CN116328483A - 耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法 - Google Patents

耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法 Download PDF

Info

Publication number
CN116328483A
CN116328483A CN202310121618.2A CN202310121618A CN116328483A CN 116328483 A CN116328483 A CN 116328483A CN 202310121618 A CN202310121618 A CN 202310121618A CN 116328483 A CN116328483 A CN 116328483A
Authority
CN
China
Prior art keywords
air
heat
carbon dioxide
compressed air
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310121618.2A
Other languages
English (en)
Inventor
刘卫山
王涛
董昊
何沐航
方梦祥
高翔
骆仲泱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202310121618.2A priority Critical patent/CN116328483A/zh
Publication of CN116328483A publication Critical patent/CN116328483A/zh
Priority to PCT/CN2024/075935 priority patent/WO2024169721A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/053Pressure swing adsorption with storage or buffer vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/02Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/013Carbone dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

本发明公开了一种耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法。本发明系统包括压缩空气储能系统、余压控制系统、余热集中存储与控制系统和直接空气二氧化碳捕集系统。本发明系统和方法可以有效利用压缩空气储能技术的余压和余热,降低直接空气二氧化碳捕集系统的运行能耗和成本;另外,本发明系统和方法可利用对间歇性的可再生能源进行“削峰填谷”,直接空气二氧化碳捕集技术存储的CO2可作为化学利用和生物利用。本发明布置灵活,可实现大幅度节能,能更大限度地将可再生能源存储和利用。

Description

耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余 热的系统和方法
技术领域
本发明涉及利用可再生能源的空气二氧化碳分离捕集和节能环保技术领域,具体涉及一种耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法。
背景技术
全球变暖现象带来的极端天气问题,使得人们逐渐认识到大气中二氧化碳(CO2)浓度继续升高将危及人类的生活与生存。目前,大气中二氧化碳浓度已经达到约417ppm,且以2ppm每年的速度逐年升高。二氧化碳捕集与利用(CCUS)技术被认为是未来大规模减少温室气体排放、减缓全球变暖最经济、可行的方法,其中,作为一种CCUS关键技术,负排放的直接空气二氧化碳捕集(DAC)技术的规模化应用有助于在短期内大幅削减二氧化碳排放量,并可实现控制大气中CO2浓度。可再生能源的规模利用是一种以从源头上减少化石能源消耗的减少CO2大幅度排放的有效措施。目前,可再生能源的规模逐渐扩大,考虑到电网的冲击效应,部分地区出现了“弃风弃电”的现象,储能技术作为一种电网的“削峰填谷”技术为可再生能源大规模部署提供腾飞的动力。
储能技术可大幅度减少可再生能源的间歇性工作对电网的冲击。目前,储能技术大致分为化学储能、电磁储能和机械储能。由于技术成熟度较低和研究较晚的原因,化学储能和电磁储能暂时难以实现较大规模的应用。机械储能主要包含抽水蓄能、飞轮储能和压缩空气储能,其发展规模最大,技术成熟度也最高。压缩空气储能利用可再生能源和电网谷负荷时的电能,在用电谷期将经由压缩机压至6~10MPa的高压空气存储于盐穴等储气库中,在用电峰期释放压缩空气以驱动膨胀做功装置做功产电能的能量存储系统。压缩空气储能系统具有存储密度高、灵活性好、成本低、使用寿命长等优点,有望解决可再生能源弃风弃电问题,实现可再生能源大规模发展。
另一方面,直接减少大气中CO2含量的直接空气二氧化碳捕集技术是一种直接降低CO2排放的有效措施。目前,直接空气二氧化碳捕集技术主要包括高温化学吸收法和低温固体吸附法。高温化学吸收法的工作原理是利用碱性吸收剂吸收CO2,吸收CO2的吸收剂与氢氧化钙反应生成碳酸钙沉淀,同时再生碱性吸收剂,最后将碳酸钙加热至高达900℃的再生氧化钙用于再生氢氧化钙,碳酸钙分解过程释放高纯度的二氧化碳。由于高温带来的操作复杂性和设备要求,低温固体吸附法更得到广泛的关注和认可,其采用固体吸附剂对空气的二氧化碳进行吸附,然后利用一定温度(<120℃)的蒸汽再生吸附剂和解吸出高纯度CO2。但是,空气中CO2的超低分压(约400ppm,即0.04%),导致直接空气二氧化碳捕集系统存在再生过程操作复杂、设备体积庞大等问题;更重要的是当直接空气二氧化碳捕集系统过程中无自然风可用时,吸附接触装置内气体流动压降(>300Pa)所需的能量将是无比巨大的,其所需风机泵送空气的能耗占比高达直接空气二氧化碳捕总集能耗的50%~80%,致使直接空气二氧化碳捕集的系统捕集能耗成本居高不下。
随着可再生电能匹配的储能技术的快速发展,可再生电能存储和CCUS技术耦合成为现实。为充分发挥直接空气二氧化碳捕集系统灵活布置性、负碳排放等优势和提升压缩空气储能系统的能量利用效率,将直接空气二氧化碳捕集系统的高能耗过程和压缩空气储能系统的余压余热耦合有望降低直接空气二氧化碳捕集系统能耗和成本,同时提升压缩空气储能的能量利用率。
发明内容
鉴于上述直接空气二氧化碳捕集技术的空气源超低分压导致高送风能耗以及吸附材料的吸附性能受湿度影响较大的问题,本发明目的在于提供一种耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法,用于解决直接空气二氧化碳捕集系统的风机能耗高和吸附剂吸附性能受湿度影响波动的问题。
本发明的耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法,其捕集的CO2可供于工业应用或者生物应用。本发明通过直接空气二氧化碳捕集技术和压缩空气储能技术的耦合,有效降低直接空气二氧化碳捕集系统风机能耗和再生能耗,另外,耦合系统可有效实现可再生能源的利用,降低捕集过程中的碳足迹,实现的负排放。
具体技术方案如下:
一种耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统(以下或简称“耦合系统”),包括压缩空气储能系统、余压控制系统、余热集中存储与控制系统和直接空气二氧化碳捕集系统;
压缩空气储能系统包括依次连接的空气干燥装置、引风装置、空气压缩装置、第一热交换系统、压缩空气存储库、第二热交换系统、膨胀做功装置和发电机;
直接空气二氧化碳捕集系统包括依次连接的吸附/解吸接触器、CO2压缩装置、第三热交换系统和CO2高压液化罐;
余压控制系统的进气端通过第一DAC气路与引风装置的出气端连接,通过第二DAC气路与膨胀做功装置的出气端连接;余压控制系统的出气端与吸附/解吸接触器连接;余压控制系统内设有热交换器;
余热集中存储与控制系统通过第一储热管线与第一热交换系统连接构成空气压缩热回收循环管路,通过第一供热管路与第二热交换系统连接构成加热压缩空气循环管路,通过第二供热管路与吸附/解吸接触器连接构成CO2解吸循环管路,通过第二储热管线与第三热交换系统连接构成CO2压缩热回收循环管路;余热集中存储与控制系统通过第三供热管路与余压控制系统内的热交换器连接构成用于调控经过余压控制系统(9)的空气温度的热风循环管路。
优选的,空气压缩热回收循环管路和CO2压缩热回收循环管路回收的热量用于供给加热压缩空气循环管路、CO2解吸循环管路和热风循环管路。
在一优选例中,余热集中存储与控制系统包括常温热量存储库、中温热量存储库和高温热量存储库,用于接收和存储空气压缩热回收循环管路和CO2压缩热回收循环管路回收的热量;
常温热量存储库的温度范围为5℃~60℃,与第三供热管路连接,为余压控制系统提供稳定的热源,调节直接空气二氧化碳吸附所需空气的温度;
中温热量存储库的温度范围为70℃~150℃,与第一供热管路和第二供热管路连接,提供吸附/解吸接触器吸附剂再生和第二热交换系统所需的热量;
高温热量存储库的温度范围为160℃~250℃,与第一供热管路连接,为第二热交换系统提供热量。
优选的,第一供热管路、第二供热管路和第三供热管路中的介质分别独立为空气、水、蒸汽、油中的至少一种。
在一优选例中,余压控制系统内还设有泄压装置和分风装置,用于与吸附/解吸接触器匹配气压和气量。
优选的,余压控制系统的出气端气体参数条件包括:压力范围为1.01bar~4.01bar,湿度范围为10% RH~60% RH,温度范围为5℃~40℃。
优选的,吸附/解吸接触器内的CO2吸附剂材料为活性碳、分子筛、固态胺、季铵类、金属有机骨架中的至少一种,其再生方式包括变温、变湿、变压、电化学再生。
本发明还提供了一种耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的方法,将所述的耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统匹配可再生能源;
所述方法包括以下两种运行方式:
运行方式1):可再生能源丰富,压缩空气储能系统储气,空气进入空气干燥装置和引风装置后,一部分经空气压缩装置压缩后存储于压缩空气存储库,空气压缩过程放出的热量于第一热交换系统经空气压缩热回收循环管路存储于余热集中存储与控制系统,另一部分经第一DAC气路、余压控制系统进入吸附/解吸接触器,被吸附/解吸接触器内的吸附剂吸附脱除CO2后排出;第二供热管路为吸附/解吸接触器提供吸附剂脱附CO2所需的湿度和/或温度条件,解吸的CO2经CO2压缩装置压缩后存储于CO2高压液化罐(14),CO2压缩过程放出的热量于第三热交换系统经CO2压缩热回收循环管路存储于余热集中存储与控制系统;
运行方式2):可再生能源不足,压缩空气存储库内存储的压缩空气经第二热交换系统加热后进入膨胀做功装置做功,用于发电机发电,做功后湿度、温度、压力稳定的空气经第二DAC气路、余压控制系统进入吸附/解吸装置,被吸附/解吸接触器内的吸附剂吸附脱除CO2后排出;第二供热管路为吸附/解吸接触器提供吸附剂脱附CO2所需的湿度和/或温度条件,解吸的CO2经CO2压缩装置压缩后存储于CO2高压液化罐,CO2压缩过程放出的热量于第三热交换系统经CO2压缩热回收循环管路存储于余热集中存储与控制系统。
优选的,在冬季等空气温度较低时,可通过热风循环管路、热交换器加热经过余压控制系统的空气。
本发明的耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法,涉及的过程有:
1、干燥过程:当空气湿度较高时,将有较高湿度的空气,经空气干燥装置降至较低的相对湿度,为压缩空气储能系统和直接空气二氧化碳捕集系统提供具有湿度可控的空气气源。空气干燥装置内可设置干燥剂,所述干燥剂包括氯化钙、硅胶、硫酸钙、活性氧化铝等,可将空气的相对湿度降低至10% RH~60% RH。
2、空气压缩储能过程:当可再生能源发电量丰富时,压缩空气储能系统将干燥的空气在压缩空气装置压缩,经第一热交换系统降温后将高压空气存储于压缩空气存储库。
3、压缩空气做功过程:在可再生能源发电量不足时,压缩空气储能系统存储的压缩空气经第二热交换系统加热后进入膨胀做功装置做功,带动发电机发电。优选的,膨胀做功装置出口空气的压力为1.01~4.01bar,湿度范围为10%~60% RH,温度为5℃~40℃。
4、余压控制系统调节过程:调节由引风装置和压缩空气储能系统所提供的空气压力、湿度和温度,使压力、湿度和温度处于直接空气二氧化碳捕集系统所需的参数,通入直接空气二氧化碳捕集系统;同时,将带压空气合理分配给直接空气二氧化碳捕集系统的多个吸附/解吸接触器,并设有引风(流)装置,调节直接空气二氧化碳捕集系统的供给风量。
5、余热集中存储与控制系统控制气体温度:将压缩空气储能系统和直接空气二氧化碳捕集系统运行过程放出并存储起来的热量经第二热交换系统提供热量给压缩空气,加热后的压缩空气通入膨胀做功装置做功;在外界温度较低时,余热集中存储与控制系统存储的部分热量用于加热余压控制系统中的空气,加热后通入低中温度吸附/解吸接触器;当吸附剂吸附饱和后,余热集中存储与控制系统存储的部分热量用于再生吸附解吸接触的吸附剂和CO2
其中,耦合系统的产热过程包括空气压缩装置后第一热交换系统储热和CO2压缩装置后第三热交换系统储热;
其中,耦合系统的供热对象有需求常温的耦合系统余压控制系统、需求中高温度的第二热交换系统和低中温度吸附/解吸接触器。
6、CO2吸附过程:在可再生能源丰富时,压缩空气膨胀做功过程暂停,将由空气干燥装置和引风装置经第一DAC气路泵送的干燥空气通入余压控制系统控制压力、温度后进入吸附/解吸接触器;或者在可再生能源不足时,压缩空气膨胀做功过程开启,由在膨胀做功装置中做功后带余压的压缩空气经余压控制系统后通入吸附/解吸接触器;吸附后的空气由吸附/解吸接触器的另一侧排出,吸附剂在装置内进行吸附CO2过程。吸附剂形式可为固体,包括碱性离子交换树脂、季铵类聚合物、季膦类聚合物、负载胺基的分子筛、负载胺基的金属有机骨架、负载胺基的活性炭等,以颗粒或者膜等形式布置。
7、吸附剂解吸再生过程:可采用变湿或者变温再生方式,利用余热集中存储与控制系统存储的热量,使用一定温度的温水或者蒸汽实现吸附材料再生,同时释放高浓度CO2。变湿再生,可选择喷淋或雾化润湿吸附剂实现CO2再生,再生水温度为20~60℃;变温再生,可选择用80℃~120℃的蒸汽再生吸附剂,并释放CO2
吸附剂解吸再生过程结束之后,进入下一个吸附循环,利用带压空气均匀吹扫吸附/解吸接触器内的吸附剂,进行直接空气二氧化碳捕集与CO2再生过程。
8、CO2压缩装置压缩过程:高纯CO2经压缩装置压缩存储于CO2高压液化罐内。
本发明与现有技术相比,有益效果有:
耦合系统可以有效利用压缩空气储能技术的余压和余热,降低直接空气二氧化碳捕集系统的运行能耗和成本;另外,耦合系统可利用对间歇性的可再生能源进行“削峰填谷”,直接空气二氧化碳捕集技术存储的CO2可作为化学利用和生物利用。本发明布置灵活,可实现大幅度节能,能更大限度地将可再生能源存储和利用。
余压利用新方法中压缩空气储能系统的带压力空气可作为直接空气二氧化碳捕集系统的优质空气气源,余压控制系统提供稳定压力的空气,减少直接空气二氧化碳捕集系统中的风机能耗(约占总能耗的50%~80%)。
余压利用新方法中直接空气二氧化碳捕集系统可由余压控制系统提供稳定温度和湿度的空气,实现空气二氧化碳捕集系统吸附剂不受空气湿度的影响,保持较高的吸附性能和稳定性,循环吸附性能提升可20%~50%;另外,稳定温度的空气可使直接空气二氧化碳捕集系统不受寒冷地区天气的影响,实现全年不受空气温度的影响运行。
耦合系统中的空气压缩装置和CO2压缩装置可实现进一步的耦合或者公用,第一热交换器系统和第三热交换系统可实现部分的耦合或者公用,进一步的耦合可降低系统所需的设备数量或者备用,进而降低耦合系统成本。
附图说明
图1为本发明的耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法的示意图;
图2为余压控制系统的结构示意图。
具体实施方式
下面结合附图及具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的操作方法,通常按照常规条件,或按照制造厂商所建议的条件。
如图1所示,一种耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统,包括压缩空气储能系统、余压控制系统9、余热集中存储与控制系统10和直接空气二氧化碳捕集系统。
压缩空气储能系统包括依次连接的空气干燥装置1、引风装置2、空气压缩装置3、第一热交换系统4、压缩空气存储库5、第二热交换系统6、膨胀做功装置7和发电机8。
直接空气二氧化碳捕集系统包括依次连接的吸附/解吸接触器11、CO2压缩装置12、第三热交换系统13和CO2高压液化罐14。
余压控制系统9的进气端通过第一DAC气路18与引风装置2的出气端连接,通过第二DAC气路19与膨胀做功装置7的出气端连接;余压控制系统9的出气端与吸附/解吸接触器11连接。如图2所示,余压控制系统9内沿气流方向依次设有泄压装置15、热交换器16和分风装置17,用于与吸附/解吸接触器11匹配气压和气量。
余热集中存储与控制系统10通过第一储热管线20与第一热交换系统4连接构成空气压缩热回收循环管路,通过第一供热管路21与第二热交换系统6连接构成加热压缩空气循环管路,通过第二供热管路22与吸附/解吸接触器11连接构成CO2解吸循环管路,通过第二储热管线23与第三热交换系统13连接构成CO2压缩热回收循环管路;余热集中存储与控制系统10通过供热风管路24与余压控制系统9内的热交换器连接构成用于调控经过余压控制系统9的空气温度的热风循环管路。
空气压缩热回收循环管路和CO2压缩热回收循环管路回收的热量用于供给加热压缩空气循环管路、CO2解吸循环管路和热风循环管路。
余热集中存储与控制系统10包括常温热量存储库、中温热量存储库和高温热量存储库,用于接收和存储空气压缩热回收循环管路和CO2压缩热回收循环管路回收的热量。
常温热量存储库的温度范围为5℃~60℃,与供热风管路24连接,为余压控制系统9提供稳定的热源,调节直接空气二氧化碳吸附所需空气的温度。
中温热量存储库的温度范围为70℃~150℃,与第一供热管路21和第二供热管路22连接,提供吸附/解吸接触器11吸附剂再生和第二热交换系统6所需的热量;
高温热量存储库的温度范围为160℃~250℃,与第一供热管路21连接,为第二热交换系统6提供热量。
第一供热管路、第二供热管路中的介质分别独立为水、蒸汽、油中的至少一种。
一种耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的方法,将上述耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统匹配可再生能源;
所述方法包括以下两种运行方式:
运行方式1):可再生能源丰富,压缩空气储能系统储气,空气进入空气干燥装置1和引风装置2后,一部分经空气压缩装置3压缩后存储于压缩空气存储库5,空气压缩过程放出的热量于第一热交换系统4经空气压缩热回收循环管路存储于余热集中存储与控制系统10,另一部分经第一DAC气路18、余压控制系统9进入吸附/解吸接触器11,被吸附/解吸接触器11内的吸附剂吸附脱除CO2后排出;第二供热管路22为吸附/解吸接触器11提供吸附剂脱附CO2所需的湿度和/或温度条件,解吸的CO2经CO2压缩装置12压缩后存储于CO2高压液化罐14,CO2压缩过程放出的热量于第三热交换系统13经CO2压缩热回收循环管路存储于余热集中存储与控制系统10;
运行方式2):可再生能源不足,压缩空气存储库5内存储的压缩空气经第二热交换系统6加热后进入膨胀做功装置7做功,用于发电机8发电,做功后湿度、温度、压力稳定的空气经第二DAC气路19、余压控制系统9进入吸附/解吸装置11,被吸附/解吸接触器11内的吸附剂吸附脱除CO2后排出;第二供热管路22为吸附/解吸接触器11提供吸附剂脱附CO2所需的湿度和/或温度条件,解吸的CO2经CO2压缩装置12压缩后存储于CO2高压液化罐14,CO2压缩过程放出的热量于第三热交换系统13经CO2压缩热回收循环管路存储于余热集中存储与控制系统10。
在冬季等空气温度较低时,可通过热风循环管路、热交换器加热经过余压控制系统9的空气。
本发明的耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法的有益效果有:
A)本发明的耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法,与现行的工艺相比,可有效利用压缩空气储能技术的余压,大幅度降低吸附过程的风机能耗,实现直接空气二氧化碳捕集的捕集能耗与成本的降低。
B)本发明可实现可再生能源的有效利用,直接空气二氧化碳捕集系统和压缩空气储能系统均可有效利用可再生的电能,减少可再生能源对电网的冲击,实现电网的“消峰填谷”。
C)本发明工艺新颖,可有效压缩空气储能技术的稳定压力、湿度和温度的空气,减少空气湿度对吸附剂的吸附性能影响,进而有效降低直接空气二氧化碳捕集系统的捕集能耗与成本。
D)本发明的耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法可实现仅利用可再生能的电能实现CO2捕集,整个过程的碳足迹很小,对环境友好。
实施例1
采用上述如图1、图2所示的耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法。
直接空气二氧化碳捕集系统采用变湿再生吸附方式,其再生所需的再生水的热量由压缩空气第一热交换系统和CO2压缩装置释放并存储于常温水箱的热量提供,所需水温为20~60℃。
本实施例的耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法的运行过程包括:
干燥过程:将有较高湿度的空气,经空气干燥装置降至较低的相对湿度,为压缩空气储能系统和直接空气二氧化碳捕集系统提供干燥的气源。
压缩空气储能过程:如附图1所示,在可再生电能丰富时,将湿度随天气变化的高湿度空气经空气干燥装置和引风装置,通入压缩气路后在空气压缩装置中压缩至10MPa压力,高压空气存储于压缩空气存储库,压缩过程释放的热量由水带出存储于余热集中存储和控制系统中;
其中,压缩步骤运行时间可持续5~8小时,压缩空气存储库的空气量范围1000m3~10000000m3
压缩空气做功过程:在可再生电能匮乏时,存储于压缩空气存储库内的高压空气,经第二热交换系统提升温度后,高压空气在膨胀做功装置内做功带动发电机发电,实现供给给周边用户或电网“填峰”,同时排出稳定压力、温度和湿度的空气;
其中,膨胀做功装置做功发电步骤运行时间可持续2~6小时,膨胀做功装置空气出口参数:出口空气湿度在10%~60% RH,出口温度在5~40℃,出口压力在1.01~4.01bar范围内。
CO2吸附过程:如附图1所示,在可再生电能丰富时,将空气干燥装置和引风机泵送的含二氧化碳(400ppm)的干燥空气经第一DAC气路通入CO2吸附/解吸接触器,捕集装置内的吸附剂吸附CO2,未被吸附的空气(废气)由吸附/解吸接触器的通风出口排除,通风一段时间,直至吸附剂吸附饱和,其饱和吸附容量约0.2mmol/g~3mmol/g;
在可再生电能匮乏时,空气干燥装置、引风装置、空气压缩装置,第一热交换系统等耗电装置关闭,直接将膨胀做功装置做功发电后稳定压力、温度和湿度的空气经第二DAC气路接入CO2吸附/解吸接触器,吸附/再生接触器内的吸附剂吸附CO2,未被吸附的空气(废气)由吸附/解吸接触器的通风出口排除,通风一段时间,直至吸附剂吸附饱和;
其中,吸附/解吸接触器装置可采用内置吸附剂,吸附剂可为颗粒形式、膜等形式,接触器内压降300Pa~30000Pa。
CO2解吸过程:吸附剂吸附饱和后,关闭吸附/解吸风机以及进风口和出风口,利用真空泵将吸附/解吸接触器抽至一定的负压,然后喷淋来自余热集中存储和控制系统的一定温度水溶液,通过变压变湿再生原理,加速CO2的解吸;
其中,水溶液温度为20℃~60℃,吸附剂可为季胺化,季膦化的纤维素、活性碳、分子筛、金属有机骨架等材料。
压缩CO2过程:将由吸附/再生接触器再生的CO2压缩至液化CO2状态,存储于CO2液化罐内,压缩过程的热量由第三热交换系统传热入余热集中存储和控制系统存储。
实施例2
采用上述如图1、图2所示的耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法。
直接空气二氧化碳捕集系统采用变温再生吸附方式,其再生所需的再生蒸汽热量由压缩空气第一热交换系统和CO2压缩装置释放并存储于中温水箱和高温水箱的热量提供。
本实施例的耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法的运行过程包括:
干燥过程:将有较高湿度的空气,经空气干燥装置降至较低的相对湿度,为压缩空气储能系统和直接空气二氧化碳捕集系统提供干燥的气源。
压缩空气储能过程:如附图1所示,在可再生电能丰富时,将湿度随天气变化的空气经空气干燥装置和引风装置,通入压缩气路后在空气压缩装置中压缩至10MPa压力,高压空气存储于压缩空气存储库,压缩过程释放的热量由水带出存储于余热集中存储和控制系统中;
其中,压缩步骤运行时间可持续5~8小时,压缩空气存储库的空气量范围1000m3~10000000m3
压缩空气做功过程:膨胀做功装置做功发电步骤,在可再生电能匮乏时,存储于压缩空气存储库内的高压空气,经第二热交换系统提升温度后,高压空气在膨胀做功装置内做功带动发电机发电,实现供给给周边用户或电网“填峰”,同时排出稳定压力、温度和湿度的空气。其中,膨胀做功装置做功发电步骤运行时间可持续2~6小时,膨胀做功装置空气出口参数:出口空气湿度在10%~60% RH,出口温度在5~40℃,出口压力1.01~4.01bar。
CO2吸附过程:如附图1所示,在可再生电能丰富时,将空气干燥装置和引风装置泵送的含二氧化碳(400ppm)的干燥空气经第一DAC气路通入CO2吸附/解吸接触器,捕集装置内的吸附剂吸附CO2,未被吸附的空气(废气)由吸附/解吸接触器的通风出口排除,通风一段时间,直至吸附剂吸附饱和,其饱和吸附容量约0.2mmol/g~5mmol/g;
在可再生电能匮乏时,空气干燥装置、引风装置、空气压缩装置,第一热交换系统等耗电装置关闭,直接将膨胀做功装置做功发电后稳定压力、温度和湿度的空气经第二DAC气路接入CO2吸附/解吸接触器,吸附/再生接触器内的吸附剂吸附CO2,未被吸附的空气(废气)由吸附/解吸接触器的通风出口排除,通风一段时间,直至吸附剂吸附饱和;
其中,吸附/解吸接触器装置可采用内置吸附剂,吸附剂可为负载胺型分子筛,负载胺型金属有机骨架,负载胺型聚合物,金属有机骨架,负载胺活性炭等变温吸附剂,吸附剂可为颗粒形式、膜等形式,接触器内压降300Pa~30000Pa。
CO2解吸过程:吸附剂吸附饱和后,余热集中存储和控制系统存储的高温蒸汽通入吸附/解吸接触器内,实现吸附剂的再生,蒸汽和CO2可通过冷凝器实现分离后CO2流入CO2压缩装置,蒸汽循环加热重新利用;
其中,吸附/解吸接触器所需蒸汽的温度范围为80℃~120℃。
压缩CO2过程:将由吸附/再生接触器再生的CO2压缩至液化CO2状态,存储于CO2液化罐内,压缩过程的热量由第三热交换系统传热入余热集中存储和控制系统存储;
实施例3
基于实施例1的耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法进行以下计算:
一、采用压缩空气存储库的储气容积为100万m3的压缩空气存储系统,即压缩储能系统的发电量约为300MW,可与捕集量约5万吨/年的直接空气二氧化碳捕集系统实现匹配。
假设10MPa下空气量约为大气压下的120倍;
压缩空气储能系统膨胀做功装置做功时间为5小时,并排出稳定温度、压力和湿度的空气;
直接空气二氧化碳捕集系统的吸附/解吸接触器的年吸附时间为6000小时;
假设空气中CO2含量为400ppm,1m3空气内的CO2含量为0.786g/m3
假设吸附/解吸接触器的捕集率为50%;
则年捕集量约为56000吨CO2/年。
二、利用压缩储能系统的稳定的余压可节省直接空气二氧化碳捕集系统的吸附/解吸接触器内压降所需风机能耗,节省量为捕集能耗的30%~78%。
目前,不计风机能耗的直接空气二氧化碳捕集再生能耗约为每吨CO2耗能8MJ/t-CO2
假设吸附/解吸接触器的压降为1000Pa,风机泵送年运行时间为6000小时,年空气流量为24000000m3/h空气,CO2年捕集量为5.6万吨,由计算可得,可节省直接空气二氧化碳捕集系统的捕集每吨CO2的风机能耗约为14.5MJ,即可节省的风机能耗占直接空气二氧化碳捕集系统的捕集能耗为66%。
当吸附/解吸接触器的压降为500Pa时,可节省直接空气二氧化碳捕集系统捕集每吨CO2的风机能耗约7.3MJ,即可节省的风机能耗占直接空气二氧化碳捕集系统的捕集能耗为48%.
当吸附/解吸接触器的压降为2000Pa时,可节省直接空气二氧化碳捕集系统捕集每吨CO2的风机能耗约29MJ,即可节省的风机能耗占直接空气二氧化碳捕集系统的捕集能耗为78%。
三、利用压缩储能系统稳定湿度的空气可降低直接空气二氧化碳捕集系统中吸附剂性能受空气湿度波动影响,降低直接空气二氧化碳捕集系统捕集能耗,降低幅度可达15%~50%。
在中国南方地区,每年中有相当长的时间内,空气湿度超过60%,部分地区湿度甚至高于80%。而由于湿度对变湿度吸附剂的影响较大,当空气相对湿度超过60% RH时,吸附剂的吸附容量仅仅为相对湿度20%RH下的50%,极大的降低了捕集效率,致使直接空气二氧化碳捕集系统的捕集率下降,直接空气二氧化碳捕集系统的捕集能耗增加了一倍。
采用压缩空气储能系统的稳定湿度和稳定压力的空气源,在降低风机能耗的基础上,可进一步将湿度对直接空气二氧化碳捕集系统的影响大幅下降,提升系统的捕集率约20~50%,进而降低能耗幅度范围20%~50%的捕集能耗,最后,直接空气二氧化碳捕集系统的能耗降低至每吨CO2耗能4MJ/tCO2~6.4MJ/tCO2
此外应理解,在阅读了本发明的上述描述内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (9)

1.一种耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统,其特征在于,包括压缩空气储能系统、余压控制系统(9)、余热集中存储与控制系统(10)和直接空气二氧化碳捕集系统;
压缩空气储能系统包括依次连接的空气干燥装置(1)、引风装置(2)、空气压缩装置(3)、第一热交换系统(4)、压缩空气存储库(5)、第二热交换系统(6)、膨胀做功装置(7)和发电机(8);
直接空气二氧化碳捕集系统包括依次连接的吸附/解吸接触器(11)、CO2压缩装置(12)、第三热交换系统(13)和CO2高压液化罐(14);
余压控制系统(9)的进气端通过第一DAC气路(18)与引风装置(2)的出气端连接,通过第二DAC气路(19)与膨胀做功装置(7)的出气端连接;余压控制系统(9)的出气端与吸附/解吸接触器(11)连接;余压控制系统(9)内设有热交换器(16);
余热集中存储与控制系统(10)通过第一储热管线(20)与第一热交换系统(4)连接构成空气压缩热回收循环管路,通过第一供热管路(21)与第二热交换系统(6)连接构成加热压缩空气循环管路,通过第二供热管路(22)与吸附/解吸接触器(11)连接构成CO2解吸循环管路,通过第二储热管线(23)与第三热交换系统(13)连接构成CO2压缩热回收循环管路;余热集中存储与控制系统(10)通过第三供热管路与余压控制系统(9)内的热交换器(16)连接构成用于调控经过余压控制系统(9)的空气温度的热风循环管路。
2.根据权利要求1所述的耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统,其特征在于,空气压缩热回收循环管路和CO2压缩热回收循环管路回收的热量用于供给加热压缩空气循环管路、CO2解吸循环管路和热风循环管路。
3.根据权利要求1或2所述的耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统,其特征在于,余热集中存储与控制系统(10)包括常温热量存储库、中温热量存储库和高温热量存储库,用于接收和存储空气压缩热回收循环管路和CO2压缩热回收循环管路回收的热量;
常温热量存储库的温度范围为5℃~60℃,与第三供热管路连接,为余压控制系统(9)提供稳定的热源,调节直接空气二氧化碳吸附所需空气的温度;
中温热量存储库的温度范围为70℃~150℃,与第一供热管路(21)和第二供热管路(22)连接,提供吸附/解吸接触器(11)吸附剂再生和第二热交换系统(6)所需的热量;
高温热量存储库的温度范围为160℃~250℃,与第一供热管路(21)连接,为第二热交换系统(6)提供热量。
4.根据权利要求1所述的耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统,其特征在于,第一供热管路(21)、第二供热管路(22)和第三供热管路中的介质分别独立为空气、水、蒸汽、油中的至少一种。
5.根据权利要求1所述的耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统,其特征在于,余压控制系统(9)内还设有泄压装置(15)和分风装置(17),用于与吸附/解吸接触器(11)匹配气压和气量。
6.根据权利要求1或5所述的耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统,其特征在于,余压控制系统(9)的出气端气体参数条件包括:压力范围为1.01bar~4.01bar,湿度范围为10%RH~60%RH,温度范围为5℃~40℃。
7.根据权利要求1所述的耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统,其特征在于,吸附/解吸接触器(11)内的CO2吸附剂材料为活性碳、分子筛、固态胺、季铵类、金属有机骨架中的至少一种,其再生方式包括变温、变湿、变压、电化学再生。
8.一种耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的方法,其特征在于,将权利要求1-7任一项所述的耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统匹配可再生能源;
所述方法包括以下两种运行方式:
运行方式1):可再生能源丰富,压缩空气储能系统储气,空气进入空气干燥装置(1)和引风装置(2)后,一部分经空气压缩装置(3)压缩后存储于压缩空气存储库(5),空气压缩过程放出的热量于第一热交换系统(4)经空气压缩热回收循环管路存储于余热集中存储与控制系统(10),另一部分经第一DAC气路(18)、余压控制系统(9)进入吸附/解吸接触器(11),被吸附/解吸接触器(11)内的吸附剂吸附脱除CO2后排出;第二供热管路(22)为吸附/解吸接触器(11)提供吸附剂脱附CO2所需的湿度和/或温度条件,解吸的CO2经CO2压缩装置(12)压缩后存储于CO2高压液化罐(14),CO2压缩过程放出的热量于第三热交换系统(13)经CO2压缩热回收循环管路存储于余热集中存储与控制系统(10);
运行方式2):可再生能源不足,压缩空气存储库(5)内存储的压缩空气经第二热交换系统(6)加热后进入膨胀做功装置(7)做功,用于发电机(8)发电,做功后湿度、温度、压力稳定的空气经第二DAC气路(19)、余压控制系统(9)进入吸附/解吸装置(11),被吸附/解吸接触器(11)内的吸附剂吸附脱除CO2后排出;第二供热管路(22)为吸附/解吸接触器(11)提供吸附剂脱附CO2所需的湿度和/或温度条件,解吸的CO2经CO2压缩装置(12)压缩后存储于CO2高压液化罐(14),CO2压缩过程放出的热量于第三热交换系统(13)经CO2压缩热回收循环管路存储于余热集中存储与控制系统(10)。
9.根据权利要求8所述的耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的方法,其特征在于,通过热风循环管路、热交换器(16)加热经过余压控制系统(9)的空气。
CN202310121618.2A 2023-02-16 2023-02-16 耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法 Pending CN116328483A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202310121618.2A CN116328483A (zh) 2023-02-16 2023-02-16 耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法
PCT/CN2024/075935 WO2024169721A1 (zh) 2023-02-16 2024-02-05 耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310121618.2A CN116328483A (zh) 2023-02-16 2023-02-16 耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法

Publications (1)

Publication Number Publication Date
CN116328483A true CN116328483A (zh) 2023-06-27

Family

ID=86886667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310121618.2A Pending CN116328483A (zh) 2023-02-16 2023-02-16 耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法

Country Status (2)

Country Link
CN (1) CN116328483A (zh)
WO (1) WO2024169721A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116771648A (zh) * 2023-08-22 2023-09-19 势加透博(成都)科技有限公司 一种压缩气体储能系统
WO2024169721A1 (zh) * 2023-02-16 2024-08-22 浙江大学 耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012100149A1 (en) * 2011-01-20 2012-07-26 Saudi Arabian Oil Company Reversible solid adsorption method and system utilizing waste heat for on-board recovery and storage of co2
US20150360168A1 (en) * 2014-06-11 2015-12-17 Pioneer Energy Inc Combustion CO2 Recovery System
KR20160060207A (ko) * 2014-11-19 2016-05-30 포스코에너지 주식회사 액화 이산화탄소를 이용한 에너지 저장 시스템 및 방법
CN114352366A (zh) * 2021-12-22 2022-04-15 中国电力工程顾问集团西南电力设计院有限公司 一种火电厂压缩空气深冷储能与富氧燃烧碳捕集系统
CN114515494A (zh) * 2022-01-21 2022-05-20 浙江大学 具有精准离子控制的直接空气捕集二氧化碳节能系统和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102048844B1 (ko) * 2018-08-07 2019-11-26 고등기술연구원연구조합 이산화탄소 포집 장치를 포함하는 액화공기 재기화 시스템 및 방법
KR102340321B1 (ko) * 2020-07-17 2021-12-16 한국전력기술 주식회사 액화공기에너지설비를 활용한 발전설비
CN217367765U (zh) * 2022-05-20 2022-09-06 西安热工研究院有限公司 一种耦合涡流管实现直接空气碳捕集系统
CN116328483A (zh) * 2023-02-16 2023-06-27 浙江大学 耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012100149A1 (en) * 2011-01-20 2012-07-26 Saudi Arabian Oil Company Reversible solid adsorption method and system utilizing waste heat for on-board recovery and storage of co2
US20150360168A1 (en) * 2014-06-11 2015-12-17 Pioneer Energy Inc Combustion CO2 Recovery System
KR20160060207A (ko) * 2014-11-19 2016-05-30 포스코에너지 주식회사 액화 이산화탄소를 이용한 에너지 저장 시스템 및 방법
CN114352366A (zh) * 2021-12-22 2022-04-15 中国电力工程顾问集团西南电力设计院有限公司 一种火电厂压缩空气深冷储能与富氧燃烧碳捕集系统
CN114515494A (zh) * 2022-01-21 2022-05-20 浙江大学 具有精准离子控制的直接空气捕集二氧化碳节能系统和方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024169721A1 (zh) * 2023-02-16 2024-08-22 浙江大学 耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法
CN116771648A (zh) * 2023-08-22 2023-09-19 势加透博(成都)科技有限公司 一种压缩气体储能系统
CN116771648B (zh) * 2023-08-22 2023-11-28 势加透博(成都)科技有限公司 一种压缩气体储能系统

Also Published As

Publication number Publication date
WO2024169721A1 (zh) 2024-08-22

Similar Documents

Publication Publication Date Title
CN116328483A (zh) 耦合直接空气二氧化碳捕集技术和压缩空气储能技术余压余热的系统和方法
Jiang et al. Comparative analysis on temperature swing adsorption cycle for carbon capture by using internal heat/mass recovery
CN107859539B (zh) 一种集成碳捕集的二氧化碳双布雷顿循环发电系统
US20110203311A1 (en) Removal of carbon dioxide from air
CN204301361U (zh) 一种冷热功储存与转换系统
CN105268283A (zh) 一种联合吸收的二氧化碳捕集与压缩处理工艺
CN105435581A (zh) 一种太阳能光伏驱动变压吸附空气碳捕集系统及控制方法
CN105582782A (zh) 一种太阳能光伏驱动变电吸附空气碳泵系统及控制方法
KR20160060207A (ko) 액화 이산화탄소를 이용한 에너지 저장 시스템 및 방법
CN105032113A (zh) 基于湿法再生技术捕集烟气中二氧化碳的方法
CN101822929B (zh) 一种利用电解吸技术捕集二氧化碳的方法
CN104534731B (zh) 一种冷热功储存与转换系统和方法
CN114558414A (zh) 一种基于湿法再生二氧化碳捕集材料的从集中二氧化碳排放源中脱碳的方法
WO2023138272A1 (zh) 具有精准离子控制的直接空气捕集二氧化碳节能系统和方法
CN114452768A (zh) 一种基于湿法再生吸附材料的co2直接空气捕集系统及方法
CN115155239B (zh) 一种二氧化碳直接空气捕集方法
Liu et al. Adsorption-based post-combustion carbon capture assisted by synergetic heating and cooling
CN117018805A (zh) 耦合压缩空气储能的节能型直接空气碳捕集系统及方法
CN114345079B (zh) 一种用于烟气二氧化碳捕集的变温变压吸附装置及方法
CN113521967A (zh) 一种捕碳调峰耦合装置及方法
CN113786710A (zh) 利用太阳能集热和弃风弃光电能捕集燃煤电厂co2的系统及方法
KR102272896B1 (ko) 저온 열원을 이용한 흡착식 히트펌프 시스템
CN113941217A (zh) 燃煤电站二氧化碳捕集及灵活调峰的储能系统及方法
CN216654007U (zh) 一种捕碳调峰耦合装置
CN107677002B (zh) 低品位热驱动吸收式化学反应制冷热泵循环装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination