correlation features of different channels; then use the channel attention module to weight the information of different channels, so that the proportion of channels with higher weights in the features is increased; finally The fully connected structure is used to map the features to the sample label space, and the features are converted into the estimation results of the atmospheric uplink radiation, downlink radiation and transmittance of each channel; The cyclic neural network module of the network adds an attention mechanism to obtain the correlation between radiance and atmospheric parameters, and inverts the upward radiation, downward radiation and transmittance of the atmosphere.
在上述技术方案的基础上,本发明还可以做如下改进。On the basis of the above technical solutions, the present invention can also be improved as follows.
进一步,所述双向长短期记忆神经网络模型包括两个参数相互独立的LSTM神经网络,将所述模拟数据集中的所述高光谱数据分别以正序和逆序输入至所述LSTM神经网络进行特征提取,得到两个特征提取向量,所述特征提取向量拼接后形成输出向量。Further, the bidirectional long-short-term memory neural network model includes two LSTM neural networks whose parameters are independent of each other, and the hyperspectral data in the simulated data set are respectively input into the LSTM neural network in forward and reverse order for feature extraction , two feature extraction vectors are obtained, and the feature extraction vectors are concatenated to form an output vector.
进一步,利用注意力机制对所述双向长短期记忆神经网络模型的输出特征向量的各个通道信息进行加权,包括:Further, using the attention mechanism to weight each channel information of the output feature vector of the bidirectional long-short-term memory neural network model, including:
通过卷积操作,将给定的特征通道数为第一通道数的输入数据变换得到一个特征通道数为第二通道数的特征向量;Through the convolution operation, the input data with the given number of feature channels as the first channel number is transformed to obtain a feature vector with the number of feature channels as the second channel number;
使用全局化方法,在空间维度对所述特征向量进行压缩,将每个通道的二维特征向量压缩为实数,作为各个通道的特征值;Using a globalization method, compressing the feature vector in the spatial dimension, compressing the two-dimensional feature vector of each channel into a real number, as the feature value of each channel;
通过若干个全连接层组成Bottleneck结构为各个通道的所述特征值生成权重值,并对所述权重值进行归一化;Forming a Bottleneck structure through several fully connected layers generates weight values for the eigenvalues of each channel, and normalizes the weight values;
将归一化权重加权到各个通道的所述特征值上,将所述权重值与所述特征向量进行加权求和。The normalization weight is weighted to the feature value of each channel, and the weight value and the feature vector are weighted and summed.
进一步,所述全连接层采用三层全连接模块进行映射;相邻层的全连接模块之间使用激活函数进行激活。Further, the fully-connected layer uses three-layer fully-connected modules for mapping; the fully-connected modules of adjacent layers are activated using activation functions.
进一步,采用反向传播算法对训练后的所述目标双向长短期记忆神经网络模型参数不断迭代更新直至所述目标双向长短期记忆神经网络模型的输出收敛,得到大气参数反演模型,包括:Further, using the backpropagation algorithm to iteratively update the parameters of the trained target bidirectional long-short-term memory neural network model until the output of the target bidirectional long-short-term memory neural network model converges to obtain an atmospheric parameter inversion model, including:
从所述模拟数据集中获取高光谱大气参数反演数据作为训练数据;Obtain hyperspectral atmospheric parameter inversion data from the simulated data set as training data;
从标签数据中读取若干不同大气参数下的辐亮度对应的大气参数,将大气参数和相同大气参数状态下的辐亮度信息配对;Read the atmospheric parameters corresponding to the radiance under several different atmospheric parameters from the tag data, and pair the atmospheric parameters with the radiance information under the same atmospheric parameter state;
采用反向传播算法更新所述目标双向长短期记忆神经网络模型的参数,输入不同状态下的辐亮度,使所述目标双向长短期记忆神经网络模型的均方根误差数值逐渐衰减至设定值;Using the backpropagation algorithm to update the parameters of the target bidirectional long-term short-term memory neural network model, input the radiance under different states, so that the root mean square error value of the target bidirectional long-term short-term memory neural network model gradually decays to a set value ;
使用均方误差作为损失函数,选择最终损失函数最小的网络模块作为所述大气参数反演模型。The mean square error is used as the loss function, and the network module with the smallest final loss function is selected as the atmospheric parameter inversion model.
进一步,通过设置通道注意力模块,并在所述通道注意力模块设置等间隔的下采样通道数的方式,根据所述目标双向长短期记忆神经网络模型的收敛速度,确定所述通道注意力模块的下采样通道数。Further, by setting the channel attention module and setting the number of down-sampling channels at equal intervals in the channel attention module, the channel attention module is determined according to the convergence speed of the target bidirectional long-short-term memory neural network model The number of downsampling channels.
附图说明Description of drawings
图1为本发明实施例1提供的热红外大气参数反演方法的流程图;Fig. 1 is the flowchart of the thermal infrared atmospheric parameter inversion method provided by embodiment 1 of the present invention;
图2为本发明实施例1提供的热红外大气参数反演装置的原理图;Fig. 2 is a schematic diagram of the thermal infrared atmospheric parameter inversion device provided by Embodiment 1 of the present invention;
图3是本发明实施例3提供的一种电子设备的原理图。FIG. 3 is a schematic diagram of an electronic device provided by Embodiment 3 of the present invention.
图标:30-电子设备;310-处理器;320-总线;330-存储器;340-收发器。Icons: 30-electronic device; 310-processor; 320-bus; 330-memory; 340-transceiver.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. The components of the embodiments of the invention generally described and illustrated in the figures herein may be arranged and designed in a variety of different configurations.
实施例1Example 1
作为一个实施例,如附图1所示,为解决上述技术问题,本实施例提供热红外大气参数反演方法,包括:As an embodiment, as shown in Figure 1, in order to solve the above technical problems, this embodiment provides a method for inversion of thermal infrared atmospheric parameters, including:
提取地物波谱库和大气廓线库的地表发射率信息和大气信息;Extract the surface emissivity information and atmospheric information from the object spectral library and atmospheric profile library;
根据地表发射率信息和大气信息,确定大气参数,建立模拟数据集;According to the surface emissivity information and atmospheric information, determine the atmospheric parameters and establish a simulation data set;
构建双向长短期记忆神经网络模型;Construct a bidirectional long-short-term memory neural network model;
利用模拟数据集中的高光谱数据对双向长短期记忆神经网络模型进行训练,确定双向长短期记忆神经网络模型的结构参数;Using the hyperspectral data in the simulated data set to train the bidirectional long-term short-term memory neural network model, and determine the structural parameters of the bidirectional long-term short-term memory neural network model;
利用注意力机制对双向长短期记忆神经网络模型的输出特征向量的各个通道信息进行加权,得到目标双向长短期记忆神经网络模型;Using the attention mechanism to weight the information of each channel of the output feature vector of the bidirectional long-term short-term memory neural network model to obtain the target bidirectional long-term short-term memory neural network model;
通过模拟数据集中的大气参数对目标双向长短期记忆神经网络模型进行数据训练;Perform data training on the target bidirectional long-short-term memory neural network model by simulating the atmospheric parameters in the data set;
采用反向传播算法对训练后的目标双向长短期记忆神经网络模型参数不断迭代更新直至目标双向长短期记忆神经网络模型的输出收敛,得到大气参数反演模型;Using the backpropagation algorithm to iteratively update the parameters of the trained target bidirectional long-term short-term memory neural network model until the output of the target bidirectional long-term short-term memory neural network model converges to obtain an atmospheric parameter inversion model;
获取热红外高光谱辐亮度数据并作为大气参数反演模型的输入,得到热红外大气参数反演结果。Obtain the thermal infrared hyperspectral radiance data and use it as the input of the atmospheric parameter inversion model to obtain the thermal infrared atmospheric parameter inversion result.
在实际应用过程中,提取地物波谱库和大气廓线库(thermodynamic initialguess retrieval,TIGR)的地表发射率信息和大气信息,使用MODTRAN计算大气参数,建立模拟数据集。通过模拟数据集获得高光谱数据,不同发射率下的辐亮度与辐亮度对应的大气参数,将大气参数和相同状态下的辐亮度信息配对。原始数据库中包含2311条不同地区大气廓线,经过去云筛选和水汽和底层温度筛选,实验选择其中945条大气廓线,使用地物发射率库提取不同地表发射率信息,66种不同地物的发射率,其中包括裸土、植被、水体等地物类型,使用MODTRAN对辐亮度进行模拟,通过设置不同地物和不同大气廓线,共生成了74844000条模拟辐亮度数据,使用算术平均值(The average value)对相邻10个波数处理为一个波段,共得到24个波段。In the actual application process, the surface emissivity information and atmospheric information of the surface object spectrum library and the thermodynamic initial guess retrieval (TIGR) library (thermodynamic initial guess retrieval, TIGR) are extracted, and the atmospheric parameters are calculated using MODTRAN to establish a simulation data set. The hyperspectral data is obtained by simulating the data set, the radiance under different emissivity and the atmospheric parameters corresponding to the radiance, and the atmospheric parameters are paired with the radiance information under the same state. The original database contains 2,311 atmospheric profiles in different regions. After cloud removal and water vapor and bottom temperature screening, 945 atmospheric profiles were selected for the experiment, and different surface emissivity information was extracted using the ground object emissivity library. 66 different ground objects emissivity, including bare soil, vegetation, water and other object types, using MODTRAN to simulate the radiance, by setting different surface objects and different atmospheric profiles, a total of 74844000 pieces of simulated radiance data were generated, using the arithmetic mean (The average value) 10 adjacent wave numbers are processed into one band, and a total of 24 bands are obtained.
可选的,双向长短期记忆神经网络模型包括两个参数相互独立的LSTM神经网络,将模拟数据集中的高光谱数据分别以正序和逆序输入至LSTM神经网络进行特征提取,得到两个特征提取向量,特征提取向量拼接后形成输出向量。Optionally, the bidirectional long-short-term memory neural network model includes two LSTM neural networks whose parameters are independent of each other. The hyperspectral data in the simulated data set are input to the LSTM neural network in forward and reverse order for feature extraction, and two feature extractions are obtained. Vector, the feature extraction vector is concatenated to form an output vector.
在实际应用过程中,构建双向长短期记忆神经网络模型,采用双向长短期记忆神经网络对模拟数据集进行特征提取,长短期神经网络运算将H×W×S大小的输入数据集X映射为H'×W'×T大小的输出数据集Y,公式如下:In the actual application process, a bidirectional long-term short-term memory neural network model is constructed, and the feature extraction of the simulated data set is carried out by using a bidirectional long-term short-term memory neural network. The long-term short-term neural network operation maps the input data set X of size H×W×S to H The output data set Y of the size '×W'×T, the formula is as follows:
Yh',w',t为输出数据;为输入数据;Cm,n,s,t为当前某一位置的权重;bm,n,s,t为当前某一位置的偏置;H为数据的批次;W为通道数;S为数据长度;m为当前批次;n为当前通道数;s为当前数据长度;t为时刻。Y h', w', t are the output data; is the input data; C m, n, s, t is the weight of a certain current position; b m, n, s, t is the bias of a certain current position; H is the batch of data; W is the number of channels; S is the data length; m is the current batch; n is the current channel number; s is the current data length; t is the time.
具体的计算过程为:The specific calculation process is:
f(t)=σ(Wfht-1+Ufxt+bf);f(t)=σ(Wfh t-1 +Ufx t +bf);
i(t)=σ(Wiht-1+Uixt+bi);i(t)=σ(W i h t-1 + U i x t + b i );
a(t)=tanh(Waht-1+Uaxt+ba);a(t)=tanh(W a h t-1 +U a x t +b a );
o(t)=σ(Woht-1+Uoxt+bo);o(t)=σ(W o h t-1 +U o x t +b o );
其中,xt表示t时刻的输入,ht-1表示t-1时刻隐层的状态值;Wf、Wi、Wo和Wa分别表示遗忘门、输入门、输出门和特征提取过程中ht-1的权重系数;Uf、Ui、Uo和Ua分别表示遗忘门、输入门、输出门和特征提取过程中xt的权重系数;bf、bi、bo和ba分别表示遗忘门、输入门、输出门和特征提取过程中的偏置值,tanh(·)表示正切双曲函数,σ(·)表示激活函数Sigmoid,用公式表示为:Among them, x t represents the input at time t, h t-1 represents the state value of the hidden layer at time t-1; W f , W i , W o and W a represent the forgetting gate, input gate, output gate and feature extraction process respectively The weight coefficient of h t-1 in ; U f , U i , U o and U a represent the weight coefficient of x t in the process of forgetting gate, input gate, output gate and feature extraction respectively; b f , b i , b o and b and a respectively represent the bias values in the process of forgetting gate, input gate, output gate and feature extraction, tanh(·) represents the tangent hyperbolic function, σ(·) represents the activation function Sigmoid, expressed as:
遗忘门和输入门计算的结果作用于c(t-1),构成t时刻的变量状态c(t),用公式表示为:The results calculated by the forget gate and the input gate act on c(t-1) to form the variable state c(t) at time t, which is expressed as:
c(t)=c(t-1)⊙f(t)+i(t)⊙a(t);c(t)=c(t-1)⊙f(t)+i(t)⊙a(t);
其中,⊙为Hadamard积,f(t)为t时刻遗忘门遗忘的信息;i(t)为t时刻输入门更新的信息;a(t)为t时刻向变量状态过渡的值。最终,由输出门o(t)和当前时刻的变量状态c(t)求出t时刻的隐藏层的状态h(t),用公式表示为:Among them, ⊙ is the Hadamard product, f(t) is the information forgotten by the forgetting gate at time t; i(t) is the updated information of the input gate at time t; a(t) is the transition value to the variable state at time t. Finally, the state h(t) of the hidden layer at time t is obtained from the output gate o(t) and the variable state c(t) at the current moment, expressed as:
h(t)=o(t)⊙tanh(c(t));h(t)=o(t)⊙tanh(c(t));
双向长短期神经网络模块由2个参数相互独立的LSTM组成,将数据集分别以正序和逆序输入至2个LSTM神经网络进行特征提取,得到2个输出向量(即特征提取向量)拼接后形成的新的特征向量,新向量作为数据的最终特征表达。在这种理念下,双向LSTM模块使t时刻所获得特征数据可以同时拥有过去和将来之间的相关性信息。The bidirectional long-term and short-term neural network module is composed of two LSTMs whose parameters are independent of each other. The data set is input to the two LSTM neural networks in forward and reverse order respectively for feature extraction, and two output vectors (namely, feature extraction vectors) are spliced to form The new feature vector of , the new vector is expressed as the final feature of the data. Under this concept, the bidirectional LSTM module enables the feature data obtained at time t to have both past and future correlation information.
可选的,利用注意力机制对双向长短期记忆神经网络模型的输出特征向量的各个通道信息进行加权,包括:Optionally, use the attention mechanism to weight the information of each channel of the output feature vector of the bidirectional long-short-term memory neural network model, including:
通过卷积操作,将给定的特征通道数为第一通道数的输入数据变换得到一个特征通道数为第二通道数的特征向量;Through the convolution operation, the input data with the given number of feature channels as the first channel number is transformed to obtain a feature vector with the number of feature channels as the second channel number;
使用全局化方法,在空间维度对特征向量进行压缩,将每个通道的二维特征向量压缩为实数,作为各个通道的特征值;Use the globalization method to compress the feature vector in the spatial dimension, compress the two-dimensional feature vector of each channel into a real number, and use it as the feature value of each channel;
通过若干个全连接层组成Bottleneck结构为各个通道的特征值生成权重值,并对权重值进行归一化;The Bottleneck structure is composed of several fully connected layers to generate weight values for the feature values of each channel, and normalize the weight values;
将归一化权重加权到各个通道的特征值上,将权重值与特征向量进行加权求和。The normalized weights are weighted to the eigenvalues of each channel, and the weighted sums are weighted with the eigenvectors.
在实际应用过程中,通过卷积操作,对于给定的特征通道数为T的输入变换得到一个特征通道数为T1的特征;使用全局池化的方法在空间维度对特征进行压缩,将每个通道的二维特征压缩为一个实数,获得特征值对应的图像区域;其中,计算特征Z的第C个元素ZC值用公式表示为:In the actual application process, through the convolution operation, for a given input transformation with the number of feature channels T, a feature with the number of feature channels T 1 is obtained; the global pooling method is used to compress the feature in the spatial dimension, and each The two-dimensional features of channels are compressed into a real number, and the image area corresponding to the feature value is obtained; among them, the C-th element Z C value of the calculation feature Z is expressed as:
其中,H为图像的高度;W为图像的宽度;H×W为通道的二维特征;i为高度上累加的计数器;j为在宽度上累加的计数器;uc为第C个通道处高度为i、宽度为j处的像元值;Among them, H is the height of the image; W is the width of the image; H×W is the two-dimensional feature of the channel; i is the counter accumulated on the height; j is the counter accumulated on the width; u c is the height at the Cth channel is the pixel value at i and width j;
通过两个全连接层组成Bottleneck结构评估每一个通道的重要程度,通过Bottleneck为ZC的每个特征通道生成一个权重值,并对权重进行归一化;最后,将归一化权重加权到每个通道的特征上,将权重和特征向量进行加权求和。The Bottleneck structure is composed of two fully connected layers to evaluate the importance of each channel, and a weight value is generated for each feature channel of ZC through Bottleneck, and the weight is normalized; finally, the normalized weight is weighted to each On the features of each channel, the weights and feature vectors are weighted and summed.
可选的,全连接层采用三层全连接模块进行映射;相邻层的全连接模块之间使用激活函数进行激活。Optionally, the fully connected layer uses three layers of fully connected modules for mapping; the fully connected modules of adjacent layers are activated using activation functions.
在实际应用过程中,将通道加权后的特征输出到全连接层,将提取的通道的特征映射到样本标记空间,经过测试,网络使用三层全连接层结构时,回归的大气参数稳定,精确度较高。In the actual application process, the channel weighted features are output to the fully connected layer, and the extracted channel features are mapped to the sample label space. After testing, when the network uses a three-layer fully connected layer structure, the regression atmospheric parameters are stable and accurate. higher degree.
可选的,采用反向传播算法对训练后的目标双向长短期记忆神经网络模型参数不断迭代更新直至目标双向长短期记忆神经网络模型的输出收敛,得到大气参数反演模型,包括:Optionally, the backpropagation algorithm is used to iteratively update the parameters of the trained target bidirectional long-short-term memory neural network model until the output of the target bidirectional long-term short-term memory neural network model converges to obtain an atmospheric parameter inversion model, including:
从所述模拟数据集中获取高光谱大气参数反演数据作为训练数据;Obtain hyperspectral atmospheric parameter inversion data from the simulated data set as training data;
从标签数据中读取若干不同大气参数下的辐亮度对应的大气参数,将大气参数和相同大气参数状态下的辐亮度信息配对;Read the atmospheric parameters corresponding to the radiance under several different atmospheric parameters from the tag data, and pair the atmospheric parameters with the radiance information under the same atmospheric parameter state;
采用反向传播算法更新目标双向长短期记忆神经网络模型的参数,输入不同状态下的辐亮度,使目标双向长短期记忆神经网络模型的均方根误差数值逐渐衰减至设定值;Use the backpropagation algorithm to update the parameters of the target bidirectional long-term short-term memory neural network model, and input the radiance in different states, so that the root mean square error value of the target bidirectional long-term short-term memory neural network model gradually decays to the set value;
使用均方误差作为损失函数,选择最终损失函数最小的网络模块作为大气参数反演模型。The mean square error is used as the loss function, and the network module with the smallest final loss function is selected as the atmospheric parameter inversion model.
在实际应用过程中,本发明使用通道注意力机制和全连接层的组合结构构成通道注意力模块,对长短期网络提取的光谱特征进行升维。将通道注意力模块是否收敛的条件作为判断指标,通过设置多个通道注意力模块等间隔的下采样通道数的方式,最终确定注意力模块下采样通道数,将提取的特征映射到全连接层(Linear),并通过归一化函数对特征进行归一化,Sigmoid激活函数进行特征激活。使用三层全连接模块(Linear1,Linear2,Linear3)进行特征映射,经过测试在Linear1与Linear2之间使用Sigmoid激活函数进行特征激活,在Linear2与Linear3之间使用Softmax激活函数进行特征激活。In the actual application process, the present invention uses the channel attention mechanism and the combined structure of the fully connected layer to form a channel attention module, and upgrades the spectral features extracted by the long-term and short-term networks. The condition of whether the channel attention module converges is used as a judgment indicator, and the number of downsampling channels of the attention module is finally determined by setting the number of downsampling channels of multiple channel attention modules at equal intervals, and the extracted features are mapped to the fully connected layer (Linear), and the features are normalized by the normalization function, and the Sigmoid activation function is used for feature activation. Use a three-layer fully connected module (Linear1, Linear2, Linear3) for feature mapping. After testing, use the Sigmoid activation function between Linear1 and Linear2 for feature activation, and use the Softmax activation function between Linear2 and Linear3 for feature activation.
将通道注意力模块提取的特征通过多层全连接模块映射到样本空间,模块的输出即为所需要的大气参数。The features extracted by the channel attention module are mapped to the sample space through a multi-layer fully connected module, and the output of the module is the required atmospheric parameters.
可选的,通过设置通道注意力模块,并在通道注意力模块设置等间隔的下采样通道数的方式,根据目标双向长短期记忆神经网络模型的收敛速度,确定通道注意力模块的下采样通道数。Optionally, by setting the channel attention module and setting the number of downsampling channels at equal intervals in the channel attention module, determine the downsampling channel of the channel attention module according to the convergence speed of the target bidirectional long-term short-term memory neural network model number.
本发明不仅有效地解决了深度神经网络对数据挖掘能力较弱的问题,同时加强了网络在反演过程中对高光谱相邻通道数据间相关性信息的重视程度。本发明提出双向长短期记忆神经网络结构,用于提取不同通道的相关性特征;然后利用通道注意力模块对不同的通道信息进行加权,使得权值较高的通道在特征中的比重提高;最后采用全连接结构将特征映射到样本标记空间,并将特征转化为各通道的大气上行辐射、下行辐射以及透射率的估算结果。The invention not only effectively solves the problem that the deep neural network has weak data mining ability, but also strengthens the network's emphasis on the correlation information between hyperspectral adjacent channel data during the inversion process. The present invention proposes a two-way long-term and short-term memory neural network structure, which is used to extract the correlation features of different channels; then use the channel attention module to weight the information of different channels, so that the proportion of channels with higher weights in the features is increased; finally The fully connected structure is used to map the features to the sample label space, and the features are transformed into the estimation results of the atmospheric uplink radiation, downlink radiation and transmittance of each channel.
实施例2Example 2
基于与本发明的实施例1中所示的方法相同的原理,如附图2所示,本发明的实施例中还提供了热红外大气参数反演装置,包括提取单元、模拟数据集建立单元、第一模型构建单元、第一模型训练单元、第二模型构建单元、第二模型训练单元、迭代更新单元、输入单元与输出单元;Based on the same principle as the method shown in Embodiment 1 of the present invention, as shown in Figure 2, a thermal infrared atmospheric parameter inversion device is also provided in the embodiment of the present invention, including an extraction unit and an analog data set establishment unit , a first model construction unit, a first model training unit, a second model construction unit, a second model training unit, an iterative update unit, an input unit and an output unit;
提取单元,用于提取地物波谱库和大气廓线库的地表发射率信息和大气信息;The extraction unit is used to extract the surface emissivity information and atmospheric information of the object spectrum library and the atmospheric profile library;
模拟数据集建立单元,用于根据地表发射率信息和大气信息,确定大气参数,建立模拟数据集;The simulation data set establishment unit is used to determine the atmospheric parameters and establish the simulation data set according to the surface emissivity information and atmospheric information;
第一模型构建单元,用于构建双向长短期记忆神经网络模型;The first model construction unit is used to construct a bidirectional long-short-term memory neural network model;
第一模型训练单元,用于利用模拟数据集中的高光谱数据对双向长短期记忆神经网络模型进行训练,确定双向长短期记忆神经网络模型的结构参数;The first model training unit is used to use the hyperspectral data in the simulated data set to train the bidirectional long-term short-term memory neural network model, and determine the structural parameters of the bidirectional long-term short-term memory neural network model;
第二模型构建单元,用于利用注意力机制对双向长短期记忆神经网络模型的输出特征向量的各个通道信息进行加权,得到目标双向长短期记忆神经网络模型;The second model construction unit is used to weight each channel information of the output feature vector of the two-way long-short-term memory neural network model by using the attention mechanism to obtain the target two-way long-short-term memory neural network model;
第二模型训练单元,用于通过模拟数据集中的大气参数对目标双向长短期记忆神经网络模型进行数据训练;The second model training unit is used to perform data training on the target bidirectional long-short-term memory neural network model by simulating the atmospheric parameters in the data set;
迭代更新单元,用于采用反向传播算法对训练后的目标双向长短期记忆神经网络模型参数不断迭代更新直至目标双向长短期记忆神经网络模型的输出收敛,得到大气参数反演模型;The iterative update unit is used to continuously iteratively update the parameters of the trained target bidirectional long-short-term memory neural network model by using the back propagation algorithm until the output of the target bidirectional long-term short-term memory neural network model converges to obtain an atmospheric parameter inversion model;
输入单元,用于获取热红外高光谱辐亮度数据并作为大气参数反演模型的输入;The input unit is used to obtain thermal infrared hyperspectral radiance data and serve as the input of the atmospheric parameter inversion model;
输出单元,用于输出热红外大气参数反演结果。The output unit is used to output the retrieval results of thermal infrared atmospheric parameters.
可选的,双向长短期记忆神经网络模型包括两个参数相互独立的LSTM神经网络,将模拟数据集中的高光谱数据分别以正序和逆序输入至LSTM神经网络进行特征提取,得到两个特征提取向量,特征提取向量拼接后形成输出向量。Optionally, the bidirectional long-short-term memory neural network model includes two LSTM neural networks whose parameters are independent of each other. The hyperspectral data in the simulated data set are input to the LSTM neural network in forward and reverse order for feature extraction, and two feature extractions are obtained. Vector, the feature extraction vector is concatenated to form an output vector.
可选的,利用注意力机制对双向长短期记忆神经网络模型的输出特征向量的各个通道信息进行加权,包括:Optionally, use the attention mechanism to weight the information of each channel of the output feature vector of the bidirectional long-short-term memory neural network model, including:
通过卷积操作,将给定的特征通道数为第一通道数的输入数据变换得到一个特征通道数为第二通道数的特征向量;Through the convolution operation, the input data with the given number of feature channels as the first channel number is transformed to obtain a feature vector with the number of feature channels as the second channel number;
使用全局化方法,在空间维度对特征向量进行压缩,将每个通道的二维特征向量压缩为实数,作为各个通道的特征值;Use the globalization method to compress the feature vector in the spatial dimension, compress the two-dimensional feature vector of each channel into a real number, and use it as the feature value of each channel;
通过若干个全连接层组成Bottleneck结构为各个通道的特征值生成权重值,并对权重值进行归一化;The Bottleneck structure is composed of several fully connected layers to generate weight values for the feature values of each channel, and normalize the weight values;
将归一化权重加权到各个通道的特征值上,将权重值与特征向量进行加权求和。The normalized weights are weighted to the eigenvalues of each channel, and the weighted sums are weighted with the eigenvectors.
可选的,全连接层采用三层全连接模块进行映射;相邻层的全连接模块之间使用激活函数进行激活。Optionally, the fully connected layer uses three layers of fully connected modules for mapping; the fully connected modules of adjacent layers are activated using activation functions.
可选的,采用反向传播算法对训练后的目标双向长短期记忆神经网络模型参数不断迭代更新直至目标双向长短期记忆神经网络模型的输出收敛,得到大气参数反演模型,包括:Optionally, the backpropagation algorithm is used to iteratively update the parameters of the trained target bidirectional long-short-term memory neural network model until the output of the target bidirectional long-term short-term memory neural network model converges to obtain an atmospheric parameter inversion model, including:
从所述模拟数据集中获取高光谱大气参数反演数据作为训练数据;Obtain hyperspectral atmospheric parameter inversion data from the simulated data set as training data;
从标签数据中读取若干不同大气参数下的辐亮度对应的大气参数,将大气参数和相同大气参数状态下的辐亮度信息配对;Read the atmospheric parameters corresponding to the radiance under several different atmospheric parameters from the tag data, and pair the atmospheric parameters with the radiance information under the same atmospheric parameter state;
采用反向传播算法更新目标双向长短期记忆神经网络模型的参数,输入不同状态下的辐亮度,使目标双向长短期记忆神经网络模型的均方根误差数值逐渐衰减至设定值;Use the backpropagation algorithm to update the parameters of the target bidirectional long-term short-term memory neural network model, and input the radiance in different states, so that the root mean square error value of the target bidirectional long-term short-term memory neural network model gradually decays to the set value;
使用均方误差作为损失函数,选择最终损失函数最小的网络模块作为大气参数反演模型。The mean square error is used as the loss function, and the network module with the smallest final loss function is selected as the atmospheric parameter inversion model.
可选的,通过设置通道注意力模块,并在通道注意力模块设置等间隔的下采样通道数的方式,根据目标双向长短期记忆神经网络模型的收敛速度,确定通道注意力模块的下采样通道数。Optionally, by setting the channel attention module and setting the number of downsampling channels at equal intervals in the channel attention module, determine the downsampling channel of the channel attention module according to the convergence speed of the target bidirectional long-term short-term memory neural network model number.
实施例3Example 3
基于与本发明的实施例中所示的方法相同的原理,本发明的实施例中还提供了一种电子设备,如附图3所示,该电子设备可以包括但不限于:处理器和存储器;存储器,用于存储计算机程序;处理器,用于通过调用计算机程序执行本发明任一实施例所示的方法。Based on the same principle as the method shown in the embodiment of the present invention, an electronic device is also provided in the embodiment of the present invention, as shown in Figure 3, the electronic device may include but not limited to: a processor and a memory The memory is used to store the computer program; the processor is used to execute the method shown in any embodiment of the present invention by calling the computer program.
在一个可选实施例中提供了一种电子设备,图3所示的电子设备30包括:处理器310和存储器350。其中,处理器310和存储器350相连,如通过总线320相连。An electronic device is provided in an optional embodiment, and the electronic device 30 shown in FIG. 3 includes: a
可选地,电子设备30还可以包括收发器340,收发器340可以用于该电子设备与其他电子设备之间的数据交互,如数据的发送和/或数据的接收等。需要说明的是,实际应用中收发器340不限于一个,该电子设备30的结构并不构成对本发明实施例的限定。Optionally, the electronic device 30 may further include a
处理器310可以是CPU中央处理器,通用处理器,DSP数据信号处理器,ASIC专用集成电路,FPGA现场可编程门阵列或者其他可编程逻辑器件、硬件部件或者其任意组合。处理器310也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。The
总线320可包括一通路,在上述组件之间传送信息。总线320可以是PCI外设部件互连标准总线或EISA扩展工业标准结构总线等。总线320可以分为控制总线、数据总线、地址总线等。为便于表示,图3中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器350可以是ROM只读存储器或可存储静态信息和指令的其他类型的静态存储设备,RAM随机存储器或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM电可擦可编程只读存储器、CD-ROM只读光盘或其他光盘存储、光碟存储(包括光碟、激光碟、压缩光碟、数字通用光碟等)、磁盘存储介质,或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。The memory 350 can be a ROM read-only memory or other types of static storage devices that can store static information and instructions, a RAM random access memory or other types of dynamic storage devices that can store information and instructions, or an EEPROM electrically erasable programmable memory device. Read-only memory, CD-ROM or other optical disc storage, optical disc storage (including optical discs, laser discs, compact discs, digital versatile discs, etc.), magnetic disk storage media, or capable of carrying or storing information in the form of instructions or data structures desired program code and any other medium that can be accessed by a computer, but not limited thereto.
存储器350用于存储执行本发明方案的应用程序代码(计算机程序),并由处理器310来控制执行。处理器310用于执行存储器350中存储的应用程序代码,以实现前述方法实施例所示的内容。The memory 350 is used to store application program codes (computer programs) for implementing the solution of the present invention, and the execution is controlled by the
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310327016.2A CN116384237B (en) | 2023-03-29 | 2023-03-29 | Thermal infrared atmospheric parameter inversion method and device and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310327016.2A CN116384237B (en) | 2023-03-29 | 2023-03-29 | Thermal infrared atmospheric parameter inversion method and device and electronic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116384237A true CN116384237A (en) | 2023-07-04 |
CN116384237B CN116384237B (en) | 2024-08-23 |
Family
ID=86965077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310327016.2A Active CN116384237B (en) | 2023-03-29 | 2023-03-29 | Thermal infrared atmospheric parameter inversion method and device and electronic equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116384237B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118604919A (en) * | 2024-08-06 | 2024-09-06 | 南京气象科技创新研究院 | A joint correction method for microwave radiometer temperature and humidity profiles based on all-weather weather background |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200202211A1 (en) * | 2018-12-25 | 2020-06-25 | Abbyy Production Llc | Neural network training utilizing loss functions reflecting neighbor token dependencies |
CN111735772A (en) * | 2020-05-13 | 2020-10-02 | 中国科学院空天信息创新研究院 | An Improved Cascaded Neural Network for Surface Albedo Inversion of Hyperspectral Data |
CN112733725A (en) * | 2021-01-12 | 2021-04-30 | 西安电子科技大学 | Hyperspectral image change detection method based on multistage cyclic convolution self-coding network |
CN112733394A (en) * | 2020-12-21 | 2021-04-30 | 国家卫星气象中心(国家空间天气监测预警中心) | Atmospheric parameter inversion method and device |
CN113379146A (en) * | 2021-06-24 | 2021-09-10 | 合肥工业大学智能制造技术研究院 | Pollutant concentration inversion method based on multi-feature selection algorithm |
CN115422703A (en) * | 2022-07-19 | 2022-12-02 | 南京航空航天大学 | A Retrieval Method of Surface Thermal Infrared Emissivity Based on MODIS Data and Transformer Network |
-
2023
- 2023-03-29 CN CN202310327016.2A patent/CN116384237B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200202211A1 (en) * | 2018-12-25 | 2020-06-25 | Abbyy Production Llc | Neural network training utilizing loss functions reflecting neighbor token dependencies |
CN111735772A (en) * | 2020-05-13 | 2020-10-02 | 中国科学院空天信息创新研究院 | An Improved Cascaded Neural Network for Surface Albedo Inversion of Hyperspectral Data |
CN112733394A (en) * | 2020-12-21 | 2021-04-30 | 国家卫星气象中心(国家空间天气监测预警中心) | Atmospheric parameter inversion method and device |
CN112733725A (en) * | 2021-01-12 | 2021-04-30 | 西安电子科技大学 | Hyperspectral image change detection method based on multistage cyclic convolution self-coding network |
CN113379146A (en) * | 2021-06-24 | 2021-09-10 | 合肥工业大学智能制造技术研究院 | Pollutant concentration inversion method based on multi-feature selection algorithm |
CN115422703A (en) * | 2022-07-19 | 2022-12-02 | 南京航空航天大学 | A Retrieval Method of Surface Thermal Infrared Emissivity Based on MODIS Data and Transformer Network |
Non-Patent Citations (2)
Title |
---|
毛克彪;唐华俊;李丽英;许丽娜;: "一个从MODIS数据同时反演地表温度和发射率的神经网络算法", 遥感信息, no. 04, pages 9 - 16 * |
虞浩跃;沈韬;朱艳;刘英莉;余正涛;: "基于双向长短期记忆网络的太赫兹光谱识别", 光谱学与光谱分析, no. 12, pages 91 - 96 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118604919A (en) * | 2024-08-06 | 2024-09-06 | 南京气象科技创新研究院 | A joint correction method for microwave radiometer temperature and humidity profiles based on all-weather weather background |
Also Published As
Publication number | Publication date |
---|---|
CN116384237B (en) | 2024-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Application of deep convolutional neural networks for detecting extreme weather in climate datasets | |
CN111507378A (en) | Method and apparatus for training image processing model | |
CN107563497A (en) | Computing device and method | |
US20240135174A1 (en) | Data processing method, and neural network model training method and apparatus | |
Gad et al. | A robust deep learning model for missing value imputation in big NCDC dataset | |
CN111612215A (en) | Method for training time sequence prediction model, time sequence prediction method and device | |
CN114359735A (en) | Hyperspectral remote sensing image change detection method | |
CN115238909A (en) | Data value evaluation method based on federal learning and related equipment thereof | |
Yang et al. | Cultural emperor penguin optimizer and its application for face recognition | |
WO2020171904A1 (en) | Human body part segmentation with real and synthetic images | |
CN116384237B (en) | Thermal infrared atmospheric parameter inversion method and device and electronic equipment | |
Bebarta et al. | Comparative study of stock market forecasting using different functional link artificial neural networks | |
Pierce et al. | Application of an artificial neural network in canopy scattering inversion | |
CN117612045A (en) | Method and device for detecting plant diseases and insect pests based on visible light vegetation index and electronic equipment | |
CN112529149A (en) | Data processing method and related device | |
CN110188621A (en) | A 3D Facial Expression Recognition Method Based on SSF-IL-CNN | |
CN112559640B (en) | Training method and device of atlas characterization system | |
CN114444657A (en) | Image processing method, system, equipment and readable storage medium | |
Ghosh et al. | Deep learning enabled surrogate model of complex food processes for rapid prediction | |
Latif et al. | Improving sea level prediction in coastal areas using machine learning techniques | |
CN116611861A (en) | Consumption prediction method and related equipment thereof | |
CN116306819B (en) | Hyperspectral cross calibration method and device based on spectrum reconstruction and electronic equipment | |
CN116662641A (en) | Recommendation model generation method, recommendation device and recommendation equipment | |
CN116563600A (en) | A multi-label recognition method for Chinese food based on multi-scale fusion and attention mechanism | |
CN117746047A (en) | Image processing method and related equipment thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |