CN116344489A - 具有集成的磁性体的电感器 - Google Patents

具有集成的磁性体的电感器 Download PDF

Info

Publication number
CN116344489A
CN116344489A CN202211468140.2A CN202211468140A CN116344489A CN 116344489 A CN116344489 A CN 116344489A CN 202211468140 A CN202211468140 A CN 202211468140A CN 116344489 A CN116344489 A CN 116344489A
Authority
CN
China
Prior art keywords
substrate
trace
magnetic
loop
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211468140.2A
Other languages
English (en)
Inventor
T·卡姆嘎因
A·阿列克索夫
V·斯特朗
N·普拉布高纳卡尔
B·罗林斯
G·C·多吉阿米斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN116344489A publication Critical patent/CN116344489A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/645Inductive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/10Inductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • H01F2017/002Details of via holes for interconnecting the layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

本文公开了具有集成的磁性体的电感器。本文公开的实施例包括电子封装。在实施例中,电子封装包括基板,其中基板包括玻璃。在实施例中,磁性环被嵌入在基板中。在实施例中,环路围绕磁性环。在实施例中,该环路是导电的并且包括穿过基板的第一过孔、穿过基板的第二过孔以及位于基板的表面之上的迹线,其中迹线将第一过孔电耦合到第二过孔。

