CN116344572A - Micro LED structure and its preparation method - Google Patents
Micro LED structure and its preparation method Download PDFInfo
- Publication number
- CN116344572A CN116344572A CN202310617836.5A CN202310617836A CN116344572A CN 116344572 A CN116344572 A CN 116344572A CN 202310617836 A CN202310617836 A CN 202310617836A CN 116344572 A CN116344572 A CN 116344572A
- Authority
- CN
- China
- Prior art keywords
- substrate
- light
- waveguide
- transmission layer
- emitting component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 197
- 230000003287 optical effect Effects 0.000 claims abstract description 112
- 230000005540 biological transmission Effects 0.000 claims abstract description 91
- 230000008878 coupling Effects 0.000 claims abstract description 70
- 238000010168 coupling process Methods 0.000 claims abstract description 70
- 238000005859 coupling reaction Methods 0.000 claims abstract description 70
- 238000000034 method Methods 0.000 claims description 28
- 239000011159 matrix material Substances 0.000 claims description 16
- 210000001503 joint Anatomy 0.000 claims description 10
- 230000000903 blocking effect Effects 0.000 claims 1
- 230000008569 process Effects 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 238000003032 molecular docking Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000003292 glue Substances 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- -1 ITO) Chemical compound 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H29/00—Integrated devices, or assemblies of multiple devices, comprising at least one light-emitting semiconductor element covered by group H10H20/00
- H10H29/10—Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00
- H10H29/14—Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00 comprising multiple light-emitting semiconductor components
- H10H29/142—Two-dimensional arrangements, e.g. asymmetric LED layout
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/855—Optical field-shaping means, e.g. lenses
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/036—Manufacture or treatment of packages
- H10H20/0363—Manufacture or treatment of packages of optical field-shaping means
Landscapes
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
技术领域technical field
本公开涉及Micro LED显示技术领域,尤其涉及一种Micro LED结构及其制备方法。The present disclosure relates to the technical field of Micro LED display, in particular to a Micro LED structure and a preparation method thereof.
背景技术Background technique
目前,现有Micro LED显示技术,大多通过机械式的巨量转移技术将LED取放至驱动基板上,因机械精度和制备良率的限制,通常导致Micro LED像素之间的间距较大,且LED制备完成之后,后续还需和尺寸较大的准直透镜模组等结构贴合,并对其进行封装,从而大大增加了整个Micro LED结构的尺寸,不利于产品的小型化。At present, most of the existing Micro LED display technologies use the mechanical mass transfer technology to pick and place the LEDs on the drive substrate. Due to the limitations of mechanical precision and manufacturing yield, the spacing between Micro LED pixels is usually large, and After the LED is prepared, it needs to be bonded with a large-sized collimator lens module and other structures and packaged, which greatly increases the size of the entire Micro LED structure, which is not conducive to the miniaturization of the product.
发明内容Contents of the invention
为了解决上述技术问题或者至少部分地解决上述技术问题,本公开提供了一种Micro LED结构及其制备方法。In order to solve the above technical problems or at least partly solve the above technical problems, the present disclosure provides a Micro LED structure and a manufacturing method thereof.
本公开提供了一种Micro LED结构,所述Micro LED结构和衍射光波导匹配连接;所述Micro LED结构包括发光组件、第一基板、波导传输层以及光耦合组件;The present disclosure provides a Micro LED structure, the Micro LED structure is matched with a diffractive optical waveguide; the Micro LED structure includes a light-emitting component, a first substrate, a waveguide transmission layer, and an optical coupling component;
所述发光组件设置于所述第一基板的一侧;所述波导传输层和所述光耦合组件均设置于所述第一基板背离所述发光组件的一侧,所述光耦合组件与所述发光组件对位设置,并内嵌于所述波导传输层中靠近所述发光组件的一侧;The light-emitting component is disposed on one side of the first substrate; the waveguide transmission layer and the optical coupling component are both disposed on the side of the first substrate away from the light-emitting component, and the optical coupling component is connected to the light-emitting component. The light-emitting component is arranged in alignment, and embedded in the waveguide transmission layer on the side close to the light-emitting component;
所述第一基板至少用于传输所述发光组件发出的光至所述光耦合组件;所述光耦合组件用于控制光的旋转角度以使光按照预设方向传输,所述波导传输层用于传输预设方向的光至所述衍射光波导。The first substrate is at least used to transmit the light emitted by the light-emitting component to the optical coupling component; the optical coupling component is used to control the rotation angle of the light so that the light is transmitted in a preset direction, and the waveguide transmission layer is used for The light in the predetermined direction is transmitted to the diffractive optical waveguide.
可选地,所述光耦合组件包括光准直部件和倾斜光栅;Optionally, the optical coupling component includes a light collimation component and a tilted grating;
所述倾斜光栅设置于所述光准直部件背离所述发光组件的一侧;The inclined grating is arranged on the side of the light collimating component away from the light-emitting component;
所述光准直部件用于对光进行准直;所述倾斜光栅用于控制准直后的光以预设旋转角度从所述倾斜光栅出射。The light collimating component is used to collimate the light; the tilted grating is used to control the collimated light to exit from the tilted grating at a preset rotation angle.
可选地,所述Micro LED结构还包括第二基板;Optionally, the Micro LED structure also includes a second substrate;
所述第二基板设置于所述波导传输层背离所述第一基板的一侧;The second substrate is disposed on a side of the waveguide transmission layer away from the first substrate;
所述第一基板和所述第二基板共同用于基于光在相应交界面发生全反射以引导光按照预设方向传输;The first substrate and the second substrate are jointly used to guide the light to transmit in a preset direction based on the total reflection of the light at the corresponding interface;
其中,所述相应交界面包括所述第一基板和所述波导传输层对应的交界面,以及所述第二基板和所述波导传输层对应的交界面。Wherein, the corresponding interface includes an interface corresponding to the first substrate and the waveguide transmission layer, and an interface corresponding to the second substrate and the waveguide transmission layer.
可选地,所述倾斜光栅的折射率大于所述波导传输层的折射率,所述波导传输层的折射率大于所述第一基板的折射率或所述第二基板的折射率;Optionally, the refractive index of the tilted grating is greater than the refractive index of the waveguide transmission layer, and the refractive index of the waveguide transmission layer is greater than the refractive index of the first substrate or the refractive index of the second substrate;
其中,所述第一基板的折射率等于所述第二基板的折射率。Wherein, the refractive index of the first substrate is equal to the refractive index of the second substrate.
可选地,所述Micro LED结构还包括黑矩阵;所述发光组件包括阵列排布的LED;Optionally, the Micro LED structure further includes a black matrix; the light emitting assembly includes LEDs arranged in an array;
所述黑矩阵与所述LED交替设置;The black matrix and the LEDs are arranged alternately;
所述黑矩阵用于阻挡相邻LED发出的光发生串扰。The black matrix is used to prevent crosstalk of light emitted by adjacent LEDs.
可选地,所述Micro LED结构还包括驱动基板;Optionally, the Micro LED structure also includes a driving substrate;
所述驱动基板设置于所述发光组件的背光侧;The driving substrate is arranged on the backlight side of the light-emitting component;
所述驱动基板用于对所述发光组件进行驱动点亮。The driving substrate is used to drive and light up the light-emitting component.
可选地,所述Micro LED结构还包括波导对接层;Optionally, the Micro LED structure further includes a waveguide butt layer;
所述波导对接层设置于所述驱动基板和所述第一基板之间;The waveguide butt layer is disposed between the driving substrate and the first substrate;
其中,所述波导对接层和所述第二基板均设有相应凹槽,以和所述衍射光波导连接。Wherein, the waveguide docking layer and the second substrate are provided with corresponding grooves to connect with the diffractive optical waveguide.
本公开还提供了一种Micro LED结构的制备方法,用于制备以上任一种所述的Micro LED结构;所述方法包括:The present disclosure also provides a method for preparing a Micro LED structure, which is used to prepare any one of the Micro LED structures described above; the method includes:
在第一基板的一侧形成发光组件;forming a light emitting component on one side of the first substrate;
在所述第一基板背离所述发光组件的一侧形成所述波导传输层和所述光耦合组件;forming the waveguide transmission layer and the optical coupling component on a side of the first substrate away from the light-emitting component;
其中,所述光耦合组件与所述发光组件对位设置,并内嵌于所述波导传输层中靠近所述发光组件的一侧;所述第一基板至少用于传输所述发光组件发出的光至所述光耦合组件;所述光耦合组件用于控制光的旋转角度以使光按照预设方向传输,所述波导传输层用于传输预设方向的光至所述衍射光波导。Wherein, the optical coupling component is arranged in alignment with the light emitting component, and is embedded in a side of the waveguide transmission layer close to the light emitting component; the first substrate is at least used to transmit the light emitted by the light emitting component Light to the optical coupling component; the optical coupling component is used to control the rotation angle of the light so that the light is transmitted in a preset direction, and the waveguide transmission layer is used to transmit the light in a preset direction to the diffractive optical waveguide.
可选地,所述方法还包括:Optionally, the method also includes:
在所述波导传输层背离所述第一基板的一侧形成第二基板。A second substrate is formed on a side of the waveguide transmission layer away from the first substrate.
可选地,所述方法还包括:Optionally, the method also includes:
提供驱动基板;Provide drive substrate;
利用混合键合方式将所述驱动基板和所述发光组件形成电性连接。The driving substrate and the light-emitting component are electrically connected by hybrid bonding.
本公开实施例提供的技术方案与现有技术相比具有如下优点:Compared with the prior art, the technical solutions provided by the embodiments of the present disclosure have the following advantages:
本公开实施例提供的Micro LED结构,包括发光组件、第一基板、波导传输层以及光耦合组件;发光组件设置于第一基板的一侧;波导传输层和光耦合组件均设置于第一基板背离发光组件的一侧,光耦合组件与发光组件对位设置,并内嵌于波导传输层中靠近发光组件的一侧;第一基板至少用于传输发光组件发出的光至光耦合组件;光耦合组件用于控制光的旋转角度以使光按照预设方向传输,波导传输层用于传输预设方向的光至衍射光波导。如此,通过在第一基板的相对两侧分别设置发光组件和光耦合组件,并将光耦合组件内嵌于波导传输层,从而减少了Micro LED结构的尺寸,利于产品的小型化。The Micro LED structure provided by the embodiments of the present disclosure includes a light-emitting component, a first substrate, a waveguide transmission layer, and an optical coupling component; the light-emitting component is arranged on one side of the first substrate; On one side of the light-emitting component, the optical coupling component is arranged in alignment with the light-emitting component, and embedded in the waveguide transmission layer on the side close to the light-emitting component; the first substrate is at least used to transmit the light emitted by the light-emitting component to the optical coupling component; the optical coupling The component is used to control the rotation angle of the light so that the light is transmitted in a preset direction, and the waveguide transmission layer is used to transmit the light in the preset direction to the diffractive optical waveguide. In this way, by arranging the light-emitting component and the optical coupling component on opposite sides of the first substrate, and embedding the optical coupling component in the waveguide transmission layer, the size of the Micro LED structure is reduced, which is beneficial to the miniaturization of the product.
附图说明Description of drawings
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the disclosure and together with the description serve to explain the principles of the disclosure.
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present disclosure or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, for those of ordinary skill in the art, In other words, other drawings can also be obtained from these drawings without paying creative labor.
图1为现有技术提供的一种Micro LED结构的结构示意图;FIG. 1 is a schematic structural diagram of a Micro LED structure provided by the prior art;
图2为本公开实施例提供的一种Micro LED结构的结构示意图;FIG. 2 is a schematic structural diagram of a Micro LED structure provided by an embodiment of the present disclosure;
图3为本公开实施例提供的另一种Micro LED结构的结构示意图;FIG. 3 is a schematic structural diagram of another Micro LED structure provided by an embodiment of the present disclosure;
图4为本公开实施例提供的一种Micro LED结构与衍射光波导连接的结构示意图;FIG. 4 is a schematic structural diagram of a Micro LED structure connected to a diffractive optical waveguide provided by an embodiment of the present disclosure;
图5为本公开实施例提供的一种Micro LED结构的制备方法的流程示意图。FIG. 5 is a schematic flowchart of a method for fabricating a Micro LED structure provided by an embodiment of the present disclosure.
其中,现有技术:110、衍射光波导;120、透明胶;130、准直透镜模组;140、LED阵列结构;Among them, prior art: 110, diffractive optical waveguide; 120, transparent glue; 130, collimating lens module; 140, LED array structure;
本方案:110、衍射光波导;210、发光组件;211、LED;220、第一基板;230、波导传输层;240、光耦合组件;241、光准直部件;242、倾斜光栅;250、第二基板;260、黑矩阵;270、驱动基板。This solution: 110. Diffraction optical waveguide; 210. Light emitting component; 211. LED; 220. First substrate; 230. Waveguide transmission layer; 240. Optical coupling component; The second substrate; 260, the black matrix; 270, the driving substrate.
具体实施方式Detailed ways
为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。In order to more clearly understand the above objects, features and advantages of the present disclosure, the solutions of the present disclosure will be further described below. It should be noted that, in the case of no conflict, the embodiments of the present disclosure and the features in the embodiments can be combined with each other.
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开的一部分实施例,而不是全部的实施例。In the following description, many specific details are set forth in order to fully understand the present disclosure, but the present disclosure can also be implemented in other ways than described here; obviously, the embodiments in the description are only some of the embodiments of the present disclosure, and Not all examples.
首先,结合相关背景,对现有技术存在的缺陷和本申请的改进点进行说明。Firstly, in combination with the related background, the defects in the prior art and the improvement points of the present application are described.
在Micro LED显示技术领域,通常采用机械式转移等方式在驱动基板上形成LED,例如其机械精度可为500nm以上,甚至1μm以上,导致Micro LED像素之间的间距较大,如像素间距通常为20um及以上,且在后续过程中还会将LED与准直透镜模组等结构贴合并封装,以实现常规功能,但是利用现有技术中的贴合方式引入准直透镜模组等结构后,再与衍射光波导匹配连接,增加了整体尺寸。示例性地,图1为现有技术提供的一种Micro LED结构的结构示意图。参照图1,图1中示出LED阵列结构140通过透明胶120和准直透镜模组130一侧贴合,准直透镜模组130另一侧通过透明胶120和衍射光波导110贴合,以利用准直透镜模组130准直LED阵列结构140发出的光,再将准直后的光传输至衍射光波导110。需要说明的是,在现有技术的贴合和组装工艺的基础上,为实现良好的准直效果,准直透镜模组130通常包括5个至10个树脂镜片,导致准直透镜模组130的长度较长,尺寸较大,不利于产品的小型化。In the field of Micro LED display technology, LEDs are usually formed on the driving substrate by means of mechanical transfer. For example, the mechanical precision can be more than 500nm, or even more than 1μm, resulting in a relatively large spacing between Micro LED pixels. For example, the pixel pitch is usually 20um and above, and in the follow-up process, LEDs and collimating lens modules and other structures will be bonded and packaged to achieve conventional functions. Then it is matched and connected with the diffractive optical waveguide to increase the overall size. Exemplarily, FIG. 1 is a schematic structural diagram of a Micro LED structure provided in the prior art. Referring to FIG. 1 , it is shown in FIG. 1 that the
针对上述缺陷中的至少一个,本公开实施例提供了一种Micro LED结构,包括发光组件、第一基板、波导传输层以及光耦合组件;发光组件设置于第一基板的一侧;波导传输层和光耦合组件均设置于第一基板背离发光组件的一侧,光耦合组件与发光组件对位设置,并内嵌于波导传输层中靠近发光组件的一侧;第一基板至少用于传输发光组件发出的光至光耦合组件;光耦合组件用于控制光的旋转角度以使光按照预设方向传输,波导传输层用于传输预设方向的光至衍射光波导。如此,通过在同一个基板即第一基板上集成发光组件和光耦合组件,相较于传统分立制作再进行准直透镜模组贴合的方式得到的MicroLED结构,本公开实施例提供的Micro LED结构的整体体积和尺寸更小,利于产品的小型化。Aiming at at least one of the above defects, an embodiment of the present disclosure provides a Micro LED structure, including a light-emitting component, a first substrate, a waveguide transmission layer, and an optical coupling component; the light-emitting component is arranged on one side of the first substrate; the waveguide transmission layer The optical coupling component and the light-emitting component are both arranged on the side of the first substrate away from the light-emitting component. The emitted light is sent to the optical coupling component; the optical coupling component is used to control the rotation angle of the light so that the light is transmitted in a preset direction, and the waveguide transmission layer is used to transmit the light in the preset direction to the diffractive optical waveguide. In this way, by integrating the light-emitting component and the optical coupling component on the same substrate, that is, the first substrate, compared with the Micro LED structure obtained by traditional discrete manufacturing and then bonding the collimating lens module, the Micro LED structure provided by the embodiments of the present disclosure The overall volume and size are smaller, which is conducive to the miniaturization of products.
下面结合附图,对本公开实施例提供的Micro LED结构及其制备方法进行示例性说明。The structure of the Micro LED provided by the embodiments of the present disclosure and the manufacturing method thereof are exemplarily described below with reference to the accompanying drawings.
示例性地,在一些实施例中,图2为本公开实施例提供的一种Micro LED结构的结构示意图。参照图2,该Micro LED结构和衍射光波导110匹配连接,该Micro LED结构包括发光组件210、第一基板220、波导传输层230以及光耦合组件240;发光组件210设置于第一基板220的一侧;波导传输层230和光耦合组件240均设置于第一基板220背离发光组件210的一侧,光耦合组件240与发光组件210对位设置,并内嵌于波导传输层230中靠近发光组件210的一侧;第一基板220至少用于传输发光组件210发出的光至光耦合组件240;光耦合组件240用于控制光的旋转角度以使光按照预设方向传输,波导传输层230用于传输预设方向的光至衍射光波导110。Exemplarily, in some embodiments, FIG. 2 is a schematic structural diagram of a Micro LED structure provided by an embodiment of the present disclosure. Referring to FIG. 2 , the Micro LED structure is matched with the diffractive
其中,第一基板220为用于形成发光组件210、波导传输层230以及光耦合组件240的基板。示例性地,以图2示出的方位和结构为例,发光组件210可形成于第一基板220的上方,且当发光组件210位于第一基板220上方时,发光组件210的一边侧可与第一基板220的一边侧平齐;在此基础上,光耦合组件240和波导传输层230可形成于第一基板220的下方,且光耦合组件240与发光组件210对位设置并被波导传输层230包覆,如此设置,上方的发光组件210发出的光可通过第一基板220传输至光耦合组件240,以利于光通过波导传输层230传输至衍射光波导110,在此关于发光组件210的具体设置位置不做限定,只需保证发光组件210与光耦合组件240对位设置即可。Wherein, the
需要说明的是,通过设置光耦合组件240位于第一基板220下方的表面,即内嵌于波导传输层230中靠近发光组件210的一侧,能够直接对第一基板220传输过来的光进行旋转角度的控制,例如可先对第一基板220传输过来的光进行准直,之后控制准直后的光的旋转角度,如控制光的旋转角度为向左倾斜的角度或向右倾斜的角度,从而使准直后的光沿波导传输层230向左侧传输或向右侧传输,利于后续进入与Micro LED结构匹配连接的衍射光波导110,便于衍射光波导110基于自身的衍射特性将光投射至人眼,由此实现在增强现实(Augmented Reality,AR)等技术领域的应用。It should be noted that by setting the
其中,预设方向为光由波导传输层230进入衍射光波导110的方向。具体地,参照图2,当发光组件210的右边侧与第一基板220的右边侧平齐时,可将衍射光波导110匹配连接于Micro LED结构中发光组件210的左侧,从而利用光耦合组件240控制光的旋转角度为向左倾斜的角度,使光沿波导传输层230向左侧传输至衍射光波导110,可根据衍射光波导的具体连接位置设定对应的预设方向,在此关于光的旋转角度不做具体限定。Wherein, the preset direction is the direction in which light enters the diffractive
本公开实施例提供的Micro LED结构,包括发光组件210、第一基板220、波导传输层230以及光耦合组件240;发光组件210设置于第一基板220的一侧;波导传输层230和光耦合组件240均设置于第一基板220背离发光组件210的一侧,光耦合组件240与发光组件210对位设置,并内嵌于波导传输层230中靠近发光组件210的一侧;第一基板220至少用于传输发光组件210发出的光至光耦合组件240;光耦合组件240用于控制光的旋转角度以使光按照预设方向传输,波导传输层230用于传输预设方向的光至衍射光波导110。如此,通过在第一基板220的相对两侧分别设置发光组件210和光耦合组件240,并将光耦合组件内嵌于波导传输层230,从而减少了Micro LED结构的尺寸,利于产品的小型化。The Micro LED structure provided by the embodiment of the present disclosure includes a light-emitting
在一些实施例中,图3为本公开实施例提供的另一种Micro LED结构的结构示意图。在图2的基础上,参照图3,光耦合组件240包括光准直部件241和倾斜光栅242;倾斜光栅242设置于光准直部件241背离发光组件210的一侧;光准直部件241用于对光进行准直;倾斜光栅242用于控制准直后的光以预设旋转角度从倾斜光栅出射。In some embodiments, FIG. 3 is a schematic structural diagram of another Micro LED structure provided by an embodiment of the present disclosure. On the basis of FIG. 2 , referring to FIG. 3 , the
其中,以图3示出的方位和结构为例,光准直部件241位于第一基板220下方的表面,倾斜光栅242位于光准直部件241的下方,即光准直部件241背离发光组件210的一侧。示例性地,在光准直部件241设置于第一基板220和倾斜光栅242之间的基础上,光准直部件241首先对第一基板220传输过来的光进行准直,使光垂直照射至倾斜光栅242,之后利用倾斜光栅242控制准直后的光的旋转角度,以使光以预设旋转角度从倾斜光栅出射,例如预设旋转角度可为向左旋转45°、向左旋转50°或其他旋转角度,保证倾斜光栅242出射的光之后能够由波导传输层230沿预设方向传输至衍射光波导,在此关于预设旋转角度的具体大小不做限定。Wherein, taking the orientation and structure shown in FIG. 3 as an example, the
示例性的,光准直部件241可为超表面准直结构或量子晶体结构等光准直部件,当光准直部件241为超表面准直结构时,其制备材料可包括掺锡氧化铟(Indium Tin Oxide,ITO)、铝和金等材料,且形成的厚度较薄,如可小于5um。在其他实施方式中,还可为本领域技术人员可知的其他类型的用于对光进行准直的部件,在此不限定。Exemplarily, the
在一些实施例中,继续参照图3,该Micro LED结构还包括第二基板250;第二基板250设置于波导传输层230背离第一基板220的一侧;第一基板220和第二基板250共同用于基于光在相应交界面发生全反射以引导光按照预设方向传输;其中,相应交界面包括第一基板220和波导传输层230对应的交界面,以及第二基板250和波导传输层230对应的交界面。In some embodiments, referring to FIG. 3 , the Micro LED structure further includes a
其中,以图3示出的方位和结构为例,第二基板250设置于波导传输层230的下方,即波导传输层230背离第一基板220的一侧。具体地,由于波导传输层230和光耦合组件240设置在第一基板220和第二基板250之间,由此形成了第一基板220和波导传输层230对应的交界面和第二基板250和波导传输层230对应的交界面,使倾斜光栅242出射的光能够基于倾斜光栅242、波导传输层230、第一基板220以及第二基板250之间的折射率差异,在波导传输层230中按照预设方向如向左侧传输,以保证波导传输层230传输的光能够出射至衍射光波导,关于倾斜光栅242、波导传输层230、第一基板220以及第二基板250之间的折射率差异在后文中示例性说明。Wherein, taking the orientation and structure shown in FIG. 3 as an example, the
不难理解的是,当衍射光波导匹配连接于Micro LED结构中发光组件210的左侧时,由于波导传输层230和第一基板220的折射率不同,同时波导传输层230和第二基板250的折射率不同,使倾斜光栅242出射的光会在第一基板220和波导传输层230对应的交界面,以及第二基板250和波导传输层230对应的交界面处发生全反射,并向左侧传输至衍射光波导。It is not difficult to understand that when the diffractive optical waveguide is matched and connected to the left side of the light-emitting
在一些实施例中,继续参照图3,倾斜光栅242的折射率大于波导传输层230的折射率,波导传输层230的折射率大于第一基板220的折射率或第二基板250的折射率;其中,第一基板220的折射率等于第二基板250的折射率。In some embodiments, referring to FIG. 3 , the refractive index of the
具体地,由于倾斜光栅242的折射率大于波导传输层230的折射率,使倾斜光栅242能够将已准直的光以预设旋转角度耦合至波导传输层230;对应地,由于波导传输层230的折射率大于第一基板220的折射率或第二基板250的折射率,使倾斜光栅242出射的预设旋转角度的光会在第一基板220和波导传输层230对应的交界面,以及第二基板250和波导传输层230对应的交界面处发生全反射。需要说明的是,当波导传输层230的折射率远大于第一基板220或第二基板250的折射率时,可降低对倾斜光栅242的折射率的要求,例如倾斜光栅242的折射率可略大于波导传输层230的折射率,使倾斜光栅242出射的光不用旋转过多角度即可在波导传输层230按照预设方向传输。Specifically, since the refractive index of the
示例性地,倾斜光栅242的制备材料可为氮化硅、氧化硅或其他较高折射率的材料,在此不限定。Exemplarily, the preparation material of the tilted grating 242 may be silicon nitride, silicon oxide or other materials with a higher refractive index, which is not limited herein.
其中,由于第一基板220的折射率等于第二基板250的折射率,所以第一基板220和第二基板250可为同一种材料的基板,例如第一基板220和第二基板250可均为硅基板、蓝宝石基板或其他材料的基板,在此不限定。不难理解的是,由于采用硅基板制备的Micro LED屏幕的数量比采用蓝宝石基板制备的Micro LED屏幕的数量更多,且硅基板的制备成本较低,优选地,本公开实施例可采用硅基板作为第一基板220或第二基板250。Wherein, since the refractive index of the
在一些实施例中,继续参照图3,该Micro LED结构还包括黑矩阵260;发光组件210包括阵列排布的LED 211;黑矩阵260与LED 211交替设置;黑矩阵260用于阻挡相邻LED发出的光发生串扰。In some embodiments, referring to FIG. 3 , the Micro LED structure further includes a
其中,黑矩阵260可简称为BM(black matrix),为用于遮蔽LED 211发出的光的不透光结构,以防止LED 211发生漏光而导致相邻LED之间的光发生串扰。针对此,黑矩阵260至少位于相邻LED的间隔区域内,例如黑矩阵260可位于相邻LED的间隔区域内以及发光组件210的左右两个边侧,可根据Micro LED结构所需的遮光效果设置黑矩阵260的具体位置和尺寸,在此不限定。Wherein, the
在一些实施例中,继续参照图3,该Micro LED结构还包括驱动基板270;驱动基板270设置于发光组件210的背光侧;驱动基板270用于对发光组件210进行驱动点亮。In some embodiments, referring to FIG. 3 , the Micro LED structure further includes a driving
其中,以图3示出的方位和结构为例,驱动基板270设置于发光组件210的上方即背光侧,以利用内部的驱动电路控制LED 211是否点亮。示例性地,驱动基板270可经由内部走线和下方的发光组件210实现电性连接,且针对Micro LED结构后续与衍射光波导连接,驱动基板270水平方向的长度需小于第一基板220水平方向的长度,以避免影响Micro LED结构后续与衍射光波导的连接,在此关于驱动基板270水平方向的长度不做限定。Wherein, taking the orientation and structure shown in FIG. 3 as an example, the driving
在一些实施例中,继续参照图3,该Micro LED结构还包括波导对接层280;波导对接层280设置于驱动基板270和第一基板220之间;其中,波导对接层280和第二基板250均设有相应凹槽,以和衍射光波导连接。In some embodiments, referring to FIG. 3 , the Micro LED structure further includes a waveguide butt
示例性地,以图3示出的方位和结构为例,波导对接层280的凹槽和第二基板250的凹槽对位设置,凹槽的形状可为立方体、圆柱体或其他对接形状,为后续组装衍射光波导提供瞄定,对应地,衍射光波导具有对应的凸起结构,以通过凸起结构和凹槽卡合以实现衍射光波导与Micro LED结构的匹配连接,在此可根据衍射光波导的凸起结构的具体形状设置相应凹槽,关于凹槽的形状不做具体限定。Exemplarily, taking the orientation and structure shown in FIG. 3 as an example, the groove of the
不难理解的是,为便于衍射光波导与Micro LED结构匹配连接,波导对接层280和第二基板250预留的接口即相应凹槽均靠近Micro LED结构的边侧对位设置。示例性地,当发光组件210设置在第一基板220右上方时,发光组件210右边侧可与第一基板220的右边侧平齐,光耦合组件240与发光组件210对位设置并位于第一基板220的右下方,在此基础上,波导对接层280和第二基板250的左侧可设有相应凹槽;对应地,当发光组件210设置在第一基板220左上方,光耦合组件240与发光组件210对位设置并位于第一基板220的左下方时,波导对接层280和第二基板250的右侧可设有相应凹槽,可根据耦合组件240与发光组件210的位置设置波导对接层280和第二基板250的凹槽,在此不限定。It is not difficult to understand that, in order to facilitate the matching connection between the diffractive optical waveguide and the Micro LED structure, the interface reserved between the
示例性地,图4为本公开实施例提供的一种Micro LED结构与衍射光波导连接的结构示意图。在图3的基础上,参照图4,Micro LED结构中波导对接层280和第二基板250的左侧设有相应凹槽,实现了波导对接层280和第二基板250一同和衍射光波导110的匹配连接。需要说明的是,衍射光波导110的实际尺寸大于Micro LED结构的尺寸,在此关于衍射光波导110的实际大小不进行赘述。Exemplarily, FIG. 4 is a structural schematic diagram of a connection between a Micro LED structure and a diffractive optical waveguide provided by an embodiment of the present disclosure. On the basis of FIG. 3 , referring to FIG. 4 , corresponding grooves are provided on the left side of the waveguide butt
在上述实施方式的基础上,本公开实施例还提供了一种Micro LED结构的制备方法,用于制备上述实施方式提供的任一种Micro LED结构,具有相应的有益效果。On the basis of the above embodiments, the embodiments of the present disclosure also provide a method for preparing a Micro LED structure, which is used to prepare any one of the Micro LED structures provided in the above embodiments, and has corresponding beneficial effects.
在一些实施例中,图5为本公开实施例提供的一种Micro LED结构的制备方法的流程示意图。在图4的基础上参照图5,该制备方法包括如下步骤:In some embodiments, FIG. 5 is a schematic flowchart of a method for fabricating a Micro LED structure provided by an embodiment of the present disclosure. With reference to Fig. 5 on the basis of Fig. 4, this preparation method comprises the steps:
S310、在第一基板的一侧形成发光组件。S310, forming a light emitting component on one side of the first substrate.
其中,以图4示出的结构为例,发光组件210形成于第一基板220的右上方或左上方。示例性地,当第一基板220为硅基板时,可使用硅基板外延形成发光组件210,并在硅基板的上方刻蚀出阵列排布的LED 211,在此关于LED 211的制备方法不限定。Wherein, taking the structure shown in FIG. 4 as an example, the
S320、在第一基板背离发光组件的一侧形成波导传输层和光耦合组件。S320, forming a waveguide transmission layer and an optical coupling component on a side of the first substrate away from the light-emitting component.
其中,光耦合组件240与发光组件210对位设置,并内嵌于波导传输层230中靠近发光组件210的一侧;第一基板220至少用于传输发光组件210发出的光至光耦合组件240;光耦合组件240用于控制光的旋转角度以使光按照预设方向传输,波导传输层230用于传输预设方向的光至衍射光波导110。Wherein, the
其中,以图4示出的结构为例,波导传输层230和光耦合组件240均形成于第一基板220下方。示例性地,可先将第一基板220研磨减薄至预设厚度,之后采用光刻和刻蚀等制备工艺依次形成光准直部件241和倾斜光栅242,再利用化学气相沉积(Chemical VaporDeposition,CVD)工艺形成包覆光耦合组件240的波导传输层230,在此关于波导传输层230和光耦合组件240的具体制备工艺不限定。Wherein, taking the structure shown in FIG. 4 as an example, the
本公开实施例提供的Micro LED结构的制备方法,通过在第一基板220的相对两侧分别设置发光组件210和光耦合组件240,并将光耦合组件240内嵌于波导传输层230,从而减少了Micro LED结构的尺寸,利于产品的小型化。The preparation method of the Micro LED structure provided by the embodiment of the present disclosure, respectively arranges the
在一些实施例中,在图5的基础上,该制备方法还包括:在波导传输层背离第一基板的一侧形成第二基板。In some embodiments, on the basis of FIG. 5 , the preparation method further includes: forming a second substrate on a side of the waveguide transmission layer away from the first substrate.
其中,第二基板250形成于波导传输层230的下方。示例性地,可通过混合键合方式在波导传输层230的下方形成具有机械支撑作用的第二基板250,同时利用刻蚀方式去除第二基板250上的多余部分,以预留出与衍射光波导110卡合的接口,关于其他接口的处理过程在后文中示例性说明。Wherein, the
在一些实施例中,在图5的基础上,该制备方法还包括如下步骤:In some embodiments, on the basis of Figure 5, the preparation method further includes the following steps:
步骤一:提供驱动基板。Step 1: providing a driving substrate.
其中,在第一基板220的一侧形成发光组件210时,可同时形成还未预留接口的波导对接层280,并在LED211的间隔区域内填充黑矩阵260,在此基础上,将驱动基板270和发光组件210进行电性连接。Wherein, when the light-emitting
示例性地,波导对接层280的制备材料可为硅,在其他实施方式中,还可为本领域技术人员可知的较硬的其他材料,在此不限定。Exemplarily, the preparation material of the waveguide butt
步骤二:利用混合键合方式将驱动基板和发光组件形成电性连接。Step 2: Form an electrical connection between the driving substrate and the light-emitting component by using a hybrid bonding method.
其中,利用混合键合方式将发光组件整面键合至驱动基板形成电性连接时的对位精度较高,例如可达50nm的对位精度。Among them, when the whole surface of the light-emitting component is bonded to the driving substrate by the hybrid bonding method to form an electrical connection, the alignment accuracy is relatively high, for example, the alignment accuracy can reach 50nm.
其中,在驱动基板270和发光组件210形成电性连接的基础上,可利用混合键合方式依次形成位于第一基板220下方的光耦合组件240、波导传输层230以及还未预留接口的第二基板250,相较于传统贴合方式中由机械对位带来的5um及以上的误差,本公开实施例提供的半导体工艺达到了100nm及以下的精度,之后,去除波导对接层280和第二基板250多余的部分以形成凹槽,由此得到完整的Micro LED结构。Wherein, on the basis of forming an electrical connection between the driving
需要说明的是,在将驱动基板和发光组件形成电性连接的过程中,可直接将尺寸小于第一基板220的驱动基板270和第一基板220进行键合,且此时的尺寸需不影响与后续的衍射光波导110对接;或者,也可将与第一基板220同等尺寸的驱动基板和第一基板220进行键合,并在后续中与波导对接层280和第二基板250一同去除多余的部分即可,在此关于驱动基板270的具体尺寸不限定。It should be noted that, in the process of forming an electrical connection between the driving substrate and the light-emitting component, the driving
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that in this article, relative terms such as "first" and "second" are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply these No such actual relationship or order exists between entities or operations. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or device. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所述的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above descriptions are only specific implementation manners of the present disclosure, so that those skilled in the art can understand or implement the present disclosure. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the present disclosure. Therefore, the present disclosure will not be limited to the embodiments described herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310617836.5A CN116344572B (en) | 2023-05-30 | 2023-05-30 | Micro LED structure and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310617836.5A CN116344572B (en) | 2023-05-30 | 2023-05-30 | Micro LED structure and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116344572A true CN116344572A (en) | 2023-06-27 |
CN116344572B CN116344572B (en) | 2023-08-11 |
Family
ID=86880748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310617836.5A Active CN116344572B (en) | 2023-05-30 | 2023-05-30 | Micro LED structure and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116344572B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002258079A (en) * | 2001-02-28 | 2002-09-11 | Japan Science & Technology Corp | Optical interconnection method and device in board |
WO2011068458A1 (en) * | 2009-12-04 | 2011-06-09 | Ekklippan Ab | Integrated chip comprising a laser and a filter |
US20130209026A1 (en) * | 2012-02-10 | 2013-08-15 | International Business Machines Corporation | Through-substrate optical coupling to photonics chips |
CN107238979A (en) * | 2017-08-11 | 2017-10-10 | 京东方科技集团股份有限公司 | Leaded light component and preparation method, backlight module and display device |
CN210166573U (en) * | 2019-08-22 | 2020-03-20 | 苏州苏大维格科技集团股份有限公司 | Augmented reality display system |
US20210199873A1 (en) * | 2019-12-26 | 2021-07-01 | Facebook Technologies, Llc | Dual-side antireflection coatings for broad angular and wavelength bands |
CN113838957A (en) * | 2021-10-25 | 2021-12-24 | 北京数字光芯科技有限公司 | A toner cartridge printing structure based on Micro LED |
JP7026854B1 (en) * | 2020-12-14 | 2022-02-28 | 三菱電機株式会社 | Grating coupler |
CN115981005A (en) * | 2022-12-30 | 2023-04-18 | 中国科学院长春光学精密机械与物理研究所 | Full-color display system of Micro LED optical waveguide AR glasses |
-
2023
- 2023-05-30 CN CN202310617836.5A patent/CN116344572B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002258079A (en) * | 2001-02-28 | 2002-09-11 | Japan Science & Technology Corp | Optical interconnection method and device in board |
WO2011068458A1 (en) * | 2009-12-04 | 2011-06-09 | Ekklippan Ab | Integrated chip comprising a laser and a filter |
US20130209026A1 (en) * | 2012-02-10 | 2013-08-15 | International Business Machines Corporation | Through-substrate optical coupling to photonics chips |
CN107238979A (en) * | 2017-08-11 | 2017-10-10 | 京东方科技集团股份有限公司 | Leaded light component and preparation method, backlight module and display device |
CN210166573U (en) * | 2019-08-22 | 2020-03-20 | 苏州苏大维格科技集团股份有限公司 | Augmented reality display system |
US20210199873A1 (en) * | 2019-12-26 | 2021-07-01 | Facebook Technologies, Llc | Dual-side antireflection coatings for broad angular and wavelength bands |
JP7026854B1 (en) * | 2020-12-14 | 2022-02-28 | 三菱電機株式会社 | Grating coupler |
CN113838957A (en) * | 2021-10-25 | 2021-12-24 | 北京数字光芯科技有限公司 | A toner cartridge printing structure based on Micro LED |
CN115981005A (en) * | 2022-12-30 | 2023-04-18 | 中国科学院长春光学精密机械与物理研究所 | Full-color display system of Micro LED optical waveguide AR glasses |
Also Published As
Publication number | Publication date |
---|---|
CN116344572B (en) | 2023-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI768248B (en) | Spliced display | |
US11244937B2 (en) | Spliced display with LED modules disposed on transparent substrate | |
CN108931863B (en) | Display device and method of manufacturing the same | |
US9613886B2 (en) | Optical coupling module | |
CN109445176B (en) | Liquid crystal display panel, preparation method thereof and liquid crystal display device | |
CN115407570B (en) | Display panel and preparation method thereof | |
WO2021056836A1 (en) | Optical coupling assembly and optical transmission assembly | |
CN113809064A (en) | Display panel, display device and light field display device | |
WO2024255351A1 (en) | Display panel, preparation method therefor, and display apparatus | |
JP2020144180A (en) | Lens array substrate, electro-optical device, and electronic apparatus | |
CN116344572B (en) | Micro LED structure and preparation method thereof | |
CN109239833B (en) | Backlight unit and display device including the same | |
WO2020098652A1 (en) | Optical waveguide, manufacturing method for same, and optical waveguide system | |
WO2021213037A1 (en) | Display panel, display device, and method for manufacturing display panel | |
CN113534536A (en) | Backlight module, preparation method thereof and display device | |
CN116314556A (en) | Light emitting structure, manufacturing method, display device and projection device | |
US12292661B2 (en) | Electronic devices including transfer layer, methods of manufacturing the electronic devices, and electronic apparatuses including the electronic devices | |
CN221101087U (en) | Lens module and AR glasses | |
TWI864493B (en) | Display panel and method of fabricating the same | |
TWI740355B (en) | Light-guide optical element | |
CN116794885B (en) | Backlight module and manufacturing method thereof, and liquid crystal display device | |
CN116544336B (en) | Micro LED structure and preparation method thereof | |
CN211206838U (en) | light guiding optics | |
CN119516902A (en) | Spliced display panel | |
WO2024000355A1 (en) | Display panel and display apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |