CN116341372B - Heat exchanger performance prediction and optimization method based on artificial neural network - Google Patents

Heat exchanger performance prediction and optimization method based on artificial neural network Download PDF

Info

Publication number
CN116341372B
CN116341372B CN202310191053.5A CN202310191053A CN116341372B CN 116341372 B CN116341372 B CN 116341372B CN 202310191053 A CN202310191053 A CN 202310191053A CN 116341372 B CN116341372 B CN 116341372B
Authority
CN
China
Prior art keywords
heat exchangers
heat exchanger
factor
performance
pso
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310191053.5A
Other languages
Chinese (zh)
Other versions
CN116341372A (en
Inventor
段欣悦
郝邵文
孙肇良
朱传勇
黄秉欢
吕宇玲
巩亮
徐明海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN202310191053.5A priority Critical patent/CN116341372B/en
Publication of CN116341372A publication Critical patent/CN116341372A/en
Application granted granted Critical
Publication of CN116341372B publication Critical patent/CN116341372B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Evolutionary Computation (AREA)
  • Strategic Management (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Algebra (AREA)
  • Development Economics (AREA)
  • Computing Systems (AREA)
  • Game Theory and Decision Science (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供了一种基于人工神经网络的换热器性能预测及优化方法,包括:构建多种换热器的性能数据库;基于所述多种换热器的性能数据库,利用粒子群算法对BP神经网络的进行优化,得到对应的PSO‑BP‑ANN预测模型;将PSO‑BP‑ANN模型与多目标遗传算法相结合对目标换热器的结构参数进行优化设计,得到优化结果,并对优化结果进行验证。本发明解决了了现有技术中对换热器优化设计结果误差大的问题。

The invention provides a heat exchanger performance prediction and optimization method based on artificial neural networks, which includes: constructing performance databases of multiple heat exchangers; based on the performance databases of multiple heat exchangers, using particle swarm algorithm to predict BP The neural network is optimized to obtain the corresponding PSO‑BP‑ANN prediction model; the PSO‑BP‑ANN model is combined with the multi-objective genetic algorithm to optimize the design of the structural parameters of the target heat exchanger, and the optimization results are obtained. The results are verified. The invention solves the problem in the prior art that the optimization design results of the heat exchanger have large errors.

Description

一种基于人工神经网络的换热器性能预测及优化方法A heat exchanger performance prediction and optimization method based on artificial neural network

技术领域Technical field

本发明涉及换热器优化设计技术领域,特别是涉及一种基于人工神经网络的换热器性能预测及优化方法。The invention relates to the technical field of heat exchanger optimization design, and in particular to a heat exchanger performance prediction and optimization method based on artificial neural networks.

背景技术Background technique

紧凑式换热器因其具有结构紧凑、换热高效等优点,在核工业、电力、制冷等工业领域具有广阔的发展潜力。实现强化换热与流动减阻的兼顾是国内外研究者不断追求的目标。然而,在换热器优化设计的过程中,选取不同的性能计算关联式对所得到的优化设计结果会产生很大的误差。Compact heat exchangers have broad development potential in the nuclear industry, electric power, refrigeration and other industrial fields because of their compact structure and efficient heat exchange. Achieving both enhanced heat transfer and flow resistance reduction is a goal that researchers at home and abroad are constantly pursuing. However, in the process of heat exchanger optimization design, selecting different performance calculation correlations will produce large errors in the obtained optimization design results.

发明内容Contents of the invention

为了克服现有技术的不足,本发明的目的是提供一种基于人工神经网络的换热器性能预测及优化方法,本发明解决了现有技术中对换热器优化设计结果误差大的问题。In order to overcome the shortcomings of the existing technology, the purpose of the present invention is to provide a heat exchanger performance prediction and optimization method based on artificial neural networks. The present invention solves the problem of large errors in heat exchanger optimization design results in the prior art.

为实现上述目的,本发明提供了如下方案:In order to achieve the above objects, the present invention provides the following solutions:

一种基于人工神经网络的换热器性能预测及优化方法,包括:A heat exchanger performance prediction and optimization method based on artificial neural networks, including:

构建多种换热器的性能数据库;Construct performance database of various heat exchangers;

基于所述多种换热器的性能数据库,利用粒子群算法对BP神经网络的进行优化,得到对应的PSO-BP-ANN预测模型;Based on the performance database of various heat exchangers, the particle swarm algorithm is used to optimize the BP neural network and the corresponding PSO-BP-ANN prediction model is obtained;

将PSO-BP-ANN模型与多目标遗传算法相结合对目标换热器的结构参数进行优化设计,得到优化结果,并对优化结果进行验证。The PSO-BP-ANN model was combined with the multi-objective genetic algorithm to optimize the design of the structural parameters of the target heat exchanger, obtain the optimization results, and verify the optimization results.

优选地,所述多种换热器的性能数据库包括:Preferably, the performance database of the various heat exchangers includes:

板翅式换热器和印刷电路板式换热器,其中,板翅式换热器包括:平直翅片换热器、波浪翅片换热器、百叶窗翅片换热器和锯齿翅片换热器。Plate fin heat exchangers and printed circuit board heat exchangers. Plate fin heat exchangers include: straight fin heat exchangers, corrugated fin heat exchangers, louvered fin heat exchangers and sawtooth fin heat exchangers. Heater.

优选地,所述构建多种换热器的性能数据库的方法包括:Preferably, the method of constructing a performance database of multiple heat exchangers includes:

利用文献调研及数据模拟构建平直翅片换热器性能数据库、波浪翅片换热器性能数据库和百叶窗翅片换热器性能数据库、锯齿翅片换热器性能数据库、印刷电路板式换热器性能数据库。Use literature research and data simulation to construct performance databases for straight fin heat exchangers, corrugated fin heat exchangers, louvered fin heat exchangers, sawtooth fin heat exchangers, and printed circuit board heat exchangers. Performance database.

优选地,所述利用粒子群算法对BP神经网络的进行优化,得到PSO-BP-ANN预测模型包括:Preferably, the use of the particle swarm algorithm to optimize the BP neural network and obtain the PSO-BP-ANN prediction model includes:

选取不同的迭代次数和种群规模进行BP神经网络的训练及测试,确定目标迭代次数和种群规模;Select different iteration times and population sizes to train and test the BP neural network, and determine the target iteration times and population size;

基于所述目标迭代次数和种群规模,通过j因子和f因子确定加速度因子;Based on the target number of iterations and the population size, the acceleration factor is determined by the j factor and the f factor;

根据加速度因子、目标迭代次数和种群规模确定PSO-BP-ANN预测模型。The PSO-BP-ANN prediction model is determined based on the acceleration factor, target iteration number and population size.

优选地,所述将PSO-BP-ANN模型与多目标遗传算法相结合对目标换热器的结构参数进行优化设计包括:Preferably, the optimization design of the structural parameters of the target heat exchanger by combining the PSO-BP-ANN model with the multi-objective genetic algorithm includes:

初始化种群参数;Initialize population parameters;

设定当前种群参数;Set current population parameters;

确定换热器的目标函数,并根据所述PSO-BP-ANN模型和所述多目标遗传算法对所述目标函数进行计算优化,得到当前优化结果;Determine the objective function of the heat exchanger, and calculate and optimize the objective function according to the PSO-BP-ANN model and the multi-objective genetic algorithm to obtain the current optimization results;

判断所述当前优化结果是否收敛,若是,则进行输出得到帕累托前沿,若否,则所述当前种群参数加1,继续进行计算。Determine whether the current optimization result has converged. If so, output the Pareto front. If not, add 1 to the current population parameter and continue the calculation.

优选地,所述目标函数包括:Preferably, the objective function includes:

换热器的最大传热性能和换热器的最小阻力性能。The maximum heat transfer performance of the heat exchanger and the minimum resistance performance of the heat exchanger.

根据本发明提供的具体实施例,本发明公开了以下技术效果:According to the specific embodiments provided by the present invention, the present invention discloses the following technical effects:

本发明提供了一种基于人工神经网络的换热器性能预测及优化方法,本发明通过建立多种换热器性能预测模型,并利用粒子群算法对模型进行优化,并利用优化后的模型结合多目标遗传算法对换热器进行优化研究,提升了优化结果的准确度。The present invention provides a heat exchanger performance prediction and optimization method based on artificial neural networks. The present invention establishes a variety of heat exchanger performance prediction models, uses particle swarm algorithm to optimize the models, and uses the optimized model combination Multi-objective genetic algorithm is used to optimize the heat exchanger, which improves the accuracy of the optimization results.

附图说明Description of the drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the drawings needed to be used in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the drawings of the present invention. Embodiments, for those of ordinary skill in the art, other drawings can also be obtained based on these drawings without exerting creative efforts.

图1为本发明实施例提供的换热器性能预测及优化方法流程图;Figure 1 is a flow chart of a heat exchanger performance prediction and optimization method provided by an embodiment of the present invention;

图2为本发明实施例提供的锯齿翅片网格示意图;Figure 2 is a schematic diagram of a sawtooth fin grid provided by an embodiment of the present invention;

图3为本发明实施例提供的Z型通道PCHE单周期模型结构示意图;Figure 3 is a schematic structural diagram of a Z-channel PCHE single-cycle model provided by an embodiment of the present invention;

图4为本发明实施例提供的优化过程流程图。Figure 4 is a flow chart of the optimization process provided by the embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.

在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。Reference herein to "an embodiment" means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application. The appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.

本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤、过程、方法等没有限定于已列出的步骤,而是可选地还包括没有列出的步骤,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤元。The terms “first”, “second”, “third” and “fourth” in the description, claims and drawings of this application are used to distinguish different objects, rather than to describe a specific sequence. . Furthermore, the terms "including" and "having" and any variations thereof are intended to cover non-exclusive inclusion. For example, a series of steps, processes, methods, etc. are not limited to the listed steps, but optionally also include steps that are not listed, or optionally also include steps inherent to these processes, methods, products or equipment. Other steps.

本发明的目的是提供一种基于人工神经网络的换热器性能预测及优化方法,本发明解决了现有技术中对换热器优化设计结果误差大的问题。The purpose of the present invention is to provide a heat exchanger performance prediction and optimization method based on artificial neural networks. The present invention solves the problem of large errors in heat exchanger optimization design results in the prior art.

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more obvious and understandable, the present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.

如图1所示,本发明提供了一种基于人工神经网络的换热器性能预测及优化方法,包括:As shown in Figure 1, the present invention provides a heat exchanger performance prediction and optimization method based on artificial neural networks, including:

步骤100:构建多种换热器的性能数据库;Step 100: Construct a performance database of various heat exchangers;

步骤200:基于所述多种换热器的性能数据库,利用粒子群算法对BP神经网络的进行优化,得到对应的PSO-BP-ANN预测模型;Step 200: Based on the performance database of the various heat exchangers, use the particle swarm algorithm to optimize the BP neural network to obtain the corresponding PSO-BP-ANN prediction model;

步骤300:将PSO-BP-ANN模型与多目标遗传算法相结合对目标换热器的结构参数进行优化设计,得到优化结果,并对优化结果进行验证。Step 300: Combine the PSO-BP-ANN model with the multi-objective genetic algorithm to optimize the design of the structural parameters of the target heat exchanger, obtain the optimization results, and verify the optimization results.

进一步的,所述多种换热器的性能数据库包括:Further, the performance database of various heat exchangers includes:

板翅式换热器和印刷电路板式换热器,其中,板翅式换热器包括:平直翅片换热器、波浪翅片换热器、百叶窗翅片换热器和锯齿翅片换热器。Plate fin heat exchangers and printed circuit board heat exchangers. Plate fin heat exchangers include: straight fin heat exchangers, corrugated fin heat exchangers, louvered fin heat exchangers and sawtooth fin heat exchangers. Heater.

进一步的,所述构建多种换热器的性能数据库的方法包括:Further, the method of constructing a performance database of multiple heat exchangers includes:

利用文献调研及数据模拟构建平直翅片换热器性能数据库、波浪翅片换热器性能数据库和百叶窗翅片换热器性能数据库、锯齿翅片换热器性能数据库、印刷电路板式换热器性能数据库。Use literature research and data simulation to construct performance databases for straight fin heat exchangers, corrugated fin heat exchangers, louvered fin heat exchangers, sawtooth fin heat exchangers, and printed circuit board heat exchangers. Performance database.

建立数据库中传热和阻力性能对不同翅片结构参数的相关性分析:Establish a correlation analysis of heat transfer and resistance performance on different fin structural parameters in the database:

平直翅片换热器Straight fin heat exchanger

主要几何参数为翅片间距Fp、高度Fh、厚度t和通道长度Ld,其中Fp和Fh对j因子呈正相关,t和Ld对j因子呈负相关;Fp、Fh和t对f因子呈正相关,Ld对f因子呈负相关;t和Ld对FTEF呈正相关,Fp和Fh对FTEF呈负相关。The main geometric parameters are fin spacing Fp, height Fh, thickness t and channel length Ld, among which Fp and Fh are positively correlated with the j factor, t and Ld are negatively correlated with the j factor; Fp, Fh and t are positively correlated with the f factor, Ld has a negative correlation with the f factor; t and Ld have a positive correlation with FTEF, and Fp and Fh have a negative correlation with FTEF.

波浪翅片换热器Wave fin heat exchanger

主要几何参数为翅片间距Fp、高度Fh、通道长度Ld、厚度t、两倍的振幅2A和波长L其中,Fh和2A对j因子呈正相关,Fp和L对j因子呈负相关;Fp、Fh和2A对f因子呈正相关,L对f因子呈负相关;Fh和2A对FTEF呈正相关,Fp和L对FTEF呈负相关。The main geometric parameters are fin spacing Fp, height Fh, channel length Ld, thickness t, twice the amplitude 2A and wavelength L. Among them, Fh and 2A are positively related to the j factor, and Fp and L are negatively related to the j factor; Fp, Fh and 2A are positively correlated with f factor, L is negatively correlated with f factor; Fh and 2A are positively correlated with FTEF, and Fp and L are negatively correlated with FTEF.

百叶窗翅片换热器Louvered fin heat exchanger

主要几何参数为翅片间距Fp、高度Fh、长度Ld、厚度t、倾角La和间距Lp,其中,Lp和La对j因子呈正相关,Fp和t对j因子呈负相关;Lp和La对f因子呈正相关,Fp和t对f因子呈负相关;Lp和La对FTEF呈正相关,Fp和t对FTEF呈负相关。The main geometric parameters are fin spacing Fp, height Fh, length Ld, thickness t, inclination angle La and spacing Lp. Among them, Lp and La are positively related to the j factor, Fp and t are negatively related to the j factor; Lp and La are related to f The factors are positively correlated, Fp and t are negatively correlated to the f factor; Lp and La are positively correlated to FTEF, and Fp and t are negatively correlated to FTEF.

具体的,通过数值模拟补充国产锯齿翅片通道以及Z型通道PCHE性能数据:Specifically, numerical simulation is used to supplement domestic sawtooth fin channel and Z-type channel PCHE performance data:

采用ANSYS Fluent 17.0对锯齿翅片通道以及Z型通道PCHE的流动和传热特性进行分析。国产锯齿翅片通道结构及网格示意图如图2所示,Z型通道PCHE研究取最小周期模型,结构如图3所示。上述计算模型由ICEM软件生成结构化网格,对壁面划分边界层网格并进行局部加密。连续性方程、动量方程和能量方程如下式所示:ANSYS Fluent 17.0 was used to analyze the flow and heat transfer characteristics of the sawtooth fin channel and Z-shaped channel PCHE. The schematic diagram of the domestic sawtooth fin channel structure and grid is shown in Figure 2. The Z-shaped channel PCHE study uses the minimum period model, and the structure is shown in Figure 3. The above calculation model uses ICEM software to generate a structured grid, divide the boundary layer grid on the wall surface and perform local densification. The continuity equation, momentum equation and energy equation are as follows:

连续性方程为: The continuity equation is:

动量方程为: The momentum equation is:

能量方程为: The energy equation is:

能量方程(固体域): Energy equation (solid domain):

对固体域材料和工质均采用变物性处理。其中,u是流速,ui和uk是流速在xz方向上的分量,P是压力,运动黏度μ,ρ为密度,T为温度,cp为定压比热容,λ为导热系数,xi/xk为对应方向矢量。模型求解采用压力-速度耦合采用SIMPLE算法,能量和动量方程采用二阶迎风格式,当计算残差小于10-6时,认为解已收敛。设置入口速度、温度,出口压力,上下隔板的温度或热流密度,通道左右两侧为周期性边界。Materials and working fluids in the solid domain are treated with variable physical properties. Among them, u is the flow velocity, u i and u k are the components of the flow velocity in the xz direction, P is the pressure, the kinematic viscosity μ, ρ is the density, T is the temperature, cp is the constant pressure specific heat capacity, λ is the thermal conductivity coefficient, x i / x k is the corresponding direction vector. The model is solved using pressure-velocity coupling using the SIMPLE algorithm, and the energy and momentum equations using the second-order upwind formula. When the calculation residual is less than 10-6, the solution is considered to have converged. Set the inlet velocity, temperature, outlet pressure, temperature or heat flux density of the upper and lower partitions, and the left and right sides of the channel are periodic boundaries.

为验证锯齿翅片通道数值模拟的正确性,将数值模拟的计算值与文献中的实验值进行对比,j因子和f因子的数值模拟的计算值与实验值吻合较好,平均绝对百分比误差分别为8.07%和9.28%。因此,认为数值模拟的结果是可靠的。In order to verify the correctness of the numerical simulation of the sawtooth fin channel, the calculated values of the numerical simulation are compared with the experimental values in the literature. The calculated values of the numerical simulation of j factor and f factor are in good agreement with the experimental values. The average absolute percentage errors are respectively are 8.07% and 9.28%. Therefore, the results of numerical simulation are considered reliable.

将Z型通道PCHE数值模拟结果与文献中的实验值进行对比,努塞尔数和阻力因子的的数值结果与实验值的最大误差分别为6.7%和9.3%,因此,可认为数值模拟的结果是可靠的。Comparing the Z-channel PCHE numerical simulation results with the experimental values in the literature, the maximum errors between the Nusselt number and resistance factor numerical results and the experimental values are 6.7% and 9.3% respectively. Therefore, the results of the numerical simulation can be considered is reliable.

进一步的,所述利用粒子群算法对BP神经网络的进行优化,得到PSO-BP-ANN预测模型包括:Further, the particle swarm algorithm is used to optimize the BP neural network, and the PSO-BP-ANN prediction model is obtained including:

选取不同的迭代次数和种群规模进行BP神经网络的训练及测试,确定目标迭代次数和种群规模;Select different iteration times and population sizes to train and test the BP neural network, and determine the target iteration times and population size;

基于所述目标迭代次数和种群规模,通过j因子和f因子确定加速度因子;Based on the target number of iterations and the population size, the acceleration factor is determined by the j factor and the f factor;

根据加速度因子、目标迭代次数和种群规模确定PSO-BP-ANN预测模型。The PSO-BP-ANN prediction model is determined based on the acceleration factor, target iteration number and population size.

具体的,确定粒子群算法的最优参数配置:Specifically, determine the optimal parameter configuration of the particle swarm algorithm:

平直翅片换热器Straight fin heat exchanger

平直翅片通道PSO-BP-ANN模型的输入层为5个无量纲参数,输入参数分别为input1(Fp/De)、input2(Fh/De)、input3(t/De)、input4(Ld/De)和input5(Re),输出参数为j因子或f因子,其BP神经网络结构分别为5-10-1、5-4-1。因此,粒子群的维数D分别为71(5×10+10+10×1+1)和29(5×4+4+4×1+1)。初步设置粒子群算法的参数为:最大进化迭代次数为200,种群规模为100,加速度因子均为1.5,惯性权重为1。The input layer of the straight fin channel PSO-BP-ANN model is 5 dimensionless parameters. The input parameters are input1(F p /D e ), input2(F h /D e ), and input3(t/D e ). , input4(L d /D e ) and input5(Re), the output parameters are j factor or f factor, and their BP neural network structures are 5-10-1 and 5-4-1 respectively. Therefore, the dimensions D of the particle swarm are 71 (5×10+10+10×1+1) and 29 (5×4+4+4×1+1) respectively. The parameters of the particle swarm algorithm are initially set as follows: the maximum number of evolution iterations is 200, the population size is 100, the acceleration factors are both 1.5, and the inertia weight is 1.

首先确定最大迭代次数,取50、100、150、200和250不同的迭代次数进行模型的训练及测试。然后确定种群规模,取30、50、70、100和150不同的种群规模进行模型的训练及测试,最后根据选取的迭代次数和种群规模来通过j因子和f因子选择最优的加速度因子。First, determine the maximum number of iterations, and use different iteration numbers of 50, 100, 150, 200, and 250 to train and test the model. Then the population size is determined, and different population sizes of 30, 50, 70, 100 and 150 are used for model training and testing. Finally, the optimal acceleration factor is selected through j factor and f factor according to the selected number of iterations and population size.

平直翅片式换热器当最大迭代次数均为150、种群规模分别为150和100、加速度因子均为1.5时,j因子和f因子的PSO-BP-ANN模型预测测试集的性能最优。For straight fin heat exchangers, when the maximum number of iterations is 150, the population sizes are 150 and 100, and the acceleration factors are both 1.5, the PSO-BP-ANN model of j factor and f factor has the best performance in predicting the test set .

波浪翅片换热器Wave fin heat exchanger

波浪翅片通道PSO-BP-ANN模型输入层为5个无量纲参数,输入参数分别为input1(Fp/Fh)、input2(Fp/t)、input3(Ld/L)、input4(Fd/2A)和input5(Re),输出参数为j因子或f因子。j因子和f因子的BP神经网络结构分别为5-7-1、5-8-1,因此,粒子群的维数D分别为50(5×7+7+7×1+1)和57(5×8+8+8×1+1)。初步设置粒子群算法的参数为:最大进化迭代次数为200,种群规模为100,惯性权重为1,加速度因子均为1.5。The input layer of the corrugated fin channel PSO-BP-ANN model is 5 dimensionless parameters. The input parameters are input1(F p /F h ), input2(F p /t), input3(L d /L), input4( F d /2A) and input5(Re), the output parameter is j factor or f factor. The BP neural network structures of j factor and f factor are 5-7-1 and 5-8-1 respectively. Therefore, the dimension D of the particle swarm is 50 (5×7+7+7×1+1) and 57 respectively. (5×8+8+8×1+1). The parameters of the particle swarm algorithm are initially set as follows: the maximum number of evolution iterations is 200, the population size is 100, the inertia weight is 1, and the acceleration factors are all 1.5.

首先确定最大迭代次数,取50、100、150、200和250不同的迭代次数进行模型的训练及测试。然后确定种群规模,取30、50、70、100和150不同的种群规模进行模型的训练及测试,最后根据选取的迭代次数和种群规模来通过j因子和f因子选择最优的加速度因子。First, determine the maximum number of iterations, and use different iteration numbers of 50, 100, 150, 200, and 250 to train and test the model. Then the population size is determined, and different population sizes of 30, 50, 70, 100 and 150 are used for model training and testing. Finally, the optimal acceleration factor is selected through j factor and f factor according to the selected number of iterations and population size.

波浪翅片式换热器当最大迭代次数分别为150和250、种群规模均为100、加速度因子均为2.5和0.5的组合时,j因子和f因子的PSO-BP-ANN模型对测试集的预测性能最优。For corrugated fin heat exchangers, when the maximum number of iterations is 150 and 250 respectively, the population size is 100, and the acceleration factors are both 2.5 and 0.5, the PSO-BP-ANN model with j factor and f factor has a better performance on the test set. Best prediction performance.

百叶窗翅片换热器Louvered fin heat exchanger

百叶窗翅片通道PSO-BP-ANN模型的输入层为6个无量纲参数,输入参数分别为input1(Fp/Lp)、input2(Fh/Lp)、input3(Ld/Lp)、input4(t/Lp)、input5(La/90)和input6(Re),输出参数为j因子或f因子。j因子和f因子的BP神经网络结构分别为6-9-1、6-13-1,因此,粒子群的维数D分别为73(6×9+9+9×1+1)和105(6×13+13+13×1+1)。初步设置粒子群算法的参数为:最大进化迭代次数为200,种群规模为100,惯性权重为1,加速度因子均为1.5。The input layer of the louver fin channel PSO-BP-ANN model has 6 dimensionless parameters. The input parameters are input1(F p /L p ), input2(F h /L p ), and input3(L d /L p ). , input4(t/L p ), input5(L a /90) and input6(Re), the output parameter is j factor or f factor. The BP neural network structures of j factor and f factor are 6-9-1 and 6-13-1 respectively. Therefore, the dimension D of the particle swarm is 73 (6×9+9+9×1+1) and 105 respectively. (6×13+13+13×1+1). The parameters of the particle swarm algorithm are initially set as follows: the maximum number of evolution iterations is 200, the population size is 100, the inertia weight is 1, and the acceleration factors are all 1.5.

首先确定最大迭代次数,取50、100、150、200和250不同的迭代次数进行模型的训练及测试。然后确定种群规模,取30、50、70、100和150不同的种群规模进行模型的训练及测试,最后根据选取的迭代次数和种群规模来通过j因子和f因子选择最优的加速度因子。First, determine the maximum number of iterations, and use different iteration numbers of 50, 100, 150, 200, and 250 to train and test the model. Then the population size is determined, and different population sizes of 30, 50, 70, 100 and 150 are used for model training and testing. Finally, the optimal acceleration factor is selected through j factor and f factor according to the selected number of iterations and population size.

百叶窗翅片式换热器当最大迭代次数分别为100和150、种群规模分别为50和100、加速度因子分别为2、1和0.5、2.5时,PSO-BP-ANN模型的预测性能最优。For louvered fin heat exchangers, when the maximum number of iterations is 100 and 150, the population size is 50 and 100, and the acceleration factors are 2, 1, 0.5, and 2.5, respectively, the prediction performance of the PSO-BP-ANN model is optimal.

锯齿翅片换热器Sawtooth fin heat exchanger

锯齿翅片通道PSO-BP-ANN模型的输入层为4个无量纲参数,输入参数分别为input1(Fp/Fh)、input2(t/Lf)、input3(t/Fp)和input4(Re),输出参数为j因子或f因子。j因子和f因子的BP神经网络结构分别为4-11-1、4-10-1,因此,粒子群的维数D分别为67(4×11+11+11×1+1)和61(4×10+10+10×1+1)。初步设置粒子群算法的参数为:最大进化迭代次数为200,种群规模为100,惯性权重为1,加速度因子均为1.5。The input layer of the sawtooth fin channel PSO-BP-ANN model is 4 dimensionless parameters, and the input parameters are input1(F p /F h ), input2(t/L f ), input3(t/F p ) and input4 respectively. (Re), the output parameter is j factor or f factor. The BP neural network structures of j factor and f factor are 4-11-1 and 4-10-1 respectively. Therefore, the dimension D of the particle swarm is 67 (4×11+11+11×1+1) and 61 respectively. (4×10+10+10×1+1). The parameters of the particle swarm algorithm are initially set as follows: the maximum number of evolution iterations is 200, the population size is 100, the inertia weight is 1, and the acceleration factors are all 1.5.

首先确定最大迭代次数,取50、100、150、200和250不同的迭代次数进行模型的训练及测试。然后确定种群规模,取30、50、70、100和150不同的种群规模进行模型的训练及测试,最后根据选取的迭代次数和种群规模来通过j因子和f因子选择最优的加速度因子。First, determine the maximum number of iterations, and use different iteration numbers of 50, 100, 150, 200, and 250 to train and test the model. Then the population size is determined, and different population sizes of 30, 50, 70, 100 and 150 are used for model training and testing. Finally, the optimal acceleration factor is selected through j factor and f factor according to the selected number of iterations and population size.

锯齿翅片式换热器当最大迭代次数分别为150和50,种群规模分别为30和100,加速度因子均为1.5、1.5的组合时,j因子和f因子的PSO-BP-ANN模型预测测试集的性能最优。For sawtooth fin heat exchangers, when the maximum number of iterations are 150 and 50 respectively, the population size is 30 and 100 respectively, and the acceleration factors are both 1.5 and 1.5 combinations, the PSO-BP-ANN model prediction test of j factor and f factor The performance of the set is optimal.

Z型通道印刷电路板式换热器Z-channel printed circuit board heat exchanger

Z型通道印刷电路板式换热器PSO-BP-ANN模型的输入层为4个参数,输入参数分别为input1(D)、input2(Ф)、input3(P)和input4(Re),输出参数为Nu或f因子。因此,粒子群的维数D分别为49(4×8+8+8×1+1)和31(4×5+5+5×1+1)。初步设置粒子群算法的参数为:最大进化迭代次数为200,种群规模为100,惯性权重为1,加速度因子均为1.5。The input layer of the Z-channel printed circuit board heat exchanger PSO-BP-ANN model has 4 parameters. The input parameters are input1(D), input2(Ф), input3(P) and input4(Re), and the output parameters are Nu or f factor. Therefore, the dimensions D of the particle swarm are 49 (4×8+8+8×1+1) and 31 (4×5+5+5×1+1) respectively. The parameters of the particle swarm algorithm are initially set as follows: the maximum number of evolution iterations is 200, the population size is 100, the inertia weight is 1, and the acceleration factors are all 1.5.

首先确定最大迭代次数,取50、100、150、200和250不同的迭代次数进行模型的训练及测试。然后确定种群规模,取30、50、70、100和150不同的种群规模进行模型的训练及测试,最后根据选取的迭代次数和种群规模来通过j因子和f因子选择最优的加速度因子。First, determine the maximum number of iterations, and use different iteration numbers of 50, 100, 150, 200, and 250 to train and test the model. Then the population size is determined, and different population sizes of 30, 50, 70, 100 and 150 are used for model training and testing. Finally, the optimal acceleration factor is selected through j factor and f factor according to the selected number of iterations and population size.

Z型通道印刷电路板式换热器当最大迭代次数分别为100和200、种群规模均为100、加速度因子均为1.5、1.5时,Nu和f因子的PSO-BP-ANN模型预测测试集的性能最优。Z-type channel printed circuit board heat exchanger When the maximum iteration times are 100 and 200 respectively, the population size is 100, and the acceleration factors are 1.5 and 1.5, the PSO-BP-ANN model of Nu and f factors predicts the performance of the test set Optimal.

进一步的,所述将PSO-BP-ANN模型与多目标遗传算法相结合对目标换热器的结构参数进行优化设计包括:Further, the optimization design of the structural parameters of the target heat exchanger by combining the PSO-BP-ANN model with the multi-objective genetic algorithm includes:

初始化种群参数;Initialize population parameters;

设定当前种群参数;Set current population parameters;

确定换热器的目标函数,并根据所述PSO-BP-ANN模型和所述多目标遗传算法对所述目标函数进行计算优化,得到当前优化结果;Determine the objective function of the heat exchanger, and calculate and optimize the objective function according to the PSO-BP-ANN model and the multi-objective genetic algorithm to obtain the current optimization results;

判断所述当前优化结果是否收敛,若是,则进行输出得到帕累托前沿,若否,则所述当前种群参数加1,继续进行计算。Determine whether the current optimization result has converged. If so, output the Pareto front. If not, add 1 to the current population parameter and continue the calculation.

具体的,以板翅式换热器锯齿翅片通道和Z型通道印刷电路板式换热器为研究对象,将最优的PSO-BP-ANN模型与多目标遗传算法相结合对结构参数进行优化设计:Specifically, taking the sawtooth fin channel of the plate-fin heat exchanger and the Z-channel printed circuit board heat exchanger as the research objects, the optimal PSO-BP-ANN model was combined with the multi-objective genetic algorithm to optimize the structural parameters. design:

锯齿翅片通道的优化研究Optimization study of sawtooth fin channel

锯齿翅片通道多目标优化问题的约束可用下式表示。The constraints of the multi-objective optimization problem of sawtooth fin channels can be expressed by the following formula.

Minimize goals:-j=-netj(α,γ,δ,Re)=-netj(Fp/Fh,t/Fp,t/Lf,Re)Minimize goals:-j=-net j (α,γ,δ,Re)=-net j (F p /F h ,t/F p ,t/L f ,Re)

f=netf(α,γ,δ,Re)=netf(Fp/Fh,t/Fp,t/Lf,Re)f=net f (α,γ,δ,Re)=net f (F p /F h ,t/F p ,t/L f ,Re)

Subjected to:2.7≤Fh≤9.3;1.2≤Fp≤3.2;0.1≤Fp≤0.5;3≤Lf≤9Subjected to:2.7≤F h ≤9.3; 1.2≤F p ≤3.2; 0.1≤F p ≤0.5; 3≤L f ≤9

其中,j为传热因子,f为阻力因子,Lf为翅片长度、Fp为间距、Fh为高度,t为厚度,net为神经网络模型。将换热器的最大传热性能和最小阻力性能作为两个目标函数,将得到的板翅式换热器锯齿翅片通道最优的PSO-BP-ANN预测模型与NSGA-II相结合来对结构参数进行优化设计并得到Pareto优化解集,下表列出了NSGA-II的运行参数。优化流程见图4。NSGA-II的运行参数如表1所示。Among them, j is the heat transfer factor, f is the resistance factor, L f is the fin length, F p is the spacing, F h is the height, t is the thickness, and net is the neural network model. Taking the maximum heat transfer performance and minimum resistance performance of the heat exchanger as two objective functions, the optimal PSO-BP-ANN prediction model of the sawtooth fin channel of the plate-fin heat exchanger is combined with NSGA-II to predict The structural parameters are optimized and designed and the Pareto optimization solution set is obtained. The following table lists the operating parameters of NSGA-II. The optimization process is shown in Figure 4. The operating parameters of NSGA-II are shown in Table 1.

表1NSGA-II的运行参数Table 1 Operating parameters of NSGA-II

Z型通道印刷电路板式换热器的优化研究Optimization study of Z-channel printed circuit board heat exchanger

Z型通道印刷电路板式换热器多目标优化问题的约束可用下式表示。The constraints of the multi-objective optimization problem of Z-channel printed circuit board heat exchanger can be expressed by the following formula.

Minimize goals:-Nu=-netNu(D,φ,P,Re)Minimize goals:-Nu=-net Nu (D,φ,P,Re)

f=netf(D,φ,P,Re)f=net f (D,φ,P,Re)

Subjected to:5°≤φ≤45°;1.25≤D≤2.25;10≤P≤30Subjected to:5°≤φ≤45°; 1.25≤D≤2.25; 10≤P≤30

其中,f为阻力因子,Ф为通道角度、P为节距、D入口直径,Re为雷诺数,Nu为努塞尔数。将得到的Z型通道印刷电路板式换热器最优的PSO-BP-ANN预测模型与NSGA-II相结合来对结构参数进行优化设计并得到Pareto优化解集,表2列出了NSGA-II的运行参数。Among them, f is the resistance factor, Ф is the channel angle, P is the pitch, D is the inlet diameter, Re is the Reynolds number, and Nu is the Nusselt number. The optimal PSO-BP-ANN prediction model of the Z-channel printed circuit board heat exchanger was combined with NSGA-II to optimize the design of the structural parameters and obtain the Pareto optimization solution set. Table 2 lists NSGA-II. operating parameters.

表2NSGA-II的运行参数Table 2 Operating parameters of NSGA-II

将优化结果与CFD计算结果对比分析验证准确性。Compare the optimization results with the CFD calculation results to verify the accuracy.

具体的,所述目标函数包括:Specifically, the objective function includes:

换热器的最大传热性能和换热器的最小阻力性能。The maximum heat transfer performance of the heat exchanger and the minimum resistance performance of the heat exchanger.

本发明的有益效果如下:The beneficial effects of the present invention are as follows:

本发明采用粒子群算法对BP神经网络初始的权值和阈值进行优化。另外,PSO-BP-ANN模型与关联式对独立实验数据预测性能的对比结果证明了,无论从涵盖范围还是预测的准确度,PSO-BP-ANN预测模型均优于关联式。本发明将最优的PSO-BP-ANN模型与多目标遗传算法相结合,对板翅式换热器锯齿翅片通道和Z型通道印刷电路板式换热器的结构参数进行优化设计。通过CFD计算对优化结果的准确性进行了验证,结果证明了数值模拟、人工神经网络和多目标遗传算法相结合的方法可准确地优化设计换热器。This invention uses particle swarm algorithm to optimize the initial weights and thresholds of the BP neural network. In addition, the comparison of the prediction performance of the PSO-BP-ANN model and the correlation model on independent experimental data proves that the PSO-BP-ANN prediction model is better than the correlation model in terms of coverage and prediction accuracy. This invention combines the optimal PSO-BP-ANN model with a multi-objective genetic algorithm to optimize the design of the structural parameters of the sawtooth fin channel of the plate-fin heat exchanger and the Z-channel printed circuit board heat exchanger. The accuracy of the optimization results was verified through CFD calculations. The results proved that the method combining numerical simulation, artificial neural network and multi-objective genetic algorithm can accurately optimize the design of the heat exchanger.

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。Each embodiment in this specification is described in a progressive manner. Each embodiment focuses on its differences from other embodiments. The same and similar parts between the various embodiments can be referred to each other. This article uses specific examples to illustrate the principles and implementation methods of the present invention. The description of the above embodiments is only used to help understand the method and the core idea of the present invention; at the same time, for those of ordinary skill in the art, according to the present invention There will be changes in the specific implementation methods and application scope of the ideas. In summary, the contents of this description should not be construed as limitations of the present invention.

Claims (4)

1.一种基于人工神经网络的换热器性能预测及优化方法,其特征在于,包括:1. A heat exchanger performance prediction and optimization method based on artificial neural network, which is characterized by including: 构建多种换热器的性能数据库;Construct performance database of various heat exchangers; 基于所述多种换热器的性能数据库,利用粒子群算法对BP神经网络的进行优化,得到对应的PSO-BP-ANN预测模型;Based on the performance database of various heat exchangers, the particle swarm algorithm is used to optimize the BP neural network and the corresponding PSO-BP-ANN prediction model is obtained; 将PSO-BP-ANN模型与多目标遗传算法相结合对目标换热器的结构参数进行优化设计,得到优化结果,并对优化结果进行验证;The PSO-BP-ANN model is combined with the multi-objective genetic algorithm to optimize the design of the structural parameters of the target heat exchanger, obtain the optimization results, and verify the optimization results; 所述将PSO-BP-ANN模型与多目标遗传算法相结合对目标换热器的结构参数进行优化设计包括:The combination of the PSO-BP-ANN model and the multi-objective genetic algorithm to optimize the structural parameters of the target heat exchanger includes: 初始化种群参数;Initialize population parameters; 设定当前种群参数;Set current population parameters; 确定换热器的目标函数,并根据所述PSO-BP-ANN模型和所述多目标遗传算法对所述目标函数进行计算优化,得到当前优化结果;Determine the objective function of the heat exchanger, and calculate and optimize the objective function according to the PSO-BP-ANN model and the multi-objective genetic algorithm to obtain the current optimization results; 判断所述当前优化结果是否收敛,若是,则进行输出得到帕累托前沿,若否,则所述当前种群参数加1,继续进行计算;Determine whether the current optimization result has converged. If so, output the Pareto front. If not, add 1 to the current population parameter and continue the calculation; 具体的,锯齿翅片通道多目标优化问题的约束公式为:Specifically, the constraint formula of the multi-objective optimization problem of sawtooth fin channel is: ; ; 其中,j为传热因子,f为阻力因子,Lf为翅片长度、Fp为间距、Fh为高度,t为厚度,net为神经网络模型;Among them, j is the heat transfer factor, f is the resistance factor, L f is the fin length, F p is the spacing, F h is the height, t is the thickness, and net is the neural network model; Z型通道印刷电路板式换热器多目标优化问题的约束公式为:The constraint formula of the multi-objective optimization problem of Z-channel printed circuit board heat exchanger is: ; ; 其中,f为阻力因子,Ф为通道角度、P为节距、D入口直径,Re为雷诺数,Nu为努塞尔数;Among them, f is the resistance factor, Ф is the channel angle, P is the pitch, D is the entrance diameter, Re is the Reynolds number, and Nu is the Nusselt number; 所述目标函数包括:The objective function includes: 换热器的最大传热性能和换热器的最小阻力性能。The maximum heat transfer performance of the heat exchanger and the minimum resistance performance of the heat exchanger. 2.根据权利要求1所述的一种基于人工神经网络的换热器性能预测及优化方法,其特征在于,所述多种换热器的性能数据库包括:2. A heat exchanger performance prediction and optimization method based on artificial neural network according to claim 1, characterized in that the performance database of the multiple heat exchangers includes: 板翅式换热器和印刷电路板式换热器,其中,板翅式换热器包括:平直翅片换热器、波浪翅片换热器、百叶窗翅片换热器和锯齿翅片换热器。Plate fin heat exchangers and printed circuit board heat exchangers. Plate fin heat exchangers include: straight fin heat exchangers, corrugated fin heat exchangers, louvered fin heat exchangers and sawtooth fin heat exchangers. Heater. 3.根据权利要求2所述的一种基于人工神经网络的换热器性能预测及优化方法,其特征在于,所述构建多种换热器的性能数据库的方法包括:3. A heat exchanger performance prediction and optimization method based on artificial neural networks according to claim 2, characterized in that the method of constructing a performance database of multiple heat exchangers includes: 利用文献调研及数据模拟构建平直翅片换热器性能数据库、波浪翅片换热器性能数据库和百叶窗翅片换热器性能数据库、锯齿翅片换热器性能数据库、印刷电路板式换热器性能数据库。Use literature research and data simulation to construct performance databases for straight fin heat exchangers, corrugated fin heat exchangers, louvered fin heat exchangers, sawtooth fin heat exchangers, and printed circuit board heat exchangers. Performance database. 4.根据权利要求1所述的一种基于人工神经网络的换热器性能预测及优化方法,其特征在于,所述利用粒子群算法对BP神经网络的进行优化,得到PSO-BP-ANN预测模型包括:4. A heat exchanger performance prediction and optimization method based on artificial neural network according to claim 1, characterized in that the particle swarm algorithm is used to optimize the BP neural network to obtain PSO-BP-ANN prediction. Models include: 选取不同的迭代次数和种群规模进行BP神经网络的训练及测试,确定目标迭代次数和种群规模;Select different iteration times and population sizes to train and test the BP neural network, and determine the target iteration times and population size; 基于所述目标迭代次数和种群规模,通过j因子和f因子确定加速度因子;Based on the target number of iterations and the population size, the acceleration factor is determined by the j factor and the f factor; 根据加速度因子、目标迭代次数和种群规模确定PSO-BP-ANN预测模型。The PSO-BP-ANN prediction model is determined based on the acceleration factor, target iteration number and population size.
CN202310191053.5A 2023-03-02 2023-03-02 Heat exchanger performance prediction and optimization method based on artificial neural network Active CN116341372B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310191053.5A CN116341372B (en) 2023-03-02 2023-03-02 Heat exchanger performance prediction and optimization method based on artificial neural network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310191053.5A CN116341372B (en) 2023-03-02 2023-03-02 Heat exchanger performance prediction and optimization method based on artificial neural network

Publications (2)

Publication Number Publication Date
CN116341372A CN116341372A (en) 2023-06-27
CN116341372B true CN116341372B (en) 2024-01-23

Family

ID=86884961

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310191053.5A Active CN116341372B (en) 2023-03-02 2023-03-02 Heat exchanger performance prediction and optimization method based on artificial neural network

Country Status (1)

Country Link
CN (1) CN116341372B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104457345A (en) * 2013-09-17 2015-03-25 中国石油化工股份有限公司 Fin plate heat exchanger for condensing waste heat recovery
CN107885891A (en) * 2016-09-29 2018-04-06 中国航发商用航空发动机有限责任公司 A kind of aero-engine overall performance optimization method
CN113505519A (en) * 2021-04-13 2021-10-15 北京工业大学 Laser cutting machining modeling and parameter optimization selection method based on PSO-BP neural network and NSGA-II
CN113657034A (en) * 2021-08-16 2021-11-16 郑州轻工业大学 Transformer oil temperature prediction method based on improved particle swarm optimization neural network algorithm
CN113868966A (en) * 2021-12-02 2021-12-31 浙江大学 An optimal design method for the structural parameters of the economizer of a biomass boiler
CN113886980A (en) * 2021-09-16 2022-01-04 武汉科技大学 A collaborative optimization method for self-excited oscillating heat exchange tubes based on BP neural network
WO2022105294A1 (en) * 2020-11-20 2022-05-27 东北大学 Interval prediction method for hot rolling coiling temperature
CN114741961A (en) * 2022-03-30 2022-07-12 华中科技大学 Method and system for optimizing the arrangement of airfoil fins for printed circuit board heat exchangers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104457345A (en) * 2013-09-17 2015-03-25 中国石油化工股份有限公司 Fin plate heat exchanger for condensing waste heat recovery
CN107885891A (en) * 2016-09-29 2018-04-06 中国航发商用航空发动机有限责任公司 A kind of aero-engine overall performance optimization method
WO2022105294A1 (en) * 2020-11-20 2022-05-27 东北大学 Interval prediction method for hot rolling coiling temperature
CN113505519A (en) * 2021-04-13 2021-10-15 北京工业大学 Laser cutting machining modeling and parameter optimization selection method based on PSO-BP neural network and NSGA-II
CN113657034A (en) * 2021-08-16 2021-11-16 郑州轻工业大学 Transformer oil temperature prediction method based on improved particle swarm optimization neural network algorithm
CN113886980A (en) * 2021-09-16 2022-01-04 武汉科技大学 A collaborative optimization method for self-excited oscillating heat exchange tubes based on BP neural network
CN113868966A (en) * 2021-12-02 2021-12-31 浙江大学 An optimal design method for the structural parameters of the economizer of a biomass boiler
CN114741961A (en) * 2022-03-30 2022-07-12 华中科技大学 Method and system for optimizing the arrangement of airfoil fins for printed circuit board heat exchangers

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Thermal performance and ground temperature of vertical pilefoundation heat exchangers: A case study;Gao J, Zhang X, Liu J;Applied Thermal Engineering;第2295-2304页 *
基于混合粒子群算法优化BP神经网络的机床热误差建模;马廷洪;姜磊;中国工程机械学报(第3页);第37-40页 *
桩基螺旋管换热器数值模拟研究;徐明海,刘文波,张知宇;建筑热能通风空调;第36卷(第7期);第10-13页 *

Also Published As

Publication number Publication date
CN116341372A (en) 2023-06-27

Similar Documents

Publication Publication Date Title
Wen et al. Optimization investigation on configuration parameters of serrated fin in plate-fin heat exchanger using genetic algorithm
Wang et al. Intelligent optimization design of shell and helically coiled tube heat exchanger based on genetic algorithm
CN114741961B (en) Method and system for optimizing the arrangement structure of airfoil fins of printed circuit board heat exchanger
Wang et al. Optimization design of slotted fin by numerical simulation coupled with genetic algorithm
Ye et al. A multi-objective optimization approach for battery thermal management system based on the combination of BP neural network prediction and NSGA-II algorithm
Reynoso-Jardón et al. Artificial neural networks (ANN) to predict overall heat transfer coefficient and pressure drop on a simulated heat exchanger
CN116776773B (en) Tube type optimization system and method for straight fin tube type heat exchanger
Mahdi et al. Numerical investigations of turbulent natural convection heat transfer within a wind turbine nacelle operating in hot climate
Wen et al. Optimal design of liquid-cooled plates for lithium-ion batteries using multi-objective topology optimization
Yicong et al. Structural parameter design of welded plate heat exchanger based on multi-objective optimization algorithm
Hosseini et al. Optimization of FX-70 refrigerant evaporative heat transfer and fluid flow characteristics inside the corrugated tubes using multi-objective genetic algorithm
Lu et al. Artificial neural network prediction and multi-objective genetic algorithm optimization of the microchannel heat sink with trapezoidal ribs
Liu et al. Stacked ensemble learning approach for PCM-based double-pipe latent heat thermal energy storage prediction towards flexible building energy
CN116341372B (en) Heat exchanger performance prediction and optimization method based on artificial neural network
Song et al. Topology optimization for cold plate using neural networks as proxy models
Ding et al. Development of a hybrid CFD-ANN method with multi-objective optimization for airfoil-finned PCHE used in Gen-IV nuclear systems
Xu et al. Hybrid of non-dominated sorting genetic algorithm II and invasive weed optimization for fan duct surface heat exchanger configuration optimization design
Rodriguez-Cabal et al. Pre-Proof File Optimizing the Overall Heat Transfer Coefficient of a Spiral Plate Heat Exchanger Using GAMS
Ju et al. Matrixed modeling method and entropy generation minimization analysis of heat supply system based on standard thermal resistance
Zhong et al. Transfer learning based topology optimization of battery cooling channels design for improved thermal performance
Wang et al. Multi-objective optimization of a printed circuit heat exchanger design
Wu et al. Multi-objective optimization analysis of corrugated plate dryer
CN114510844A (en) Method and application of structure design of tree-shaped heat pipe by particle swarm evolution
Wang et al. Numerical modeling and multi-objective optimization of a novel cross-flow heat exchanger with rotated aligned tube bank
Gong et al. Airside friction and heat transfer performance of micro‐bare‐tube heat exchangers with bundle diameters varying gradually from 1.0 to 0.4 mm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Duan Xinyue

Inventor after: Hao Shaowen

Inventor after: Sun Zhaoliang

Inventor after: Zhu Chuanyong

Inventor after: Huang Binghuan

Inventor after: Lv Yuling

Inventor after: Gong Liang

Inventor after: Xu Minghai

Inventor before: Duan Xinyue

Inventor before: Sun Zhaoliang

Inventor before: Hao Shaowen

Inventor before: Zhu Chuanyong

Inventor before: Huang Binghuan

Inventor before: Lv Yuling

Inventor before: Gong Liang

Inventor before: Xu Minghai

GR01 Patent grant
GR01 Patent grant