Description

具有集成的磁性体的电感器
技术领域
本公开的实施例涉及电子封装,并且更具体地涉及具有玻璃核心中的同轴电感器的电子封装。
背景技术
电感器对于向管芯进行高性能、快速且干净(低噪声)的供电越来越关键。随着管芯变得更加渴求功率,并且功率调节器(例如,电压调节器)距管芯越来越近以减小任何损耗或寄生元件,集成于封装基板中的功率电感器对于电子封装越来越重要。一种这样的电感器架构使用了浆料印刷和固化的磁性材料。然后过孔开口被钻入固化的磁性材料中。然而,固化的磁性材料通常非常硬。这导致需要经常更换钻头(这增加了成本)。更换钻头也降低了产量。此外,由于每个电感器都需要单独钻孔,所以为电子封装制作所有过孔开口需要很长时间。
附图说明
图1A-图1C是描绘根据实施例的用于采用激光辅助蚀刻工艺形成穿过玻璃核心的过孔开口的工艺的横截面图。
图2A-图2C是描绘根据实施例的用于采用激光辅助蚀刻工艺形成进入玻璃核心的盲孔过孔开口的工艺的横截面图。
图3A-图3C是描绘根据实施例的用于采用激光辅助蚀刻工艺形成进入玻璃核心的盲孔过孔开口的工艺的横截面图。
图4A是根据实施例的带有一对具有单个磁性层的竖直取向的电感器的电感器环路的横截面图。
图4B是根据实施例的带有一对具有多个磁性层的竖直取向的电感器的电感器环路的横截面图。
图5A-图5I是根据实施例的描绘用于形成电感器环路的工艺的一系列横截面图。
图6A是根据实施例的电感器环路的横截面图。
图6B是根据实施例的具有穿过一对竖直取向的电感器的连续磁性环路的电感器环路的横截面图。
图6C是根据实施例的具有通过堆积层耦合到焊盘的电感器的电感器环路的横截面图。
图7是根据实施例的具有一对串联耦合在一起的电感器环路的电子封装的横截面图。
图8是根据实施例的设置于有机玻璃纤维织成的核心中的电感器环路的横截面图。
图9A是根据实施例的包括电感器环路的电子封装的横截面图。
图9B是根据实施例的具有耦合到管芯的电感器环路的电子封装的横截面图。
图9C是根据额外的实施例的具有耦合到管芯的电感器环路的电子封装的横截面图。
图10A是根据实施例的含有具有沙漏形轮廓的磁性材料和具有竖直侧壁的过孔的电感器环路的横截面图。
图10B是根据实施例的具有在核心中的电感器环路的电子封装的横截面图,其中该核心之上具有堆积层。
图10C是根据实施例的具有耦合到管芯的核心中的电感器环路的电子封装的横截面图。
图11A-图11G是根据实施例的描绘用于形成具有模板结构的电感器环路的工艺的横截面图。
图12A-图12D是根据实施例的描绘用于形成具有被蚀刻掉的模板结构的电感器环路的工艺的横截面图。
图13A-图13D是根据实施例的描绘采用持续存在于结构中的作为导电过孔的模板结构来形成电感器环路的工艺的横截面图。
图14A是根据实施例的玻璃核心中的围绕磁性环路的电感器环路的横截面图。
图14B是根据实施例的图14A中电感器环路的底表面的平面图。
图14C是根据实施例的图14A中电感器环路的顶表面的平面图。
图15A-图15F是根据实施例的描绘用于形成玻璃核心中的电感器环路的工艺的横截面图。
图16A-图16E是根据实施例的描绘用于形成玻璃核心中的电感器环路的工艺的横截面图。
图17A是根据实施例的多个彼此串联耦合的电感器环路的顶表面的平面图。
图17B是根据实施例的图17A中所示多个电感器的底表面的平面图。
图18A是根据实施例的多个具有电感器环路外部的磁性材料的电感器环路的顶表面的平面图。
图18B是根据实施例的多个具有电感器环路内部和外部的磁性材料的电感器环路的顶表面的平面图。
图18C是根据实施例的多个具有圆形导体的电感器环路的顶表面的平面图。
图18D是根据实施例的多个邻近的电感器环路共享公共磁性材料的电感器环路的顶表面的平面图。
图19是根据实施例具有在封装基板的核心内的电感器环路的电子系统的横截面图。
图20是根据实施例构建的计算装置的示意图。
具体实施方式
本文描述了根据各种实施例的具有玻璃核心中的同轴电感器的电子封装。在下文的描述中,将使用本领域技术人员通常采用的术语描述例示性实施方式的各个方面,以将其工作的实质传达给其他本领域技术人员。但是,对本领域技术人员将是显而易见的是,可以仅采用所描述的方面中的一些方面实践本发明。出于解释的目的,阐述了具体的数量、材料和构造,从而提供对例示性实施方式的透彻理解。但是,对本领域技术人员将是显而易见的是,可以在没有具体细节的情况下实践本发明。在其他实例中,公知的特征被省略或简化,以免使例示性实施方式难以理解。
将以对理解本发明最有帮助的方式将各项操作作为多个分立的操作依次予以描述,但是不应将描述的顺序推断为暗示这些操作必然是顺序相关的。具体而言,未必以呈现的顺序执行这些操作。
如上所述,电感器对于向管芯进行高性能、快速且干净(低噪声)的供电越来越关键。然而,现有的电感器架构是受限的。例如,采用第一钻孔工艺穿过核心生成第一开口。然后磁性浆料被设置在第一开口中并且被固化。磁性浆料材料通常是填充有磁性颗粒的有机基质。然后,采用较小半径的钻头对磁性浆料材料进行钻孔。然后沉积出导电镀覆通孔(PTH)以对较小的开口铺设衬层。PTH填充有填塞材料(例如,有机填料)。
然而,磁性浆料材料典型地具有低磁导率,因此降低了可用的电感。此外,由于该低磁导率,必须增加磁性体积以允许达到必要的感应率。在特定实例中,对于具有预计为25的磁导率的浆料,外钻头是350μm,并且内钻头是150μm。这导致了在PTH的共形镀覆的导体周围的100μm的磁性材料厚度。这样一来,由两个电感器以550μm间距制成的单个电感器环路将需要大约0.6mm2的面积。由于核心区域随着每个工艺节点持续缩小,这限制了可以在核心区域中放置的电感器的数量。据此,对减小钻头直径的限制进一步限制了此样的装置的缩放。
此外,现有电感器架构的受限制之处在于,由于穿过硬的磁性材料的机械钻孔,它们的生产耗时。硬的磁性材料还可能导致频繁需要更换钻头,这进一步降低了产量。
据此,本文公开的实施例包括在玻璃核心中制作的电感器架构。采用激光辅助蚀刻工艺形成在其中制作电感器的竖直孔。激光辅助蚀刻工艺使得能够将电感器缩放到更小的尺寸和间距,并且使用具有改进磁导率的材料。这样一来,提供了更多的电感器以及具有更高感应率的电感器。
在一个实施例中,在穿过玻璃核心的过孔开口的表面上镀覆高磁导率和高电阻率的磁性材料。磁性电感器材料的厚度需要足够小,从而充分抑制涡流的产生。金属电阻率越高,沉积的磁性材料层就可以越厚。如果磁性材料的总体积需要比将在磁性材料中引发涡流的厚度大的厚度,则可以沉积由薄的电绝缘层分隔开的若干个层压体或层。
高磁导率允许小的磁性体积来达到所需的电感,并且因此允许薄的磁性层。例如,结合激光辅助蚀刻工艺,本文公开的实施例可以产生可以占据小到大约0.06mm2的两个电感器。这样一来,当使用本文公开的实施例时,可以提供高达大约10x的每单位面积电感器的数量的改进。
在又一实施例中,制造工艺允许并行制作多个电感器而无需机械钻孔。例如,可以采用激光辅助蚀刻工艺来制作电感器开口。在形成开口之后,将模板结构插入到开口中。然后可以在模板结构周围设置磁性材料。然后可以去除模板结构以提供穿过磁性材料的孔,在该孔中可以沉积导体。模板结构可以被熔化、蚀刻、机械去除等。
在又一实施例中,为金属化的过孔和磁性材料生成分离的孔。可以采用激光辅助蚀刻工艺来制作孔。由于激光辅助蚀刻的能力,可以减小金属化的孔和磁性材料孔之间的距离(例如,减小到大约5μm)。这样一来,实现了高的电感和电感器密度。此外,避免了机械钻孔,这带来了时间和成本的节省。具体而言,因为可以同时对面板或晶圆上的所有过孔进行加工,所以节省了时间。这样的实施例还使用耦合降压拓扑实现了可能的宽带调节器。
现在参考图1A-图3C,示出了根据实施例的描绘用于采用激光辅助蚀刻工艺在玻璃核心中形成特征的工艺的三个系列的横截面图。根据本文公开的实施例,可以使用图1A-图1C中所示的激光辅助蚀刻工艺的一种或多种,以便在玻璃核心中制作电感器结构。在图1A-图1C中,形成了贯穿核心过孔开口。在图2A-图2C中,在核心的相对的表面上形成一对盲孔过孔开口。在图3A-图3C中,形成进入核心的顶表面的盲孔过孔开口。然后使用各种镀覆或其他沉积工艺用材料(例如,导电材料)填充在图1A-图3C中的形成的开口。
现在参考图1A-图1C,示出了根据实施例的描绘用于在玻璃核心110中制作开口的工艺的一系列横截面图。
现在参考图1A,示出了根据实施例的玻璃核心110的横截面图。在实施例中,玻璃核心110可以具有介于大约50μm和大约1000μm之间的厚度。如本文所使用的,“大约”可以指偏离所述的值10%以内的值。例如,大约100μm可以指90μm和110μm之间的范围。但是,将认识到的是,其他的厚度(更大或更小的)也可以用于玻璃核心110。在实施例中,使用激光器180将玻璃核心110的区域曝光。如图1A中所示,可以在两侧(即,玻璃核心110的顶表面和玻璃核心110的底表面)上进行曝光。可以使用单个激光器180,或者可以使用多个激光器。在实施例中,激光器180在玻璃核心110之上的需要过孔开口的位置处曝光。
现在参考图1B,示出了根据实施例的在激光器180曝光完成之后的玻璃核心110的横截面图。如图所示,激光器180曝光可以导致曝光区域115的形成。在实施例中,玻璃核心110可以包括在被激光器180曝光时能够发生形貌变化的玻璃材料。例如,该形貌变化可以导致玻璃核心110的微结构从非晶结构变换成晶体结构。据此,采用不同于玻璃核心110的阴影示出了曝光区域115。
在实施例中,激光器180曝光可以导致具有锥形侧壁113的曝光区域115。在将玻璃核心110的两侧曝光的情况下(如图1A所示的情况),曝光区域115可以具有双锥形轮廓。就是说,曝光区域115在玻璃核心110的顶表面处和玻璃核心110的底表面处的宽度可以宽于玻璃核心110的中间处的宽度。在一些情况下,这样的侧壁113轮廓可以被称为沙漏形轮廓。
现在参考图1C,示出了根据实施例的在去除曝光区域115之后的玻璃核心110的横截面图。在实施例中,曝光区域115的去除可以导致过孔开口117的形成。过孔开口117可以完全穿过玻璃核心110的厚度。在实施例中,过孔开口117可以是高深宽比过孔开口117。如本文使用的,“高深宽比”可以指大约是5:1或更大的深宽比(深度:宽度),其中,宽度是在穿过过孔开口117的厚度的最窄点处测量的。在其他实施例中,过孔开口117的深宽比可以是大约10:1或更大,大约20:1或更大,或者大约50:1或更大。
现在参考图2A-图2C,示出了根据实施例的描绘用于形成进入玻璃核心210的盲孔结构的工艺的一系列的横截面图。提供了部分地延伸穿过核心210的厚度的结构,而不是形成完全地穿过玻璃核心210的开口。
现在参考图2A,示出了根据实施例的玻璃核心210的横截面图。在实施例中,玻璃核心210可以与上文更详细地描述的玻璃核心110基本上类似。例如玻璃核心210可以具有大约50μm和大约1000μm之间的厚度。在实施例中,激光器280可以将玻璃核心210的部分曝光。在实施例中,图2A中的激光器280曝光可以不同于图1A中的激光器180曝光。例如,激光器280曝光的强度或持续时间可以少于图1A中的激光器180曝光的强度或持续时间。
现在参考图2B,示出了根据实施例的在形成曝光区域215之后的玻璃核心210的横截面图。在实施例中,曝光区域215未完全延伸穿过玻璃核心210的厚度。例如,可以在顶部曝光区域215和底部曝光区域215之间提供区域218。在一些情况下,曝光区域215仍然包括锥形侧壁213。由于曝光区域215仅从单侧形成,因而侧壁213可以仅具有单锥形。就是说,曝光区域215可以不是沙漏形的。
现在参考图2C,示出了根据实施例的在去除曝光区域215以形成开口217之后的玻璃核心210的横截面图。在实施例中,可以采用相对于玻璃核心210的其余部分对曝光区域215具有选择性的蚀刻工艺来去除曝光区域215。如图所示,开口217未完全延伸穿过玻璃核心210。在这样的实施例中,开口217可以被称为盲孔开口,因为它们不穿过玻璃核心210。
现在参考图3A-图3C,示出了根据实施例的描绘用于形成盲孔开口317的工艺的一系列的横截面图。
现在参考图3A,示出了根据实施例的玻璃核心310的横截面图。在实施例中,玻璃核心310可以与上文更详细地描述的玻璃核心110和210基本上类似。例如玻璃核心310可以具有介于大约50μm和大约1000μm之间的厚度。在实施例中,可以使用激光器380将玻璃核心310的表面曝光。与上文更详细地描述的实施例对比,可以仅在玻璃核心310的单个表面上提供激光器380曝光。
现在参考图3B,示出了根据实施例的在激光器曝光以形成曝光区域315之后的玻璃核心310的横截面图。在实施例中,曝光区域315可以是相较于玻璃核心310的其余部分具有形貌变化的区域。例如,该形貌变化可以是从非晶结构转变为晶体结构。在实施例中,曝光区域315可以不完全延伸穿过玻璃核心310的厚度。就是说,曝光区域315可以适于形成盲孔结构。
然而,将认识到的是,在一些实施例中,可以使用玻璃核心310的单个表面上的激光器380曝光来形成延伸穿过玻璃核心310的整个厚度的曝光区域315。就是说,在玻璃核心310的两侧上使用曝光从而形成穿过核心的结构是不必要的。在这样的实施例中,曝光区域315的侧壁轮廓可以具有单锥形,而不是图1B中所示的沙漏形的锥形。
现在参考图3C,示出了根据实施例的在去除曝光区域315之后的玻璃核心310的横截面图。在实施例中,曝光区域315的去除可以导致形成进入玻璃核心310的表面的开口317。在实施例中,开口317可以是盲孔开口。在其他实施例中,开口317可以完全穿过玻璃核心310的厚度。
现在参考图4A,示出了根据实施例的电子封装400的横截面图。在实施例中,电子封装400可以包括核心410。核心410可以是玻璃核心等。在实施例中,核心410可以具有介于大约50μm和大约1000μm之间的厚度。一个或多个电介质堆积层425可以提供在核心410上方和/或下方。
在实施例中,电子封装400可以包括电感器环路430。具体而言,电感器环路430可以包括一对电感器420。电感器420可以通过在堆积层425之上提供的迹线438而彼此串联耦合。过孔436可以穿过堆积层425,以便将电感器420的过孔435连接到迹线438。在过孔435的相对端上,过孔436可以将过孔435耦合到堆积层425之上的焊盘437。
在实施例中,可以在穿过核心410形成的过孔开口中形成电感器420的每个电感器。第一晶种层431可以与穿过核心410的过孔开口的侧壁直接接触。在一些实例中,可以在核心410和晶种层431之间提供粘合层(未示出)。例如,粘合层可以包括硅和氮、钽和氮、钛和镍等。在实施例中,晶种层431可以包括钛和铜、钽和铜、钌和铜,或者只有铜。晶种层431的厚度可以介于大约10nm和大约300nm之间。在实施例中,可以采用原子层沉积(ALD)工艺、化学气相沉积(CVD)工艺、物理气相沉积(PVD)工艺、无电镀覆工艺等来沉积晶种层431。
在实施例中,然后在晶种层431之上镀覆磁性层432。在涡流导致的损耗扩大之前,可以将磁性层432镀覆到尽可能大的厚度。可以由磁性层432的电阻决定磁性层432的厚度,其中更高的电阻允许更大的厚度。因此,磁性层432的厚度将根据磁性层432的组分而变化。例如,磁性层432的厚度可以介于大约500nm和大约10μm之间。可以采用镀覆工艺(例如电镀工艺)形成磁性层432。在实施例中,磁性层可以包括高μr材料,例如,但不限于PZT、CoNiFeX,其中X是O、S、P、B或它们的任意组合。
在实施例中,在磁性层432之上提供绝缘层433,以便防止过孔435和磁性层432之间短路。绝缘层433的厚度应当尽可能小,以便使绝缘层433对电感器420的电感的影响最小化。例如,绝缘层433可以介于大约10nm和大约5μm之间。在实施例中,可以采用ALD工艺、CVD工艺或PVD工艺沉积绝缘层433。绝缘层433可以包括硅和氧、硅和氮、铝和氧等。绝缘层433也可以用作随后沉积的第二晶种层434的粘合层。
在实施例中,可以在绝缘层433之上沉积第二晶种层434。第二晶种层434可以包括钛和铜、钽和铜、钌和铜,或者只有铜。第二晶种层434可以基本上类似于上文描述的第一晶种层431。在晶种层434为铜的实例中,当过孔435也为铜时,可能没有可分辨的晶种层。第二晶种层434的厚度可以介于大约10nm和大约300nm之间。可以采用无电镀覆工艺、ALD工艺、CVD工艺、PVD工艺等沉积第二晶种层434。
在实施例中,在第二晶种层434之上设置过孔435。过孔435可以包括铜等。在实施例中,过孔435可以具有介于大约20μm和大约100μm之间的直径,以便实现高质量电感器所需的低DC电阻。与现有的电感器拓扑对比,过孔435可以完全填充穿过核心410的开口的剩余部分。就是说,在一些实施例中不需要填塞材料。
在另一实施例中,当磁性层432的电阻率足够高时,可以省略绝缘层433。例如,当磁性层432的电阻率大约是过孔435的电阻率的250倍时,则可以省略绝缘层433。消除绝缘层433是可能的,因为磁性层432的更高的电阻率(和小的厚度)导致非常小的电流通过磁性层432。此外,去除绝缘层433也可以允许消除第二晶种层434。这样一来,可以通过消除一个或多个层来降低制造复杂性。
现在参考图4B,示出了根据额外的实施例的电子封装400的横截面图。除了磁性层的形成之外,图4B中的电子封装400可以基本上类似于图4A中的电子封装400。如上所述,磁性层432的厚度受限于增加电感器中的损耗的涡流的形成。据此,实施例包括磁性层432的多个层压体或层。例如,如图4B所示,提供了三个磁性层432A-C。在实施例中,每个层可以包括晶种层431A-C、晶种层431A-C之上的磁性层432A-C,以及磁性层之上的绝缘层433A-C。在形成所期望的数量的层压体之后,提供第二晶种层434,并且在第二晶种层434之上提供过孔435。这样一来,可以增加磁性材料的体积而不遭受由磁性层432中的涡流导致的损耗。与上文相似,当磁性层432的电阻率与过孔435相比充分地高时(例如,当磁性层432具有比过孔435的电阻率大250倍的电阻率时),可以省略最后的绝缘层433。
现在参考图5A-图5I,示出了根据实施例的描绘用于形成具有电感器环路530的电子封装500的工艺的一系列横截面图。
现在参考图5A,示出了根据实施例的核心510的横截面图。在实施例中,核心510可以是玻璃核心。在实施例中,可以对核心510进行图案化以形成穿过核心510的厚度的一对开口527。在实施例中,可以采用激光辅助蚀刻工艺(例如上文所更详细地描述的)形成开口527。在所例示的实施例中,开口527被示为具有基本上竖直的侧壁。然而,应当认识到,开口527的侧壁可以是类似于上文描述的实施例的锥形的或沙漏形的。
现在参考图5B,示出了根据实施例的在形成沉积的第一晶种层531之后的电子封装500的横截面图。在实施例中,可以在开口527的侧壁表面之上以及核心的顶表面和底表面之上沉积第一晶种层531。在实施例中,第一晶种层531可以包括钛和铜、钽和铜、钌和铜,或者只有铜。第一晶种层531的厚度可以介于大约10nm和大约300nm之间。在实施例中,可以采用ALD工艺、CVD工艺、PVD工艺、无电镀覆工艺等来沉积第一晶种层531。在一些实例中,可以在核心510和晶种层531之间提供粘合层(未示出)。例如,粘合层可以包括硅和氮、钽和氮、钛和镍等。
现在参考图5C,示出了根据实施例的在形成磁性层532之后的电子封装500的横截面图。可以在开口527的侧壁之上以及核心510的顶表面和底表面之上沉积磁性层532。在涡流导致的损耗扩大之前,可以将磁性层532镀覆到尽可能大的厚度。可以由磁性层532的电阻决定磁性层532的厚度,其中更高的电阻允许更大的厚度。因此,磁性层532的厚度将根据磁性层532的组分而变化。例如,磁性层532的厚度可以介于大约500nm和大约10μm之间。可以采用镀覆工艺(例如电镀工艺)形成磁性层532。在实施例中,磁性层532可以包括高μr材料,例如,但不限于PZT、CoNiFeX,其中X是O、S、P、B或者它们的任意组合。
现在参考图5D,示出了根据实施例的在沉积绝缘层533之后的电子封装500的横截面图。在实施例中,可以在开口527的侧壁之上以及核心510的顶表面和底表面之上沉积绝缘层533。绝缘层533的厚度应当尽可能小,以便使绝缘层533对电感器520的电感的影响最小化。例如,绝缘层533可以介于大约10nm和大约1μm之间。在实施例中,可以采用ALD工艺、CVD工艺或PVD工艺沉积绝缘层533。绝缘层533可以包括硅和氧、硅和氮、铝和氧等。绝缘层533也可以用作随后沉积的第二晶种层534的粘合层。绝缘层533可以具有介于大约10nm和大约5μm之间的厚度。
在图5A-图5I中所示的实施例中,类似于图4A中所示的实施例,提供了单个磁性层532。然而,应当认识到,可以使用基本上类似的加工操作以形成图4B中所示的结构。具体而言,可以将图5B-图5D中所示的加工操作重复任意次数,以便提供多个磁性层532。
现在参考图5E,示出了根据实施例的在沉积第二晶种层534之后的电子封装500的横截面图。如图所示,可以在开口527的侧壁之上以及核心510的顶表面和底表面之上沉积第二晶种层534。第二晶种层534可以包括钛和铜、钽和铜、钌和铜,或者只有铜。第二晶种层534可以基本上类似于上文描述的第一晶种层531。在晶种层534为铜的实例中,当过孔535也为铜时,可能没有可分辨的晶种层。晶种层534的厚度可以介于大约10nm和大约300nm之间。可以采用无电镀覆工艺、ALD工艺、CVD工艺、PVD工艺等沉积第二晶种层534。
现在参考图5F,示出了根据实施例的在形成过孔535之后的电子封装500的横截面图。过孔535可以形成于开口527的侧壁之间。过孔535的部分539可以形成于核心510的顶表面和底表面之上。过孔535可以包括铜等。在实施例中,过孔535可以具有介于大约20μm和大约100μm之间的直径,以便实现高质量电感器所需的低DC电阻。与现有的电感器拓扑对比,过孔535可以完全填充穿过核心510的开口527的剩余部分。就是说,在一些实施例中不需要填塞材料。
现在参考图5G,示出了根据实施例的在抛光或研磨工艺之后的电子封装500的横截面图。可以使用抛光或研磨工艺(例如,化学机械抛光(CMP))来将层531-535中的设置于核心510的顶表面和底表面之上的部分去除。这样一来,通过图5G中所示的加工,暴露了核心510的顶表面和底表面。将层531-535的顶部部分和底部部分去除造成一对电感器520彼此隔离。就是说,图5中提供了彼此横向相邻的一对电感器520。
现在参考图5H,示出了根据实施例的在形成电介质堆积层525之后的电子封装500的横截面图。如图所示,堆积层525可以形成于核心510的顶表面和/或底表面之上。堆积层525可以覆盖电感器520的顶表面和底表面。
现在参考图5I,示出了根据实施例的在堆积层525中提供布线之后的电子封装500的横截面图。在实施例中,布线可以包括穿过堆积层525的厚度的过孔536。在顶侧,过孔536可以将电感器520耦合到堆积层525之上的焊盘537。在底侧,过孔536可以将电感器520耦合到迹线538。迹线538可以将左侧的电感器520电耦合到右侧的电感器520。这样一来,穿过核心510提供了电感器环路530。
现在参考图6A-图6C,示出了根据额外的实施例的描绘额外的电子封装600架构的一系列横截面图。
现在参考图6A,示出了根据实施例的电子封装600的横截面图。电子封装600可以包括核心610,例如玻璃核心。在实施例中,一对竖直取向的电感器620穿过核心610并且通过迹线638耦合在一起以形成电感器环路630。电感器620的每个电感器可以包括第一晶种层631、磁性层632、绝缘体层633、第二晶种层634和过孔635。层631-635可以与上文更详细描述的以类似方式命名的特征基本上类似。然而,层631-635的部分可以保留在核心610的顶表面和底表面上,而不是将顶表面和底表面完全抛光以将层631-635从核心610的顶表面和底表面之上去除。在实施例中,可以对层进行图案化以便将它们彼此隔离。例如,用于每个电感器620的焊盘637彼此电隔离。在实施例中,可以沿层631-634的图案化的边缘提供绝缘体641。
现在参考图6B,示出了根据额外的实施例的电子封装600的横截面图。在实施例中,除了层631-634之外,图6B中的电子封装600可以与图6A中的电子封装600基本上类似。层631-633可以环绕核心610的顶表面和底表面,而不是被图案化使得每个电感器620中的层631-634彼此隔离。在这样的实施例中,层631-633的部分可以形成围绕穿过左侧的电感器620和右侧的电感器620的连续的环。在实施例中,可以在第二晶种层634中提供间隙,以便防止将电感器620的顶部焊盘637短路。
现在参考图6C,示出了根据额外的实施例的电子封装600的横截面图。在实施例中,图6C中的电子封装600可以与图6B中的电子封装600基本上类似,其中在核心610的顶表面和底表面之上添加了堆积层625。这样一来,焊盘637和迹线638提供于堆积层625之上,而不是直接形成于电感器620的顶表面和底表面之上。
现在参考图7,示出了根据实施例的电子封装700的横截面图。在实施例中,电子封装700包括核心710,例如玻璃核心710。在实施例中,可以在核心710上方和下方提供堆积层725。电子封装还可以包括多个电感器环路730。在实施例中,多个电感器环路730通过迹线738彼此串联电连接。每个电感器环路730可以包括通过迹线738串联耦合在一起的一对电感器720。各个电感器720可以与上文更详细描述的任何电感器基本上类似。例如,电感器720可以包括第一晶种层731、磁性层732、绝缘体层733、第二晶种层734和过孔735。多匝电感器的端部可以包括焊盘737,焊盘737通过穿过堆积层725的过孔736耦合到过孔735。
现在参考图8,示出了根据额外的实施例的电子封装800的横截面图。由于核心809不是玻璃核心,图8所示的实施例可以与上文更详细所述的实施例不同。相反地,核心809可以是有机玻璃纤维织成的核心809。然而,可以提供类似的电感器环路结构。在这样的实施例中,可以穿过核心809中的由钻孔工艺形成的孔形成竖直取向的电感器。在实施例中,电感器包括第一晶种层831、磁性层832、绝缘体层833、第二晶种层834和镀覆通孔(PTH)过孔835。可以采用有机填塞材料842填塞PTH过孔835。焊盘837可以通过穿过堆积层825的过孔836耦合到PTH过孔835。类似的过孔836可以将电感器耦合到迹线838,迹线838将电感器耦合在一起。
在实施例中,可以在以电压调节器(例如,完全集成的电压调节器(FIVR))为特征的平台内通过若干方式使用本文描述的电感器。图9A-图9C中示出了这样的示例。
现在参考图9A,示出了根据实施例的电子封装900。在实施例中,电子封装900包括核心910,例如玻璃核心910。堆积层925可以提供在核心910上方和下方。在实施例中,电子封装900包括电耦合至一个或多个驱动器952的控制器。驱动器952可以耦合到嵌入在核心910中的功率桥953。功率桥953电耦合到包括一对电感器920的电感器环路930。电感器920的顶侧可以继而耦合到管芯(未示出)。
现在参考图9B,示出了根据额外的实施例的电子封装900。在实施例中,电子封装900包括核心910,例如玻璃核心910。电介质堆积层925可以提供在核心910上方和下方。在实施例中,管芯955耦合到顶部堆积层925。尽管被示为直接在堆积层925上,但是应认识到,在堆积层925和管芯955之间可以存在互连(例如,焊料、铜凸块等)。在实施例中,管芯955包括电压调节器(VR)模块956和核心954。VR模块956可以通过包括一对电感器920的电感器环路930电耦合到核心954。
现在参考图9C,示出了根据额外的实施例的电子封装900。在实施例中,除了VR模块956和核心954的取向之外,图9C中的电子封装900可以类似于图9B中的电子封装900。如图所示,核心954提供在VR模块956之上。此外,减少了在核心910之上的堆积层925的数量。例如,可以在核心910之上提供单个堆积层925。然而,类似于图9B,具有一对电感器920的电感器环路930将VR模块956电耦合到核心954。
现在参考图10A-图10C,示出了根据额外的实施例的描绘电子封装1000的一系列横截面图。在图10A-图10C中公开的实施例中,如下文将更详细描述的,采用模板结构制作电感器1020。使用模板结构导致形成含有具有沙漏形横截面的磁性层和具有竖直侧壁的过孔的电感器1020。
现在参考图10A,示出了根据实施例的电子封装1000的横截面图。在实施例中,电子封装1000包括核心1010,例如玻璃核心1010。在实施例中,穿过玻璃核心1010的厚度提供了多个电感器1020。例如,迹线1064将一对电感器1020耦合在一起以便形成电感器环路1030。
在实施例中,电感器1020包括磁性层1062。在实施例中,磁性层1062可以具有锥形的外侧壁。例如,外侧壁可以形成沙漏形轮廓。磁性层1062可以是磁性浆料材料。例如,磁性层1062可以包括填充有磁性颗粒的有机基质。在实施例中,核心1010的与磁性层1062相邻的区域1061可以具有与核心1010的其余部分不同的微结构。例如,区域1061可以具有晶体微结构,并且核心1010的其余部分可以具有非晶微结构。
在实施例中,过孔1063可以穿过核心1010。过孔1063可以定位在磁性层1062内。就是说,磁性层1062可以围绕过孔1063。在实施例中,过孔1063可以具有轮廓与磁性层1062的侧壁不同的侧壁。在图10A中所示的特定实施例中,过孔1063的侧壁基本上竖直。焊盘1065可以提供在过孔1063的第一端之上,并且迹线1064可以提供在过孔1063的第二端之上,以便形成电感器环路1030。
现在参考图10B,示出了根据额外的实施例的电子封装1000的横截面图。除了在核心1010之上存在堆积层1025之外,图10B中的电子封装1000可以与图10A中的电子封装1000基本上类似。堆积层1025可以提供从电感器环路1030到位于堆积层1025之上的管芯或其他部件(未示出)的布线。尽管未被示出为连接到堆积层1025中的布线,但是应当认识到,电感器环路1030将被耦合到堆积层1025中的导电布线。
现在参考图10C,示出了根据额外的实施例的电子封装1000的横截面图。图10C中的电子封装1000可以基本上类似于图10B中的电子封装1000,其中添加了布线和管芯1070。在实施例中,电感器1020的焊盘1065可以通过穿过堆积层1025的过孔1066耦合到互连1071。在实施例中,管芯1070可以是任何类型的管芯(例如,处理器、图形处理器、存储器、SoC等)。
现在参考图11A-图11G,示出了根据实施例的描绘用于在核心中形成电感器环路的工艺的一系列横截面图。具体而言,电感器环路包括可以类似于上文参照图10A-图10C描述的电感器的电感器。
现在参考图11A,示出了根据实施例的核心1110的横截面图。在实施例中,核心1110可以包括玻璃核心1110。在实施例中,可以由激光器1180对核心1110进行曝光以便实施激光辅助蚀刻工艺。
现在参考图11B,示出了根据实施例的在形成曝光区域1161之后的核心1110的横截面图。在实施例中,曝光区域1161可以延伸穿过核心1110的厚度。在实施例中,曝光区域1161可以具有与核心1110的剩余部分不同的微结构。例如,曝光区域1161可以具有晶体微结构,并且核心1110的其余部分可以具有非晶微结构。
现在参考图11C,示出了根据实施例的在使用蚀刻工艺将核心1110的曝光部分1161去除之后的核心1110的横截面图。在实施例中,蚀刻工艺可以是湿法蚀刻工艺。在实施例中,蚀刻工艺可以产生锥形的侧壁1158。例如,开口1157可以具有沙漏形轮廓。在实施例中,开口1157可以具有大约1000μm或更小的直径。曝光区域1161的一部分可以持续存在于核心1110的结构中。
现在参考图11D,示出了根据实施例的在将模板结构1159插入到开口1157中之后的核心1110的横截面图。在实施例中,模板结构1159可以耦合到载体1156。在实施例中,模板结构1159包括基本上竖直的侧壁。模板结构1159可以具有大约100μm或更小的或者大约10μm或更小的直径。模板结构1159可以是在后续的加工操作中形成磁性层之后能够被去除的材料。例如,模板结构1159可以是能够熔化以便从核心1110去除的聚合物。在其他实施例中,模板结构1159是结构上足够强从而能够从磁性层机械地拉出的材料。
现在参考图11E,示出了根据实施例的在沉积磁性层1162之后的核心1110的横截面图。在实施例中,磁性层1162可以是磁性浆料材料。可以采用填塞工艺等在模板结构1159周围沉积磁性层1162。
现在参考图11F,示出了根据实施例的在去除模板结构1159之后的核心1110的横截面图。在实施例中,可以采用熔化工艺去除模板结构1159。在替代性实施例中,可以将模板结构1159从磁性层1162机械地拉出。在这样的实施例中,可以在后续的加工操作中重复使用模板结构1159。尽管图11A-图11F中提供了模板结构1159的两个示例,但是应当认识到,如下文将更详细地描述的,对于模板结构1159可以使用其他的材料体系和材料去除工艺。去除模板结构1159导致形成穿过磁性层1162的开口1153。
现在参考图11G,示出了根据实施例的在形成过孔1163、焊盘1165和迹线1164之后的核心1110的横截面图。在实施例中,可以采用任何适当的镀覆或沉积工艺来形成过孔1163、焊盘1165和迹线1164。迹线1164可以将第一电感器1120耦合到第二电感器1120。
现在参考图12A-图12D,示出了根据额外的实施例的描绘在核心1210中形成电感器环路1230的额外的工艺的一系列横截面图。
现在参考图12A,示出了根据实施例的已经被图案化从而形成开口1257的核心1210的横截面图。在实施例中,可以采用与上文参照图11A-图11C描述的工艺基本上类似的工艺形成开口1257,这里将不再重复。例如,开口1257可以穿过核心1210的曝光区域1261。在实施例中,连接到载体1256的模板结构1255被插入到开口1257中。在实施例中,模板结构1255可以是相对于在后续的加工操作中设置的磁性材料能够被选择性蚀刻的材料。
现在参考图12B,示出了根据实施例的在模板结构1255周围设置磁性层1262之后的核心1210的横截面图。在实施例中,磁性层1262可以是磁性浆料材料。可以采用填塞工艺等在模板结构1255周围沉积磁性层1262。
现在参考图12C,示出了根据实施例的在去除模板结构1255之后的核心1210的横截面图。在实施例中,可以采用蚀刻工艺去除模板结构1255。例如,可以使用湿法蚀刻工艺从磁性层1262去除模板结构1255。去除模板结构1255导致形成穿过磁性层1262的开口1253。
现在参考图12D,示出了根据实施例的在形成过孔1263、焊盘1265和迹线1264之后的核心1210的横截面图。在实施例中,可以采用任何适当的镀覆或沉积工艺来形成过孔1263、焊盘1265和迹线1264。迹线1264可以将第一电感器1220耦合到第二电感器1220。
现在参考图13A-图13D,示出了根据实施例的描绘用于在核心1310中形成电感器环路1330的工艺的一系列横截面图。在实施例中,可以采用持续存在到最终结构中的作为各个电感器1320的过孔的模板结构来形成电感器环路1330。
现在参考图13A,示出了根据实施例的已经被图案化从而形成开口1357的核心1310的横截面图。在实施例中,可以采用与上文参照图11A-图11C描述的工艺基本上类似的工艺形成开口1357,这里不再重复。例如,开口1357可以穿过核心1310的曝光区域1361。在实施例中,连接到载体1356的模板结构1363被插入到开口1357中。在实施例中,模板结构1363可以是导电材料。在特定实施例中,模板结构1363包括铜。
现在参考图13B,示出了根据实施例的在模板结构1363周围设置磁性层1362之后的核心1310的横截面图。在实施例中,磁性层1362可以是磁性浆料材料。可以采用填塞工艺等在模板结构1363周围沉积磁性层1362。
现在参考图13C,示出了根据实施例的在去除载体1356之后的核心1310的横截面图。在实施例中,可以通过模板结构1363的机械脱离来去除载体1356。在其他实施例中,模板结构1363可以位于被去激活的释放层上,以便释放模板结构1363。
现在参考图13D,示出了根据实施例的在形成焊盘1365和迹线1364之后的核心1310的横截面图。在实施例中,可以采用任何适当的镀覆或沉积工艺来形成焊盘1365和迹线1364。迹线1364可以将第一电感器1320耦合到第二电感器1320。
现在参考图14A-图14C,示出了根据额外的实施例的描绘核心1410中的电感器环路1430的图示。电感器环路1430也能够在没有机械钻孔工艺的情况下形成。这样一来,穿过核心1410的厚度的竖直特征(例如,磁性环路和导电过孔)可以彼此紧密间隔,以改进电感并减少结构的占有面积。
现在参考图14A,示出了根据实施例的核心1410中的电感器环路1430的横截面图。在实施例中,核心1410是玻璃核心1410。电感器环路1430可以包括导电过孔1472。过孔1472可以通过核心1410下方的平面1473连接在一起。平面1474可以提供在过孔1472的顶部。此外,电感器环路1430可以包括在导电特征内的磁性环路1471。在实施例中,磁性环路1471被嵌入在核心1410内。就是说,磁性环路1471的顶表面可以与核心1410的顶表面基本上共面,并且磁性环路1471的底表面可以与核心1410的底表面基本上共面。磁性环路1471的顶部部分和底部部分可以与平面1474和1473直接接触。在实施例中,磁性环路1471的竖直侧壁可以与导电过孔1472间隔开大约10μm或更小、或者大约5μm或更小的距离。
现在参考图14B,示出了根据实施例的电感器环路1430的底表面的平面图。如图所示,底平面1473可以横向延伸长度L1。例如,长度L1可以大于在装置中的其他地方形成的迹线的宽度。在实施例中,磁性环路1471也可以横向延伸长度L2。长度L2可以大于长度L1。
现在参考图14C,示出了根据实施例的电感器环路1430的顶表面的平面图。如图所示,平面1474朝向彼此延伸,在其间具有间隙。在实施例中,磁性环路1471的顶表面也可以具有间隙。
现在参考图15A-图15F,示出了根据实施例的描绘用于在核心1510中形成电感器环路1530的工艺的一系列横截面图。
现在参考图15A,示出了根据实施例的核心1510的横截面图。在实施例中,核心1510可以是玻璃核心1510。
现在参考图15B,示出了根据实施例的在形成进入核心1510中的通孔和盲孔沟槽之后的核心1510的横截面图。在实施例中,可以采用类似于上文更详细描述的实施例的激光辅助蚀刻工艺形成孔1581、1582和盲孔沟槽1584和1583。在实施例中,提供孔1581用于导电环路的过孔,并且提供孔1582用于磁性环路的竖直部分。盲孔沟槽1584和1583用于磁性环路的顶部部分和底部部分,因此它们可以完全嵌入在核心1510内。在实施例中,盲孔沟槽1584具有大约50μm或更小的深度。
现在参考图15C,示出了在采用填塞物1585填充孔1581之后的核心1510的横截面图。在实施例中,填塞物1585覆盖孔1581,使得孔1581在沉积磁性材料期间不被填充。
现在参考图15D,示出了根据实施例的在形成磁性环路1571之后的核心1510的横截面图。在实施例中,磁性环路1571可以是磁性浆料材料。在实施例中,可以采用填塞工艺等将磁性浆料插入到孔中。
现在参考图15E,示出了根据实施例的在去除填塞物1585之后的核心1510的横截面图。在实施例中,去除填塞物1585使孔1581暴露。
现在参考图15F,示出了根据实施例的在形成导电环路从而完成电感器环路1530之后的核心1510的横截面图。在实施例中,导电环路包括过孔1572、底部迹线1573和顶部迹线1574。在实施例中,迹线1572的内表面可以与磁性环路1571间隔开厚度T。例如,厚度T可以是大约10μm或更小、或者大约5μm或更小。
现在参考图16A-图16E,示出了根据额外的实施例的描绘用于形成电感器环路1630的工艺的一系列横截面图。
现在参考图16A,示出了根据实施例的核心1610的横截面图。在实施例中,核心1610可以是玻璃核心1610。
现在参考图16B,示出了根据实施例的在形成进入核心1610中的盲孔沟槽1675之后的核心1610的横截面图。在实施例中,可以采用激光辅助蚀刻工艺(例如上文更详细地描述的)形成盲孔沟槽1675。在所例示的实施例中,盲孔沟槽1675具有竖直的侧壁。然而,应当认识到,在一些实施例中,侧壁也可以是锥形的。如本文所使用的,盲孔沟槽可以是形成在核心1610中的但不穿透或完全穿过核心1610的任何形状的沟槽或腔体。
现在参考图16C,示出了根据实施例的在导电衬层被设置在盲孔沟槽1675中之后的核心1610的横截面图。在实施例中,导电衬层包括竖直部分1676和底部部分1677。在实施例中,可以采用共形沉积工艺沉积导电衬层。
现在参考图16D,示出了根据实施例的在将磁性材料1685沉积到盲孔沟槽1675中之后的核心1610的横截面图。在实施例中,磁性材料1685可以是磁性浆料等。在实施例中,可以采用填塞工艺等沉积磁性材料1685。
现在参考图16E,示出了根据实施例的在磁性材料1685之上形成顶部迹线1678之后的核心1610的横截面图。在实施例中,顶部迹线1678可以电耦合到侧壁导体1676,以便形成至少部分地围绕磁性材料1685的导电环路。
在图示的实施例中示出了单个环路电感器的以上示例。然而,应当认识到,实施例可以包括具有多个环路的电感器。图17A和17B中示出了此样的结构的示例。
现在参考图17A,示出了根据实施例的多环路电感器的顶部的平面图。如图所示,顶部迹线1774位于磁性环路1771之上。此外,顶部迹线1774可以通过迹线1779耦合到相邻的环路。例如,图17A中所示的实施例包括通过迹线1779耦合在一起的两个环路。
现在参考图17B,示出了根据实施例的图17A的多环路电感器的相对侧的平面图。如图所示,底部迹线1773保持与邻近的迹线1773电隔离。就是说,导电环路可以仅沿核心1710的顶侧耦合在一起。
现在参考图18A-图18D,示出了根据各个实施例的玻璃核心1810中的电感器环路1830的顶表面的平面图。
现在参考图18A,示出了根据实施例的多个电感器环路1830的平面图。如图所示,磁性部分1871在导体部分外部。
现在参考图18B,示出了根据额外的实施例的多个电感器环路1830的平面图。如图所示,磁性部分1871既在导体部分1874内部又在导体部分1874外部。
现在参考图18C,示出了根据额外的实施例的电感器环路1830的平面图。如图所示,导电部分1874可以是圆形形状而不是如上文所示的矩形。就是说,应当认识到,导电部分1874可以具有任何所期望的形状。通过激光辅助蚀刻工艺的灵活性至少部分地提供了导电部分1874的形状的灵活性。
现在参考图18D,示出了根据额外的实施例的电感器环路1830的平面图。如图所示,磁性区域1871可以横向延伸以覆盖两个或更多个电感器环路1830。例如,电感器环路1830A和1830B可以共享单个磁性区域1871。
现在参考图19,示出了根据实施例的电子系统1900的横截面图。在实施例中,电子系统1900可以包括板1991(例如印刷电路板(PCB)等)。在实施例中,板1991可以通过诸如焊料球、插座等的互连1992耦合到封装基板。在实施例中,封装基板包括核心1910(例如玻璃核心1910)和堆积层1925。
在实施例中,竖直取向的电感器1920和/或电感器环路1930可以提供在核心1910中。电感器1920和电感器环路1930可以与上文更详细描述的任何电感器和/或电感器环路基本上类似。在实施例中,电感器1920和/或电感器环路1930可以通过互连1993和堆积层1925中的导电布线(未示出)耦合到管芯1994。
图20示出了根据本发明的一种实施方式的计算装置2000。计算装置2000容纳板2002。板2002可以包括多个部件,该多个部件包括但不限于处理器2004和至少一个通信芯片2006。处理器2004物理及电耦合至板2002。在一些实施方式中,至少一个通信芯片2006也物理及电耦合至板2002。在其他实施方式中,通信芯片2006是处理器2004的部分。
这些其他部件包括但不限于易失性存储器(例如,DRAM)、非易失性存储器(例如,ROM)、闪速存储器、图形处理器、数字信号处理器、密码处理器、芯片组、天线、显示器、触摸屏显示器、触摸屏控制器、电池、音频编码解码器、视频编码解码器、功率放大器、全球定位系统(GPS)装置、罗盘、加速度计、陀螺仪、扬声器、相机和大容量存储装置(例如硬盘驱动器、压缩光盘(CD)、数字多功能光盘(DVD)等)。
通信芯片2006能够实现用于向和从计算装置2000传输数据的无线通信。术语“无线”及其派生词可以用于描述可以通过使用经调制的电磁辐射通过非固态介质来传送数据的电路、装置、系统、方法、技术、通信信道等。该术语并不暗示关联的装置不包含任何导线,尽管在一些实施例中它们可能不包含。通信芯片2006可以实施多种无线标准或协议中的任何无线标准或协议,其包括但不限于Wi-Fi(IEEE 802.11系列)、WiMAX(IEEE 802.16系列)、IEEE 802.20、长期演进(LTE)、Ev-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、蓝牙、其衍生产物以及任何其他被指定为3G、4G、5G和更高版本的无线协议。计算装置2000可以包括多个通信芯片2006。例如,第一通信芯片2006可以专用于较短程的无线通信,例如Wi-Fi和蓝牙,并且第二通信芯片2006可以专用于较长程的无线通信,例如GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DO及其他。
计算装置2000的处理器2004包括封装于处理器2004内的集成电路管芯。在本发明的一些实施方式中,处理器的集成电路管芯可以是电子封装的部分,该电子封装包括根据本文描述的实施例的具有盲孔电力平面以及高带宽过孔的玻璃核心。术语“处理器”可以指对来自寄存器和/或存储器的电子数据进行处理以将该电子数据变换成可以存储于寄存器和/或存储器中的其他电子数据的任何装置或装置的部分。
通信芯片2006也包括封装于半导体芯片2006内的集成电路管芯。根据本发明的另一种实施方式,通信芯片的集成电路管芯可以是电子封装的部分,该电子封装包括根据本文描述的实施例的具有竖直取向电感器的玻璃核心。
上文对所例示的本发明的实施方式的描述(包括摘要中描述的内容)并非意在具有排他性或者使本发明局限于所公开的确切形式。如相关领域的技术人员将认识到的,尽管本文出于举例说明的目的描述了本发明的具体实施方式和示例,但是在本发明的范围内做出各种等同的修改是可能的。
根据上文的具体实施方式可以对本发明做出这些修改。不应将下述权利要求中使用的术语解释为使本发明局限于说明书和权利要求书中公开的具体实施方式。相反,本发明的范围将完全由下述权利要求决定,应当根据权利要求解释的既定原则解释下述权利要求。
示例1:一种电子封装,包括:基板,其中,基板包括玻璃;嵌入在基板中的磁性环路;以及围绕磁性环路的导电环路,其中,导电环路包括:穿过基板的第一过孔;穿过基板的第二过孔;以及位于基板的表面之上的迹线,其中,迹线将第一过孔电耦合到第二过孔。
示例2:根据示例1的电子封装,还包括:位于基板的与迹线相对的表面上并且耦合到第一过孔的第二迹线;以及位于基板的与迹线相对的表面上并且耦合到第二过孔的第三迹线。
示例3:根据示例1或示例2的电子封装,其中,基板的第一部分位于第一过孔和磁性环路之间,并且其中,基板的第二部分位于第二过孔和磁性环路之间。
示例4:根据示例3的电子封装,其中,基板的第一部分的厚度和基板的第二部分的厚度是大约10μm或更小。
示例5:根据示例1-4的电子封装,其中,磁性环路的宽度宽于迹线的宽度。
示例6:根据示例1-5的电子封装,还包括:第二磁性环路;以及围绕第二磁性环路的第二导电环路,其中,第二导电环路包括:穿过基板的第三过孔;以及穿过基板的第四过孔;位于基板的表面之上的第二迹线,其中,第二迹线将第三过孔电耦合到第四过孔。
示例7:根据示例6的电子封装,其中,第三过孔通过位于基板的与迹线和第二迹线相对的表面之上的迹线电耦合到第二过孔。
示例8:根据示例1-8的电子封装,其中,磁性环路的顶表面与基板的与迹线相对的表面基本上共面,并且其中,磁性环路的底表面与基板的表面基本上共面。
示例9:根据示例1-10的电子封装,还包括:位于环路外部的磁性材料。
示例10:根据示例1-10的电子封装,其中,导电环路直接接触磁性环路。
示例11:一种电子封装,包括:基板,其中,基板包括玻璃;进入基板中的盲孔沟槽;位于盲孔沟槽的底表面和侧壁表面上的衬层,其中,衬层是导电的;填充盲孔沟槽的磁性材料;位于磁性材料之上并且接触衬层的第一迹线;以及位于磁性材料之上并且接触衬层的第二迹线。
示例12:根据示例11的电子封装,其中,第一迹线和第二迹线位于衬层的相对侧上。
示例13:根据示例11或12的电子封装,其中,盲孔沟槽的侧壁是锥形的。
示例14:一种在玻璃基板中形成电感器的方法,包括:形成穿过玻璃基板的一对第一过孔开口;在一对第一过孔开口之间形成穿过玻璃基板的一对第二过孔开口,其中,一对第二过孔开口通过位于玻璃基板的顶表面处的第一盲孔沟槽和位于玻璃基板的底表面处的第二盲孔沟槽耦合在一起;在一对第一过孔开口中设置牺牲材料;在一对第二过孔开口、第一盲孔沟槽和第二盲孔沟槽中沉积磁性材料以形成磁性环路;去除牺牲材料;在一对第一过孔开口中设置导电材料以形成一对第一过孔;以及采用形成于玻璃基板的底表面之上的迹线连接一对第一过孔。
示例15:根据示例14的方法,其中,磁性环路通过基板的具有大约10μm或更小的厚度的部分与第一过孔由间隔开。
示例16:根据示例14或15的方法,其中,一对第一过孔开口、一对第二过孔开口、第一盲孔沟槽和第二盲孔沟槽是采用激光辅助蚀刻工艺形成的。
示例17:根据示例14-16的方法,其中,第一盲孔沟槽和第二盲孔沟槽具有大约50μm或更小的深度。
示例18:一种电子系统,包括:板;耦合到板的封装基板,其中,封装基板包括:基板,其中,基板包括玻璃;嵌入在基板中的磁性环路;以及围绕磁性环路的导电环路,其中,导电环路包括:穿过基板的第一过孔;穿过基板的第二过孔;以及位于基板的表面之上的迹线,其中,迹线将第一过孔电耦合到第二过孔;以及耦合到封装基板的管芯。
示例19:根据示例18的电子系统,其中,基板的第一部分位于第一过孔和磁性环路之间,并且其中,基板的第二部分位于第二过孔和磁性环路之间。
示例20:根据示例19的电子系统,其中,基板的第一部分的厚度和基板的第二部分的厚度是大约10μm或更小。

Claims (20)

1.一种电子封装,包括:
基板,其中,所述基板包括玻璃;
嵌入在所述基板中的磁性环路;以及
围绕所述磁性环路的导电环路,其中,所述导电环路包括:
穿过所述基板的第一过孔;
穿过所述基板的第二过孔;以及
位于所述基板的表面之上的迹线,其中,所述迹线将所述第一过孔电耦合到所述第二过孔。
2.根据权利要求1所述的电子封装,还包括:
第二迹线,所述第二迹线位于所述基板的与所述迹线相对的表面上并且耦合到所述第一过孔;以及
第三迹线,所述第三迹线位于所述基板的与所述迹线相对的所述表面上并且耦合到所述第二过孔。
3.根据权利要求1或2所述的电子封装,其中,所述基板的第一部分位于所述第一过孔和所述磁性环路之间,并且其中,所述基板的第二部分位于所述第二过孔和所述磁性环路之间。
4.根据权利要求3所述的电子封装,其中,所述基板的所述第一部分的厚度和所述基板的所述第二部分的厚度是大约10μm或更小。
5.根据权利要求1或2所述的电子封装,其中,所述磁性环路的宽度宽于所述迹线的宽度。
6.根据权利要求1或2所述的电子封装,还包括:
第二磁性环路;以及
围绕所述第二磁性环路的第二导电环路,其中,所述第二导电环路包括:
穿过所述基板的第三过孔;
穿过所述基板的第四过孔;以及
位于所述基板的所述表面之上的第二迹线,其中,所述第二迹线将所述第三过孔电耦合到所述第四过孔。
7.根据权利要求6所述的电子封装,其中,所述第三过孔通过位于所述基板的与所述迹线和所述第二迹线相对的表面之上的迹线电耦合到所述第二过孔。
8.根据权利要求1或2所述的电子封装,其中,所述磁性环路的顶表面与所述基板的与所述迹线相对的表面基本上共面,并且其中,所述磁性环路的底表面与所述基板的所述表面基本上共面。
9.根据权利要求1或2所述的电子封装,还包括:
位于所述导电环路外部的磁性材料。
10.根据权利要求1或2所述的电子封装,其中,所述导电环路直接接触所述磁性环路。
11.一种电子封装,包括:
基板,其中,所述基板包括玻璃;
进入所述基板中的盲孔沟槽;
位于所述盲孔沟槽的底表面和侧壁表面上的衬层,其中,所述衬层是导电的;
填充所述盲孔沟槽的磁性材料;
位于所述磁性材料之上并且接触所述衬层的第一迹线;以及
位于所述磁性材料之上并且接触所述衬层的第二迹线。
12.根据权利要求11所述的电子封装,其中,所述第一迹线和所述第二迹线位于所述衬层的相对侧上。
13.根据权利要求11或12所述的电子封装,其中,所述盲孔沟槽的所述侧壁是锥形的。
14.一种在玻璃基板中形成电感器的方法,包括:
形成穿过所述玻璃基板的一对第一过孔开口;
在所述一对第一过孔开口之间形成穿过所述玻璃基板的一对第二过孔开口,其中,所述一对第二过孔开口通过位于所述玻璃基板的顶表面处的第一盲孔沟槽和位于所述玻璃基板的底表面处的第二盲孔沟槽耦合在一起;
在所述一对第一过孔开口中设置牺牲材料;
在所述一对第二过孔开口、所述第一盲孔沟槽和所述第二盲孔沟槽中沉积磁性材料以形成磁性环;
去除所述牺牲材料;
在所述一对第一过孔开口中设置导电材料以形成一对第一过孔;以及
采用形成于所述玻璃基板的所述底表面之上的迹线连接所述一对第一过孔。
15.根据权利要求14所述的方法,其中,磁性环通过所述基板的具有大约10μm或更小的厚度的部分与所述第一过孔间隔开。
16.根据权利要求14或15所述的方法,其中,所述一对第一过孔开口、所述一对第二过孔开口、所述第一盲孔沟槽和所述第二盲孔沟槽是采用激光辅助蚀刻工艺形成的。
17.根据权利要求14或15所述的方法,其中,所述第一盲孔沟槽和所述第二盲孔沟槽具有大约50μm或更小的深度。
18.一种电子系统,包括:
板;
耦合到所述板的封装基板,其中,所述封装基板包括:
基板,其中,所述基板包括玻璃;
嵌入在所述基板中的磁性环路;以及
围绕所述磁性环路的导电环路,其中,所述导电环路包括:
穿过所述基板的第一过孔;
穿过所述基板的第二过孔;以及
位于所述基板的表面之上的迹线,其中,所述迹线将所述第一过孔电耦合到所述第二过孔;以及
耦合到所述封装基板的管芯。
19.根据权利要求18所述的电子系统,其中,所述基板的第一部分位于所述第一过孔和所述磁性环路之间,并且其中,所述基板的第二部分位于所述第二过孔和所述磁性环路之间。
20.根据权利要求19所述的电子系统,其中,所述基板的所述第一部分的厚度和所述基板的所述第二部分的厚度是大约10μm或更小。
CN202211468140.2A 2021-12-23 2022-11-22 具有集成的磁性体的电感器 Pending CN116344489A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/561,578 US20230207493A1 (en) 2021-12-23 2021-12-23 Inductor with integrated magnetics
US17/561,578 2021-12-23

Publications (1)

Publication Number Publication Date
CN116344489A true CN116344489A (zh) 2023-06-27

Family

ID=84360116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211468140.2A Pending CN116344489A (zh) 2021-12-23 2022-11-22 具有集成的磁性体的电感器

Country Status (3)

Country Link
US (1) US20230207493A1 (zh)
EP (1) EP4202961A1 (zh)
CN (1) CN116344489A (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200947482A (en) * 2008-05-01 2009-11-16 Taimag Corp Modularized inductive device
US10157876B2 (en) * 2012-10-19 2018-12-18 Taiwan Semiconductor Manufacturing Company Limited Method of forming inductor with conductive trace
US10790159B2 (en) * 2018-03-14 2020-09-29 Intel Corporation Semiconductor package substrate with through-hole magnetic core inductor using conductive paste
JP2021097129A (ja) * 2019-12-17 2021-06-24 イビデン株式会社 インダクタ内蔵基板

Also Published As

Publication number Publication date
EP4202961A1 (en) 2023-06-28
US20230207493A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
US11443885B2 (en) Thin film barrier seed metallization in magnetic-plugged through hole inductor
US10971416B2 (en) Package power delivery using plane and shaped vias
US20220367104A1 (en) Methods to selectively embed magnetic materials in substrate and corresponding structures
US11574993B2 (en) Package architecture with tunable magnetic properties for embedded devices
CN111902935A (zh) 在玻璃芯基板上的集成磁芯电感器
EP3731606A1 (en) Package design scheme for enabling high-speed low-loss signaling and mitigation of manufacturing risk and cost
CN116344489A (zh) 具有集成的磁性体的电感器
US20230207492A1 (en) Coaxial inductor with plated high resistivity and high permeability magnetic material
US11101224B2 (en) Wrapped signal shielding in a wafer fanout package
US20230207404A1 (en) Coaxial inductors fabricated through a drill-less via process
TWI746483B (zh) 使用雙微影製程之高效能整合射頻被動元件
US20220407216A1 (en) In-package mmwave antennas and launchers using glass core technology
US20220084736A1 (en) Tandem magnetics in package
US20220406617A1 (en) Dual sided glass interconnect dual damascene vias
US20220406698A1 (en) Magnetic planar spiral and high aspect ratio inductors for power delivery in the glass-core of a package substrate
US20220406616A1 (en) Physical vapor deposition seeding for high aspect ratio vias in glass core technology
US20220407202A1 (en) Compact surface transmission line waveguides with vertical ground planes
US20220406696A1 (en) Package substrate with glass core having vertical power planes for improved power delivery
US20220102055A1 (en) Stepped coax mil pths for modulating inductance within a package
US20230197592A1 (en) Power delivery techniques for glass substrate with high density signal vias
CN109564901B (zh) 玻璃上无源器件(pog)结构的面栅阵列(lga)封装
US20240215163A1 (en) Substrate glass core patterning for ctv improvement and layer count reduction
CN116314122A (zh) 具有用于在玻璃芯上的高速信号传输的盲沟槽通孔的低损耗微带和带状线布线
TW202249231A (zh) 包括具有溝槽連通體及平面之核心之封裝基體

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication