CN116342357A - 一种基于lpt-dct的医学图像鲁棒水印方法 - Google Patents

一种基于lpt-dct的医学图像鲁棒水印方法 Download PDF

Info

Publication number
CN116342357A
CN116342357A CN202111539168.6A CN202111539168A CN116342357A CN 116342357 A CN116342357 A CN 116342357A CN 202111539168 A CN202111539168 A CN 202111539168A CN 116342357 A CN116342357 A CN 116342357A
Authority
CN
China
Prior art keywords
watermark
medical image
sequence
image
lpt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111539168.6A
Other languages
English (en)
Inventor
李京兵
李天夫
陈延伟
涂蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan University
Original Assignee
Hainan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan University filed Critical Hainan University
Priority to CN202111539168.6A priority Critical patent/CN116342357A/zh
Publication of CN116342357A publication Critical patent/CN116342357A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0021Image watermarking
    • G06T1/005Robust watermarking, e.g. average attack or collusion attack resistant

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种基于LPT和DCT的医学图像鲁棒水印方法,属于多媒体信号处理领域。本发明的步骤是:首先利用Logistic Map的性质在频域对水印进行置乱加密;然后通过对医学图像进行LPT‑DCT变换提取一个特征向量来进行水印的嵌入,将特征向量与二值水印相关联得到一个二值逻辑序列,并将该二值序列存于第三方;再通过对待测医学图像进行LPT‑DCT变换提取其特征向量,并与存于第三方的二值序列相关联来进行水印的提取。本发明是基于LPT和DCT的医学图像数字水印技术,有较好的鲁棒性,针对旋转、缩放、平移、剪切等几何攻击尤为突出,水印的嵌入不改变原始加密体数据的内容,是一种零水印技术。

Description

一种基于LPT-DCT的医学图像鲁棒水印方法
技术领域
本发明涉及一种基于LPT-DCT变换、混沌映射和图像特征向量的医学图像鲁棒数字水印技术,具体是一种基于LPT-DCT的医学图像鲁棒水印方法,是一种多媒体数据保护方法,属于多媒体信号处理领域。
技术背景
在科学技术高速发展的当下,多媒体信息的传播变得越来越便利,但与此同时,信息被盗用和窃取的风险也随之增加。而在医学领域,医学图像往往对应着每一位患者的重要信息,既不可轻易篡改,也要避免病人隐私信息的泄漏。因此,如何实施对医学图像的信息保护成为了一个重要的研究课题。
数字水印技术是一种能将特定的数字信号嵌入数字产品中保护数字产品版权或完整性的技术。如今,数字水印凭借其鲁棒性、不可见性、加密性的特点,逐渐取代了传统水印,广泛应用于众多领域,为多媒体信息传播的安全性与保密性。如今数字水印技术成为网络中保障信息安全、实施版权保护的重要手段。在医学领域,应用于医学图像的数字水印能够起到保护患者隐私、避免医疗数据被篡改的作用,为医学图像的安全性和准确性提供了保障。
然而,现有的水印算法虽然对图像压缩、滤波等信号处理攻击有较好的抵御效果,但应对旋转、剪切、缩放等几何攻击的效果较差。目前对于医学图像的数字水印算法的研究较少,对于抗几何攻击的医学数据的水印算法的研究成果更少,因此研究出能够应对几何攻击的数字水印有着重大意义。本文提出了一种基于LPT-DCT算法的抗几何攻击医学图像数字水印,尚属空白,未见公开报道。
发明内容
本发明是一种基于LPT-DCT的医学图像鲁棒水印方法,通过将医学图像的特征向量、密码学、哈希函数和零水印技术结合,弥补了传统的数字水印方法不能对医学图像本身进行保护的缺点,具有很强的鲁棒性和不可见性,能同时保护病人的隐私信息和医学图像的数据安全。
为了实现上述目的,本发明是这样进行的:先对医疗图像进行对数极坐标变换(LPT),再对获得的LPT图像对应矩阵进行离散余弦变换(DCT),然后在DCT低频系数中提取一个抗几何攻击的纹理图像视觉特征向量,并将水印技术与混沌加密、Hash函数和“第三方概念”有机结合起来,以实现数字水印的抗几何攻击和常规攻击。本发明所采用的方法包括基于LPT-DCT的特征向量提取、水印加密、水印嵌入、水印提取和水印解密五大部分。
现对本发明的方法进行详细说明如下:
选择一个有意义的二值文本图像作为嵌入医学图像的水印,记为 W={w(i,j)|w(i,j)=0,1;1≤i≤M1,1≤j≤M2}。同时,我们选取一个 256*256的医学灰度图像作为原始医学图像,记为I(i,j)。W(i,j)和 I(i,j)分别表示水印和原始医学图像的像素灰度值。
(1)对原始医学图像I(i,j)进行LPT变换:通过极坐标变换将图像从笛卡尔坐标系转换至极坐标系,然后再取对数变换到对数极坐标系,从而获得LPT变换后的图像矩阵L(i,j);
(2)对LBP相应矩阵进行DCT变换得到系数矩阵D(i,j)
D(i,j)=dct2(L(i,j))
并在D(i,j)的低频区域选择4*8的模块构成新矩阵E(i,j);
(3)利用哈希函数,生成32位医学图像的特征二值序列V(i,j),即为对应医学图像的特征向量。
第二部分:水印的加密
(4)获取二值混沌序列
首先根据初始值x0生成混沌序列X(j),本实验将混沌系数的初值设为0.2,生长参数为4,迭代次数为32;
(5)得到混沌加密的水印
将混沌序列X(j)中值按照由小及大顺序做排序操作,接着依照 X(j)中各个值排序前后的位置变化对水印像素的位置空间进行置乱,得到混沌置乱的水印BW(i,j)。
第三部分:水印的嵌入
(6)将特征向量V(i,j)和加密后的水印BW(i,j)逐位进行异或运算,便可将水印嵌入到医学图像中,同时得到逻辑密钥Key(i,j);
Figure RE-GDA0003482685250000041
保存Key(i,j),这在后面提取水印时要用到。通过将Key(i,j)作为密钥向第三方申请,可以获得原始医学图像的所有权和使用权,从而达到保护医学图像的目的;
第四部分:水印的提取
8)待测医学图像I'(i,j)的特征向量
对待测的医学图像进行LPT处理,得到LPT相应矩阵后再进行 DCT变换得到系数矩阵D’(i,j),选取系数中4*8的模块,通过哈希函数得到待测医学图像的视觉特征序列V'(i,j);
D'(i,j)=dct2(L'(i,j))
9)提取水印BW'(i,j)
将待测加密图像的特征向量V'(i,j)和逻辑密钥Key(i,j)进行异或运算,便提取出加密的水印BW'(i,j);
Figure RE-GDA0003482685250000042
该算法在提取水印时只需要密钥Key(i,j),不需要原始图像参与,是一种零水印提取算法;
第五部分:水印的解密
10)获取二值混沌加密序列X(j)
利用和水印加密同样的方法,得到相同的二值混沌矩阵X(j);
11)还原提取出的加密水印
依照由小及大的顺序对已经获取的X(j)中的各个值做排序操作;然后,根据它中各个值排序前后的位置变化对水印中的像素的位置空间进行还原得到还原的水印W'(i,j);
通过计算W(i,j)和W'(i,j)的相关系数NC,确定医学图像的所有权和嵌入的水印信息;
本发明的创新点:
本算法基于LPT和DCT,在提取特征嵌入水印的过程中体现了 LPT尺度不变性、旋转不变性的特点,也保留了DCT抗常规攻击能力强、鲁棒性的优势。另一方面,对数极坐标变换由于在图像中心处采样率较高,外围区域采样率较低,可以保证主要区域得到有效表达的同时降低图像数据量,从而降低匹配计算量,使得算法的整体效率得到提升。医学图像作为一类特殊图像,要求原始数据具有完整性。本算法由于采用零水印嵌入技术,很好地解决了传统的水印嵌入技术对原图数据修改造成的缺陷,保证了医学图像的质量。同时也利用第三方的概念,适应了现今网络技术的实用化和规范化。
以下从理论基础和实验数据说明:
(1)对数极坐标变换(LogPolar Transform)
对数极坐标变换(LPT)源于对视网膜视皮层映射关系的模拟研究,其原理是通过非均匀采样的方法将直角坐标系中的图像转换到对数极坐标系下,从而将直角坐标系中的尺度和旋转变化转变为对数极坐标系下的平移变化。LPT类似于人类视觉机制,在图像中心处采样率较高,从而保证了中心区域的高分辨率,而外围区域采样率较低,可以保证主要区域得到有效表达的同时降低图像数据量,从而降低匹配计算量。
给定一幅二维图像图1,在直角坐标系中可以表示为(x,y),在对数极坐标系下表示为(ξ,ψ),则(ξ,ψ)与(x,y)之间可以通过下面的映射关系计算得到:
Figure RE-GDA0003482685250000061
ξ=logρ,ψ=θ (2)
通过式(2)计算得到的ξ和ψ通常不为整数,且不同分辨率的图像得到的ξ范围不一致,因此需要对式(2)进行修正:
ξ=(kξlogρ],ψ=(kθθ] (3)
式中:kξ=M/logρmax和kθ=N/360为修正因子,将ξ和ψ的范围扩展到所设定的对数极坐标系下图像分辨率(M×N)。本文采取的变换后图像分辨率为(256×256);(*]为不小于*的最小整数。
变换后图像水平方向的梯度值相当于原始图像切线方向梯度值,而垂直方向梯度值相当于原始图像径向梯度值,主梯度方向则代表原图像中径向梯度变化最剧烈的方向,该方向通常具有较强的稳定性,因此以主梯度方向作为基准方向同样具有较强的稳定性。由于对数极坐标变换是一种图像积分操作,本身对于图像噪声不敏感,因此采用变换后图像梯度值作为特征能够显著提高梯度对于图像噪声的鲁棒性;同时,对数极坐标变换是针对图像区块的均值操作,采用梯度值作为特征即计算相邻图像区块之间的变化趋势,能够有效降低线性以及非线性光照变化的影响。
(2)离散余弦变换(DCT)
DCT用于图像编码是目前广泛使用的JPEG压缩和MPEG-1/2的标准。DCT是在最小均方差条件小得出的仅次于K-L变换的次最佳正交变换,是一种无损的酋变换。它运算速度快,精度高,以提取特征成分的能力和运算速度之间的最佳平衡而著称。
二维离散余弦正变换(DCT)公式如下:
Figure RE-GDA0003482685250000071
u=0,1,…,M-1;v=0,1,…,N-1;
式中
Figure RE-GDA0003482685250000072
二维离散余弦反变换(IDCT)公式如下:
Figure RE-GDA0003482685250000073
x=0,1,…,M-1;y=0,1,…,N-1
其中x,y为空间域采样值;u,v为频率域采样值,通常数字图像用像素方阵表示,即M=N。
(3)Logistic Map
混沌是一种貌似无规则的运动,指在确定性系统中出现的类似随机的过程。因此,有了它的初始值和参数,我们就能够生成这个混沌系统。最著名的一种混沌系统是Logistic Map,它是由以下公式给出的非线性映射:
xk+1=μxk(1-xk)
其中,0≤μ≤4称为增长参数,xk∈(0,1)为系统变量,k是迭代次数。混沌动力系统的研究工作指出,当增长参数3.569945≤μ≤4时, Logistic Map工作于混沌状态。可以看到初始值有一个小小的不同将会导致混沌序列的显著差异。因此,以上的序列是一个理想的密钥序列。本文中设定μ=4,混沌序列由不同的初始值x0产生。
(4)医学图像视觉特征向量的选取方法
目前大部分医学图像水印算法抗几何攻击能力差的主要原因是:人们将数字水印嵌入在像素或变换系数中,医学图像的轻微几何变换,常常导致像素值或变换系数值有较大变化。这样便会使嵌入的水印很轻易的受到攻击。如果能够找到反映医学图像几何特点的视觉特征向量,那么当图像发生小的几何变换时,该图像的视觉特征值不会发生明显的突变。
为了解决这一问题,我们尝试将具有较好旋转不变性的LPT变换与DCT变换相结合,以获取一个抗几何攻击的特征向量。通过实验数据发现,当对一个医疗图像进行常规的几何变换时,DCT低中频系数值的大小可能发生一些变化,但其系数符号基本保持不变。根据这一规律,我们先对医疗图像进行对数极坐标变换,再对获得的图像矩阵进行离散余弦变换。在变换后的矩阵的低频系数部分,选取一个4×8的矩阵,利用哈希函数可以得到一个稳定的二值序列,作为图像的一个特征向量。
(5)特征向量选取的长度
根据人类视觉特性(HVS),低中频信号对人的视觉影响较大,代表着医疗图像的主要特征。因此所选取的医疗图像的视觉特征向量是低中频系数的符号,低中频系数的个数选择与原始医疗图像的大小、医疗图像之间的相关性有关,L值越小,相关性会增大。在后面的试验中,选取L的长度为32。
(6)峰值信噪比
峰值信噪比的公式如下:
Figure RE-GDA0003482685250000091
设图像每点的像素值为I(i,j),图像的平均像素值为Γ(i,j),为方便运算,通常数字图像用像素方阵表示,即M=N。峰值信噪比是一个表示信号最大可能功率和影响他的表示精度的破坏性噪声功率的比值的工程术语,通常采用峰值信噪比作为医疗图像质量的客观评价标准。
(7)归一化相关系数
采用归一化互相关(归一化Cross-correlation,NC)方法测量嵌入的原始水印与提取的原始水印之间的数量相似性,定义为:
Figure RE-GDA0003482685250000092
W(i,j)表示原始水印图像的特征向量,其长度是32bit;W(i,j)表示待测水印图像的特征向量,也是32bit。归一化相关系数是对两幅图像进行相似度衡量的一种方法,通过求归一化相关系数可以更加精确地用数据来客观评估图像的相似度。
附图说明
图1是一幅二维图像。
图2是原始医学图像。
图3是原始水印图像。
图4是加密后的水印图像。
图5是不加干扰时提取的水印。
图6是高斯噪声干扰强度5%时的医学图像。
图7是高斯噪声干扰强度5%时提取的水印。
图8是JPEG压缩的医学图像(压缩质量为10%)。
图9是压缩质量为10%的JPEG压缩时提取的水印。
图10是中值滤波后的医学图像(窗口大小为[3x3],滤波次数10次)。
图11是[3x3],中值滤波10次后提取的水印。
图12是中值滤波后的医学图像(窗口大小为[5x5],滤波次数15次)。
图13是[5x5],中值滤波15次后后提取的水印。
图14是顺时针旋转5°的医学图像。
图15是顺时针旋转5°时提取的水印。
图16是顺时针旋转30°的医学图像。
图17是顺时针旋转30°时提取的水印。
图18是缩放0.8倍的医学图像。
图19是缩放0.8倍时提取的水印。
图20是垂直下移5%的医学图像。
图21是垂直下移5%时提取的水印。
图22是垂直下移10%的医学图像。
图23是垂直下移10%时提取的水印。
图24是沿Y轴剪切5%的医学图像。
图25是沿Y轴剪切5%时提取的水印。
图26是沿Y轴剪切10%的医学图像。
图27是沿Y轴剪切10%时提取的水印。
具体实施方式
下面结合附图对本发明作进一步说明,实验测试的对象是256× 256的脑部切片医学图像,见图2,用I(i,j)表示,其中1≤i,j≤256。选择一个有意义的二值图像作为原始水印,记为:W={w(i,j)|w(i,j)=0,1;1≤i≤M1,1≤j≤M2},见图3,这里水印的大小为32×32。通过Logistic Map混沌置乱后的水印见图4,可以明显看到水印图像发生了很大的变化,安全性提高。图5是不加干扰时提取的水印,可以看到NC=1.00,可以准确提取水印。
我们首先对原始图像进行LPT-DCT变换,考虑到鲁棒性和一次性嵌入水印的容量我们取32个系数,即一个4*8的模块。设置混沌系数的初始值为0.2,增长参数是4,迭代次数是32。选取的DCT系数矩阵为FD(i,j),1≤i≤4,1≤j≤8。通过水印算法检测出W’(i,j)后,我们通过计算归一化相关系数NC(Normalized Cross Correlation)来判断是否有水印嵌入,当其数值越接近1时,则相似度越高,从而判断算法的鲁棒性。用PSNR表示的图片的失真程度,当PSNR值越大,图片的失真度越小。
下面我们通过具体实验来判断该数字水印方法的抗常规攻击能力和抗几何攻击能力。
先测试该水印算法抗常规攻击的能力。
(1)加入高斯噪声
使用imnoise()函数在水印中加入高斯噪声。
表2是水印抗高斯噪声干扰的实验数据。从表中可以看到,当高斯噪声强度高达40%时,攻击之后的图像的PSNR降至8.13dB,这时提取的水印,相关系数NC=0.82,仍能较准确得提取水印,并且整体数据均在0.80以上。这说明采用该发明在对抗高斯噪声时具有较好的效果。
图6是高斯噪声强度5%时的医学图像;
图7是高斯噪声强度5%时提取的水印,NC=0.94。
表2水印抗高斯噪声干扰数据
噪声强度(%) 5 10 15 20 30 40
PSNR(dB) 14.33 11.90 10.61 9.77 8.84 8.13
NC 0.94 0.90 0.89 0.89 0.80 0.82
(2)JPEG压缩处理
采用图像压缩质量百分数作为参数对医学图像进行JPEG压缩;表3为水印抗JPEG压缩的实验数据。当压缩质量为5%,这时图像质量较低,仍然可以完整提取出水印,NC=1,可以看出该算法在面对JPEG压缩攻击时具有很好的稳定性。
图8是压缩质量为5%的医学图像;
图9是压缩质量为5%提取的水印,NC=1.00。
表3水印抗JPEG压缩实验数据
压缩质量(%) 5 10 20 30 50 70
PSNR(dB) 26.40 29.05 33.81 34.83 35.46 36.94
NC 1.00 1.00 1.00 1.00 1.00 1.00
(3)中值滤波处理
表4为医学图像的水印抗中值滤波能力,从表中看出,当中值滤波参数达到[7x7],滤波重复次数为15时,仍然可以测得水印的存在, NC=0.84。
图10是中值滤波参数为[3x3],滤波重复次数为10的医学图像;
图11是中值滤波参数为[3x3],滤波重复次数为10时提取的水印, NC=0.94,提取水印效果良好。
图12是中值滤波参数为[5x5],滤波重复次数为15的医学图像,图像已出现模糊;
图13是中值滤波参数为[5x5],滤波重复次数为15时提取的水印, NC=0.89,提取水印效果良好。
表4水印抗中值滤波实验数据
Figure RE-GDA0003482685250000131
水印抗几何攻击能力
(1)旋转变换
表5为水印抗旋转攻击实验数据。从表中可以看到当图像顺时旋转45°时,NC=0.92,仍然可以提取水印,可以看出LPT-DCT变换算法具有较好的旋转不变性。
图14是顺时旋转5°的医学图像;
图15是顺时旋转5°提取的水印,NC=0.82,可以准确地提取水印。
图16是顺时旋转30°的医学图像;
图17是顺时旋转30°提取的水印,NC=0.77,可以准确地提取水印。
表5水印抗旋转攻击实验数据
旋转度数° 5 10 15 20 30 45
PSNR(dB) 17.57 15.27 14.61 14.35 14.16 13.63
NC 0.90 0.80 0.85 0.85 0.90 0.92
旋转度数° -5 -10 -15 -20 -30 -45
PSNR(dB) 17.57 15.28 14.61 14.36 14.17 13.63
NC 0.94 0.80 0.81 0.71 0.62 0.67
注:负为逆时针,正为顺时针
(2)缩放变换
表6为医学图像的水印抗缩放攻击实验数据,从表中可以看到当缩放因子小至0.7时,相关系数NC=0.62,可提取出水印。
图18是缩放后的医学图像(缩放因子为0.8);
图19是缩放攻击后提取的水印,NC=0.70,可以提取水印。
表6水印抗缩放攻击实验数据
缩放因子 0.7 0.8 0.9 1.1 1.2 1.3
NC 0.62 0.70 0.89 0.77 0.60 0.56
(3)平移变换
表7是水印抗平移变换实验数据。从表中得知图像数据垂直移动 15%时,NC=0.61,能够提取水印,可以看出该水印方法有较强的抗平移变换能力。
图20是医学图像垂直下移5%后的图像;
图21是垂直下移5%后提取的水印,可以准确提取水印, NC=0.95。
图22是医学图像垂直下移10%后的图像;
图23是垂直下移10%后提取的水印,可以准确提取水印, NC=0.74。
表7水印抗平移变换实验数据
下移距离(%) 1 3 5 7 10 15
PSNR(dB) 14.96 14.86 14.77 14.64 14.43 13.78
NC 1.00 0.96 0.94 0.90 0.74 0.61
(4)剪切攻击
表8为水印抗剪切攻击实验数据,从表中可以看到,当沿坐标轴 Y剪切医学图像,剪切量为10%时,NC=0.65,可以提取水印,说明该水印算法有一定的抗剪切攻击能力。
图24是沿Y轴剪切5%后的医学图像;
图25是沿Y轴剪切5%后提取的水印,可以准确得提取水印, NC=0.74。
图26是沿Y轴剪切10%后的医学图像;
图27是沿Y轴剪切10%后提取的水印,可以准确得提取水印, NC=0.67。
表8水印抗剪切攻击实验数据
Y方向剪切(%) 1 3 5 7 10 15
NC 0.96 0.90 0.74 0.79 0.67 0.54

Claims (1)

1.一种基于LPT和DCT的医学图像鲁棒水印实现方法,其特征在于:基于LPT-DCT变换,得到医学图像的抗几何攻击的特征向量,并与水印技术结合,实现了医学图像零水印的抗几何攻击和常规攻击,该医学图像数字水印实现方法共分三大部分,共计十个步骤:
第一部分是医学图像的特征提取:
1)对原始医学图像I(i,j)进行LPT变换:通过极坐标变换将图像从笛卡尔坐标系转换至极坐标系,再取对数变换到对数极坐标系,从而获得LPT变换后的图像矩阵L(i,j);
2)对变换后的图像L(i,j)进行DCT变换得到系数矩阵D(i,j);
3)通过对D(i,j)运用Hash函数运算得到特征序列V(i,j);
第二部分是水印的加密与嵌入:
4)通过Logistic Map产生混沌序列X(j);
5)混沌序列X(j)利用哈希函数生成二值序列,接着按照二值序列顺序对水印像素的位置空间进行异或置乱,得到混沌置乱的水印BW(i,j);
6)根据加密水印序列BW(i,j)和提取的医学图像的特征序列V(i,j),生成一个二值逻辑密钥序列Key(i,j),然后将二值逻辑序列Key(i,j)存在第三方,Key(i,j)=V(i,j)⊕BW(i,j);
第三部分是水印的提取:
7)求出待测医学图像的特征序列V’(i,j);
8)利用存在于第三方的二值逻辑密钥序列Key(i,j)和待测医学图像的特征向量V’(i,j),提取出加密水印BW’(i,j):
BW’(i,j)=Key(i,j)⊕V’(i,j);
9)利用和水印加密同样的方法,得到相同的二值混沌加密序列X(j);然后将得到的混沌序列X(j)利用哈希函数生成二值序列,接着按照二值序列顺序对水印像素的位置空间进行异或置乱,得到混沌置乱的水印W'(i,j);
10)将W(i,j)和W’(i,j)进行归一化相关系数计算,求出NC值,衡量算法的鲁棒性。
CN202111539168.6A 2021-12-15 2021-12-15 一种基于lpt-dct的医学图像鲁棒水印方法 Pending CN116342357A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111539168.6A CN116342357A (zh) 2021-12-15 2021-12-15 一种基于lpt-dct的医学图像鲁棒水印方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111539168.6A CN116342357A (zh) 2021-12-15 2021-12-15 一种基于lpt-dct的医学图像鲁棒水印方法

Publications (1)

Publication Number Publication Date
CN116342357A true CN116342357A (zh) 2023-06-27

Family

ID=86888077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111539168.6A Pending CN116342357A (zh) 2021-12-15 2021-12-15 一种基于lpt-dct的医学图像鲁棒水印方法

Country Status (1)

Country Link
CN (1) CN116342357A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116883226A (zh) * 2023-07-21 2023-10-13 中国国土勘测规划院 基于nmf分解的dem零水印方法、装置及介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116883226A (zh) * 2023-07-21 2023-10-13 中国国土勘测规划院 基于nmf分解的dem零水印方法、装置及介质
CN116883226B (zh) * 2023-07-21 2024-01-02 中国国土勘测规划院 Dem零水印嵌入与提取方法、装置及介质

Similar Documents

Publication Publication Date Title
Ernawan et al. A block-based RDWT-SVD image watermarking method using human visual system characteristics
Liu et al. Zero-watermarking algorithm for medical images based on dual-tree complex wavelet transform and discrete cosine transform
Muhammad et al. A secure method for color image steganography using gray-level modification and multi-level encryption
Su et al. An approximate Schur decomposition-based spatial domain color image watermarking method
Bhatnagar et al. A new robust adjustable logo watermarking scheme
Bhattacharyya et al. A robust image steganography using DWT difference modulation (DWTDM)
CN111968025A (zh) 基于Bandelet-DCT医学图像鲁棒零水印方法
CN111988492B (zh) 一种基于Gabor-DCT的医学图像鲁棒水印方法
CN111968026A (zh) 一种基于PHTs-DCT的医学图像鲁棒水印方法
Liu et al. Robust blind image watermarking based on chaotic mixtures
CN111988490B (zh) 基于Tetrolet-DCT的医学图像鲁棒水印方法
CN110517181B (zh) 基于Hough组合变换的医学图像零水印嵌入方法
Bekkouch et al. Robust and reversible image watermarking scheme using combined DCT-DWT-SVD transforms
AlShaikh et al. A novel CT scan images watermarking scheme in DWT transform coefficients
CN116342357A (zh) 一种基于lpt-dct的医学图像鲁棒水印方法
CN111988491A (zh) 一种基于kaze-dct的医学图像鲁棒水印方法
Hamad et al. A blind high-capacity wavelet-based steganography technique for hiding images into other images
Zargar et al. Robust and imperceptible image watermarking in DWT-BTC domain
Eltoukhy et al. Robust watermarking method for securing color medical images using Slant-SVD-QFT transforms and OTP encryption
Padma Priya et al. Identifying video tampering using watermarked blockchain
Sheng et al. Robust zero-watermarking algorithm for medical images based on Hadamard-DWT-DCT
CN112907426A (zh) 一种基于PHTs-DCT的加密医学图像数字水印方法
Ayubi et al. A chaos based blind digital image watermarking in the wavelet transform domain
Dixit et al. LWT-DCT based image watermarking scheme using normalized SVD
CN110599390A (zh) 基于Curvelet与RSA序列的水印嵌入方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination