CN116349135A - 用于无线通信系统中的多层传输的码字比特交织方案 - Google Patents

用于无线通信系统中的多层传输的码字比特交织方案 Download PDF

Info

Publication number
CN116349135A
CN116349135A CN202080106101.0A CN202080106101A CN116349135A CN 116349135 A CN116349135 A CN 116349135A CN 202080106101 A CN202080106101 A CN 202080106101A CN 116349135 A CN116349135 A CN 116349135A
Authority
CN
China
Prior art keywords
codeword
data transmission
column group
column
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080106101.0A
Other languages
English (en)
Inventor
阿尔伯托·杰赛普·佩罗蒂
布兰尼斯拉夫·M·波波维奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN116349135A publication Critical patent/CN116349135A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/25Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM]
    • H03M13/251Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM] with block coding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2703Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques the interleaver involving at least two directions
    • H03M13/2707Simple row-column interleaver, i.e. pure block interleaving
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/35Unequal or adaptive error protection, e.g. by providing a different level of protection according to significance of source information or by adapting the coding according to the change of transmission channel characteristics
    • H03M13/356Unequal error protection [UEP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明涉及一种用于无线通信系统中的多层传输的码字比特交织方案。所述码字比特交织方案涉及基于数据传输层(例如,MIMO层)的传输质量(例如,SNR)将交织矩阵的列划分为至少两个拆开的列组。然后,从将信息比特写入对应于高质量数据传输层的列组开始,用码字比特填充所述列组。之后,将所述列组全部合并以恢复所述交织矩阵的初始列排列,并且从所述交织矩阵中逐行读取码字比特并将其映射到调制符号。进而将所述调制符号映射到所述数据传输层本身。通过这样做,可以将码字的信息比特分配给高质量数据传输层,从而提高解码性能。

Description

用于无线通信系统中的多层传输的码字比特交织方案
技术领域
本发明总体上涉及无线通信领域,并且特别地涉及用于无线通信系统中的多层传输的码字比特交织方案。
背景技术
第五代(fifth generation,5G)移动无线通信网络,例如第三代合作伙伴计划(3rd generation partnership project,3GPP)新无线(new radio,NR),使用多输入多输出(multiple-input multiple-output,MIMO)方法,以便实现基站(base station,BS)或gNodeB(gNodeB,gNB)与用户设备(user equipment,UE)之间非常高数据速率的传输。MIMO方法通过使用多个发射器和接收器天线来在无线电信道上采用多径传播,以便创建能够在其上并发地传输信息的多个空间层(也称为MIMO层)。无线电信道上发生的传播现象经常导致MIMO层的信噪比(signal-to-noise ratio,SNR)之间的大的不平衡。如果不能正确处理这些大的SNR不平衡,则这些SNR不平衡可能导致性能下降。
在NR中,gNB与UE之间交换的任何数据流都由一系列数据块组成。每个数据块通过使用纠错码而被独立编码为码字。NR依赖于低密度奇偶校验(low-density parity-check,LDPC)码进行纠错。然后,对码字比特进行交织和调制,以通过MIMO层将其传输至gNB或UE。
然而,尽管MIMO层可能具有大的SNR不平衡,NR还是在所有MIMO层上使用相同的调制和码率。为了保证给定的传输可靠性,基于最差(即低SNR)MIMO层特有的传输质量来进行调制/码率选择。这使得无法充分利用高SNR MIMO层的传输质量,从而导致比特率受限。
发明内容
提供本发明内容以便以简化形式引入一些构思,以下在具体实施方式中会进一步描述这些构思。本发明内容并不旨在确定本发明的关键特征,也不旨在用于限制本发明的范围。
本发明的目的是提供一种针对无线通信系统中的多层传输实现码字比特交织的技术解决方案。
上述目的是通过所附权利要求书中独立权利要求的特征来实现的。其他实施例和示例根据从属权利要求、具体实施方式和附图而变得明显。
根据第一方面,提供了一种用于无线通信系统的装置。该装置包括处理器、耦接至处理器的存储器以及收发器。存储器存储处理器可执行指令。处理器可执行指令在被执行时使得处理器如下进行操作。首先,处理器接收要通过数据传输层发送的码字。每个数据传输层都具有传输质量,并且码字是使用线性码获得的。码字具有码字长度E并且包括码字比特。码字比特包括至少一个信息比特和至少一个奇偶比特。然后,处理器进行通过使用具有n个行和k个列的矩阵来交织码字比特,其中n和k是基于预定义调制方案和码字长度E选择的。列中的每个列对应于数据传输层中的一个数据传输层。所述交织操作包括:
-将对应于传输质量等于或高于阈值的数据传输层的列排列到至少一个第一列组(column group)中;
-将对应于传输质量低于阈值的数据传输层的列排列到至少一个第二列组中;
-以将至少一个信息比特逐行写入所述至少一个第一列组开始,将码字比特逐行写入所述至少一个第一列组和所述至少一个第二列组;
-合并所述至少一个第一列组和所述至少一个第二列组以恢复矩阵;以及
-从矩阵中逐列读取码字比特。
当交织操作完成时,处理器使用预定义调制方案获得从矩阵的每个列中读取的码字比特的调制符号。之后,处理器将调制符号映射到数据传输层。接下来,收发器向无线通信系统中的目标装置发送经映射的调制符号。
通过以这种方式执行交织操作,即使码字是在具有显著不同的传输质量的多个数据传输层上传输的,根据第一方面的装置也可以将码字的信息比特映射到具有高传输质量(例如,高SNR)的数据传输层。进而,这种映射可以提高目标装置中的解码性能,从而实现较小的错误率和较大的频谱效率。
在第一方面的一个实施例中,预定义调制方案具有调制阶数Qm,并且n等于调制阶数Qm。同时,k是通过将下取整或上取整函数(floor or ceiling function)应用于码字长度E与调制阶数Qm之比而获得的。通过这样做,可以创建更有效的交织矩阵,从而提高整个交织操作的效率。
在第一方面的一个实施例中,处理器还用于:在交织操作之前,基于数据传输层的传输质量来确定预定义调制方案的调制阶数Qm。通过这样做,可以选择更适合于给定数据传输层的调制阶数Qm,从而提高整个交织操作的效率。
在第一方面的一个实施例中,预定义调制方案定义矩阵的每个列的码字比特的Qm元组到调制符号的映射,并且处理器还用于:
-基于数据传输层的传输质量来确定每个Qm元组(tuple)中的码字比特的比特容量;以及
-基于所确定的比特容量,来确定:(i)矩阵(800)的列将被排列到其中的所述至少一个第一列组(802)和所述至少一个第二列组(804)的数目G,以及(ii)数据传输层中的每个数据传输层与所述至少一个第一列组(802)或所述至少一个第二列组(804)的对应关系。
通过这样做,可以提高交织操作中使用的对矩阵的列进行分组的效率,从而提高整个交织操作的效率。
在第一方面的一个实施例中,处理器还用于:在收发器向目标装置发送经映射的调制符号之前生成控制消息,并使得收发器向目标装置发送该控制消息。控制消息可以包括以下中的至少一个:调制阶数Qm;码字长度E;在交织码字比特时使用的至少一个第一列组和至少一个第二列组的数目G;以及数据传输层中的每个数据传输层与所述至少一个第一列组或所述至少一个第二列组的对应关系。通过这样做,可以向目标装置提供关于根据第一方面的装置使用的码字比特交织方案的信息,从而使得目标装置能够执行解交织,并且因此更有效且更快地进行解码操作。
在第一方面的一个实施例中,码字是使用选自turbo码、系统码、系统极化码和LDPC码之一的线性码获得的。这可以使得根据第一方面的装置使用起来更灵活,这是因为例如LDPC码可以被用于5G NR。
在第一方面的一个实施例中,预定义调制方案包括正交幅度调制(quadratureamplitude modulation,QAM)方案、相移键控(phase shift keying,PSK)调制方案和正交PSK(quadrature PSK,QPSK)调制方案之一。这可以使得根据第一方面的装置使用起来更灵活,这是因为该装置可以根据特定应用在调制方案中进行选择。
在第一方面的一个实施例中,处理器还用于:在时分双工(time-divisionduplexing,TDD)通信的情况下基于上行参考信号,或在频分双工(frequency-divisionduplexing,FDD)通信的情况下基于下行参考信号,预先确定数据传输层的传输质量。这可以使得根据第一方面的装置使用起来更灵活,这是因为该装置可以适用于不同的双工通信链路。
在第一方面的一个实施例中,数据传输层包括MIMO空间层。这可以使得根据第一方面的装置能够用于MIMO无线通信系统,从而增加其使用灵活性。
根据第二方面,提供一种用于无线通信的方法。该方法从接收要通过数据传输层发送的码字的步骤开始。每个数据传输层都具有传输质量,并且码字是使用线性码获得的。码字具有码字长度E并且包括码字比特。码字比特包括至少一个信息比特和至少一个奇偶比特。然后,该方法进行通过使用具有n个行和k个列的矩阵来交织码字比特的步骤,其中n和k是基于预定义调制方案和码字长度E选择的。列中的每个列对应于数据传输层中的一个数据传输层。交织步骤包括以下子步骤:
-将对应于传输质量等于或高于阈值的数据传输层的列排列到至少一个第一列组中;
-将对应于传输质量低于阈值的数据传输层的列排列到至少一个第二列组中;
-以将至少一个信息比特逐行写入所述至少一个第一列组开始,将码字比特逐行写入所述至少一个第一列组和所述至少一个第二列组;
-合并所述至少一个第一列组和所述至少一个第二列组以恢复矩阵;以及
-从矩阵中逐列读取码字比特。
当交织步骤结束时,该方法进行通过使用预定义调制方案来获得从矩阵的每个列中读取的码字比特的调制符号的步骤。之后,发起该方法的下一步骤,在所述步骤中将调制符号映射到数据传输层。接下来,该方法进行向目标无线通信装置发送经映射的调制符号的步骤。
通过以这种方式执行交织步骤,即使码字是在具有显著不同的传输质量的多个数据传输层上传输的,也可以将码字的信息比特映射到具有高传输质量(例如,高SNR)的数据传输层。进而,这种映射可以提高目标无线通信装置中的解码性能,从而实现较小的错误率和较大的频谱效率。
在第二方面的一个实施例中,预定义调制方案具有调制阶数Qm,并且n等于调制阶数Qm。同时,k是通过将下取整或上取整函数应用于码字长度与调制阶数Qm之比而获得的。通过这样做,可以创建更有效的交织矩阵,从而提高整个交织步骤的效率。
在第二方面的一个实施例中,该方法还包括在交织步骤之前基于数据传输层的传输质量来确定预定义调制方案的调制阶数Qm的步骤。通过这样做,可以选择更适合于给定数据传输层的调制阶数Qm,从而提高整个交织步骤的效率。
在第二方面的一个实施例中,预定义调制方案定义矩阵的每个列的码字比特的Qm元组到调制符号的映射。在本实施例中,该方法还包括以下步骤:
-基于数据传输层的传输质量来确定每个Qm元组中的码字比特的比特容量;以及
-基于所确定的比特容量,来确定:(i)矩阵(800)的列将被排列到其中的所述至少一个第一列组(802)和所述至少一个第二列组(804)的数目G,以及(ii)数据传输层中的每个数据传输层与所述至少一个第一列组(802)或所述至少一个第二列组(804)的对应关系。
通过这样做,可以提高交织步骤中使用的对矩阵的列进行分组的效率,从而提高整个交织步骤的效率。
在第二方面的一个实施例中,在发送步骤之前,该方法还包括生成控制消息并向目标无线通信装置发送该控制消息的步骤。控制消息可以包括以下中的至少一个:调制阶数Qm;码字长度E;交织码字比特时使用的至少一个第一列组和至少一个第二列组的数目G;以及数据传输层中的每个数据传输层与至所述少一个第一列组或所述至少一个第二列组的对应关系。通过这样做,可以在发送侧向目标无线通信装置提供关于在根据第二方面的方法中使用的码字比特交织方案的信息,从而使得目标无线通信装置能够进行解交织,并且因此更有效且更快地对码字比特进行解码。
在第二方面的一个实施例中,码字是使用选自turbo码、系统码、系统极化码和LDPC码之一的线性码获得的。这可以使得根据第二方面的方法使用起来更灵活,这是因为例如LDPC码可以被用于5G NR。
在第二方面的一个实施例中,预定义调制方案包括QAM方案、PSK调制方案和QPSK调制方案之一。这可以使得根据第二方面的方法使用起来更灵活,这是因为该方法提供了根据特定应用在调制方案中进行选择的可能性。
在第二方面的一个实施例中,该方法还包括这样的步骤:在时分双工(time-division duplexing,TDD)通信的情况下基于上行参考信号,或在频分双工(frequency-division duplexing,FDD)通信的情况下基于下行参考信号,预先确定数据传输层的传输质量。这可以使得根据第二方面的方法使用起来更灵活,这是因为该方法可以适用于不同的双工通信链路。
在第二方面的一个实施例中,数据传输层包括MIMO空间层。这可以使得根据第二方面的方法能够用于MIMO无线通信系统,从而增加其使用灵活性。
根据第三方面,提供一种计算机程序产品。该计算机程序产品包括存储计算机代码的计算机可读存储介质。该计算机代码在由至少一个处理器执行时使该至少一个处理器执行根据第二方面的方法。通过使用这样的计算机程序产品,可以简化根据第二方面的方法在任何计算设备中的实现,所述计算设备例如根据第一方面的装置。
在阅读以下详细描述并回顾附图后,本发明的其它特征和优点将变得明显。
附图说明
下文结合附图来说明本发明,在附图中:
图1示出了用于执行NR LDPC编码传输的常规发射器的框图;
图2示出了由图1所示的常规发射器执行的初始传输的第一码字片段的示例性结构;
图3说明了在图1所示的常规发射器中执行的交织、调制和层映射操作;
图4示出了针对图1所示的常规发射器中所使用的不同调制方案的比特容量
Figure BDA0004172070080000041
与/>
Figure BDA0004172070080000042
(假设单位平均调制符号能量)的依赖关系;
图5示出了根据一个示例性实施例的无线通信装置的框图;
图6示出了根据一个示例性实施例的在图5所示的装置中使用的处理器的框图;
图7示出了根据一个示例性实施例的无线通信方法的流程图;
图8说明了在使用两个列组情况下图7所示的方法中的交织步骤、调制步骤和映射步骤;
图9示出了针对利用16QAM(Qm=4)的数值示例的依赖关系
Figure BDA0004172070080000051
图10示出了分别由图1所示的常规发射器中的常规交织器和图6所示的处理器中的交织器使用的矩阵,以及针对数值示例中的第一传输的对应比特容量;
图11示出了分别由图1所示的常规发射器中的常规交织器和图6所示的处理器中的交织器使用的矩阵,以及针对数值示例中的第二传输的对应比特容量;
图12示出了针对数值示例中的两个传输的误块率(block error rate,BLER)与SNR的依赖关系;
图13A和图13B示出了针对v=2个MIMO层和G=2个列组的经QPSK调制和经16QAM调制的LDPC编码传输的BLER性能;
图14A和图14B示出了针对与图13A和图13B中所使用的码率和调制相同的码率和调制的度量ΔCC与SNR的依赖关系;以及
图15A和图15B示出了针对不同层SNR差的经QPSK调制和经16QAM调制的LDPC编码传输的BLER性能。
具体实施方式
结合附图进一步详细地描述本发明的各种实施例。然而,本发明可以许多其它形式体现,并且不应被解释为限于在以下描述中讨论的任何特定结构或功能。而是,提供这些实施例是为了使本发明的描述详细和完整。
根据具体实施方式,对于本领域技术人员而言将明显的是,本发明的范围涵盖本文中公开的其任何实施例,无论该实施例是独立地实现的还是与本发明的任何其它实施例协同实现的。例如,可以通过使用本文提供的任何数量的实施例来在实践中实现本文公开的装置和方法。此外,应当理解,本发明的任何实施例都可以使用所附权利要求书中提出的一个或更多个元素来实现。
“示例性”一词在本文中的含义为“用作说明”。除非另有说明,否则本文描述为“示例性”的任何实施例不应被解释为优选或具有优于其它实施例的优点。
根据本文公开的示例性实施例,用户设备或简称UE可以指移动设备、移动站、终端、用户装置、手机、蜂窝电话、智能电话、无绳电话、个人数字助理(personal digitalassistant,PDA)、无线通信设备、台式计算机、笔记本电脑、平板计算机、游戏设备、上网本、智能本、超极本、医疗设备或医疗装备、生物计量传感器、可穿戴设备(例如智能手表、智能眼镜、智能腕带等)、娱乐设备(例如音频播放器、视频播放器等)、车辆组件或传感器、智能仪表/传感器、无人载具(例如工业机器人、四旋翼直升机等)、工业制造设备、全球定位系统(global positioning system,GPS)设备、物联网(internet-of-thing,IoT)设备、工业物联网(industrial IoT,IIoT)设备、机器类型通信(machine-type communication,MTC)设备、大规模IoT(massive IoT,MIoT)或大规模MTC(massive MTC,mMTC)设备/传感器组,或用于支持无线通信的任何其它合适设备。在一些实施例中,UE可以指如此定义的至少两个并置且互连的UE。
如在本文中公开的示例性实施例中使用的,无线接入网节点(或简称RAN节点)可以涉及特定无线通信网络中的UE的固定通信点。RAN节点在2G通信技术方面可以被称为基站收发台(base transceiver station,BTS),在3G通信技术方面可以被称为NodeB,在4G通信技术方面可以被称为演进型NodeB(evolved NodeB,eNodeB),在5G新无线电(new radio,NR)通信技术方面可以被称为gNB。RAN节点可以服务不同的小区,如宏小区、微小区、微微小区、毫微微小区和/或其它类型的小区。宏小区可以覆盖相对大的地理区域(例如,半径至少几公里)。微小区可以覆盖例如半径小于两公里的地理区域。微微小区可以覆盖相对小的地理区域,例如办公室、购物中心、火车站、证券交易所等。毫微微小区可以覆盖更小的地理区域(例如,家庭)。相应地,服务宏小区的RAN节点可以被称为宏节点,服务微小区的RAN节点可以被称为微节点,以此类推。
根据本文公开的示例性实施例,其中UE和RAN节点彼此通信的无线通信网络可以指蜂窝或移动电信网、无线局域网(wireless local area network,WLAN)、无线个人局域网(wireless personal area network,WPAN)、无线广域网(wireless wide areanetwork,WWAN)、卫星通信(satellite communication,SATCOM)系统,或任何其它类型的无线通信网络。这些类型的无线通信网络中的每个无线通信网络都支持根据一个或更多个通信协议标准的无线通信。例如,蜂窝网络可以根据全球移动通信系统(global system formobile communication,GSM)标准、码分多址(code-division multiple access,CDMA)标准、宽带码分多址(wide-band code-division multiple access,WCDM)标准、时分多址(time-division multiple access,TDMA)标准或任何其它通信协议标准工作,WLAN可以根据一个或更多个版本的IEEE 802.11标准工作,WPAN可以根据红外数据协会(infrareddata association,IrDA)、无线USB、蓝牙或ZigBee标准工作,并且WWAN可以根据全球微波接入互操作性(worldwide interoperability for microwave access,WiMAX)标准工作。
如在本文公开的示例性实施例中所使用的,无线通信系统可以指用于通过任何无线通信网络(类似上述无线通信网络)相互通信的至少两个实体(例如,一个UE和一个RAN节点、两个UE、两个RAN节点等)的集合。所述相互通信可以通过例如在UE与gNB之间建立的无线电信道执行。为了实现非常高数据速率的数据传输,可以将MIMO方法应用于无线电信道。MIMO方法涉及使用多个发送天线和多个接收天线(即MIMO信道)来进行数据传输。由多个发送天线和接收天线形成的MIMO信道可以被分解为独立的信道。每个独立信道也可以被称为MIMO信道的空间子信道或者空间或者MIMO层。MIMO方法使得有可能执行空间复用或空间分集。空间复用是指通过MIMO信道的多个空间层同时传输多个数据流。
无线电信道上发生的传播现象通常会导致MIMO层的信噪比(signal-to-noiseratio,SNR)之间的大的不平衡。大的SNR不平衡可能会导致性能下降。下文给出的表1显示了针对不同数量的NR物理下行共享信道(physical downlink shared channel,PDSCH)传输的MIMO层SNR的示例。假设每个PDSCH传输具有不同数量的MIMO层可用。MIMO层的数量取决于无线电信道。在表1中,未填充任何数字的单元格意指相关联的MIMO层在相应PDSCH传输中不可用。在NR中,针对多个MIMO层仅报告一个信道质量(例如,SNR),并且在MIMO层上仅使用一个调制和码率进行传输。因此,整个MIMO信道的传输性能受MIMO层中的最低质量的限制(例如,对于表1中给出的示例中的初始传输,所述最低质量为表示层4的SNR的8.6dB)。
表1NR MIMO传输中的MIMO层SNR的示例
Figure BDA0004172070080000061
Figure BDA0004172070080000071
图1示出了用于执行NR LDPC编码传输的常规发射器100的框图。发射器100可以是无线通信装置的一部分,例如作为UE或gNB。如图1所示,发射器100包括LDPC编码器102、循环缓冲器104、交织器106、调制器108和层映射器110,它们按所提及的顺序在发射器100中使用。需要注意的是,在NR中,在例如gNB与UE之间交换的任何数据流都由一系列数据块组成。数据块由发射器100彼此独立地处理。更具体地,如图1所示,每个数据块由LDPC编码器102使用纠错码(即,在这种情况下是LDPC码)进行独立编码,由交织器106进行交织,由调制器108进行调制,并由层映射器110映射到v个MIMO层。
现在让我们更详细地考虑发射器100的操作。
LDPC编码器102将数据块i=(i1,…,iK)映射到码字c=(c1,…,cN)。码字c被写入发射器100中的循环缓冲器104。在初始传输中,第一码字片段c0=(ce,e=1,…,E)(E>K)被从循环缓冲器104读取并发送到交织器106,在交织器106中,该第一码字片段经受比特交织,或者换句话说,经受比特重排或交换。因此,初始传输具有等于RC=K/E的纠错码率。
图2示出了由发射器100执行的初始传输的第一码字片段c0的示例性结构200。如图2所示,第一码字片段c0由两个主要部分组成:包含信息比特(通常称为系统比特)的第一部分202和包含奇偶比特(也称为奇偶校验比特)的第二部分204。第一码字片段c0可以可选地通过去除或删截(puncturing)部分信息比特来获得,以加速LDPC解码器的收敛。这样的被去除或删截掉的比特的部分在图2中被表示为“206”。通常,第一码字片段c0可以写成:
c0=(c1,c2,…,cE)=(j1,j2,…,jK-2Z,p1,…,pE-K+2Z),
其中j1=i2Z+1,j2=i2Z+2,…,jK-2Z=iK是信息比特,并且p1,…,pE-K+2Z是奇偶比特。初始2Z个信息比特(此处,Z表示用于提升给定LDPC码的奇偶校验矩阵的提升因子)被删截,即表示既不写入循环缓冲器104也不由发射器100发送的被删截比特。
图3说明了在发射器100中执行的交织、调制和层映射操作。如图3所示,交织器106使用矩形阵列或矩阵300(其也被称为交织矩阵),其行数等于预选调制方案的调制阶数Qm并且列数S=E/Qm。c0的比特被从顶行开始从左到右逐行写入矩阵300。由于c0的初始部分包括(K-2Z)个信息比特,因此
Figure BDA0004172070080000072
个顶部行被信息比特填充。剩余信息比特(如果有)被写入第/>
Figure BDA0004172070080000073
行。矩阵300的其余部分用奇偶比特填充。
一旦c0的比特都被写入矩阵300,则从最左侧列开始从上到下逐列从矩阵300中读取这些比特,从而产生交织器106的输出b=(b1,…,bE)。因此,交织器106的第n输出比特为
Figure BDA0004172070080000074
其中mod表示取模运算。交织器106的第s列(其中s=1,…,S)产生比特的Qm元组/>
Figure BDA0004172070080000075
然后该元组被映射到复调制符号(complex modulation symbol)ds。因此,任何Qm元组的初始比特都是信息比特。假定Qm元组中的比特具有不增加的可靠性水平,这使得信息比特被映射到高容量比特信道。每个比特信道可以被视为用于通过将码字比特映射到调制符号来将码字比特传递至接收器的物理资源。因此,调制器108产生调制符号向量d=(d1,…,dS),其在图3中被表示为302。
层映射器110将调制符号302从d映射到v个MIMO层304,其中1≤v≤4。更具体地说,层映射器110形成v个调制符号向量——每个MIMO层一个调制符号向量,其中第l向量可以被写成dl=(dl,dl+v,dl+2v,…),l=1,…,v。需要注意的是,矩阵300中与同一MIMO层相关的列通过使用相同的点状图案填充来在图3中示出(例如,具有最密集点状图案填充的列对应于MIMO层1)。在另外的步骤中(图3中未示出),经层映射的符号被预编码并映射到时频资源元件,然后例如通过使用正交频分复用(orthogonal frequency division multiplexing,OFDM)进行调制,并被发送至例如另一UE或gNB的接收器。
对于码字c的其余(交叠和/或非交叠)码字片段,进一步逐个码字片段重复上述针对第一码字片段c0的传输过程。更具体地说,从循环缓冲器104读取每个后续码字片段,利用矩阵300进行交织,并将其映射到对应的调制符号向量302,该调制符号向量进而被映射到MIMO层304以便被发送至接收器。
根据上述传输过程,第一码字片段c0在多个独立的比特信道(其中,每个比特信道是与从矩阵300读取的比特的Qm元组中的比特对应的物理资源)上被发送,其容量——本文中称为比特容量——由Qm元组
Figure BDA0004172070080000081
中用于选择调制符号dS的比特位置和相应MIMO层的SNR共同确定。Qm元组/>
Figure BDA0004172070080000082
中第l比特的比特容量/>
Figure BDA0004172070080000083
被定义为给定比特bl与对应的对数似然比(log-likelihood ratio,LLR)λl之间的互信息。其可以在数学上写成:
Figure BDA0004172070080000084
其中I(X,Y)表示随机变量X与Y之间的互信息,l是Qm元组中的比特的位置(l=1,…,Qm),并且对数似然比(log-likelihood ratio,LLR)λl定义如下:
Figure BDA0004172070080000085
其中y=x+w是接收器接收到的调制符号,w是具有方差
Figure BDA0004172070080000086
的加性高斯白噪声(additive white Gaussian noise,AWGN),P(bl=0|y)是y中比特bl为0的可能性,并且P(bl=1|y)是y中比特bl为1的可能性。
图4示出了针对在发射器100中使用的不同调制方案的比特容量
Figure BDA0004172070080000087
与/>
Figure BDA0004172070080000088
(假设单位平均调制符号能量)的依赖关系。此处,l∈{1,…,Qm}是Qm元组中的比特位置。具体地说,图4示出了针对以下调制方案的依赖关系/>
Figure BDA0004172070080000089
BPSK(Qm=1):QPSK(Qm=2):以及/>
Figure BDA00041720700800000810
QAM,其中Qm∈{4,6,8}(其分别对应16QAM、64QAM和256QAM)。如图4所示,与任何/>
Figure BDA00041720700800000811
QAM调制方案的Qm元组中的初始位置对应的比特信道/>
Figure BDA00041720700800000812
对应于比特容量最高的比特信道。更准确地说,针对任何SNR、任何QAM调制阶数Qm和比特位置l1,l2∈{1,…,Qm},l2>l1,可以获得/>
Figure BDA00041720700800000813
也可以写作
Figure BDA00041720700800000814
从而,交织器106将信息比特映射到每个Qm元组中的高容量比特信道。然而,交织器106忽略了Qm元组然后会被映射到具有不同SNR的MIMO层304。由于MIMO层304之间的SNR不平衡可能较大,因此与层SNR无关地将信息比特映射到Qm元组的初始比特不足以保证对信息比特的较高比特容量。事实上,当MIMO层304之间的SNR不平衡较大时,在高SNR MIMO层上传输的一个Qm元组的最后比特比在低SNR MIMO层上传输的另一Qm元组的初始比特具有更高容量。
为了消除上述缺点,可以用在多个MIMO层上传输多个较短码字来代替传输单个码字,每个较短码字用于一个MIMO层或具有相似SNR的MIMO层组。通过这样做,将使用最佳码率和调制阶数对每个较短码字进行编码和调制以匹配层SNR。然而,该解决方案存在以下主要缺点:
1.与长码字的传输相比,较短码字的传输导致较小的编码增益;
2.调度多个较短码字而不是单个码字需要在控制信道上发送更多的调度消息,从而产生较大量的控制信息并引起潜在的控制信道拥塞。
本文中公开的示例性实施例提供使得能够缓解或甚至消除现有技术特有的上述缺点的技术解决方案。具体地说,本文中公开的技术方案涉及一种码字比特交织方案,该方案涉及基于数据传输层(例如,MIMO层)的传输质量(例如,SNR)将交织矩阵(以下简称为矩阵)的列划分成至少两个拆开的(disjoint)列组。如果在同一层或传输质量相似的不同层上传输码字比特,则两列在同一列组中。然后,从将信息比特写入对应于高质量数据传输层的列组开始,用码字比特来填充这些列组。信息比特被全部写入后,将奇偶比特写入其余列组。之后,将列组全部合并以恢复矩阵的初始列排列,并且从矩阵中逐行读取码字比特并将其映射到调制符号。进而将所述调制符号映射到所述数据传输层本身。通过这样做,可以将码字的信息比特分配给高质量数据传输层,从而提供与交织器106相比更好的解码性能。
图5示出根据一个示例性实施例的无线通信装置500的框图。装置500可以被实现为UE或RAN节点,或者作为UE或RAN节点的一部分。该装置500包括处理器502、存储器504和收发器506。存储器504存储处理器可执行指令508,该处理器可执行指令在由处理器502执行时使得处理器502接收码字510并获得经层映射的调制符号512,如下文将更详细地描述。应当注意的是,构成如图5中所示的装置500的构造元件的数量、排列和互连并不旨在作为对本发明的任何限制,而是仅用于提供可以如何在装置500内实现这些构造元件的总体构思。例如,处理器502可以用若干处理器来代替,并且存储器504可以被实现为耦接至装置500的单个存储设备。此外,收发器506可以被实现为两个设备,一个设备用于进行接收操作,另一设备用于进行发送操作。无论实现方式如何,收发器506都旨在能够执行传输经层映射的调制符号512所需的不同操作,例如作为OFDM调制等。
图6示出了根据一个示例性实施例的处理器502的框图。处理器502包括以下组件:循环缓冲器602、交织器604、调制器606和层映射器608。循环缓冲器602、交织器604、调制器606和层映射器608分别用于与以上描述的发射器100中包括的循环缓冲器104、交织器106、调制器108和层映射器110相同的目的。处理器502可以可选地包括用于获得码字510的编码器。处理器502的组件可以被实现为硬件和/或软件。组件的硬件实现可以通过使用CPU、通用处理器、单用途处理器、微控制器、微处理器、专用集成电路(application specificintegrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)、数字信号处理器(digital signal processor,DSP)、复杂可编程逻辑器件或其任何组合来提供。作为示例,处理器502的组件可以被实现为两个或更多个微处理器。软件实现包括通过执行对应的代码、程序、例程、命令等来实现处理器502的每个组件的功能,所述代码、程序、例程、命令等例如与处理器可执行指令506一起存储在存储器504中。
返回到图5,存储器504可以被实现为现代电子计算机器中使用的经典的非易失性或易失性存储器。作为示例,非易失性存储器可以包括只读存储器(read-only memory,ROM)、铁电随机存取存储器(random-access memory,RAM)、可编程ROM(programmable ROM,PROM)、电可擦除PROM(electrically erasable PROM,EEPROM)、固态驱动器(solid statedrive,SSD)、闪存、磁盘存储装置(例如硬盘驱动器和磁带)、光盘存储装置(例如CD、DVD和蓝光光盘)等。至于易失性存储器,其示例包括动态RAM、同步DRAM(synchronous DRAM,SDRAM)、双数据速率SDRAM(double data rate SDRAM,DDR SDRAM)、静态RAM等。
至于存储在存储器504中的处理器可执行指令506,它们可以被配置用作使处理器502执行本发明的各方面的计算机可执行代码。用于执行针对本发明的各方面的操作或步骤的计算机可执行代码可以用一种或更多种编程语言的任何组合来编写,所述编程语言例如Java、C++等。在一些示例中,计算机可执行代码可以呈高级语言的形式或预编译的形式,并且可以由解译器(也预存储在存储器504中)即时(on-the-fly)动态生成。
图7示出了根据一个示例性实施例的无线通信方法700的流程图。方法700本身描述了装置500的操作。如图7所示,方法700从步骤S702开始,在步骤S702中,处理器502接收要通过数据传输层发送的码字510。数据传输层中的每个数据传输层都具有传输质量。数据传输层可以由MIMO层表示;然而,本发明并不限于该示例,并且本领域技术人员将容易认识到:数据传输层可以指可以在其上同时传输信息的任何空间层。至于传输质量,可以指本领域中用于比较期望信号的水平与背景噪声的水平的任何度量。传输质量的一个非限制性示例是SNR。相对于码字510,它可以由处理器502本身获得,也可以由处理器502从外部接收(例如,从用于向收发器506发送码字510的远程服务器接收,其中该收发器转而将该码字提供给处理器502)。码字是使用线性码获得的。线性码的非限制性示例包括turbo码、系统码、系统极化码、LDPC码等。码字510具有码字长度E并且包括码字比特。码字比特包括至少一个信息比特和至少一个奇偶比特。步骤S702还可以包括:如果对码字510的分段传输进行调度,则将码字存储在循环缓冲器602中。
一旦接收到码字510,方法700就进入步骤S704,在步骤S704中,处理器502,即交织器604,通过使用具有n个行和k个列的矩阵来交织(或换句话说,重新排列/交换)码字510的码字比特,其中n和k是基于预定义调制方案和码字长度E选择的。该矩阵可以以与发射器100中的交织器106所使用的矩阵300相同的方式来创建。通常,n可以等于预定义调制方案的调制阶数Qm,而k是通过将下取整或上取整函数应用于码字长度E与调制阶数Qm之比而获得的。预定义调制方案的非限制性示例包括QAM方案、PSK调制方案和QPSK调制方案等。在方法700的步骤S704中使用的矩阵的每个列对应于数据传输层中的一个数据传输层,这使得能够如下文所述基于数据传输层的传输质量对列进行分组。
交织步骤S704本身如下执行。首先,交织器604将对应于传输质量等于或高于阈值的数据传输层的列排列到至少一个第一列组中,并且将对应于传输质量低于阈值的数据传输层的列排列到至少一个第二列组中。所述阈值取决于特定应用,并且可以是在数据传输层的最小传输质量与最大传输质量之间的任何传输质量值(例如,在要用于进行传输的可用MIMO层的最小SNR与最大SNR之间的任何SNR)。然后,从将信息比特逐行写入第一列组开始,交织器604将码字比特逐行写入第一列组和第二列组。之后,交织器604合并第一列组和第二列组以恢复矩阵。所述恢复意指返回矩阵中的初始列排列,但是现在列已经被用码字比特填充。当交织器604从矩阵中逐列读取码字比特时,交织步骤S704结束。
当交织步骤S704结束时,方法700进行至步骤S706,在步骤S706中,处理器502,即调制器606,通过使用预定义调制方案来获得从矩阵的每个列读取的码字比特的调制符号。之后,发起方法700的下一步骤S708,在步骤S708中,处理器502,即层映射器608,将在步骤S706中获得的调制符号映射到数据传输层。接下来,方法700进行步骤S710,在步骤S710中,收发器506向目标无线通信装置(例如,另一UE或gNB)发送经映射的调制符号。
在一个示例性实施例中,方法700可以包括另外的步骤,在该另外的步骤中,处理器502(例如,其中包括的专用附加硬件或软件组件)在TDD通信的情况下基于上行参考信号,或在FDD通信的情况下基于下行参考信号,预先,即在步骤S702或步骤S704之前,确定数据传输层的传输质量。例如,如果装置500是在执行TDD通信时使用MIMO方法的gNB,则假定下行/上行信道互易性,因此gNB通过计算基于上行参考信号获得的MIMO信道矩阵的奇异值分解(singular value decomposition)来确定下行SNR。如果装置500是执行FDD通信的UE,则UE基于下行参考信号执行信道估计,即确定SNR。
在一个示例性实施例中,方法700可以包括另外的步骤,在该另外的步骤中,处理器502(例如,其中包括的专用附加硬件或软件组件)在交织步骤S704之前,基于数据传输层的传输质量来确定预定义调制方案的调制阶数Qm。通过这样做,可以选择更适合于给定数据传输层的调制阶数Qm,从而提高交织步骤S704的效率。
在一个示例性实施例中,预定义调制方案可以定义在交织步骤S704中要从矩阵的每个列中读取的码字比特的Qm元组到调制符号的映射。在本实施例中,方法700可以包括另外的步骤,在该另外的步骤中,处理器502(例如,其中包括的专用附加硬件或软件组件)基于数据传输层的传输质量来确定每个Qm元组中的码字比特的比特容量,并使用所确定的比特容量来确定:(i)矩阵的列将被排列到其中的第一列组和第二列组的数目G,以及(ii)数据传输层中的每个数据传输层与第一列组或第二列组的对应关系。通过这样做,可以提高交织步骤S704中使用的对矩阵的列进行分组的效率,从而提高交织步骤S704本身的效率。
在一个示例性实施例中,在发送步骤S710之前,方法700可以包括另外的步骤,在该另外的步骤中,处理器502(例如,其中包括的专用附加硬件或软件组件)生成控制消息并向目标无线通信装置发送该控制消息。控制消息可以包括以下中的至少一个:调制阶数Qm;码字长度E;在交织码字比特时使用的至少一个第一列组和至少一个第二列组的数目G;以及数据传输层中的每个数据传输层与至少一个第一列组或至少一个第二列组的对应关系。通过这样做,可以向目标无线通信装置提供关于装置100在执行方法700时使用的码字比特交织方案的信息,从而使得目标无线通信装置能够进行解交织,并且因此更有效且更快地对码字比特进行解码。
可以通过以下三种控制信令方法将这样的控制消息发送给目标通信装置:
1)根据第一控制信令方法,在控制消息中所包括的控制字段中表示指示列组的列分组配置g=(γ1,…,γv)。每个元素γv都是在1与列组数目G之间的整数,其指示针对对应列的列组。例如,以G=1,g=(1,…,1)配置的交织器604与交织器106重合。第一控制信令方法可能会产生不可忽略的控制信息开销,因为g可以取vv个不同的值,并且需要大小至少为
Figure BDA0004172070080000111
比特的比特字段。
2)根据第二控制信令方法,假设无线通信装置100和目标无线通信装置用于基于它们已经独立确定的层SNR以相同的顺序对数据传输层进行排序。一旦根据层的SNR对层进行排序,则针对每对相邻层,控制消息中所指示的控制比特表示这两个层是否在同一列组中。由于存在v-1对相邻层,因此大小为v-1比特的控制字段就足够了。同时,第二控制信令方法具有以下缺点:无线通信装置100和目标无线通信装置可能会产生不同的层SNR估计,这可能会导致层顺序不同。然而,当两个被交换的层之间的SNR差小时,即当两个层对应于同一列组时,发生层交换。SNR差大的两个层永远不会被交换,因为这将意指大的SNR估计误差。将被分配给同一列组的层的交换与交织/解交织无关,因此,第二控制信令方法即使在具有SNR估计误差的情况下也能起作用。
3)根据第三控制信令方法,假设无线通信装置100和目标无线通信装置用于:基于它们已经独立确定的层SNR以相同的顺序对数据传输层进行排序,以便确定根据它们自己的SNR排序的相同的层序列。控制字段表示:在1与v之间的组数目G;经排序的层序列中的连续层之间的G-1个最大SNR间隙被用作组分离SNR边界。由于最多可以有v个列组,因此在控制消息中具有大小为log2 v比特的控制字段就足够了。
图8说明了在使用两个列组的情况下方法700的交织步骤S704、调制步骤S706和映射步骤S708。在图8所示的示例中,以与矩阵300相同的方式创建矩阵800,即矩阵800包括Qm个行和S=E/Qm个列。与交织器106(以下称为常规交织器106,以突出其与现有技术的关系)不同,在步骤S704中,交织器604将矩阵800划分成G=2个拆开的列组802和804。再次需要注意的是,如果两个列对应于同一层或具有相似传输质量(例如,SNR)的不同层,则这两个列位于同一列组中。与图3类似,矩阵800的与对应层相关的列通过使用不同的点状图案填充来在图8中示出(例如,具有最密集点状图案填充的列对应于层1)。列组802和804可以按对应层的传输质量的降序排列。在图8中,假设第一列组802由矩阵800的下述列构成:所述列对应于具有较高传输质量的层(例如,在传输质量由SNR表示的情况下,这些层高于以分贝(dB)为单位的特定阈值)。
参见图8,在G=2个步骤中将码字510写入矩阵800。在第一步骤中,从写入信息比特开始,将码字比特
Figure BDA0004172070080000121
写入第一列组802;此处,E1是第一列组802中的比特的总数目。在第二步骤中,将后续码字比特/>
Figure BDA0004172070080000122
写入第二列组804,其中E2是第二列组中的比特的总数目。如果使用多于两个的列组,则此过程将继续进行,直到在最后一个步骤中,将剩余码字比特写入第G列组。在所有步骤中,从顶行开始从左到右逐行将码字比特写入矩阵800。
一旦将码字510的码字比特全部写入列组802和804,交织器604则进行:合并列组802和804以恢复矩阵800,即恢复该矩阵的初始列排列,该初始列排列在图8中由806表示。从所恢复的矩阵806中读取码字比特是由交织器604以与常规交织器106相同的方式完成的,即通过从最左侧列开始从上到下逐列读取所恢复的矩阵806来获得交织器604的输出b=(b1,…,bE)。所恢复的矩阵806的第s列(s=1,…,S)产生Qm比特元组
Figure BDA0004172070080000123
然后在步骤S706中,通过调制器606将该元组映射到复调制符号ds。因此证明,任何Qm元组的初始比特都表示信息比特。调制器606产生调制符号向量810,即d=(d1,…,dS),接下来在步骤S708中,通过层映射器608将该调制符号向量映射到数据传输层,从而获得经层映射的调制符号512。
如果在交织步骤S704中形成多于两个的列组,并且vg用作第g列组(g=1,…,G)中的数据传输层的数目,则Sg=Svg/v是矩阵800的在第g列组中的列的数目,并且Eg=SgQm是第g列组中的比特的总数目。
应当注意,如果使用单个列组(即,G=1),则交织器604以与常规交织器106相同的方式将码字比特写入矩阵800。在这种情况下,从矩阵800中读取码字比特也以相同的方式完成。因此,配置有一个列组的交织器604与常规交织器106完全相同。
对于码字510的传输,使用常规交织器106方便还是使用交织器604方便是基于度量ΔCC(ρ,g)来确定的,该度量测量交织器604提供的码字510的总比特容量相对于常规交织器106的增加(通过码字长度E归一化)。此处,ρ=(SNR1,…,SNRv)包含层SNR(SNR为传输质量的一个示例),并且g=(γ1,…,γv)指示列组,如上所述。ΔCC的定义通过以下给出
Figure BDA0004172070080000131
其中,求和是利用码字510中的信息比特索引e=1,…,K计算的,β是在论述图3时如上所示定义的比特容量;l604(e)给出了在使用交织器604时Qm元组中的第e信息比特的位置,l106(e)给出了在使用常规交织器106时Qm元组中的第e信息比特的位置;SNR604(e)和SNR106(e)分别是在使用交织器604和常规交织器106时第e信息比特的SNR。在上述等式中,β与所使用的交织器无关,而交织器的不同映射是通过交织器604的l604(e)、SNR604(e)和常规交织器106的l106(e)、SNR106(e)捕获的。l106(e)和SNR106(e)是通过应用图3所示的常规交织器映射获得的。l604(e)和SNR604(e)是通过应用图8所示的交织器映射获得的。
数值评估表明,ΔCC提供了对通过交织器604获得的增益的良好指示——当ΔCC为正时,交织器604的性能比常规交织器106的性能更好,而负ΔCC则指示常规交织器106的性能更好。因此,可以基于ΔCC的正负号来进行交织器选择。
现在让我们考虑一个解释如何使用ΔCC的数字示例。
假设码字510是通过使用LDPC码获得的,并且需要通过在两个数据传输层(v=2)(例如,MIMO层)上使用16QAM(Qm=4)以码率RC=1/2执行码字510的片段传输。假设平均SNR为7dB。进一步假设,在码字510的一个码字片段的第一传输中,两个层之间存在较小SNR差ΔSNR=2dB——SNR1=8dB且SNR2=6dB,而在码字510的另一码字片段的第二传输中,两个层之间的SNR差为ΔSNR=10dB——SNR1=12dB且SNR2=2dB。交织器604产生两个列组,每个列组包含一个列(即,g=(1,2))。下文给出的表2总结了上述评估假设。
表2上述数字示例中的评估
Figure BDA0004172070080000132
图9示出了针对利用16QAM(Qm=4)的上述数字示例的依赖关系
Figure BDA0004172070080000133
在图9中,与第一传输和第二传输的情况下的两个层之间的SNR差对应的垂直线对与依赖关系/>
Figure BDA0004172070080000134
相交,从而得到每个码字比特元组中的每个码字比特的比特容量。在这种情况下,每个4码字比特元组由四个码字比特b1、b2、b3、b4表示,其中b1是该4元组中的第一比特,b2是第二比特,依此类推。在第一传输中,在使用第一数据传输层的情况下,码字比特b1和b2的比特容量为0.78,并且码字比特b3和b4的比特容量为0.56,而在使用第二数据传输层的情况下,代码的比特容量码字比特b1和b2的比特容量为0.68,并且码字比特b3和b4的比特容量为0.4。在第二传输中,在使用第一数据传输层的情况下,码字比特b1和b2的比特容量为0.93,并且码字比特b3和b4的比特容量为0.86,而在使用第二数据传输层的情况下,代码的比特容量码字比特b1和b2的比特容量为0.47,并且码字比特b3和b4的比特容量为0.16。
图10分别示出了由常规交织器106和交织器604使用的矩阵1000和1002,以及上述数字示例中针对第一传输的对应比特容量。在图10中,再次使用不同的点状图案填充来显示矩阵1000、1002的列与两个数据传输层的对应关系(例如,具有最密集点状图案的列对应于第一数据传输层)。此外,黑体数字表示信息比特的位置。由于码率为1/2,因此无论使用什么交织器,信息比特都占据每个矩阵的一半。常规交织器106将信息比特逐行写入所有列(即,换句话说,在两个数据传输层上),因此用信息比特填充两个较高的行(参见图10的上部)。因此,一半信息比特享有0.78的比特容量,而另一半信息比特享有0.68的比特容量。与常规交织器106不同,交织器604仅将信息比特写入对应于第一数据传输层的列(参见图10的下部)。这意味着一半信息比特享有0.78的比特容量,而另一半信息比特享有0.56的比特容量。
现在让我们通过应用上述等式来计算ΔCC。为此,需要确定Qm元组中的位置l604(e)和l106(e)以及针对每个信息比特在其上传输第e比特(e=1,…,K)的数据传输层的值SNR604(e)和SNR106(e)。值l106(e)和SNR106(e)通过图3所示的交织器映射获得;对应的比特容量从图10的上部确定。值l604(e)和SNR604(e)通过图8所示的交织器映射获得;对应的比特容量从图10的下部确定。这些值如下在表3中示出。
表3针对第一传输的比特位置、SNR及对应的比特容量
Figure BDA0004172070080000141
Figure BDA0004172070080000151
ΔCC是通过对表3最右侧列的数字求和并将结果除以E获得的。在表3的最右侧列中,K/4个值=0,K/4个值=0.1,K/4个值=-0.12,并且K/4个值=-0.22。因此,如下获得针对第一传输的ΔCC
Figure BDA0004172070080000152
其中已使用K/E=RC=1/2。负ΔCC表示:与交织器604相比,常规交织器106提供的性能更好。
图11分别示出了由常规交织器106和交织器604使用的矩阵1100和1102,以及上述数字示例中针对第二传输的对应比特容量。在图11中,再次使用不同的点状图案填充来显示矩阵1100、1102的列与两个数据传输层的对应关系(例如,具有最密集点状图案的列对应于第一数据传输层)。此外,黑体数字再次表示信息比特的位置。如图11所示,在使用常规交织器106的情况下,一半信息比特享有0.93的比特容量,并且另一半信息比特享有0.47的比特容量。在使用交织器604的情况下,一半信息比特享有0.93的比特容量,并且另一半信息比特享有0.86的比特容量。与表3类似,下面给出的表4列出了Qm元组中的位置l604(e)和l106(e),在其上传输第e比特(e=1,…,K)的两个数据传输层的值SNR604(e)和SNR106(e),以及针对第二传输的比特容量。
表4针对第二传输的比特位置、SNR及对应的比特容量
Figure BDA0004172070080000153
Figure BDA0004172070080000161
ΔCC是通过对表4最右侧列的数字求和并将结果除以E获得的。在表4的最右侧列中,K/4个值=0,K/4个值=0.46,K/4个值=-0.07,并且K/4个值=0.39。因此,如下获得针对第二传输的ΔCC
Figure BDA0004172070080000162
上述正ΔCC表示:与常规交织器106相比,交织器604提供的性能更好。
图12示出了针对上述数字示例中的两个传输的误块率(block error rate,BLER)与SNR的依赖关系。在图12中,虚线对应于常规交织器106,而实线对应于交织器604。依赖关系BLER(SNR)证实了上述结论。对于第一传输(SNR=8dB),常规交织器106的BLER比交织器604小。对于第二传输(SNR=12dB),交织器604的BLER较小。可以进一步得出结论,具有相似SNR的数据传输层应位于同一列组中,而具有显著不同SNR的数据传输层应位于不同的列组中。
因此,上述数字示例清楚地示出如何基于ΔCC(ρ,g)的正负号来针对常规交织器106和交织器604作出决定。同时,ΔCC(ρ,g)使得能够找到最佳的列分组配置g*。这可以如下实现:
g*(ρ)=argmaxgΔCC(ρ,g)。
如果从上述等式获得的最佳列分组结果为g*=(1,…,1),则所有列都在同一列组中,这意味着常规交织器106是最佳选择,即它提供最佳性能。当g*≠(1,…,1)时,通过配置有最佳列分组g*的交织器604获得最佳性能。
可以通过针对所有允许的列分组配置g计算ΔCC(ρ,g)来以数值方式完成搜索最佳列分组配置g*。通常,由于存在多达v个列组,因此g的v个元素中的每个元素都可以取1到v之间的值。对于给定的列分组配置,这将导致多个数量级为vv的允许值——即使对于小v也是相当大的数字。如上所述,通过回顾仅具有相似SNR的数据传输层可以在同一列组中,搜索复杂度可以大大降低。因此,可以应用以下搜索策略:
1.根据数据传输层的SNR对其进行排序;
2.对于每对相邻数据传输层,评估这些数据传输层是否应在同一列组中。
由于存在v-1对相邻数据传输层,因此允许的列分组配置的数目从vv下降到2v-1。因此,只需要对ΔCC(ρ,g)进行2v-1次评估。在NR中,用于一个码字的MIMO层(其是数据传输层的一个示例)的最大数目为v=4,因此,允许的列分组配置的数目的数量级将为vv=256。通过上述搜索策略,允许的列分组配置的数目减少到2v-1=8。
上述数字示例中,LDPC编码传输的性能是针对具有v个层和G个列组的MIMO信道评估的,其中MIMO层在每个列组内具有相同SNR。在不失一般性的情况下,可以假设第一列组的SNR高于其它列组,并且第g列组SNR比第一列组的SNR小□SNR,g[dB]。信道模型由加性高斯白噪声(additive white Gaussian noise,AWGN)表示。下文给出的表5中总结了性能评估假设。性能增益是基于实现BLER≤10-2所需的SNR而评估的。
表5仿真参数的总结(评估组合的子集)
Figure BDA0004172070080000171
图13A和图13B示出了针对v=2个MIMO层和G=2个列组的经QPSK调制和经16QAM调制的LDPC编码传输的BLER性能。在图13A和图13B中,实线曲线示出了利用交织器604获得的性能,而虚线曲线示出了利用常规交织器106获得的性能。MIMO层之间的SNR差为□SNR=10dB。可以观察到,交织器604的性能一致优于常规交织器106。在QPSK调制和LDPC码率1/2的情况下,观察到高达0.9dB的SNR增益(参见图13A)。在16QAM的情况下,SNR增益略小,但仍然显著(参见图13B)。
在图13A和图13B中观察到,高阶调制提供较低的增益。在层SNR差小的情况下,常规交织器106已经将信息比特映射到具有最高比特容量的比特信道。因此,不存在增益。为了利用高阶调制获得增益,层SNR差必须足够大,以使得高SNR层上的最小比特容量大于低SNR层上的最大比特容量。因此,对于每个调制阶数,存在最小SNR差,低于该最小SNR差时,交织器604不提供增益,或甚至提供损失。对于QPSK,最小SNR差为0dB,对于16QAM,最小SNR差约为6dB,对于64QAM,最小SNR差约为10dB。因此,对于给定的固定SNR差,调制阶数越高,增益就越小。
在图13A和图13B中也观察到了这一点,对于任何给定的调制和给定的□SNR,最大增益是利用码率
Figure BDA0004172070080000181
获得的,而对于码率1/4和2/3,增益较小。这样的行为与下述基本观察有关,即在信息比特被映射到具有最高比特容量的比特信道时获得最佳的置信传播解码性能。
图14A和图14B示出了针对与图13A和图13B中所使用的码率和调制相同的码率和调制的ΔCC(SNR)。曲线ΔCC(SNR)有多个分支——每个码率一个分支。在图14A和图14B中,每个分支被示出在BLER=10–2的SNR点周围的SNR范围内。可以看出,对应于码率1/2的分支的ΔCC高于其它分支。图13A、图13B以及图14A、图14B的比较揭示了交织器604的ΔCC与增益之间的明显相关性。对于码率1/2,增益和ΔCC大于其它码率的情况。对于高阶调制,ΔCC取决于所有MIMO层的码率和SNR。这使得得出最佳码率变得更加困难。
图15A和图15B示出了针对不同层SNR差的经QPSK调制和经16QAM调制的LDPC编码传输的BLER性能。在图15A和图15B中,实线曲线示出了利用交织器604获得的BLER性能,而虚线曲线示出了利用常规交织器106获得的BLER性能。在这种情况下,码率为RC=1/2。交织器604的性能一致优于常规交织器106。在QPSK和□SNR=15dB的情况下,观察到高达2.7dB的SNR增益(参见图15A)。在16QAM的情况下,当□SNR=15dB时,观察到高达1.7dB的SNR增益(参见图15B)。
应当注意,方法700的每个步骤或操作或者步骤或操作的任何组合,可以通过各种手段例如硬件、固件和/或软件来实现。作为示例,上述步骤或操作中的一个或更多个步骤或操作可以由处理器可执行指令、数据结构、程序模块和其它适当的数据表示来体现。此外,体现上述步骤或操作的可执行指令可以被存储在对应的数据载体上并由处理器502执行。该数据载体可以被实现为用于可由该至少一个处理器读取以执行处理器可执行指令的任何计算机可读存储介质。这种计算机可读存储介质可以包括易失性和非易失性介质、可移除和不可移除介质两者。作为示例,而不是限制,计算机可读介质包括以任何适于存储信息的方法或技术实现的介质。更详细地,计算机可读介质的实际示例包括但不限于信息传递介质、RAM、ROM、EEPROM、闪存或其它存储器技术,CD-ROM、数字多功能盘(digitalversatile disc,DVD)、全息介质或其它光学存储器,磁带、磁带盒、磁盘存储装置以及其它磁存储设备。
虽然本文描述了本发明的示例性实施例,但应该注意的是,在不脱离由所附权利要求书限定的法律保护的范围的情况下,可以在本发明的实施例中进行任何各种改变和修改。在所附权利要求书中,词语“包括”不排除其它元件或操作,并且不定冠词“一”或“一个”不排除多个。在互不相同的从属权利要求中列举某些措施并不表示这些措施的组合不能被有利地使用。

Claims (19)

1.一种用于无线通信系统的装置(500),其特征在于,包括:
处理器(502);
存储器(504),所述存储器(504)耦接至所述处理器(502)并且用于存储处理器可执行指令(508),其中所述处理器(502)用于在执行所述处理器可执行指令(508)时进行以下操作:
接收要通过数据传输层发送的码字(510),其中所述数据传输层中的每个数据传输层具有传输质量,所述码字(510)是使用线性码获得的,所述码字(510)具有码字长度E并且包括码字比特,所述码字比特包括至少一个信息比特和至少一个奇偶比特;
通过使用具有n个行和k个列的矩阵(800)来交织所述码字比特,其中n和k是基于预定义调制方案和所述码字长度E选择的,所述列中的每个列对应于所述数据传输层中的一个数据传输层,并且所述交织包括:
-将对应于传输质量等于或高于阈值的数据传输层的列排列到至少一个第一列组(802)中;
-将对应于传输质量低于所述阈值的数据传输层的列排列到至少一个第二列组(804)中;
-从将所述至少一个信息比特逐行写入所述至少一个第一列组(802)开始,将所述码字比特逐行写入所述至少一个第一列组(802)和所述至少一个第二列组(804);
-合并所述至少一个第一列组(802)和所述至少一个第二列组(804)以恢复所述矩阵(800);以及
-从所述矩阵(800)中逐列读取所述码字比特;
通过使用所述预定义调制方案,来获得从所述矩阵的每个列中读取的码字比特的调制符号(810);以及
将所述调制符号(810)映射到所述数据传输层;以及
收发器(506),所述收发器(506)用于向目标无线通信装置发送经映射的调制符号(512)。
2.根据权利要求1所述的装置(500),其特征在于,所述预定义调制方案具有调制阶数Qm,并且其中n等于所述调制阶数Qm,而k是通过将下取整或上取整函数应用于所述码字长度E与所述调制阶数Qm之比而获得的。
3.根据权利要求2所述的装置(500),其特征在于,所述处理器(502)还用于:在所述交织之前,基于所述数据传输层的传输质量来确定所述预定义调制方案的调制阶数Qm
4.根据权利要求2或3所述的装置(500),其特征在于,所述预定义调制方案定义所述矩阵(800)的每个列的码字比特的Qm元组到所述调制符号(810)的映射,并且其中所述处理器(502)还用于:
基于所述数据传输层的传输质量来确定每个Qm元组中的码字比特的比特容量;以及
基于所确定的比特容量,来确定:(i)所述矩阵(800)的列将被排列到其中的所述至少一个第一列组(802)和所述至少一个第二列组(804)的数目G,以及(ii)所述数据传输层中的每个数据传输层与所述至少一个第一列组(802)或所述至少一个第二列组(804)的对应关系。
5.根据权利要求4所述的装置(500),其特征在于,所述处理器(502)还用于在所述使所述收发器发送经映射的调制符号(512)之前进行以下操作:
生成控制消息,所述控制消息包括以下中的至少一个:
所述调制阶数Qm
所述码字长度E;
在交织所述码字比特时使用的所述至少一个第一列组(802)和所述至少一个第二列组(804)的数目G;以及
所述数据传输层中的每个数据传输层与所述至少一个第一列组(802)或所述至少一个第二列组(804)的对应关系;以及
使所述收发器(506)向所述目标无线通信装置发送所述控制消息。
6.根据权利要求1至5中任一项所述的装置(500),其特征在于,所述码字(510)是使用选自turbo码、系统码、系统极化码和低密度奇偶校验(LDPC)码(200)之一的线性码获得的。
7.根据权利要求1至6中任一项所述的装置(500),其特征在于,所述预定义调制方案包括正交幅度调制(QAM)方案、相移键控(PSK)调制方案和正交PSK(QPSK)调制方案之一。
8.根据权利要求1至7中任一项所述的装置(500),其特征在于,所述处理器(502)还用于:在时分双工(TDD)通信的情况下基于上行参考信号,或在频分双工(FDD)通信的情况下基于下行参考信号,预先确定所述数据传输层的传输质量。
9.根据权利要求1至8中任一项所述的装置(500),其特征在于,所述数据传输层包括多输入多输出(MIMO)空间层。
10.一种用于无线通信的方法(700),其特征在于,包括:
接收(S702)要通过数据传输层发送的码字(510),其中所述数据传输层中的每个数据传输层具有传输质量,所述码字(510)是使用线性码获得的,所述码字(510)具有码字长度E并且包括码字比特,所述码字比特包括至少一个信息比特和至少一个奇偶比特;
通过使用具有n个行和k个列的矩阵(800)来交织(S704)所述码字比特,其中n和k是基于预定义调制方案和所述码字长度E选择的,所述列中的每个列对应于所述数据传输层中的一个数据传输层,并且所述交织(S704)包括:
-将对应于传输质量等于或高于阈值的数据传输层的列排列到至少一个第一列组(802)中;
-将对应于传输质量低于所述阈值的数据传输层的列排列到至少一个第二列组(804)中;
-从将所述至少一个信息比特逐行写入所述至少一个第一列组(802)开始,将所述码字比特逐行写入所述至少一个第一列组(802)和所述至少一个第二列组(804);
-合并所述至少一个第一列组(802)和所述至少一个第二列组(804)以恢复所述矩阵(800);以及
-从所述矩阵(800)中逐列读取所述码字比特;
通过使用所述预定义调制方案来获得(S706)从所述矩阵(800)的每个列中读取的码字比特的调制符号(812);
将所述调制符号(810)映射(S708)到所述数据传输层;以及
向目标无线通信装置发送(S710)经映射的调制符号(512)。
11.根据权利要求10所述的方法(700),其特征在于,所述预定义调制方案具有调制阶数Qm,并且其中n等于所述调制阶数(Qm),而k是通过将下取整或上取整函数应用于所述码字长度E与所述调制阶数Qm之比而获得的。
12.根据权利要求11所述的方法(700),其特征在于,还包括:在所述交织(S704)之前,基于所述数据传输层的传输质量来确定所述预定义调制方案的调制阶数Qm
13.根据权利要求11或12所述的方法(700),其特征在于,所述预定义调制方案定义所述矩阵(800)的每个列的码字比特的Qm元组到所述调制符号(810)的映射,并且其中所述方法(700)还包括:
基于所述数据传输层的传输质量来确定每个Qm元组中的码字比特的比特容量;以及
基于所确定的比特容量,来确定:(i)所述矩阵(800)的列将被排列到其中的所述至少一个第一列组(802)和所述至少一个第二列组(804)的数目G,以及(ii)所述数据传输层中的每个数据传输层与所述至少一个第一列组(802)或所述至少一个第二列组(804)的对应关系。
14.根据权利要求13所述的方法(700),其特征在于,所述方法还包括在所述发送(S710)经映射的调制符号(512)之前进行以下操作:
生成控制消息,所述控制消息包括以下中的至少一个:
所述调制阶数Qm
所述码字长度E;
在交织所述码字比特时使用的所述至少一个第一列组(802)和所述至少一个第二列组(804)的数目G;以及
所述数据传输层中的每个数据传输层与所述至少一个第一列组(802)或所述至少一个第二列组(804)的对应关系;以及
向所述目标无线通信装置发送所述控制消息。
15.根据权利要求10至14中任一项所述的方法(700),其特征在于,所述码字(510)是使用选自turbo码、系统码、系统极化码和低密度奇偶校验(LDPC)码(200)之一的线性码获得的。
16.根据权利要求10至15中任一项所述的方法(700),其特征在于,所述预定义调制方案包括正交幅度调制(QAM)方案、相移键控(PSK)调制方案和正交PSK(QPSK)调制方案之一。
17.根据权利要求10至16中任一项所述的方法(700),其特征在于,还包括:在时分双工(TDD)通信的情况下基于上行参考信号,或在频分双工(FDD)通信的情况下基于下行参考信号,预先确定所述数据传输层的传输质量。
18.根据权利要求10至17中任一项所述的方法(700),其特征在于,所述数据传输层包括多输入多输出(MIMO)空间层。
19.一种包括计算机可读存储介质的计算机程序产品,其特征在于,所述计算机可读存储介质包括计算机代码,所述计算机代码在由至少一个处理器执行时使所述至少一个处理器执行根据权利要求10至18中任一项所述的方法(700)。
CN202080106101.0A 2020-10-23 2020-10-23 用于无线通信系统中的多层传输的码字比特交织方案 Pending CN116349135A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2020/079895 WO2022083876A1 (en) 2020-10-23 2020-10-23 Codeword bit interleaving scheme for multilayer transmissions in wireless communication system

Publications (1)

Publication Number Publication Date
CN116349135A true CN116349135A (zh) 2023-06-27

Family

ID=73030092

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080106101.0A Pending CN116349135A (zh) 2020-10-23 2020-10-23 用于无线通信系统中的多层传输的码字比特交织方案

Country Status (4)

Country Link
US (1) US20230336274A1 (zh)
EP (1) EP4218141B1 (zh)
CN (1) CN116349135A (zh)
WO (1) WO2022083876A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117155514A (zh) * 2022-05-24 2023-12-01 华为技术有限公司 一种通信方法及通信装置
US20240137151A1 (en) * 2022-10-13 2024-04-25 Huawei Technologies Co., Ltd. Hybrid product polar codes-based communication systems and methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101492634B1 (ko) * 2007-08-28 2015-02-17 삼성전자주식회사 저밀도 패리티 검사 부호를 사용하는 통신 시스템에서 데이터 송수신 장치 및 방법
US10630319B2 (en) * 2017-01-24 2020-04-21 Mediatek Inc. Structure of interleaver with LDPC code
WO2018228601A1 (zh) * 2017-06-16 2018-12-20 华为技术有限公司 一种数据处理方法及数据处理装置

Also Published As

Publication number Publication date
EP4218141B1 (en) 2024-06-19
WO2022083876A1 (en) 2022-04-28
EP4218141A1 (en) 2023-08-02
US20230336274A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
US11838122B2 (en) Code block segmentation and configuration for concatenated turbo and RS coding
US20200162196A1 (en) Apparatus and method of transmission using harq in communication or broadcasting system
KR102559502B1 (ko) 통신 또는 방송 시스템에서 전송블록 크기 결정 방법 및 장치
KR20220132486A (ko) 통신 또는 방송 시스템에서 채널 부호화/복호화 방법 및 장치
KR20190116816A (ko) 무선 통신 시스템에서 극 부호를 이용한 부호화 및 복호화를 위한 장치 및 방법
KR102694927B1 (ko) 통신 또는 방송 시스템에서 채널 부호화/복호화 방법 및 장치
US11671115B2 (en) High-rate long LDPC codes
US10887050B2 (en) Downlink signal reception method and user equipment, and downlink signal transmission method and base station
US20230336274A1 (en) Codeword bit interleaving scheme for multilayer transmissions in wireless communication system
US20200186284A1 (en) Method and apparatus for transmitting information
KR102349879B1 (ko) 폴라 코드들에 대한 crc 인터리빙 패턴
KR20180136850A (ko) 통신 또는 방송 시스템에서 채널 부호화/복호화 방법 및 장치
KR20190114263A (ko) 무선 통신 시스템에서 극 부호를 이용한 부호화 및 복호화를 위한 장치 및 방법
US20200244288A1 (en) Information transmission method and transmission device, and information reception method and reception device
JP2011172186A (ja) 無線通信システム、通信装置、プログラムおよび集積回路
CN115225201A (zh) 一种调制方法、解调方法及通信装置
CN110999146B (zh) 用于在通信或广播系统中编码和解码信道的装置和方法
KR102517960B1 (ko) 무선 셀룰라 통신 시스템에서 데이터 전송 방법 및 장치
US20230253984A1 (en) Method and apparatus for data decoding in communication or broadcasting system
US20230119851A1 (en) Device and method for encoding or decoding polar code in communication system
KR102530968B1 (ko) 통신 또는 방송 시스템에서 채널 부호화/복호화 방법 및 장치
KR20180107703A (ko) 통신 또는 방송 시스템에서 harq 적용시 전송 방법 및 장치
WO2017193558A1 (zh) 结构化ldpc码的数据处理方法及装置
KR20180107701A (ko) 통신 또는 방송 시스템에서 harq 적용시 전송 방법 및 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination