CN116376945A - I-type caspase gene insertion tool and application - Google Patents
I-type caspase gene insertion tool and application Download PDFInfo
- Publication number
- CN116376945A CN116376945A CN202310318216.1A CN202310318216A CN116376945A CN 116376945 A CN116376945 A CN 116376945A CN 202310318216 A CN202310318216 A CN 202310318216A CN 116376945 A CN116376945 A CN 116376945A
- Authority
- CN
- China
- Prior art keywords
- caspase
- target
- sequence
- gene
- protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108010076667 Caspases Proteins 0.000 title claims abstract description 90
- 238000003780 insertion Methods 0.000 title claims abstract description 40
- 230000037431 insertion Effects 0.000 title claims abstract description 40
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 112
- 102000011727 Caspases Human genes 0.000 claims abstract description 73
- 239000012634 fragment Substances 0.000 claims abstract description 46
- 238000000034 method Methods 0.000 claims abstract description 39
- 239000013598 vector Substances 0.000 claims abstract description 29
- 101000637732 Homo sapiens Tudor-interacting repair regulator protein Proteins 0.000 claims abstract description 18
- 102100032119 Tudor-interacting repair regulator protein Human genes 0.000 claims abstract description 18
- 108020004414 DNA Proteins 0.000 claims abstract description 17
- 230000010354 integration Effects 0.000 claims description 69
- 239000013612 plasmid Substances 0.000 claims description 44
- 238000006243 chemical reaction Methods 0.000 claims description 40
- 241000054650 Nocardioides koreensis Species 0.000 claims description 34
- 101150102092 ccdB gene Proteins 0.000 claims description 23
- 230000003321 amplification Effects 0.000 claims description 14
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 14
- 238000003752 polymerase chain reaction Methods 0.000 claims description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 10
- 238000007480 sanger sequencing Methods 0.000 claims description 10
- 238000011144 upstream manufacturing Methods 0.000 claims description 10
- 102000053602 DNA Human genes 0.000 claims description 7
- 230000001580 bacterial effect Effects 0.000 claims description 6
- 239000000872 buffer Substances 0.000 claims description 6
- 238000012258 culturing Methods 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 239000001963 growth medium Substances 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 238000001042 affinity chromatography Methods 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 claims description 4
- OOYGSFOGFJDDHP-KMCOLRRFSA-N kanamycin A sulfate Chemical compound OS(O)(=O)=O.O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N OOYGSFOGFJDDHP-KMCOLRRFSA-N 0.000 claims description 4
- 229960002064 kanamycin sulfate Drugs 0.000 claims description 4
- 239000002773 nucleotide Substances 0.000 claims description 4
- 125000003729 nucleotide group Chemical group 0.000 claims description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000012966 insertion method Methods 0.000 claims description 3
- 238000011027 product recovery Methods 0.000 claims description 3
- 101150017040 I gene Proteins 0.000 claims description 2
- 241001052560 Thallis Species 0.000 claims description 2
- 239000003242 anti bacterial agent Substances 0.000 claims description 2
- 229940088710 antibiotic agent Drugs 0.000 claims description 2
- 230000006698 induction Effects 0.000 claims description 2
- 238000009630 liquid culture Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 230000001937 non-anti-biotic effect Effects 0.000 claims description 2
- 238000011084 recovery Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 17
- 230000008685 targeting Effects 0.000 abstract description 7
- 108091081062 Repeated sequence (DNA) Proteins 0.000 abstract description 4
- 102000004169 proteins and genes Human genes 0.000 description 18
- 239000000047 product Substances 0.000 description 16
- 108091033409 CRISPR Proteins 0.000 description 15
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 15
- 230000000694 effects Effects 0.000 description 12
- 230000014509 gene expression Effects 0.000 description 10
- 238000010354 CRISPR gene editing Methods 0.000 description 9
- 238000010356 CRISPR-Cas9 genome editing Methods 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 238000010362 genome editing Methods 0.000 description 8
- 230000006801 homologous recombination Effects 0.000 description 8
- 238000002744 homologous recombination Methods 0.000 description 8
- 230000035772 mutation Effects 0.000 description 8
- 238000010276 construction Methods 0.000 description 7
- 238000000605 extraction Methods 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 101100219625 Mus musculus Casd1 gene Proteins 0.000 description 6
- 101150055766 cat gene Proteins 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 5
- 108010020764 Transposases Proteins 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000008439 repair process Effects 0.000 description 5
- 230000003252 repetitive effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000007995 HEPES buffer Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 102000008579 Transposases Human genes 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 230000006780 non-homologous end joining Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 231100000331 toxic Toxicity 0.000 description 4
- 230000002588 toxic effect Effects 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- 108091029865 Exogenous DNA Proteins 0.000 description 3
- 101000802734 Homo sapiens eIF5-mimic protein 2 Proteins 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000005782 double-strand break Effects 0.000 description 3
- 102100035859 eIF5-mimic protein 2 Human genes 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 241000203069 Archaea Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000033616 DNA repair Effects 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 108010061833 Integrases Proteins 0.000 description 2
- KYRVNWMVYQXFEU-UHFFFAOYSA-N Nocodazole Chemical compound C1=C2NC(NC(=O)OC)=NC2=CC=C1C(=O)C1=CC=CS1 KYRVNWMVYQXFEU-UHFFFAOYSA-N 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 240000007019 Oxalis corniculata Species 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 108020004682 Single-Stranded DNA Proteins 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000022131 cell cycle Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000001641 gel filtration chromatography Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229950006344 nocodazole Drugs 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000001177 retroviral effect Effects 0.000 description 2
- 108090000731 ribonuclease HII Proteins 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 230000003007 single stranded DNA break Effects 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000013819 transposition, DNA-mediated Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- MGEDARBYSUJQFR-UHFFFAOYSA-N 1h-imidazole;nickel Chemical compound [Ni].C1=CNC=N1 MGEDARBYSUJQFR-UHFFFAOYSA-N 0.000 description 1
- BZTDTCNHAFUJOG-UHFFFAOYSA-N 6-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=CC=C(C(=O)O)C=C21 BZTDTCNHAFUJOG-UHFFFAOYSA-N 0.000 description 1
- 241000713842 Avian sarcoma virus Species 0.000 description 1
- 101000708016 Caenorhabditis elegans Sentrin-specific protease Proteins 0.000 description 1
- 230000005778 DNA damage Effects 0.000 description 1
- 231100000277 DNA damage Toxicity 0.000 description 1
- 102100039524 DNA endonuclease RBBP8 Human genes 0.000 description 1
- 108050008316 DNA endonuclease RBBP8 Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 1
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 101100438439 Escherichia coli (strain K12) ygbT gene Proteins 0.000 description 1
- 230000004668 G2/M phase Effects 0.000 description 1
- 108700020129 Human immunodeficiency virus 1 p31 integrase Proteins 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 102000012330 Integrases Human genes 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000205274 Methanosarcina mazei Species 0.000 description 1
- 102000002490 Rad51 Recombinase Human genes 0.000 description 1
- 108010068097 Rad51 Recombinase Proteins 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- 101100329497 Thermoproteus tenax (strain ATCC 35583 / DSM 2078 / JCM 9277 / NBRC 100435 / Kra 1) cas2 gene Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 102000041192 Type 2 family Human genes 0.000 description 1
- 108091061186 Type 2 family Proteins 0.000 description 1
- 108091079639 Type I family Proteins 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 101150000705 cas1 gene Proteins 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000034431 double-strand break repair via homologous recombination Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000006846 excision repair Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000029115 microtubule polymerization Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 101150005648 polB gene Proteins 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000009465 prokaryotic expression Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 102220288357 rs572035776 Human genes 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000000946 synaptic effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000030787 translation reinitiation Effects 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/64—General methods for preparing the vector, for introducing it into the cell or for selecting the vector-containing host
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1241—Nucleotidyltransferases (2.7.7)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/07—Nucleotidyltransferases (2.7.7)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Mycology (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Enzymes And Modification Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The invention relates to a type I caspase gene insertion tool and application thereof. The I-type caspase gene inserting tool consists of caspase protein, mini-caspaseon containing target gene segment and target-ccdB carrier. The application is editing prokaryotic or eukaryotic genes. According to the invention, caspase protein, mini-Caspo containing specific terminal inversion repeated sequences (TIRF and TIRR) and target-ccdB vector are utilized to identify and insert target site repeated sequences (TSDs) in a targeting manner, so that the target gene fragment fixing target fixing direction is inserted, the insertion of a long fragment gene can be realized, and the exposed DNA double strand is ensured not to break in the editing process, thereby being more efficient and safer.
Description
Technical Field
The invention relates to an I-type caspase gene insertion tool and application thereof, belonging to the technical field of biological medicine.
Background
Casnoson is a new class of Mobile Genetic Elements (MGEs) found in certain bacteria and archaebacteria that are associated with a set of variable transposon-related genes, such as type B DNA polymerase (Poly B). These clusters are flanked by inverted terminal repeats (TIRs), surrounded by direct repeats known as target site repeats (TSDs), and the like [1] . However, unlike the transposon system, there is no transposase that integrates MGEs into the host chromosome in the gene encoded by caspase, but there is a "Cas1" gene homologous to CRISPR-Cas1, and this specific Cas1 encoded by Cas1 is caspase [1,2,3] . Unlike typical cas1 genes from the CRISPR-cas system, cas 4-like genes have been identified in some casbasses, but casbasses are independent of CRISPR sites or other cas genes.
Currently, casnoson can be divided into four families based on comparative genomics, phylogenetic and taxonomic distribution analysis of Cas1. Wherein almost all caspase studies at this stage have focused on type 2 family A. Boost and M. Mazei caspases, while other families of caspase studies have been limited to bioinformatics [4,5] . Compared with type II caspases, the C-terminal of type I caspases naturally lacks the HTH domain, making its molecular weight smaller and more chemically similar to CRISPR-Cas1. Currently, there is document verification [6] Ca.n.koreensis caspases of type I family also catalyze the full integration of target sequences.
Unlike CRISPR-Cas systems, which require both Cas1 and Cas2 proteins to complete integration in vitro, for caspase-catalyzed integration reactions, the integration reaction can be completed by means of only caspases homologous to CRISPR-Cas1. Under the action of caspase, dsTIR sequences can specifically attack target sequences consisting of leader and TSD sequences, integration usually occurs at both sides of the TSD sequence, i.e., at both the leader and the spacer ends of the TSD (as shown in FIG. 1).
From an processive point of view, this transposon-like integration function results from the polB-like gene in the caspase gene. A transposon is a DNA fragment that is capable of changing its position in the genome. The most prominent mechanism of transposon motion is "scissorsCut-and-paste "transposons, in the process of which a transposon enzyme mediates excision of an element from its donor site and re-integration into a new chromosomal locus (as shown in FIG. 2). During transposition, the transposon (i) interacts with binding sites in Terminal Inverted Repeats (TIRs) that border the transposon, (ii) facilitates assembly of synaptic complexes (also known as paired-end complexes (PECs)), (iii) catalyzes excision of the element from its donor site, and (iv) integrates the excised transposon into a new location of the target DNA [7,8] All of these processes are for Mg 2+ Ion dependence [9,10] . The caspase-catalyzed integration reaction, however, appears to be highly similar to transposon systems in all of these features.
Currently, transposon systems developed based on the polB gene, such as Sleeping Beauty, piggyBac and Tol2, have been matured. However, these transposon kits are between 1k and 5k in length [11] As shown in FIG. 3, the transposon is too large for use, and several elements are added after TIR, which also makes the two sides of the constructed target gene carry unavoidable redundant elements; the screening mode is generally simple resistance screening, and the target gene itself is required to carry different resistance genes during construction, so that the method is inconvenient to use.
A series of CRISPR tools, represented by the CRISPR-Cas9 system, are currently simple and easy to operate, but precise typing of exogenous DNA at targeted double strand breaks remains difficult. Successful precise knock-in of exogenous DNA requires both efficient cleavage by targeting endonucleases and recruitment of endogenous DNA repair factors to incorporate the desired editing into the host genome. However, the CRISPR-Cas9 system itself cannot meet the requirement of accurate typing, and exogenous functional factors need to be introduced to achieve this function. Canny et al [12] Jayavanadaham et al [13] The idea of inhibiting non-homologous end joining by promoting protein 53BP1 was presented in 2018 and 2019 sequentially. Charpentier [14] ,Nakade [15] ,Tran [16] The inventors believe that other methods that promote end excision are crucial for improving the efficiency of homologous recombination. In addition to this, rees et al [17] Selection by fusion of RAD51 and Cas9, utilize chain exchange factor PAD51 to participate in the function of repairing DNA damage, direct targeting homologous recombination mechanism in order to strengthen CRISPR-Cas9 system and knock in exogenous DNA efficiency accurately. Eghbalsaied et al [18] Then, it is proposed to pretreat different types of cells with the antitumor drug Nocodazole, and to stop the cells in the G2/M phase of the cell cycle by interfering with microtubule polymerization, and simultaneously introduce RNase HII to enhance the treatment of R-loop and the excision repair of ribonucleotides by eukaryotic cells to enhance the homology directed repair of single-stranded and double-stranded DNA. However, at present, the endogenous factors directly influencing homologous recombination are not clear, the mechanism and the direct influence on homologous recombination are not clear, and the introduction of exogenous factors influencing the cell cycle is a new problem for subsequent in vivo applications, so that the development of CRISPR-Cas9 systems for precise gene insertion is still in progress. And even if CRISPR-Cas9 cuts target DNA, some target proteins can be partially expressed due to exon skipping or translation reinitiation mechanism, and activity is generated to play a role, so that the efficiency of gene insertion is affected [19] . Meanwhile, CRISPR-Cas9 is relatively limited in application of long fragment insertion, and also limited in application [20] . And the CRISPR system inevitably leads to double-stranded DNA break in the editing process, and the non-conservative non-homologous end joining (NHEJ) repair route caused by double-stranded DNA break can bring unpredictable error repair and mismatch in the practical application process, and uncontrollable byproducts are easy to generate, so that the gene insertion tool has potential safety hazard.
Compared with the CRISPR system and the transposon system, the TIR length of the type I caspase system is only 20nt, the length of the targeting sequence where the integration site TSD is positioned is only 35bp, and the whole system is less than 1% of the transposon element, so that the type I caspase system can be easily compatible with the existing commonly used prokaryotic expression tool vectors and eukaryotic expression tool vectors. In the result of caspase-mediated integration, only 6 amino acids are added in front of the target gene, and the subsequent expression or activity experiment is not affected. And unlike CRISPR system which can cause double-strand DNA break in the process of gene editing, the target gene containing TIR in the process of caspase mediated integration can not break, which greatly reduces the possibility of DNA mismatch and repair error, and unlike CRISPR-Cas9 system which lacks long fragment integration function, caspase system can integrate target gene with 100bp-7000bp size. Therefore, the inventors' subject group studied that the Class 1CRISPR-Cas system is expected to be a better and more powerful gene insertion tool, and is worthy of research to obtain a new gene insertion tool.
The references referred to above are as follows:
[1].Krupovic M,Beguin P,Koonin EV,et al.Casposons:mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery[J].Current Opinion in Microbiology 2017,38:36-43.
[2].Koonin EV,Makarova KS,et al.Mobile Genetic Elements and Evolution of CRISPR-Cas Systems:All the Way There and Back[J].Genome Biol Evol 2017,9(10):2812-2825.
[3].Makarova KS,Wolf YI,Shmakov SA,et al.Unprecedented Diversity of Unique CRISPR-Cas-Related Systems and Cas1 Homologs in Asgard Archaea[J].CRISPR J 2020,3(3):156-163.
[4].Hickman AB,Kailasan S,Genzor P,et al.Casposase structure and the mechanistic link between DNAtransposition and spacer acquisition by CRISPR-Cas[J].Elife 2020,9.
[5].Koonin EV,Makarova KS,et al.Origins and evolution of CRISPR-Cas systems[J].Philos Trans R Soc Lond B Biol Sci 2019,374(1772):20180087.
[6].Wang X,Lu M,Xiao Y,et al.Sequence specific integration by the family 1casposase from Candidatus Nitroopumilus koreensis AR1[J].Nucleic Acids Res.2021Sep 27;49(17):9938-9952.
[7].Kulkosky J,Jones,et al.Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases[J].Mol.Cell.Biol.1992,12,2331–2338.
[8].Doak T.G,Doerder F.P,et al.A proposed superfamily of transposase genes:Transposon-like elements in ciliated protozoa and a common“D35E”motif[J].Proc.Natl.Acad.Sci.USA 1994,91,942–946.
[9].Bujacz G,Alexandratos J,et al.Binding of different divalent cations to the active site of avian sarcoma virus integrase and their effects on enzymatic activity[J].J.Biol.Chem.1997,272,18161–18168.
[10].Goldgur Y,Dyda F,et al.Three new structures of the core domain of HIV-1integrase:An active site that binds magnesium[J].Proc.Natl.Acad.Sci.USA 1998,95,9150–9154.
[11].Sandoval-Villegas N,Nurieva W,et al.Contemporary Transposon Tools:A Review and Guide through Mechanisms and Applications of Sleeping Beauty,piggyBac and Tol2 for Genome Engineering[J].Int J Mol Sci.2021May 11;22(10):5084.
[12].Canny M.D,Moatti N,et al.Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency[J].Nat.Biotechnol.2018,36,95–102.
[13].Jayavaradhan R,Pillis M,et al.CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites[J].Nat.Commun.2019,10,2866.
[14].Charpentier M,Khedher Y,et al.CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair[J].Nat.Commun.2018,9,1133.
[15].Nakade S,Mochida K,et al.Biased genome editing using the local accumulation of DSB repair molecules system[J].Nat.Commun.2018,9,3270.
[16].Tran T,Bashir S,et al.Enhancement of Precise Gene Editing by the Association of Cas9 With Homologous Recombination Factors[J].Front.Genet.2019,10,365.
[17].Rees A,Yeh H,et al.Development of hRad51-Cas9 nickase fusions that mediate HDR without double-stranded breaks[J].Nat.Commun.2019,10,2212.
[18].Eghbalsaied S,Kues W,et al.CRISPR/Cas9-mediated targeted knock-in of large constructs using nocodazole and RNase HII[J].Sci Rep.2023Feb 15;13(1):2690.
[19].Xiao Y,Luo M,et al.Structure basis for RNA-guided DNA degradation by Cascade and Cas3[J].Science,2018,361(6397).
[20].Smits A.H,Ziebell F,et al.Biological plasticity rescues target activity in CRISPR knock outs[J],Nat Methods 16(11)(2019)1087-1093.
disclosure of Invention
The main purpose of the invention is as follows: the I-type caspase gene insertion tool can overcome the defect of DNA double-strand break in the current CRISPR gene insertion process, reduce the risk of double-strand break introduction in the in-vivo editing process, and is more efficient and safer. Also provides the application of the system.
The technical scheme for solving the technical problems is as follows:
a type I caspase gene insertion tool is characterized by comprising a caspase protein, mini-caspaseon containing target gene fragments and target-ccdB vector; the amino acid sequence of the caspase protein is SEQ ID NO.2; the Mini-Caspo is dsDNA, and has the structure that one end of a target gene fragment is connected with a TIRF sequence, the other end of the target gene fragment is connected with a TIRR sequence, the nucleotide sequence of the TIRF sequence is SEQ ID NO.6, and the nucleotide sequence of the TIRR sequence is SEQ ID NO.7; the target-ccdB vector contains a target gene fragment and a coding gene fragment of ccdB protein, the sequence of the target gene fragment is SEQ ID NO.3, the amino acid sequence of the ccdB protein is SEQ ID NO.5, and the coding gene fragment of the ccdB protein corresponds to the amino acid sequence of the ccdB protein.
The system utilizes caspase protein, mini-caspaseon containing specific terminal inversion repeated sequences (TIRF, TIRR) and target-ccdB carrier to identify and insert target site repeated sequences (TSDs) in a targeting manner, so that the target gene fragment fixing target fixing direction is inserted more strictly; the insertion of the long fragment gene can be realized, and the DNA double strand exposed outside can be ensured not to break in the editing process, so that unpredictable off-target and mutation caused by broken gene editing can be avoided.
Preferably, the Mini-Caspo structure is a TIRF sequence, a target gene fragment and a TIRR sequence from upstream to downstream; the target-ccdB vector contains the lac UV5 promoter. Thus, the specific structure of Mini-Caspo can be further optimized, and the promoter of the target-ccdB vector can be optimized.
Preferably, the coding gene sequence of the caspase protein is SEQ ID NO.1; the coding gene fragment sequence of the ccdB protein is SEQ ID NO.4. Thus, the coding gene sequence of the caspase protein and the ccdB protein can be further optimized.
Preferably, the caspase protein and target gene fragment are derived from ca.n.koreens, respectively. This further optimizes the specific source of caspase protein, target gene fragment.
By adopting the preferable scheme, the specific detail technical characteristics can be further optimized, so that a better gene insertion effect is realized.
The invention also proposes:
a gene insertion method is characterized in that the I-type caspase gene insertion tool is adopted;
the gene insertion method comprises the following steps:
firstly, preparing caspase protein; preparing Mini-Caspo containing target gene fragment; constructing a target-ccdB carrier;
secondly, uniformly mixing caspase protein and Mini-Casposon, target-ccdB carrier for reaction to catalyze the integration of Mini-Caspo, and recovering an integrated product after the reaction is stopped;
thirdly, after the integration product is electrically transferred to the sensitive cells, the integration product is cultured by adopting a resistance culture medium containing antibiotics, and the grown monoclonal is collected to obtain the gene integration product containing the target gene fragment.
The method utilizes caspase protein of the system, mini-Caspo containing specific terminal inversion repetitive sequences (TIRF, TIRR) and target-ccdB carrier to identify and insert target site repetitive sequences (TSDs) in a targeting way, so as to realize the fixed-direction insertion of target spots of target gene fragments; not only can realize the insertion of long fragment genes, but also can ensure that DNA double chains cannot break in the editing process so as to avoid unpredictable off-target and mutation caused by broken gene editing.
Preferably, in the first step, the caspase protein is prepared by the following steps:
s1, constructing a plasmid containing a coding gene sequence of caspase protein according to the amino acid sequence of the caspase protein, transferring the plasmid into competent cells by a chemical conversion method for culture, extracting the plasmid, and obtaining a correct recombinant plasmid by Sanger sequencing;
s2, performing induction culture on strains containing the plasmids, and purifying by crushing thalli, centrifuging and nickel column affinity chromatography to obtain caspase protein. The specific preparation process of the caspase protein can be further optimized.
Preferably, in the first step, the Mini-casoson containing the target gene fragment is prepared by the following steps:
designing an upstream amplification primer and a downstream amplification primer according to a target gene fragment, adding a TIRF sequence at the 5 'end of the upstream amplification primer, adding a TIRR sequence at the 5' end of the downstream amplification primer to obtain a specific primer, amplifying Mini-Caspo with a structure of the TIRF sequence-target gene fragment-TIRR sequence by using the specific primer through a PCR (polymerase chain reaction) mode, and finally obtaining purified Mini-Caspo by a gel cutting recovery mode. Thus, the specific preparation process of Mini-Caspo can be further optimized.
Preferably, in the first step, the target-ccdB vector is pET28a-lac UV5 master-Ca.N.koreensis target-ccdB; in S1, the plasmid containing the coding gene sequence of the caspase protein is pET-28a-ts-sumo-Ca.N. koreensis-caspase. This further optimizes the target-ccdB vector, and the plasmid containing the gene sequence encoding the caspase protein.
Preferably, in the second step, in the reaction system, the final concentration of caspase protein is 1+ -0.1 μM (i.e. μmol/L, the same applies hereinafter), the final concentration of Mini-Caspo is 0.2+ -0.05 μM, and the final concentration of target-ccdB carrier is 65+ -5 ng/. Mu.L; the reaction conditions are that the reaction is carried out for at least 60min at 37+/-0.5 ℃ under the condition of 1X Integration buffer; EDTA was added at the termination of the reaction to terminate the reaction; and (5) recovering the integrated product by using a PCR product recovery kit. The specific reaction process and reaction parameters of the second step can be further optimized in this way.
In the third step, the competent cell is DH10B; when the electric power is turned, an electric power turning instrument is adopted, and electric shock parameters are as follows: 2.5kV/cm, resistance 200 omega, capacitance 25 muF, time 5ms; after electrotransformation, culturing in SOC non-antibiotic liquid culture medium, and then coating bacterial liquid in kanamycin sulfate-containing resistance plate for culturing, wherein the normal monoclonal is the gene integration product containing target gene fragment. The specific reaction process and reaction parameters of the third step can be further optimized.
By adopting the preferable scheme, the specific detail technical characteristics can be further optimized, so that a better gene insertion effect is realized.
The invention also proposes:
the use of the above-described caspase I gene insert tool for editing prokaryotic or eukaryotic genes.
Compared with the prior art, the I-type caspase gene insertion tool provided by the invention utilizes caspase protein, mini-caspase containing specific terminal inversion repetitive sequences (TIRF and TIRR) and target-ccdB vector to identify and insert target site repetitive sequences (TSDs) in a targeting manner, realizes the fixation direction insertion of a target gene fragment fixation target, can realize the insertion of a long fragment gene, ensures that DNA double chains exposed outside cannot break in the editing process, and is more efficient and safe.
Drawings
FIG. 1 is a diagram showing the comparison of CRISPR system integration mechanism with type I caspase system integration mechanism in the background of the invention.
FIG. 2 is a schematic diagram showing an overview of transposase-mediated cut-and-paste transposition in the background of the invention.
FIG. 3 is a schematic diagram of the organization and functional domains of autonomous transposable elements and transposases of Sleep Beauty (SB), piggyBac (PB) and Tol2 in the background of the invention.
FIG. 4 shows a plasmid map of pET28a-TS-SUMO-Ca.N.koreensis caspase constructed according to example 1 of the present invention.
FIG. 5 is a schematic representation of the expression and purification results of Ca.N.koreensis caspase protein according to example 2 of the present invention.
FIG. 6 shows a plasmid map of PUC19-Ca.N.koreensis-target constructed in example 3 of the present invention.
FIG. 7 is a diagram showing the total integration of Mini-casinos in example 3 of the present invention.
FIG. 8 is a plasmid map of pET28a-lac UV5promoter-Ca.N.koreensis target-ccdB in example 4 of the present invention.
FIG. 9 is a graph showing the determination of the TIR key sites in Ca.N.koreensis koreensis casposase integration in example 4 of the present invention.
FIG. 10 is a schematic diagram of a modified Mini-Casboost in example 4 of the present invention.
FIG. 11 is a plasmid map of pLtDuet-p3c-Cas2Cas3 constructed in example 5 of the present invention.
FIG. 12 is a graph showing the results of Sanger sequencing after 7 k-pltDuet-Mini-Casboost total integration in example 5 of the present invention.
Detailed Description
The invention is described in further detail below with reference to the accompanying drawings in combination with embodiments. The invention is not limited to the examples given.
Example 1
This example is a construction of pET28a-TS-SUMO-Ca.N. koreensis-caspase plasmid for subsequent gene insertion.
Amplifying a Ca.N.koreensis-caspase sequence (SEQ ID NO. 1) by using PCR, obtaining a recombinant plasmid by enzyme digestion and enzyme ligation by using a vector pET28a, and transferring the recombinant plasmid into DH5 alpha competence by using a chemical conversion method; the plasmid was then extracted using plasmid extraction Kit and the correct recombinant plasmid was obtained after Sanger sequencing.
The construction of pET28a-TS-SUMO-Ca.N. koreensis-caspase plasmid structure by the above-described method is shown in FIG. 4.
The sequences related to the above are as follows:
coding gene sequence of caspase protein: SEQ ID NO.1:
atgaccctgaagaaccagaagaaccactacaacgtgaagtttctgaaaggttatggccacagcattagcgttaaggacagcaaaatcattctgaaaagca
accacgatccgtttagcccgccggagcaggaagagtggttcgtgaagaacatgccgtacgaaaaaattgtgctgagcggcaagggctatgttagcacc
gaggcgctgagcctgctgagcgaaaacaaccgtaacgtgatcctgctggacaaccacggtaaaccggttaccttttgcaacggcatgatggacagcct
gaccgcgaccaagtaccgtatggcgcaatatgataccttccgtaacccggagaaatgcgaatacctgcgtaagcagatcattagcgcgaagaaagaga
gccaactgaaactgctgcgtctgattggtagcgagatcagcgaactgccggatagcgaacacattagcgcgaaggtgtactggaccgagttcgcgaag
tttatcccggaaaaatatcagttccacagccgtaaccaaagccacattaccagcagcaaaaacaacgcgaccgacatcattaacgcgctgctgaactacg
gttatagcgtgctggcgggcgagatcagcaagttcgtttgcggttttggtctggacccgtacctgggtttcatgcaccgtagccacaccggctttcaaccg
ctggtttatgacatcattgaaccgtttcgttggctggttgactacaccgtttatagcatggcgaaccacagcagcacccgtcagcgtattaagctgaaagagt
acagcttcaccaaagacggtaccgtggttctggaatatagcctgatcaagcgtttcctggagatgctggaacgtcagtttagccaagagcgtaaatacagc
ttccgtcacggtaagaaaaccaaggatggcctgaaaagcgtgcaggaaatcaccgtggttaagatcattatccaaaacctggttgagtatagcaccggca
agcagaaaagcctggaaagcaacaacttcgcgttctttgactttta
amino acid sequence of caspase protein: SEQ ID NO.2:
MTLKNQKNHYNVKFLKGYGHSISVKDSKIILKSNHDPFSPPEQEEWFVKNMPYEKIVLSGKGYV
STEALSLLSENNRNVILLDNHGKPVTFCNGMMDSLTATKYRMAQYDTFRNPEKCEYLRKQIISAK
KESQLKLLRLIGSEISELPDSEHISAKVYWTEFAKFIPEKYQFHSRNQSHITSSKNNATDIINALLNY
GYSVLAGEISKFVCGFGLDPYLGFMHRSHTGFQPLVYDIIEPFRWLVDYTVYSMANHSSTRQRIK
LKEYSFTKDGTVVLEYSLIKRFLEMLERQFSQERKYSFRHGKKTKDGLKSVQEITVVKIIIQNLVE
YSTGKQKSLESNNFAFFDF
example 2
This example is based on example 1 and the Ca.N.koreensis-caspase protein was purified.
E.coli BL21 (DE 3) strain containing pET-28 a-ts-sumo-Ca.N.koreensis-caspase plasmid was inoculated at 1% (v/v) into LB liquid medium containing 0.1% (v/v) kanamycin, cultured with shaking at 37℃at 220rpm until OD600 value was between 0.8 and 1.0, cooled in ice bath, and then added with IPTG at a final concentration of 0.5mM, and cultured at 25℃at 180rpm overnight. The overnight cultured bacteria were collected by centrifugation at 5000rpm for 10min and bacterial pellet was resuspended in Buffer A (50mM HEPES pH 7.5,10% (v/v) glycerol, 20mM imidazole and 1000mM NaCl). After the bacterial suspension is broken (800 bar,10 min) by a high-pressure bacteria breaker, the precipitate is discarded by centrifugation at 18000rpm for 30min at 4 ℃, and the supernatant containing the target protein is subjected to secondary centrifugation, and the obtained supernatant is used as a sample for nickel column affinity chromatography.
After loading onto nickel columns pre-equilibrated with Buffer A at 4℃ 20 column volumes of Buffer A were used to wash out non-hanging and low affinity proteins, followed by elution of 10 column volumes with Buffer B (20mM HEPES pH 7.5,4.5MNaCl) at room temperature to remove bound nucleic acids, and finally all proteins of interest were eluted with 5-10 column volumes of Buffer C (50mM HEPES pH 7.5,1M NaCl,10% (v/v) glycerol and 300mM imidazole) at 4 ℃. Adding 1% (w/w) SUMO protease into the eluate containing target protein, and cutting at 4deg.C overnight to remove SUMO tag protein. The SUMO-tagged protein can bind to the nickel column due to the 6 XHis content, while the target protein cannot bind to the nickel column due to the cleavage of the SUMO-tagged protein. The unlabeled Ca.N. korensis-caspase is concentrated by ultrafiltration concentration tube at 30K and then loaded with HiLoad 16/60Superdex 200 pre-equilibrated by Buffer D (20mM HEPES pH 7.5,150mM NaCl and 10% (v/v) glycol). And collecting peak tip parts with higher protein purity according to SDS-PAGE electrophoresis identification results of each eluted hole, concentrating to about 15mg/mL, and rapidly freezing in liquid nitrogen and storing at-80 ℃ for later use.
The corresponding results are shown in FIG. 5, wherein, A is a SDS-PAGE analysis chart of the imidazole nickel column affinity chromatography eluents with different concentrations of Ca.N. koreensis-caspase; lane 1:20mM imidazole eluate; lane 2, 50mM imidazole eluate; lane 3:300mM imidazole eluate. Panel B shows the results of gel filtration chromatography and SDS-PAGE identification of Ca.N. koreesis-caspase by HiLoad 16/600Superdex 200prep grade, in the gel filtration chromatography, the abscissa represents the elution volume, the ordinate represents the light absorption value of the corresponding wavelength, the elution volume of the peak tip of the protein is 71.51mL, the curve at the arrow is the protein absorption value change curve of A280, and the other curve is the nucleic acid absorption value change curve of A260. As can be seen, this example successfully purified Ca.N.koreensis-caspase protein using the methods described above.
Example 3
This implementation is to verify that the Ca.N.koreensis-caspase system has full integration capability.
(1) Construction of the PUC19-Ca.N.koreensis-target plasmid
Integrating Ca.N.koreensis target gene (SEQ ID NO. 3) containing specific TSD (target site repetitive sequence) into a standard PUC19 vector by a PCR mode, and transferring the recombinant plasmid into DH5 alpha competence by a chemical conversion method after homologous recombination; the correct recombinant plasmid was obtained after Sanger sequencing using plasmid extraction Kit extraction plasmid.
The structure of the PUC19-Ca.N.koreensis-target plasmid constructed by the method described above is shown in FIG. 6.
The sequence involved is as follows:
sequence of target gene: SEQ ID NO.3:
note that: in the above SEQ ID No.3, the TSD sequence is framed and the rest is the target sequence.
(2) Preparation of Mini-casspoons
The method comprises the steps of taking a KanR resistance gene as a target integration sequence, selecting fragments with different lengths of 1K-3K as target gene fragments to be inserted for amplification, adding a TIR sequence with the length of 20nt at the tail ends of original upstream and downstream amplification primers to obtain a series of primers comprising the KanR-TIR-F, kanR-TIR-1K-R, kanR-TIR-2K-R, kanR-TIR-3K-R, carrying out PCR amplification by taking the KanR resistance gene as a template, and obtaining long-chain dsDNA (KanR-Mini-Casboost) with the lengths of 1258bp, 2151bp and 3292bp containing the KanR resistance gene and the TIR sequence at two ends by cutting gel and recycling the PCR products.
The sequence involved is as follows:
TIR sequence:
tagaatctttttattccgtt
KanR-TIR-F sequence:
tagaatctttttattccgttcgctgagcaataactagcataacccc
KanR-TIR-1K-R sequence:
tagaatctttttattccgttggaagagcgctgcatgcctat
KanR-TIR-2K-R sequence:
tagaatctttttattccgttctcgaccgatgcccttgagag
KanR-TIR-3K-R sequence:
tagaatctttttattccgtttttcccgcgtggtgaaccagg
1258bp KanR-Mini-Caspo sequence:
tagaatctttttattccgttcgctgagcaataactagcataaccccttggggcctctaaacgggtcttgaggggttttttgctgaaacctcaggcatttgagaa
gcacacggtcacactgcttccggtagtcaataaaccggtaaaccagcaatagacataagcggctatttaacgaccctgccctgaaccgacgacaagctg
acgaccgggtctccgcaagtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgaattaatt
cttagaaaaactcatcgagcatcaaatgaaactgcaatttattcatatcaggattatcaataccatatttttgaaaaagccgtttctgtaatgaaggagaaaact
caccgaggcagttccataggatggcaagatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacctattaatttcccctcgtcaaaaataa
ggttatcaagtgagaaatcaccatgagtgacgactgaatccggtgagaatggcaaaagtttatgcatttctttccagacttgttcaacaggccagccattac
gctcgtcatcaaaatcactcgcatcaaccaaaccgttattcattcgtgattgcgcctgagcgagacgaaatacgcggtcgctgttaaaaggacaattacaa
acaggaatcgaatgcaaccggcgcaggaacactgccagcgcatcaacaatattttcacctgaatcaggatattcttctaatacctggaatgctgttttcccg
gggatcgcagtggtgagtaaccatgcatcatcaggagtacggataaaatgcttgatggtcggaagaggcataaattccgtcagccagtttagtctgaccat
ctcatctgtaacatcattggcaacgctacctttgccatgtttcagaaacaactctggcgcatcgggcttcccatacaatcgatagattgtcgcacctgattgcc
cgacattatcgcgagcccatttatacccatataaatcagcatccatgttggaatttaatcgcggcctagagcaagacgtttcccgttgaatatggctcatactc
ttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggcatgcagcgctcttcc
aacggaataaaaagattcta
2151bp KanR-Mini-Caspo sequence:
tagaatctttttattccgttcgctgagcaataactagcataaccccttggggcctctaaacgggtcttgaggggttttttgctgaaacctcaggcatttgagaa
gcacacggtcacactgcttccggtagtcaataaaccggtaaaccagcaatagacataagcggctatttaacgaccctgccctgaaccgacgacaagctg
acgaccgggtctccgcaagtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgaattaatt
cttagaaaaactcatcgagcatcaaatgaaactgcaatttattcatatcaggattatcaataccatatttttgaaaaagccgtttctgtaatgaaggagaaaact
caccgaggcagttccataggatggcaagatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacctattaatttcccctcgtcaaaaataa
ggttatcaagtgagaaatcaccatgagtgacgactgaatccggtgagaatggcaaaagtttatgcatttctttccagacttgttcaacaggccagccattac
gctcgtcatcaaaatcactcgcatcaaccaaaccgttattcattcgtgattgcgcctgagcgagacgaaatacgcggtcgctgttaaaaggacaattacaa
acaggaatcgaatgcaaccggcgcaggaacactgccagcgcatcaacaatattttcacctgaatcaggatattcttctaatacctggaatgctgttttcccg
gggatcgcagtggtgagtaaccatgcatcatcaggagtacggataaaatgcttgatggtcggaagaggcataaattccgtcagccagtttagtctgaccat
ctcatctgtaacatcattggcaacgctacctttgccatgtttcagaaacaactctggcgcatcgggcttcccatacaatcgatagattgtcgcacctgattgcc
cgacattatcgcgagcccatttatacccatataaatcagcatccatgttggaatttaatcgcggcctagagcaagacgtttcccgttgaatatggctcatactc
ttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggcatgcagcgctcttcc
gcttcctcgctcactgactcgctacgctcggtcgttcgactgcggcgagcggtgtcagctcactcaaaagcggtaatacggttatccacagaatcagggg
ataaagccggaaagaacatgtgagcaaaaagcaaagcaccggaagaagccaacgccgcaggcgtttttccataggctccgcccccctgacgagcatc
acaaaaatcgacgctcaagccagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttc
cgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgttggtatctcagttcggtgtaggtcgtt
cgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgact
tatcgccactggcagcagccattggtaactgatttagaggactttgtcttgaagttatgcacctgttaaggctaaactgaaagaacagattttggtgagtgcg
gtcctccaacccacttaccttggttcaaagagttggtagctcagcgaaccttgagaaaaccaccgttggtagcggtggtttttctttatttatgagatgatgaat
caatcggtctatcaagtcaacgaacagctattccgttactctagatttcagtgcaatttatctcttcaaatgtagcacctgaagtcagccccatacgatataagt
tgtaattctcatgttagtcatgccccgcgcccaccggaaggagctgactgggttgaaggctctcaagggcatcggtcgagaacggaataaaaagattcta
3223bp KanR-Mini-Caspo sequence:
tagaatctttttattccgttcgctgagcaataactagcataaccccttggggcctctaaacgggtcttgaggggttttttgctgaaacctcaggcatttgagaa
gcacacggtcacactgcttccggtagtcaataaaccggtaaaccagcaatagacataagcggctatttaacgaccctgccctgaaccgacgacaagctg
acgaccgggtctccgcaagtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgaattaatt
cttagaaaaactcatcgagcatcaaatgaaactgcaatttattcatatcaggattatcaataccatatttttgaaaaagccgtttctgtaatgaaggagaaaact
caccgaggcagttccataggatggcaagatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacctattaatttcccctcgtcaaaaataa
ggttatcaagtgagaaatcaccatgagtgacgactgaatccggtgagaatggcaaaagtttatgcatttctttccagacttgttcaacaggccagccattac
gctcgtcatcaaaatcactcgcatcaaccaaaccgttattcattcgtgattgcgcctgagcgagacgaaatacgcggtcgctgttaaaaggacaattacaa
acaggaatcgaatgcaaccggcgcaggaacactgccagcgcatcaacaatattttcacctgaatcaggatattcttctaatacctggaatgctgttttcccg
gggatcgcagtggtgagtaaccatgcatcatcaggagtacggataaaatgcttgatggtcggaagaggcataaattccgtcagccagtttagtctgaccat
ctcatctgtaacatcattggcaacgctacctttgccatgtttcagaaacaactctggcgcatcgggcttcccatacaatcgatagattgtcgcacctgattgcc
cgacattatcgcgagcccatttatacccatataaatcagcatccatgttggaatttaatcgcggcctagagcaagacgtttcccgttgaatatggctcatactc
ttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggcatgcagcgctcttcc
gcttcctcgctcactgactcgctacgctcggtcgttcgactgcggcgagcggtgtcagctcactcaaaagcggtaatacggttatccacagaatcagggg
ataaagccggaaagaacatgtgagcaaaaagcaaagcaccggaagaagccaacgccgcaggcgtttttccataggctccgcccccctgacgagcatc
acaaaaatcgacgctcaagccagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttc
cgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgttggtatctcagttcggtgtaggtcgtt
cgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgact
tatcgccactggcagcagccattggtaactgatttagaggactttgtcttgaagttatgcacctgttaaggctaaactgaaagaacagattttggtgagtgcg
gtcctccaacccacttaccttggttcaaagagttggtagctcagcgaaccttgagaaaaccaccgttggtagcggtggtttttctttatttatgagatgatgaat
caatcggtctatcaagtcaacgaacagctattccgttactctagatttcagtgcaatttatctcttcaaatgtagcacctgaagtcagccccatacgatataagt
tgtaattctcatgttagtcatgccccgcgcccaccggaaggagctgactgggttgaaggctctcaagggcatcggtcgagatcccggtgcctaatgagtg
agctaacttacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagag
gcggtttgcgtattgggcgccagggtggtttttcttttcaccagtgagacgggcaacagctgattgcccttcaccgcctggccctgagagagttgcagcaa
gcggtccacgctggtttgccccagcaggcgaaaatcctgtttgatggtggttaacggcgggatataacatgagctgtcttcggtatcgtcgtatcccactac
cgagatgtccgcaccaacgcgcagcccggactcggtaatggcgcgcattgcgcccagcgccatctgatcgttggcaaccagcatcgcagtgggaacg
atgccctcattcagcatttgcatggtttgttgaaaaccggacatggcactccagtcgccttcccgttccgctatcggctgaatttgattgcgagtgagatattta
tgccagccagccagacgcagacgcgccgagacagaacttaatgggcccgctaacagcgcgatttgctggtgacccaatgcgaccagatgctccacgc
ccagtcgcgtaccgtcttcatgggagaaaataatactgttgatgggtgtctggtcagagacatcaagaaataacgccggaacattagtgcaggcagcttc
cacagcaatggcatcctggtcatccagcggatagttaatgatcagcccactgacgcgttgcgcgagaagattgtgcaccgccgctttacaggcttcgacg
ccgcttcgttctaccatcgacaccaccacgctggcacccagttgatcggcgcgagatttaatcgccgcgacaatttgcgacggcgcgtgcagggccaga
ctggaggtggcaacgccaatcagcaacgactgtttgcccgccagttgttgtgccacgcggttgggaatgtaattcagctccgccatcgccgcttccactttt
tcccgcgttttcgcagaaacgtggctggcctggttcaccacgcgggaaaaacggaataaaaagattcta
(3) Verification of the full-integration Capacity of the Ca.N-caspase System
The resulting KanR-Mini-caspases were incubated with Ca.N.koreensis caspase of example 2 and PUC19-Ca.N.koreensis-target vector of (1) above to catalyze the integration reaction of KanR-Mini-caspases. After isopropanol precipitation, the reacted product was electrotransferred to an ElectroMax E.coli DH10B competence and coated onto a double antibody plate containing kanamycin sulfate and ampicillin. Transformants grown on the double antibody plates are the products of the full integration reaction, and several monoclonal antibodies were randomly picked for Sanger sequencing. The results are shown in FIG. 7: the presence of the expected KanR-Mini-Casboost in the plasmid after the integration reaction indicated that: similar to CRISPR-Cas1, ca.n.koreensis caspase has the ability to catalyze the occurrence of fully integrated reactions.
Example 4
This example is to introduce ccdB toxic proteins and modify the original ca.n.koreensis TIR sequence to achieve targeted integration of Mini-casosons.
The Ca.N.korensis caspase full integration reaction is similar to CRISPR-Cas1, and is completed by the attack of the 3' end of the TIR sequence carried by the two ends of Mini-Casphos to the 5' end of the TSD sequence, and in the Ca.N.korensis caspase original system, different directivities can appear in the full integration process due to the fact that the sequences of the 3' ends of the TIR sequences are identical, but the random integration mode of the site-specific direction is not beneficial to the subsequent tool development. Therefore, the gene editing tool for site-specific directional fixation is developed by simultaneously modifying the integration target vector containing Ca.N.koreensis target and Ca.N.koreensis TIR, introducing the toxic protein ccdB and modifying Ca.N.koreensis TIR into an expression switch of ccdB toxic protein.
(1) Construction of pET28a-lac UV5promoter-Ca.N. koreensis target-ccdB vector
Integrating Ca.N.koreensis target gene (SEQ ID NO. 3) into a pET28a vector by utilizing homologous recombination in a PCR mode, adding ccdB protein gene (SEQ ID NO. 4) at the end of a T7 expression frame, and adding a lac UV5promoter after RBS site and reserving upstream and downstream box elements to improve the ccdB expression level because the ccdB protein is not high as phage toxic protein to be expressed on a common vector of the existing escherichia coli expression system, and transferring the recombinant plasmid into DH5 alpha competence by using a chemical conversion method after recombination; the correct recombinant plasmid was obtained after Sanger sequencing using plasmid extraction Kit extraction plasmid. The structure of pET28a-lac UV5promoter-Ca.N.koreensis target-ccdB plasmid constructed by the method described above is shown in FIG. 8.
The sequence involved is as follows:
coding gene sequence of ccdB protein: SEQ ID NO.4:
cagtttaaggtttacacctataaaagagagagccgttatcgtctgtttgtggatgtacagagtgatattattgacacgcccgggcgacggatggtgatcccc
ctggccagtgcacgtctgctgtcagataaagtcccccgtgaactttacccggtggtgcatatcggggatgaaagctggcgcatgatgaccaccgatatggccagtgtgccggtctccgttatcggggaagaagtggctgatctcagccaccgcgaaaatgacatcaaaaacgccattaacctgatgttctggggaatataa
amino acid sequence of ccdB protein: SEQ ID NO.5:
QFKVYTYKRESRYRLFVDVQSDIIDTPGRRMVIPLASARLLSDKVPRELYPVVHIGDESWRMMTTDMASVPVSVIGEEVADLSHRENDIKNAINLMFWGI
lac UV5promoter sequence:
tttacactttatgcttccggctcgtataatg
(2) Confirmation of TIR key site in Ca.N. koreensis koreensis casposase integration
To determine the TIR sequence involved in Ca.N.koreensis caspase recognition, TIR with different site mutations was incubated with 45bp double-stranded target (consisting of 9bp leader,13bp TSD and 13bp spacer) and Ca.N.koreensis caspase formed by annealing single-stranded DNA labeled with the 3 '-end 6-FAM and 3' -end Cy5, respectively, and key TIR sites involved in the integration reaction were determined by differences in the integration activities of the different mutants. Firstly taking the ssTIR sequence as the WT, and carrying out section-by-section mutation on the sequence, wherein the integration activity of the ssTIR (1-25) mutant is not significantly different from that of the WT; whereas the integration activity at both ends after the 26-30 mutation at the 3' -end of the ssTIR sequence significantly reduced the L-int reduction more significantly; thus, the activity of the 3' -terminal 5' -TTCTA-3' motif in the ssTIR sequence for the integration reaction is most affected, which indicates that the motif is a key region for the recognition of the ssTIR sequence by Ca.N.koreensis caspase, and there is a high probability of important interactions with Ca.N.koreensis caspase.
Although single base mutations of 5'-TTCTA-3' motif do not greatly affect TIR integration, it is speculated that nucleotide sequences located within the motif may have synergistic or interactive effects, together with the efficiency of TIR sequence integration, due to a significant decrease in TIR integration activity following all mutations. The above results indicate that: unlike the a.boost and m.mazei caspases of family type 2, which have stringent requirements for TIR nucleotide sequences involved in integration, ca.n.koreensis caspases have broader compatibility for TIR that can be integrated, which may be closer to Cas1-Cas2 of the CRISPR-Cas system. In addition to ssTIR as described above, the present study also performed similar integration reactions on the dsTIR sequence to confirm that dsTIR possesses the same ca.n.koreensis caspase recognition site as ssTIR during integration of TIR.
Taken together, as shown in FIG. 9, the results of the integration activities of ssTIR and dsTIR mutants indicate that the 5' -TTCTA-3' motif at the 3' -end of the TIR sequence is the most critical region in the integration reaction.
(3) TIR transformation in Ca.N. koreensis caspase integration into ccdB expression reading frame control switch
The 5' end 10nt of the original 20nt TIR of Ca.N. koreensis caspase is modified, so that the Ca.N. koreensis caspase can play different roles in the full integration results in different directions in the Mini-caspase insertion process. The modified TIR is renamed TIRF (25 nt long, upstream TIR) and TIRR (19 nt long, downstream TIR) with the target insertion direction as the reference direction. Compared with the original TIR, the 11 th, 12 th and 19 th bases of the TIRR are mutated, and the mutation of the sites can be changed into ccdB protein ORF in different insertion results to play a role of an initiation codon or a termination codon. The 19 bases near the 3 'end of TIRF are identical to TIRR, and the 6nt near the 5' end is the start codon introduced. As shown in fig. 10, the modified TIRF and TIRR will together with the target gene constitute Mini-cascoson which will close the ORF of ccdB protein after complete integration in the target direction, but will maintain complete expression of ccdB when complete integration in the non-target direction is completed, so that on the screening plate transformed by the tool strain without f+ plasmid, monoclonal colonies corresponding to the products of complete integration in the target direction can normally grow.
The related sequences are shown in the following table:
name of the name | Sequence (5 '-3') | Remarks |
ssTIR30(1-5) | tacgaatgataacggaataaaaagattcta | —— |
ssTIR30(6-10) | atgcttactaaacggaataaaaagattcta | —— |
ssTIR30(11-15) | atgctatgatttgccaataaaaagattcta | —— |
ssTIR30(16-20) | atgctatgataacggttattaaagattcta | —— |
ssTIR30(21-25) | atgctatgataacggaataatttctttcta | —— |
ssTIR30(1-25) | tacgatactattgccttatttttctttcta | —— |
ssTIR30(26-30) | atgctatgataacggaataaaaagaaagat | —— |
ssTIR30-T26A | atgctatgataacggaataaaaagaatcta | —— |
ssTIR30-T27A | atgctatgataacggaataaaaagatacta | —— |
ssTIR30-C28G | atgctatgataacggaataaaaagattgta | —— |
ssTIR30-T29A | atgctatgataacggaataaaaagattcaa | —— |
ssTIR30-A30T | atgctatgataacggaataaaaagattctt | —— |
ssTIR30-A30C | atgctatgataacggaataaaaagattctc | —— |
ssTIR30-A30G | atgctatgataacggaataaaaagattctg | —— |
TIRF | tagaatctttacattcgtaatgcat | SEQ ID NO.6 |
TIRR | tacgaatgtaaagattcta | SEQ ID NO.7 |
Example 5
The present example is to test the full integration capacity of the modified type I caspase system in E.coli expression system.
(1) Construction of pltdet-p 3c-Cas2Cas3 vector
Randomly selecting two vectors (pRSF-Duet-Cas 2 and pLenti-Cas3 are selected in the embodiment), amplifying Cas3 protein ORF by a PCR method, carrying out homologous recombination on the protein ORF to the pRSF-Duet-Cas2 vector for recombination, and then transferring the recombinant plasmid into DH5 alpha competence by a chemical transformation method; the correct recombinant plasmid was obtained after Sanger sequencing using plasmid extraction Kit extraction plasmid. Construction of pltdet-p 3c-Cas2Cas3 plasmid structures by the methods described above is shown in fig. 11. The vector is a template vector for preparing Mini-Casboost.
(2) Preparation of Mini-Casboost
The pLtDuet-p3c-Cas2Cas3 vector is used as a template, 1K-7K fragments with different lengths are selected to design upper amplification primers and lower amplification primers, a TIRF sequence with the length of 25nt is added at the 5 'end of the original upstream amplification primer, a TIRR sequence with the length of 19nt is added at the 5' end of the original downstream amplification primer, and pLtDuet-TIRF-F, pLtDuet-TIRR-1K-R, pLtDuet-TIRR-2K-R, pLtDuet-TIRR-3K-R, pLtDuet-TIRR-4K-R, pLtDuet-TIRR-5K-R, pLtDuet-TIRR-6K-R, pLtDuet-TIRR-7K-R primers are obtained, and then PCR amplification is carried out and the PCR products are cut and recovered to obtain the pLtDuet-Mini-caspase with the length of 1K/2K/3K/4K/5K/6K/7K.
The sequence involved is as follows:
pltdet-TIRF sequence:
tagaatctttacattcgtaatgcatcgctgagcaataactagcataacccc
pLtDuet-TIRR-1K-R sequence:
tagaatctttacattcgtaggaagagcgctgcatgcctat
pLtDuet-TIRR-2K-R sequence:
tagaatctttacattcgtactcgaccgatgcccttgagag
pLtDuet-TIRR-3K-R sequence:
tagaatctttacattcgtattaggtgaatgtgaaaccagtaacgttatacg
pLtDuet-TIRR-4K-R sequence:
tagaatctttacattcgtattacggaactcccaagcttatcgataaaattttg
pLtDuet-TIRR-5K-R sequence:
tagaatctttacattcgtattagtctgaggcacgaatcccttgg
pLtDuet-TIRR-6K-R sequence:
tagaatctttacattcgtattatggtccacggtagcgctgaagaa
pLtDuet-TIRR-7K-R sequence:
tagaatctttacattcgtattatccaggtacttaggcagctgagg
1 k-pltdet-Mini-caspaseon sequence:
tagaatctttacattcgtacgctgagcaataactagcataaccccttggggcctctaaacgggtcttgaggggttttttgctgaaacctcaggcatttgagaa
gcacacggtcacactgcttccggtagtcaataaaccggtaaaccagcaatagacataagcggctatttaacgaccctgccctgaaccgacgacaagctg
acgaccgggtctccgcaagtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgaattaatt
cttagaaaaactcatcgagcatcaaatgaaactgcaatttattcatatcaggattatcaataccatatttttgaaaaagccgtttctgtaatgaaggagaaaact
caccgaggcagttccataggatggcaagatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacctattaatttcccctcgtcaaaaataa
ggttatcaagtgagaaatcaccatgagtgacgactgaatccggtgagaatggcaaaagtttatgcatttctttccagacttgttcaacaggccagccattac
gctcgtcatcaaaatcactcgcatcaaccaaaccgttattcattcgtgattgcgcctgagcgagacgaaatacgcggtcgctgttaaaaggacaattacaa
acaggaatcgaatgcaaccggcgcaggaacactgccagcgcatcaacaatattttcacctgaatcaggatattcttctaatacctggaatgctgttttcccg
gggatcgcagtggtgagtaaccatgcatcatcaggagtacggataaaatgcttgatggtcggaagaggcataaattccgtcagccagtttagtctgaccat
ctcatctgtaacatcattggcaacgctacctttgccatgtttcagaaacaactctggcgcatcgggcttcccatacaatcgatagattgtcgcacctgattgcc
cgacattatcgcgagcccatttatacccatataaatcagcatccatgttggaatttaatcgcggcctagagcaagacgtttcccgttgaatatggctcatactc
ttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggcatgcagcgctcttcc
tacgaatgtaaagattcta
2 k-pltdet-Mini-caspaseon sequence:
tagaatctttacattcgtacgctgagcaataactagcataaccccttggggcctctaaacgggtcttgaggggttttttgctgaaacctcaggcatttgagaa
gcacacggtcacactgcttccggtagtcaataaaccggtaaaccagcaatagacataagcggctatttaacgaccctgccctgaaccgacgacaagctg
acgaccgggtctccgcaagtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgaattaatt
cttagaaaaactcatcgagcatcaaatgaaactgcaatttattcatatcaggattatcaataccatatttttgaaaaagccgtttctgtaatgaaggagaaaact
caccgaggcagttccataggatggcaagatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacctattaatttcccctcgtcaaaaataa
ggttatcaagtgagaaatcaccatgagtgacgactgaatccggtgagaatggcaaaagtttatgcatttctttccagacttgttcaacaggccagccattac
gctcgtcatcaaaatcactcgcatcaaccaaaccgttattcattcgtgattgcgcctgagcgagacgaaatacgcggtcgctgttaaaaggacaattacaa
acaggaatcgaatgcaaccggcgcaggaacactgccagcgcatcaacaatattttcacctgaatcaggatattcttctaatacctggaatgctgttttcccg
gggatcgcagtggtgagtaaccatgcatcatcaggagtacggataaaatgcttgatggtcggaagaggcataaattccgtcagccagtttagtctgaccat
ctcatctgtaacatcattggcaacgctacctttgccatgtttcagaaacaactctggcgcatcgggcttcccatacaatcgatagattgtcgcacctgattgcc
cgacattatcgcgagcccatttatacccatataaatcagcatccatgttggaatttaatcgcggcctagagcaagacgtttcccgttgaatatggctcatactc
ttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggcatgcagcgctcttcc
gcttcctcgctcactgactcgctacgctcggtcgttcgactgcggcgagcggtgtcagctcactcaaaagcggtaatacggttatccacagaatcagggg
ataaagccggaaagaacatgtgagcaaaaagcaaagcaccggaagaagccaacgccgcaggcgtttttccataggctccgcccccctgacgagcatc
acaaaaatcgacgctcaagccagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttc
cgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgttggtatctcagttcggtgtaggtcgtt
cgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgact
tatcgccactggcagcagccattggtaactgatttagaggactttgtcttgaagttatgcacctgttaaggctaaactgaaagaacagattttggtgagtgcg
gtcctccaacccacttaccttggttcaaagagttggtagctcagcgaaccttgagaaaaccaccgttggtagcggtggtttttctttatttatgagatgatgaat
caatcggtctatcaagtcaacgaacagctattccgttactctagatttcagtgcaatttatctcttcaaatgtagcacctgaagtcagccccatacgatataagt
tgtaattctcatgttagtcatgccccgcgcccaccggaaggagctgactgggttgaaggctctcaagggcatcggtcgagtacgaatgtaaagattcta
3 k-pltdet-Mini-caspaseon sequence:
tagaatctttacattcgtaatgcatcgctgagcaataactagcataaccccttggggcctctaaacgggtcttgaggggttttttgctgaaacctcaggcattt
gagaagcacacggtcacactgcttccggtagtcaataaaccggtaaaccagcaatagacataagcggctatttaacgaccctgccctgaaccgacgaca
agctgacgaccgggtctccgcaagtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatga
attaattcttagaaaaactcatcgagcatcaaatgaaactgcaatttattcatatcaggattatcaataccatatttttgaaaaagccgtttctgtaatgaaggag
aaaactcaccgaggcagttccataggatggcaagatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacctattaatttcccctcgtcaa
aaataaggttatcaagtgagaaatcaccatgagtgacgactgaatccggtgagaatggcaaaagtttatgcatttctttccagacttgttcaacaggccagc
cattacgctcgtcatcaaaatcactcgcatcaaccaaaccgttattcattcgtgattgcgcctgagcgagacgaaatacgcggtcgctgttaaaaggacaat
tacaaacaggaatcgaatgcaaccggcgcaggaacactgccagcgcatcaacaatattttcacctgaatcaggatattcttctaatacctggaatgctgtttt
cccggggatcgcagtggtgagtaaccatgcatcatcaggagtacggataaaatgcttgatggtcggaagaggcataaattccgtcagccagtttagtctg
accatctcatctgtaacatcattggcaacgctacctttgccatgtttcagaaacaactctggcgcatcgggcttcccatacaatcgatagattgtcgcacctg
attgcccgacattatcgcgagcccatttatacccatataaatcagcatccatgttggaatttaatcgcggcctagagcaagacgtttcccgttgaatatggctc
atactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggcatgcagcg
ctcttccgcttcctcgctcactgactcgctacgctcggtcgttcgactgcggcgagcggtgtcagctcactcaaaagcggtaatacggttatccacagaatc
aggggataaagccggaaagaacatgtgagcaaaaagcaaagcaccggaagaagccaacgccgcaggcgtttttccataggctccgcccccctgacg
agcatcacaaaaatcgacgctcaagccagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctct
cctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgttggtatctcagttcggtgta
ggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaaga
cacgacttatcgccactggcagcagccattggtaactgatttagaggactttgtcttgaagttatgcacctgttaaggctaaactgaaagaacagattttggt
gagtgcggtcctccaacccacttaccttggttcaaagagttggtagctcagcgaaccttgagaaaaccaccgttggtagcggtggtttttctttatttatgaga
tgatgaatcaatcggtctatcaagtcaacgaacagctattccgttactctagatttcagtgcaatttatctcttcaaatgtagcacctgaagtcagccccatacg
atataagttgtaattctcatgttagtcatgccccgcgcccaccggaaggagctgactgggttgaaggctctcaagggcatcggtcgagatcccggtgccta
atgagtgagctaacttacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcgg
ggagaggcggtttgcgtattgggcgccagggtggtttttcttttcaccagtgagacgggcaacagctgattgcccttcaccgcctggccctgagagagttg
cagcaagcggtccacgctggtttgccccagcaggcgaaaatcctgtttgatggtggttaacggcgggatataacatgagctgtcttcggtatcgtcgtatc
ccactaccgagatgtccgcaccaacgcgcagcccggactcggtaatggcgcgcattgcgcccagcgccatctgatcgttggcaaccagcatcgcagt
gggaacgatgccctcattcagcatttgcatggtttgttgaaaaccggacatggcactccagtcgccttcccgttccgctatcggctgaatttgattgcgagtg
agatatttatgccagccagccagacgcagacgcgccgagacagaacttaatgggcccgctaacagcgcgatttgctggtgacccaatgcgaccagatg
ctccacgcccagtcgcgtaccgtcttcatgggagaaaataatactgttgatgggtgtctggtcagagacatcaagaaataacgccggaacattagtgcag
gcagcttccacagcaatggcatcctggtcatccagcggatagttaatgatcagcccactgacgcgttgcgcgagaagattgtgcaccgccgctttacagg
cttcgacgccgcttcgttctaccatcgacaccaccacgctggcacccagttgatcggcgcgagatttaatcgccgcgacaatttgcgacggcgcgtgca
gggccagactggaggtggcaacgccaatcagcaacgactgtttgcccgccagttgttgtgccacgcggttgggaatgtaattcagctccgccatcgccg
cttccactttttcccgcgttttcgcagaaacgtggctggcctggttcaccacgcgggaaacggtctgataagagacaccggcatactctgcgacatcgtat
aacgttactggtttcacattcacctaatacgaatgtaaagattcta
4 k-pltdet-Mini-caspaseon sequence:
tagaatctttacattcgtaatgcatcgctgagcaataactagcataaccccttggggcctctaaacgggtcttgaggggttttttgctgaaacctcaggcattt
gagaagcacacggtcacactgcttccggtagtcaataaaccggtaaaccagcaatagacataagcggctatttaacgaccctgccctgaaccgacgaca
agctgacgaccgggtctccgcaagtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatga
attaattcttagaaaaactcatcgagcatcaaatgaaactgcaatttattcatatcaggattatcaataccatatttttgaaaaagccgtttctgtaatgaaggag
aaaactcaccgaggcagttccataggatggcaagatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacctattaatttcccctcgtcaa
aaataaggttatcaagtgagaaatcaccatgagtgacgactgaatccggtgagaatggcaaaagtttatgcatttctttccagacttgttcaacaggccagc
cattacgctcgtcatcaaaatcactcgcatcaaccaaaccgttattcattcgtgattgcgcctgagcgagacgaaatacgcggtcgctgttaaaaggacaat
tacaaacaggaatcgaatgcaaccggcgcaggaacactgccagcgcatcaacaatattttcacctgaatcaggatattcttctaatacctggaatgctgtttt
cccggggatcgcagtggtgagtaaccatgcatcatcaggagtacggataaaatgcttgatggtcggaagaggcataaattccgtcagccagtttagtctg
accatctcatctgtaacatcattggcaacgctacctttgccatgtttcagaaacaactctggcgcatcgggcttcccatacaatcgatagattgtcgcacctg
attgcccgacattatcgcgagcccatttatacccatataaatcagcatccatgttggaatttaatcgcggcctagagcaagacgtttcccgttgaatatggctc
atactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggcatgcagcg
ctcttccgcttcctcgctcactgactcgctacgctcggtcgttcgactgcggcgagcggtgtcagctcactcaaaagcggtaatacggttatccacagaatc
aggggataaagccggaaagaacatgtgagcaaaaagcaaagcaccggaagaagccaacgccgcaggcgtttttccataggctccgcccccctgacg
agcatcacaaaaatcgacgctcaagccagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctct
cctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgttggtatctcagttcggtgta
ggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaaga
cacgacttatcgccactggcagcagccattggtaactgatttagaggactttgtcttgaagttatgcacctgttaaggctaaactgaaagaacagattttggt
gagtgcggtcctccaacccacttaccttggttcaaagagttggtagctcagcgaaccttgagaaaaccaccgttggtagcggtggtttttctttatttatgaga
tgatgaatcaatcggtctatcaagtcaacgaacagctattccgttactctagatttcagtgcaatttatctcttcaaatgtagcacctgaagtcagccccatacg
atataagttgtaattctcatgttagtcatgccccgcgcccaccggaaggagctgactgggttgaaggctctcaagggcatcggtcgagatcccggtgccta
atgagtgagctaacttacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcgg
ggagaggcggtttgcgtattgggcgccagggtggtttttcttttcaccagtgagacgggcaacagctgattgcccttcaccgcctggccctgagagagttg
cagcaagcggtccacgctggtttgccccagcaggcgaaaatcctgtttgatggtggttaacggcgggatataacatgagctgtcttcggtatcgtcgtatc
ccactaccgagatgtccgcaccaacgcgcagcccggactcggtaatggcgcgcattgcgcccagcgccatctgatcgttggcaaccagcatcgcagt
gggaacgatgccctcattcagcatttgcatggtttgttgaaaaccggacatggcactccagtcgccttcccgttccgctatcggctgaatttgattgcgagtg
agatatttatgccagccagccagacgcagacgcgccgagacagaacttaatgggcccgctaacagcgcgatttgctggtgacccaatgcgaccagatg
ctccacgcccagtcgcgtaccgtcttcatgggagaaaataatactgttgatgggtgtctggtcagagacatcaagaaataacgccggaacattagtgcag
gcagcttccacagcaatggcatcctggtcatccagcggatagttaatgatcagcccactgacgcgttgcgcgagaagattgtgcaccgccgctttacagg
cttcgacgccgcttcgttctaccatcgacaccaccacgctggcacccagttgatcggcgcgagatttaatcgccgcgacaatttgcgacggcgcgtgca
gggccagactggaggtggcaacgccaatcagcaacgactgtttgcccgccagttgttgtgccacgcggttgggaatgtaattcagctccgccatcgccg
cttccactttttcccgcgttttcgcagaaacgtggctggcctggttcaccacgcgggaaacggtctgataagagacaccggcatactctgcgacatcgtat
aacgttactggtttcacattcaccaccctgaattgactctcttccgggcgctatcatgccataccgcgaaaggttttgcgccattcgatggtgtccgggatctc
gacgctctcccttatgcgactcctgcattaggaaattaatacgactcactataggggaattgtgagcggataacaattcccctgtagaaataattttgtttattt
ggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagttggagtaataaatctctggaacagattggaatcacacgacctggatgga
gtgggacagagaaattaacaattacacaagcttaatacactccttaattgaagaatcgcaaaaccagcaagaaaagaatgaacaagaattattggaattag
ataaatgggcaagtttgtggaattggtttaacataacaaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaatagttttt
gctgtactttctatagtgaatagagttaggcagggatattcaccattatcgtttcagacccacctcccaaccccgaggggacccgacaggcccgaaggaa
tagaagaagaaggtggagagagagacagagacagatccattcgattagtgaacggatctcgacggttaacttttaaaagaaaaggggggattgggggg
tacagtgcaggggaaagaatagtagacataatagcaacagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaattttatcgataagctt
gggagttccgtaatacgaatgtaaagattcta
5 k-pltdet-Mini-caspaseon sequence:
tagaatctttacattcgtaatgcatcgctgagcaataactagcataaccccttggggcctctaaacgggtcttgaggggttttttgctgaaacctcaggcattt
gagaagcacacggtcacactgcttccggtagtcaataaaccggtaaaccagcaatagacataagcggctatttaacgaccctgccctgaaccgacgaca
agctgacgaccgggtctccgcaagtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatga
attaattcttagaaaaactcatcgagcatcaaatgaaactgcaatttattcatatcaggattatcaataccatatttttgaaaaagccgtttctgtaatgaaggag
aaaactcaccgaggcagttccataggatggcaagatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacctattaatttcccctcgtcaa
aaataaggttatcaagtgagaaatcaccatgagtgacgactgaatccggtgagaatggcaaaagtttatgcatttctttccagacttgttcaacaggccagc
cattacgctcgtcatcaaaatcactcgcatcaaccaaaccgttattcattcgtgattgcgcctgagcgagacgaaatacgcggtcgctgttaaaaggacaat
tacaaacaggaatcgaatgcaaccggcgcaggaacactgccagcgcatcaacaatattttcacctgaatcaggatattcttctaatacctggaatgctgtttt
cccggggatcgcagtggtgagtaaccatgcatcatcaggagtacggataaaatgcttgatggtcggaagaggcataaattccgtcagccagtttagtctg
accatctcatctgtaacatcattggcaacgctacctttgccatgtttcagaaacaactctggcgcatcgggcttcccatacaatcgatagattgtcgcacctg
attgcccgacattatcgcgagcccatttatacccatataaatcagcatccatgttggaatttaatcgcggcctagagcaagacgtttcccgttgaatatggctc
atactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggcatgcagcg
ctcttccgcttcctcgctcactgactcgctacgctcggtcgttcgactgcggcgagcggtgtcagctcactcaaaagcggtaatacggttatccacagaatc
aggggataaagccggaaagaacatgtgagcaaaaagcaaagcaccggaagaagccaacgccgcaggcgtttttccataggctccgcccccctgacg
agcatcacaaaaatcgacgctcaagccagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctct
cctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgttggtatctcagttcggtgta
ggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaaga
cacgacttatcgccactggcagcagccattggtaactgatttagaggactttgtcttgaagttatgcacctgttaaggctaaactgaaagaacagattttggt
gagtgcggtcctccaacccacttaccttggttcaaagagttggtagctcagcgaaccttgagaaaaccaccgttggtagcggtggtttttctttatttatgaga
tgatgaatcaatcggtctatcaagtcaacgaacagctattccgttactctagatttcagtgcaatttatctcttcaaatgtagcacctgaagtcagccccatacg
atataagttgtaattctcatgttagtcatgccccgcgcccaccggaaggagctgactgggttgaaggctctcaagggcatcggtcgagatcccggtgccta
atgagtgagctaacttacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcgg
ggagaggcggtttgcgtattgggcgccagggtggtttttcttttcaccagtgagacgggcaacagctgattgcccttcaccgcctggccctgagagagttg
cagcaagcggtccacgctggtttgccccagcaggcgaaaatcctgtttgatggtggttaacggcgggatataacatgagctgtcttcggtatcgtcgtatc
ccactaccgagatgtccgcaccaacgcgcagcccggactcggtaatggcgcgcattgcgcccagcgccatctgatcgttggcaaccagcatcgcagt
gggaacgatgccctcattcagcatttgcatggtttgttgaaaaccggacatggcactccagtcgccttcccgttccgctatcggctgaatttgattgcgagtg
agatatttatgccagccagccagacgcagacgcgccgagacagaacttaatgggcccgctaacagcgcgatttgctggtgacccaatgcgaccagatg
ctccacgcccagtcgcgtaccgtcttcatgggagaaaataatactgttgatgggtgtctggtcagagacatcaagaaataacgccggaacattagtgcag
gcagcttccacagcaatggcatcctggtcatccagcggatagttaatgatcagcccactgacgcgttgcgcgagaagattgtgcaccgccgctttacagg
cttcgacgccgcttcgttctaccatcgacaccaccacgctggcacccagttgatcggcgcgagatttaatcgccgcgacaatttgcgacggcgcgtgca
gggccagactggaggtggcaacgccaatcagcaacgactgtttgcccgccagttgttgtgccacgcggttgggaatgtaattcagctccgccatcgccg
cttccactttttcccgcgttttcgcagaaacgtggctggcctggttcaccacgcgggaaacggtctgataagagacaccggcatactctgcgacatcgtat
aacgttactggtttcacattcaccaccctgaattgactctcttccgggcgctatcatgccataccgcgaaaggttttgcgccattcgatggtgtccgggatctc
gacgctctcccttatgcgactcctgcattaggaaattaatacgactcactataggggaattgtgagcggataacaattcccctgtagaaataattttgtttattt
ggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagttggagtaataaatctctggaacagattggaatcacacgacctggatgga
gtgggacagagaaattaacaattacacaagcttaatacactccttaattgaagaatcgcaaaaccagcaagaaaagaatgaacaagaattattggaattag
ataaatgggcaagtttgtggaattggtttaacataacaaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaatagttttt
gctgtactttctatagtgaatagagttaggcagggatattcaccattatcgtttcagacccacctcccaaccccgaggggacccgacaggcccgaaggaa
tagaagaagaaggtggagagagagacagagacagatccattcgattagtgaacggatctcgacggttaacttttaaaagaaaaggggggattgggggg
tacagtgcaggggaaagaatagtagacataatagcaacagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaattttatcgataagctt
gggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagta
acgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccct
attgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctat
taccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagttt
gttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatata
agcagagctcgtttagtgaaccgtcagatcgcctggagacgccatccacgctgttttgacctccatagaagacaccgactctagtccagtgtggtggaatt
ctgcagatatcaacaagtttgtacaaaaaagcaggctccgcggccgcacagatctcgaggtgtcgtgaacaccgccaccatgggcagcagccatcatc
accaccaccacagccagatgctgaaacagctgctggccaagagcctgcctaccgatcctcagaagaagcccctgagcctggaacagcatctgctgga
cacagagacagccgctctggtcatcttcaagggcagaatgctggacaactggtgccggttcttcaaagtgaaggaccccgacgagttcctgctgcacct
gagagtggccgctctgtttcacgatctgggcaaagccaaccacgagttcatcgaggccgtgaccgccaagggattcgtgcctcagactaatacgaatgt
aaagattcta
6 k-pltdet-Mini-caspaseon sequence:
tagaatctttacattcgtaatgcatcgctgagcaataactagcataaccccttggggcctctaaacgggtcttgaggggttttttgctgaaacctcaggcattt
gagaagcacacggtcacactgcttccggtagtcaataaaccggtaaaccagcaatagacataagcggctatttaacgaccctgccctgaaccgacgaca
agctgacgaccgggtctccgcaagtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatga
attaattcttagaaaaactcatcgagcatcaaatgaaactgcaatttattcatatcaggattatcaataccatatttttgaaaaagccgtttctgtaatgaaggag
aaaactcaccgaggcagttccataggatggcaagatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacctattaatttcccctcgtcaa
aaataaggttatcaagtgagaaatcaccatgagtgacgactgaatccggtgagaatggcaaaagtttatgcatttctttccagacttgttcaacaggccagc
cattacgctcgtcatcaaaatcactcgcatcaaccaaaccgttattcattcgtgattgcgcctgagcgagacgaaatacgcggtcgctgttaaaaggacaat
tacaaacaggaatcgaatgcaaccggcgcaggaacactgccagcgcatcaacaatattttcacctgaatcaggatattcttctaatacctggaatgctgtttt
cccggggatcgcagtggtgagtaaccatgcatcatcaggagtacggataaaatgcttgatggtcggaagaggcataaattccgtcagccagtttagtctg
accatctcatctgtaacatcattggcaacgctacctttgccatgtttcagaaacaactctggcgcatcgggcttcccatacaatcgatagattgtcgcacctg
attgcccgacattatcgcgagcccatttatacccatataaatcagcatccatgttggaatttaatcgcggcctagagcaagacgtttcccgttgaatatggctc
atactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggcatgcagcg
ctcttccgcttcctcgctcactgactcgctacgctcggtcgttcgactgcggcgagcggtgtcagctcactcaaaagcggtaatacggttatccacagaatc
aggggataaagccggaaagaacatgtgagcaaaaagcaaagcaccggaagaagccaacgccgcaggcgtttttccataggctccgcccccctgacg
agcatcacaaaaatcgacgctcaagccagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctct
cctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgttggtatctcagttcggtgta
ggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaaga
cacgacttatcgccactggcagcagccattggtaactgatttagaggactttgtcttgaagttatgcacctgttaaggctaaactgaaagaacagattttggt
gagtgcggtcctccaacccacttaccttggttcaaagagttggtagctcagcgaaccttgagaaaaccaccgttggtagcggtggtttttctttatttatgaga
tgatgaatcaatcggtctatcaagtcaacgaacagctattccgttactctagatttcagtgcaatttatctcttcaaatgtagcacctgaagtcagccccatacg
atataagttgtaattctcatgttagtcatgccccgcgcccaccggaaggagctgactgggttgaaggctctcaagggcatcggtcgagatcccggtgccta
atgagtgagctaacttacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcgg
ggagaggcggtttgcgtattgggcgccagggtggtttttcttttcaccagtgagacgggcaacagctgattgcccttcaccgcctggccctgagagagttg
cagcaagcggtccacgctggtttgccccagcaggcgaaaatcctgtttgatggtggttaacggcgggatataacatgagctgtcttcggtatcgtcgtatc
ccactaccgagatgtccgcaccaacgcgcagcccggactcggtaatggcgcgcattgcgcccagcgccatctgatcgttggcaaccagcatcgcagt
gggaacgatgccctcattcagcatttgcatggtttgttgaaaaccggacatggcactccagtcgccttcccgttccgctatcggctgaatttgattgcgagtg
agatatttatgccagccagccagacgcagacgcgccgagacagaacttaatgggcccgctaacagcgcgatttgctggtgacccaatgcgaccagatg
ctccacgcccagtcgcgtaccgtcttcatgggagaaaataatactgttgatgggtgtctggtcagagacatcaagaaataacgccggaacattagtgcag
gcagcttccacagcaatggcatcctggtcatccagcggatagttaatgatcagcccactgacgcgttgcgcgagaagattgtgcaccgccgctttacagg
cttcgacgccgcttcgttctaccatcgacaccaccacgctggcacccagttgatcggcgcgagatttaatcgccgcgacaatttgcgacggcgcgtgca
gggccagactggaggtggcaacgccaatcagcaacgactgtttgcccgccagttgttgtgccacgcggttgggaatgtaattcagctccgccatcgccg
cttccactttttcccgcgttttcgcagaaacgtggctggcctggttcaccacgcgggaaacggtctgataagagacaccggcatactctgcgacatcgtat
aacgttactggtttcacattcaccaccctgaattgactctcttccgggcgctatcatgccataccgcgaaaggttttgcgccattcgatggtgtccgggatctc
gacgctctcccttatgcgactcctgcattaggaaattaatacgactcactataggggaattgtgagcggataacaattcccctgtagaaataattttgtttattt
ggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagttggagtaataaatctctggaacagattggaatcacacgacctggatgga
gtgggacagagaaattaacaattacacaagcttaatacactccttaattgaagaatcgcaaaaccagcaagaaaagaatgaacaagaattattggaattag
ataaatgggcaagtttgtggaattggtttaacataacaaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaatagttttt
gctgtactttctatagtgaatagagttaggcagggatattcaccattatcgtttcagacccacctcccaaccccgaggggacccgacaggcccgaaggaa
tagaagaagaaggtggagagagagacagagacagatccattcgattagtgaacggatctcgacggttaacttttaaaagaaaaggggggattgggggg
tacagtgcaggggaaagaatagtagacataatagcaacagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaattttatcgataagctt
gggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagta
acgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccct
attgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctat
taccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagttt
gttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatata
agcagagctcgtttagtgaaccgtcagatcgcctggagacgccatccacgctgttttgacctccatagaagacaccgactctagtccagtgtggtggaatt
ctgcagatatcaacaagtttgtacaaaaaagcaggctccgcggccgcacagatctcgaggtgtcgtgaacaccgccaccatgggcagcagccatcatc
accaccaccacagccagatgctgaaacagctgctggccaagagcctgcctaccgatcctcagaagaagcccctgagcctggaacagcatctgctgga
cacagagacagccgctctggtcatcttcaagggcagaatgctggacaactggtgccggttcttcaaagtgaaggaccccgacgagttcctgctgcacct
gagagtggccgctctgtttcacgatctgggcaaagccaaccacgagttcatcgaggccgtgaccgccaagggattcgtgcctcagacactgagacacg
agtggatctctgccctggtgctgcatctgcctgaagttcgacagtggctgggcaagagcaacctgaacctggaagtggttacagccgccgtgctgagcc
accacctgaaagcttctcccgacggcgactacaagtgggacgagcctcagaaaagcggcgacaaggtggaaacaaagctgtacttcaaccacgaaga
ggtggaccggatcctgaacaagatcgccaacctgctggacgtggacagcaagctgcctgagctgcccaagaagtggatcaagggcgacatcttcctg
gaaaacatctacaaggacgccaaccagatcggccggaagttcaccagacaggccaagaaggacgacagcctgaagggactgctgctggctgtgaag
gccggactgatcgcctctgattctgtggccagcggcatctacagaacccaggactctgaggccattgccaactgggtcaaccagacactgcacaccaac
agcatcacccctgaggaaatcgaggaaaagattctgcaccctcggtacagacaggtggaaaagagcatcaacgagcccttccagctgaagcggttcca
agagaaggccgagactctgagcagtcggctgctgctgatgtctggctgtggctctggcaagaccatcttcgcctataagtggatgcagggcgtgctgaa
caagcaccaggccggcagagccatctttctgtaccctacaagaggcaccgccaccgagggcttcaaggactatgtgtcctggtgtcctgaggccgatg
cctctctgctgactggcacagccacatacgagctgcaggctatcgccaagaatcccaccgaggccaacgagggcaaagactaccaggccgacgaga
gactgtacgccctcggctattggggcaagagattcttcagcgctaccgtggaccataatacgaatgtaaagattcta
7 k-pltdet-Mini-caspaseon sequence:
tagaatctttacattcgtaatgcatcgctgagcaataactagcataaccccttggggcctctaaacgggtcttgaggggttttttgctgaaacctcaggcattt
gagaagcacacggtcacactgcttccggtagtcaataaaccggtaaaccagcaatagacataagcggctatttaacgaccctgccctgaaccgacgaca
agctgacgaccgggtctccgcaagtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatga
attaattcttagaaaaactcatcgagcatcaaatgaaactgcaatttattcatatcaggattatcaataccatatttttgaaaaagccgtttctgtaatgaaggag
aaaactcaccgaggcagttccataggatggcaagatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacctattaatttcccctcgtcaa
aaataaggttatcaagtgagaaatcaccatgagtgacgactgaatccggtgagaatggcaaaagtttatgcatttctttccagacttgttcaacaggccagc
cattacgctcgtcatcaaaatcactcgcatcaaccaaaccgttattcattcgtgattgcgcctgagcgagacgaaatacgcggtcgctgttaaaaggacaat
tacaaacaggaatcgaatgcaaccggcgcaggaacactgccagcgcatcaacaatattttcacctgaatcaggatattcttctaatacctggaatgctgtttt
cccggggatcgcagtggtgagtaaccatgcatcatcaggagtacggataaaatgcttgatggtcggaagaggcataaattccgtcagccagtttagtctg
accatctcatctgtaacatcattggcaacgctacctttgccatgtttcagaaacaactctggcgcatcgggcttcccatacaatcgatagattgtcgcacctg
attgcccgacattatcgcgagcccatttatacccatataaatcagcatccatgttggaatttaatcgcggcctagagcaagacgtttcccgttgaatatggctc
atactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggcatgcagcg
ctcttccgcttcctcgctcactgactcgctacgctcggtcgttcgactgcggcgagcggtgtcagctcactcaaaagcggtaatacggttatccacagaatc
aggggataaagccggaaagaacatgtgagcaaaaagcaaagcaccggaagaagccaacgccgcaggcgtttttccataggctccgcccccctgacg
agcatcacaaaaatcgacgctcaagccagaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctct
cctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgttggtatctcagttcggtgta
ggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaaga
cacgacttatcgccactggcagcagccattggtaactgatttagaggactttgtcttgaagttatgcacctgttaaggctaaactgaaagaacagattttggt
gagtgcggtcctccaacccacttaccttggttcaaagagttggtagctcagcgaaccttgagaaaaccaccgttggtagcggtggtttttctttatttatgaga
tgatgaatcaatcggtctatcaagtcaacgaacagctattccgttactctagatttcagtgcaatttatctcttcaaatgtagcacctgaagtcagccccatacg
atataagttgtaattctcatgttagtcatgccccgcgcccaccggaaggagctgactgggttgaaggctctcaagggcatcggtcgagatcccggtgccta
atgagtgagctaacttacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcgg
ggagaggcggtttgcgtattgggcgccagggtggtttttcttttcaccagtgagacgggcaacagctgattgcccttcaccgcctggccctgagagagttg
cagcaagcggtccacgctggtttgccccagcaggcgaaaatcctgtttgatggtggttaacggcgggatataacatgagctgtcttcggtatcgtcgtatc
ccactaccgagatgtccgcaccaacgcgcagcccggactcggtaatggcgcgcattgcgcccagcgccatctgatcgttggcaaccagcatcgcagt
gggaacgatgccctcattcagcatttgcatggtttgttgaaaaccggacatggcactccagtcgccttcccgttccgctatcggctgaatttgattgcgagtg
agatatttatgccagccagccagacgcagacgcgccgagacagaacttaatgggcccgctaacagcgcgatttgctggtgacccaatgcgaccagatg
ctccacgcccagtcgcgtaccgtcttcatgggagaaaataatactgttgatgggtgtctggtcagagacatcaagaaataacgccggaacattagtgcag
gcagcttccacagcaatggcatcctggtcatccagcggatagttaatgatcagcccactgacgcgttgcgcgagaagattgtgcaccgccgctttacagg
cttcgacgccgcttcgttctaccatcgacaccaccacgctggcacccagttgatcggcgcgagatttaatcgccgcgacaatttgcgacggcgcgtgca
gggccagactggaggtggcaacgccaatcagcaacgactgtttgcccgccagttgttgtgccacgcggttgggaatgtaattcagctccgccatcgccg
cttccactttttcccgcgttttcgcagaaacgtggctggcctggttcaccacgcgggaaacggtctgataagagacaccggcatactctgcgacatcgtat
aacgttactggtttcacattcaccaccctgaattgactctcttccgggcgctatcatgccataccgcgaaaggttttgcgccattcgatggtgtccgggatctc
gacgctctcccttatgcgactcctgcattaggaaattaatacgactcactataggggaattgtgagcggataacaattcccctgtagaaataattttgtttattt
ggggttgctctggaaaactcatttgcaccactgctgtgccttggaatgctagttggagtaataaatctctggaacagattggaatcacacgacctggatgga
gtgggacagagaaattaacaattacacaagcttaatacactccttaattgaagaatcgcaaaaccagcaagaaaagaatgaacaagaattattggaattag
ataaatgggcaagtttgtggaattggtttaacataacaaattggctgtggtatataaaattattcataatgatagtaggaggcttggtaggtttaagaatagttttt
gctgtactttctatagtgaatagagttaggcagggatattcaccattatcgtttcagacccacctcccaaccccgaggggacccgacaggcccgaaggaa
tagaagaagaaggtggagagagagacagagacagatccattcgattagtgaacggatctcgacggttaacttttaaaagaaaaggggggattgggggg
tacagtgcaggggaaagaatagtagacataatagcaacagacatacaaactaaagaattacaaaaacaaattacaaaaattcaaaattttatcgataagctt
gggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagta
acgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccct
attgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctat
taccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagttt
gttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatata
agcagagctcgtttagtgaaccgtcagatcgcctggagacgccatccacgctgttttgacctccatagaagacaccgactctagtccagtgtggtggaatt
ctgcagatatcaacaagtttgtacaaaaaagcaggctccgcggccgcacagatctcgaggtgtcgtgaacaccgccaccatgggcagcagccatcatc
accaccaccacagccagatgctgaaacagctgctggccaagagcctgcctaccgatcctcagaagaagcccctgagcctggaacagcatctgctgga
cacagagacagccgctctggtcatcttcaagggcagaatgctggacaactggtgccggttcttcaaagtgaaggaccccgacgagttcctgctgcacct
gagagtggccgctctgtttcacgatctgggcaaagccaaccacgagttcatcgaggccgtgaccgccaagggattcgtgcctcagacactgagacacg
agtggatctctgccctggtgctgcatctgcctgaagttcgacagtggctgggcaagagcaacctgaacctggaagtggttacagccgccgtgctgagcc
accacctgaaagcttctcccgacggcgactacaagtgggacgagcctcagaaaagcggcgacaaggtggaaacaaagctgtacttcaaccacgaaga
ggtggaccggatcctgaacaagatcgccaacctgctggacgtggacagcaagctgcctgagctgcccaagaagtggatcaagggcgacatcttcctg
gaaaacatctacaaggacgccaaccagatcggccggaagttcaccagacaggccaagaaggacgacagcctgaagggactgctgctggctgtgaag
gccggactgatcgcctctgattctgtggccagcggcatctacagaacccaggactctgaggccattgccaactgggtcaaccagacactgcacaccaac
agcatcacccctgaggaaatcgaggaaaagattctgcaccctcggtacagacaggtggaaaagagcatcaacgagcccttccagctgaagcggttcca
agagaaggccgagactctgagcagtcggctgctgctgatgtctggctgtggctctggcaagaccatcttcgcctataagtggatgcagggcgtgctgaa
caagcaccaggccggcagagccatctttctgtaccctacaagaggcaccgccaccgagggcttcaaggactatgtgtcctggtgtcctgaggccgatg
cctctctgctgactggcacagccacatacgagctgcaggctatcgccaagaatcccaccgaggccaacgagggcaaagactaccaggccgacgaga
gactgtacgccctcggctattggggcaagagattcttcagcgctaccgtggaccagttcctgagctttctgacccacaactacaagagcatctgtctgctg
cccgtgctggccgatagcgtggtggttatcgatgagatccacagcttcagccccgagatgttcgacagcctcgtgtgcttcctgaaaaccttcgacgtgcc
agtgctgtgcatgaccgctacactgccccagaccagaatcgaggacctgaccatccagctcgacaaggacaaggatggcctgggcctcgaggtgttcc
ctacctctgatagaagcgagctggccgagctggaaaaggccgaaggcatggaaagatacctgatcgcccacaccaacgaggaagctgccctggatct
ggccgtgaaagcctaccaggatagcaagagggtgctgtgggtcgtgaacaccgtggacagatgcagagagaaagcccggaagctggaatgcctgct
gaaaaccgaggtgctgacctaccacagccggttcaaactggccgaccggcagaacagacaccgggaaaccgtggaagccttcgctctgcatcaggc
ccagggcgagaaaaaagccgccattgccgtgaccacacaagtgtgcgagatgtccctggacctggacgccgatgtgctgatcacagagctggcccct
atcagcagcctggtgcagagattcggcagaagcaaccggggcgacaagaacgacaagaccgagcctagcaagatctacgtgtacaagcctcctaag
gacaagccctacaagcagaaggatgatctggaccccgccgagaagttcatcaacgacgttctgggcagagcctctcagaagctcctggccgagaagc
tgaaagagcacagccctccaggcagatactccgatggatctgcccctttcgtgacccaaggctactgggcctctagcgacgagcctttcagaaagatcg
acgacttcgccgtgaacgcagtgctgacagaggatctgggcgagatcacccagtacctgaacagcaaccctcctaagcctatcgacggcttcatcgtgc
ccgtgcctaagaagtacaagttccagggcttcagccaccggccacctcagctgcctaagtacctggataatacgaatgtaaagattcta
(3) Verifying the full integration ability of the modified Ca.N.koreensis strain type I caspase gene insertion tool
The resulting pltdet-Mini-caspases were incubated with Ca.N. koreensis caspase and pET28a-lac UV5 proter-Ca.N. koreensis target-ccdB vector to catalyze the integration reaction of pltdet-Mini-caspases. After isopropanol precipitation, the reacted product was electrotransferred to an ElectroMax E.coli DH10B competence and plated onto kanamycin sulfate-containing resistant plates. Transformants grown on the resistant plates were the product of the full integration reaction, and several monoclonal were randomly picked for Sanger sequencing.
The specific process is as follows: each pLtDuet-Mini-caspases (final concentration 0.2. Mu.M), ca.N.koreensis caspase (final concentration 1. Mu.M), pET28a-lac UV5 proter-Ca.N.koreensis target-ccdB (final concentration 65 ng/. Mu.L) was measured at 1X Integration buffer (20mM HEPEs pH 7.5,150mM NaCl,5mM MnCl) 2 And 50. Mu.g/mL BSA) at 37℃for 60min to catalyze the integration of pLtDuet-Mini-casosons, followed by the addition of 50mM EDTA to terminate the reaction. The integrated product was recovered by the PCR product recovery kit and then dissolved in about 8. Mu.L of sterile water. Adding 5 mu L of recovered product into 50 mu L of Thermo DH10B commercial electric transfer competence, carrying out ice bath for 2min, transferring to an electric transfer cup with a hole width of 1mm for ice bath in advance, carrying out electric shock on a Bio-Rad electric transfer instrument (GenePulser) according to 2.5kV/cm, electric resistance of 200 omega and capacitance of 25 mu F for 5ms, carrying out ice bath for 30s, adding 800 mu L of preheated SOC non-resistant culture medium, culturing at 37 ℃ for 1h at 200rpm, coating bacterial liquid on a resistance plate containing kanamycin, culturing at 37 ℃ for 20h, and randomly picking a plurality of monoclonal to carry out Sanger sequencing, wherein the monoclonal which can normally grow is the product of full-integration reaction. ( And (3) injection: the corresponding steps of example 3 and example 4 employ the same fully integrated process parameters or conditions as in this example. )
The results are shown in FIG. 12: the expected pltdetet-Mini-caspases exist in the plasmid after the integration reaction, the integration of 7 k-pltdetet-Mini-caspases can be realized at the longest and the insertion is in the target direction, and the result proves that the I-type caspase gene insertion tool of the modified Ca.N.koreensis strain can realize the fixed target point fixed direction insertion and has the advantage of carrying long fragment integration.
By combining the above embodiments, the invention mainly provides a type I caspase gene insertion tool derived from Ca.N.koreensis strain and application thereof, which not only can realize the fixation direction insertion of a target gene fixation target, but also can ensure that double-stranded DNA is not broken in the editing process to reduce the hidden trouble existing in off-target and other single-stranded gene editing technologies, and has the integration capacity of 7k, which shows the superiority of the system and has great research and development potential.
In addition to the embodiments described above, other embodiments of the invention are possible. All technical schemes formed by equivalent substitution or equivalent transformation fall within the protection scope of the invention.
Claims (10)
1. A type I caspase gene insertion tool is characterized by comprising a caspase protein, mini-caspaseon containing target gene fragments and target-ccdB vector; the amino acid sequence of the caspase protein is SEQ ID NO.2; the Mini-Caspo is dsDNA, and has the structure that one end of a target gene fragment is connected with a TIRF sequence, the other end of the target gene fragment is connected with a TIRR sequence, the nucleotide sequence of the TIRF sequence is SEQ ID NO.6, and the nucleotide sequence of the TIRR sequence is SEQ ID NO.7; the target-ccdB vector contains a target gene fragment and a coding gene fragment of ccdB protein, the sequence of the target gene fragment is SEQ ID NO.3, the amino acid sequence of the ccdB protein is SEQ ID NO.5, and the coding gene fragment of the ccdB protein corresponds to the amino acid sequence of the ccdB protein.
2. The tool for inserting a type I caspase gene according to claim 1, wherein the Mini-caspase comprises a TIRF sequence, a target gene fragment and a TIRR sequence from upstream to downstream; the target-ccdB vector contains the lac UV5 promoter.
3. The tool for inserting a type I caspase gene according to claim 1, wherein the gene sequence encoding the caspase protein is SEQ ID No.1; the coding gene fragment sequence of the ccdB protein is SEQ ID NO.4.
4. The tool for inserting a type I caspase according to claim 1, wherein said caspase protein and target gene fragment is derived from ca.n.koreens, respectively.
5. A method of gene insertion, characterized in that a type I caspase gene insertion tool according to any one of claims 1-4 is used;
the gene insertion method comprises the following steps:
firstly, preparing caspase protein; preparing Mini-Caspo containing target gene fragment; constructing a target-ccdB carrier;
secondly, uniformly mixing caspase protein and Mini-Casposon, target-ccdB carrier for reaction to catalyze the integration of Mini-Caspo, and recovering an integrated product after the reaction is stopped;
thirdly, after the integration product is electrically transferred to the sensitive cells, the integration product is cultured by adopting a resistance culture medium containing antibiotics, and the grown monoclonal is collected to obtain the gene integration product containing the target gene fragment.
6. The method for gene insertion according to claim 5, wherein in the first step, the caspase protein is prepared by the steps of:
s1, constructing a plasmid containing a coding gene sequence of caspase protein according to the amino acid sequence of the caspase protein, transferring the plasmid into competent cells by a chemical conversion method for culture, extracting the plasmid, and obtaining a correct recombinant plasmid by Sanger sequencing;
s2, performing induction culture on strains containing the plasmids, and purifying by crushing thalli, centrifuging and nickel column affinity chromatography to obtain caspase protein.
7. The method for gene insertion according to claim 5, wherein the step of preparing Mini-casnoson containing the target gene fragment comprises the steps of:
designing an upstream amplification primer and a downstream amplification primer according to a target gene fragment, adding a TIRF sequence at the 5 'end of the upstream amplification primer, adding a TIRR sequence at the 5' end of the downstream amplification primer to obtain a specific primer, amplifying Mini-Caspo with a structure of the TIRF sequence-target gene fragment-TIRR sequence by using the specific primer through a PCR (polymerase chain reaction) mode, and finally obtaining purified Mini-Caspo by a gel cutting recovery mode.
8. The method of gene insertion according to claim 6, wherein in the first step, the target-ccdB vector is pET28a-lac UV5promoter-Ca.N.koreensis target-ccdB; in S1, the plasmid containing the coding gene sequence of the caspase protein is pET-28a-ts-sumo-Ca.N. koreensis-caspase.
9. The method according to claim 5, wherein in the second step, the final concentration of caspase protein is 1.+ -. 0.1. Mu.M, the final concentration of Mini-Caspo is 0.2.+ -. 0.05. Mu.M, and the final concentration of target-ccdB vector is 65.+ -. 5 ng/. Mu.L; the reaction conditions are that the reaction is carried out for at least 60min at 37+/-0.5 ℃ under the condition of 1X Integration buffer; EDTA was added at the termination of the reaction to terminate the reaction; recovering the integrated product by using a PCR product recovery kit;
in the third step, the competent cell is DH10B; when the electric power is turned, an electric power turning instrument is adopted, and electric shock parameters are as follows: 2.5kV/cm, resistance 200 omega, capacitance 25 muF, time 5ms; after electrotransformation, culturing in SOC non-antibiotic liquid culture medium, and then coating bacterial liquid in kanamycin sulfate-containing resistance plate for culturing, wherein the normal monoclonal is the gene integration product containing target gene fragment.
10. Use of a caspase I gene insert tool according to any one of claims 1-4 for editing prokaryotic or eukaryotic genes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310318216.1A CN116376945B (en) | 2023-03-28 | 2023-03-28 | I-type caspase gene insertion tool and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310318216.1A CN116376945B (en) | 2023-03-28 | 2023-03-28 | I-type caspase gene insertion tool and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116376945A true CN116376945A (en) | 2023-07-04 |
CN116376945B CN116376945B (en) | 2024-01-23 |
Family
ID=86966900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310318216.1A Active CN116376945B (en) | 2023-03-28 | 2023-03-28 | I-type caspase gene insertion tool and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116376945B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116987699A (en) * | 2023-09-05 | 2023-11-03 | 深圳市艾迪贝克生物医药有限公司 | Gene fragment for preparing universal CAR-T cells, tool system and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63287487A (en) * | 1987-05-20 | 1988-11-24 | Japan Found Cancer Res | Novel recombinant plasmid capable of replicating hepatitis b virus and cultivated cell containing said plasmid |
US5928867A (en) * | 1995-05-10 | 1999-07-27 | Rijksuniversiteit Leiden | Method of isolating exonic gene segments of eukaryotic genes, exon trapping vectors for use therein |
CN102286491A (en) * | 2011-08-23 | 2011-12-21 | 重庆大学 | Rice root growth control gene OsZRL |
CN102464710A (en) * | 2010-11-09 | 2012-05-23 | 中国科学院遗传与发育生物学研究所 | Helicoverpa armigera juvenile hormone binding protein (Ha-JHBP) and encoding gene and application thereof |
CN113186208A (en) * | 2021-04-07 | 2021-07-30 | 合肥工业大学 | Eukaryotic recombinant plasmid and application thereof in improving tomato fruit pigment accumulation |
-
2023
- 2023-03-28 CN CN202310318216.1A patent/CN116376945B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63287487A (en) * | 1987-05-20 | 1988-11-24 | Japan Found Cancer Res | Novel recombinant plasmid capable of replicating hepatitis b virus and cultivated cell containing said plasmid |
US5928867A (en) * | 1995-05-10 | 1999-07-27 | Rijksuniversiteit Leiden | Method of isolating exonic gene segments of eukaryotic genes, exon trapping vectors for use therein |
CN102464710A (en) * | 2010-11-09 | 2012-05-23 | 中国科学院遗传与发育生物学研究所 | Helicoverpa armigera juvenile hormone binding protein (Ha-JHBP) and encoding gene and application thereof |
CN102286491A (en) * | 2011-08-23 | 2011-12-21 | 重庆大学 | Rice root growth control gene OsZRL |
CN113186208A (en) * | 2021-04-07 | 2021-07-30 | 合肥工业大学 | Eukaryotic recombinant plasmid and application thereof in improving tomato fruit pigment accumulation |
Non-Patent Citations (2)
Title |
---|
XIAOKE WANG 等: ""Sequence specific integration by the family 1 casposase from Candidatus Nitrosopumilus koreensis AR1"", 《NUCLEIC ACIDS RESEARCH》, vol. 49, no. 17, pages 9938 * |
张钰雯 等: ""Ⅰ型CRISPR-Cas系统效应物的结构特征及其在基因编辑领域的应用"", 《中国药科大学学报》, vol. 52, no. 6, pages 675 - 683 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116987699A (en) * | 2023-09-05 | 2023-11-03 | 深圳市艾迪贝克生物医药有限公司 | Gene fragment for preparing universal CAR-T cells, tool system and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN116376945B (en) | 2024-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7153992B2 (en) | Orthogonal CAS9 proteins for RNA-guided gene regulation and editing | |
Ao et al. | A multiplex genome editing method for Escherichia coli based on CRISPR-Cas12a | |
CN116376945B (en) | I-type caspase gene insertion tool and application | |
JP2023540797A (en) | base editing enzyme | |
EP4428233A9 (en) | C2c9 nuclease-based novel genome editing system and application thereof | |
IL296057A (en) | Rna-guided genome recombineering at kilobase scale | |
Dong et al. | A single digestion, single-stranded oligonucleotide mediated PCR-independent site-directed mutagenesis method | |
Kiyokawa et al. | Enhanced Agrobacterium‐mediated transformation revealed attenuation of exogenous plasmid DNA installation in recipient bacteria by exonuclease VII and SbcCD | |
US11879134B1 (en) | Recombineering machinery to increase homology directed genome editing in thermophilic microbes | |
Tong et al. | Prokaryotic genome editing based on the subtype IB-Svi CRISPR-Cas system | |
Ishikawa et al. | Genetic modification strategies for electroporation and CRISPR-Cas-based technologies in the non-competent Gram-negative bacterium Acinetobacter sp. Tol 5 | |
Widney et al. | CRISPR-Cas9-assisted genome editing in E. coli elevates the frequency of unintended mutations | |
CN115786229A (en) | Recombination system for knockout of rhodococcus gene and application thereof | |
CN117178056A (en) | Method for producing seamless DNA vector | |
CN118685399A (en) | Engineered guide RNA, CRISPR/CnCas f1 system and application thereof | |
KR20210118069A (en) | DNA cutting material | |
EA042517B1 (en) | DNA CUTTER | |
NZ754837B2 (en) | Orthogonal cas9 proteins for rna-guided gene regulation and editing | |
NZ754836B2 (en) | Orthogonal cas9 proteins for rna-guided gene regulation and editing | |
NZ716605B2 (en) | Orthogonal cas9 proteins for rna-guided gene regulation and editing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |