CN116327640A - Bioadhesive hydrotalcite-polydopamine skin composite light shielding agent and preparation method thereof - Google Patents
Bioadhesive hydrotalcite-polydopamine skin composite light shielding agent and preparation method thereof Download PDFInfo
- Publication number
- CN116327640A CN116327640A CN202310215110.9A CN202310215110A CN116327640A CN 116327640 A CN116327640 A CN 116327640A CN 202310215110 A CN202310215110 A CN 202310215110A CN 116327640 A CN116327640 A CN 116327640A
- Authority
- CN
- China
- Prior art keywords
- hydrotalcite
- bioadhesive
- light shielding
- shielding agent
- composite light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/84—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/19—Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
- A61K8/29—Titanium; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q17/00—Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
- A61Q17/04—Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/08—Anti-ageing preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/52—Stabilizers
- A61K2800/522—Antioxidants; Radical scavengers
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Birds (AREA)
- Dermatology (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Gerontology & Geriatric Medicine (AREA)
- Cosmetics (AREA)
Abstract
本发明公开了生物粘附型水滑石‑聚多巴胺皮肤复合光屏蔽剂及其制备方法,在避光条件下,向弱碱性缓冲溶液中加入不同比例的锌钛铈水滑石、多巴胺和氧化剂室温反应3‑72h,后处理,真空干燥得到生物粘附型水滑石‑聚多巴胺复合光屏蔽剂。按重量比计,锌钛铈水滑石:多巴胺=100:1‑1:1;氧化剂:多巴胺=50:1‑1:1,在10‑40℃下反应3‑72h;产物以5000~11000r/min的转速离心1~15min,洗涤3‑8次,在40‑70℃真空干燥8‑72h,制得ZnTiCe‑LDH@PDA纳米复合材料。本发明提供上述制备方法得到的ZnTiCe‑LDH@PDA纳米复合材料,具有良好的光屏蔽性、光稳定性、抗自由基的能力、皮肤粘附性和防水性。The invention discloses a bioadhesive hydrotalcite-polydopamine skin composite light-shielding agent and a preparation method thereof. Under the condition of avoiding light, different proportions of zinc-titanium-cerium hydrotalcite, dopamine and an oxidant are added to a weak alkaline buffer solution at room temperature. React for 3-72h, post-process, and vacuum-dry to obtain a bioadhesive hydrotalcite-polydopamine composite light-shielding agent. In terms of weight ratio, zinc-titanium-cerium hydrotalcite: dopamine=100:1-1:1; oxidant: dopamine=50:1-1:1, reacted at 10-40°C for 3-72h; the product is 5000-11000r/ Centrifuge at a speed of 1-15 min, wash 3-8 times, and vacuum-dry at 40-70°C for 8-72 hours to prepare ZnTiCe-LDH@PDA nanocomposites. The invention provides the ZnTiCe‑LDH@PDA nanocomposite material obtained by the above preparation method, which has good light shielding property, light stability, free radical resistance, skin adhesion and water resistance.
Description
技术领域technical field
本发明涉及一种光屏蔽剂,特别是指一种水滑石-聚多巴胺复合超广谱光屏蔽剂及其制备方法,属于功能复合材料领域。The invention relates to a light shielding agent, in particular to a hydrotalcite-polydopamine composite ultra-broad-spectrum light shielding agent and a preparation method thereof, belonging to the field of functional composite materials.
背景技术Background technique
众所周知,长期过量的紫外线辐射是导致皮肤光毒性、皮肤光老化甚至是皮肤癌的元凶。随着人们对太阳光引起的皮肤光损伤的了解,发现可见光也会对皮肤产生影响。它会导致皮肤色素沉积、长红斑,加重黄褐斑等病症或引起日光性荨麻疹等病症。因此,使用防晒产品抵御太阳光对我们的生命安全健康至关重要。然而,目前的防晒产品并不理想,这是因为防晒剂存在防水性差、保护广度不够、暴露在强烈阳光下时会产生活性氧,对皮肤造成损害和易被皮肤吸收,带来安全隐患等问题。It is well known that long-term excessive ultraviolet radiation is the culprit of skin phototoxicity, skin photoaging and even skin cancer. As people learned about photodamage to the skin caused by sunlight, it was discovered that visible light can also have an effect on the skin. It can cause skin pigmentation, erythema, aggravate conditions such as melasma or cause conditions such as solar urticaria. Therefore, using sunscreen products to resist the sun's rays is very important to our life safety and health. However, the current sunscreen products are not ideal. This is because sunscreens have poor water resistance, insufficient protection breadth, and active oxygen will be generated when exposed to strong sunlight, which will cause damage to the skin and be easily absorbed by the skin, bringing safety hazards and other problems. .
为了解决防晒剂的这些不足,目前相关研究(Journal of cosmeticdermatology,2019,18(1):315-321;Nature Materials,2015,14(12):1278-85;CN113061256 A;CN112225894 B)提出的主要解决思路是将防晒剂封装到纳米材料里,以提高防晒剂的防晒性能、防水性能并且避免防晒剂和皮肤直接接触,进而避免其给皮肤带来负担。虽然相关研究的结果表明这一方法可以有效改善上述问题,但是还存在紫外线防护区域有限,且不提供可见光的防护等问题。所以,将纳米材料封装与紫外线防护范围广和阻隔可见光的材料相结合,是打破目前光屏蔽材料瓶颈的方法之一。In order to solve these deficiencies of sunscreens, the current relevant research (Journal of cosmeticdermatology, 2019, 18 (1): 315-321; Nature Materials, 2015, 14 (12): 1278-85; CN113061256 A; CN112225894 B) proposed the main The solution is to encapsulate the sunscreen into nanomaterials to improve the sunscreen performance and waterproof performance of the sunscreen and avoid direct contact between the sunscreen and the skin, thereby avoiding its burden on the skin. Although the results of related research show that this method can effectively improve the above problems, there are still problems such as limited ultraviolet protection area and no protection against visible light. Therefore, combining nanomaterial packaging with materials with a wide range of UV protection and blocking visible light is one of the methods to break the bottleneck of current light shielding materials.
水滑石是一类由带负电荷的层间阴离子和带正电荷的主体层板组成的超分子化合物,具有成本低,生物相容性好,抗紫外和优良的金属离子和阴离子交换能力,在阻燃、医药、催化和防晒等领域有广泛的应用。无机防晒剂氧化锌和二氧化钛具有优异的紫外阻隔性能,在防晒领域被广泛使用;而锌钛水滑石能达到二者相结合的效果,具有出色的紫外线屏蔽能力。在其它无机材料作防晒剂的研究中,含铈的材料也表现出良好的紫外线吸收能。Akemi Yasukawa等人首次报道了含有钛和铈的羟基磷灰石,并且通过研究发现含有钛和铈羟基磷灰石比仅含钛的在UVA波段内具有更好的紫外线吸收性能(Colloids and SurfacesA,2021,609:125705)。聚多巴胺是一种贻贝蛋白的仿生材料,具有可见光吸收能力、生物粘附性、良好的生物相容性和类真黑素的性能——通过清除自由基来抵御紫外线的伤害。唐祖武等人制备了一种含有聚多巴胺的水凝胶,发现经过聚多巴胺的修饰,水凝胶能够粘附皮肤且具有良好的紫外线屏蔽能力、防水能力和生物相容性(Cellulose,2021,28:1527–1540)。将锌钛铈水滑石通过聚多巴胺改性,可利用各自的优点,制备一种性能更优异的光屏蔽剂。Hydrotalcite is a class of supramolecular compounds composed of negatively charged interlayer anions and positively charged host laminates. It has low cost, good biocompatibility, UV resistance and excellent metal ion and anion exchange capacity. It has a wide range of applications in the fields of flame retardancy, medicine, catalysis and sun protection. Inorganic sunscreens zinc oxide and titanium dioxide have excellent UV blocking properties and are widely used in the field of sun protection; while zinc-titanium hydrotalcite can achieve the combined effect of the two, and has excellent UV blocking capabilities. In the research of other inorganic materials as sunscreens, cerium-containing materials also showed good UV absorption. Akemi Yasukawa et al first reported hydroxyapatite containing titanium and cerium, and found that hydroxyapatite containing titanium and cerium has better ultraviolet absorption performance in the UVA band than titanium alone (Colloids and SurfacesA, 2021, 609:125705). Polydopamine is a biomimetic material of mussel protein, which has the ability to absorb visible light, bioadhesion, good biocompatibility and eumelanin-like properties - to resist UV damage by scavenging free radicals. Tang Zuwu and others prepared a hydrogel containing polydopamine, and found that after polydopamine modification, the hydrogel can adhere to the skin and has good ultraviolet shielding ability, waterproof ability and biocompatibility (Cellulose, 2021, 28 :1527–1540). Modification of zinc-titanium-cerium hydrotalcite by polydopamine can make use of their respective advantages to prepare a light-shielding agent with better performance.
发明内容Contents of the invention
为了解决现有的防晒剂防水能力差、保护范围单一、存在安全隐患等问题,本发明提出了一种新型生物粘附型水滑石-聚多巴胺复合光屏蔽剂(ZnTiCe-LDH@PDA),并提供该种光屏蔽剂的制备方法。本发明利用多巴胺在碱性环境下易被氧化剂氧化自聚的特点,采用一锅法修饰锌钛铈水滑石的表面,使其表面形成聚多巴胺涂层,得到ZnTiCe-LDH@PDA纳米复合材料。该材料具有良好的光屏蔽性能,对UVB、UVA和可见光区域表现出强烈的吸收,并且在紫外光照射下不会产生活性氧,光稳定性好,同时还可以抗自由基,对皮肤起到一定的保护作用。此外,它短时间孵育在皮肤后不会被水冲走,说明它具有皮肤粘附性且与皮肤间的作用力是防水的。In order to solve the problems of existing sunscreen agents such as poor waterproof ability, single protection range, and potential safety hazards, the present invention proposes a new type of bioadhesive hydrotalcite-polydopamine composite light shielding agent (ZnTiCe-LDH@PDA), and A preparation method of the light shielding agent is provided. The present invention utilizes the characteristic that dopamine is easily oxidized and self-polymerized by oxidants in an alkaline environment, and adopts a one-pot method to modify the surface of zinc-titanium-cerium hydrotalcite to form a polydopamine coating on the surface to obtain a ZnTiCe-LDH@PDA nanocomposite material. The material has good light-shielding performance, shows strong absorption to UVB, UVA and visible light regions, and does not generate active oxygen under ultraviolet light irradiation, has good photostability, and can resist free radicals at the same time. Certain protective effect. In addition, it is not washed away by water after a short incubation on the skin, indicating that it is skin-adhesive and the interaction with the skin is waterproof.
本发明为了实现上述目的,采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种生物粘附型水滑石-聚多巴胺复合光屏蔽剂的制备方法,在避光条件下,向弱碱性缓冲溶液中加入不同比例的锌钛铈水滑石、多巴胺和氧化剂,室温反应3-72h,后处理,真空干燥得到生物粘附型水滑石-聚多巴胺复合光屏蔽剂。A preparation method of a bioadhesive hydrotalcite-polydopamine composite light shielding agent, under the condition of avoiding light, adding different proportions of zinc-titanium-cerium hydrotalcite, dopamine and an oxidant to a weak alkaline buffer solution, and reacting at room temperature for 3- After 72 hours, it was post-treated and vacuum-dried to obtain a bioadhesive hydrotalcite-polydopamine composite light-shielding agent.
本发明提供上述生物粘附型水滑石-聚多巴胺复合光屏蔽剂的制备方法,在避光条件下,向弱碱性缓冲溶液中加入不同比例的锌钛铈水滑石、多巴胺和氧化剂室温反应3-72h,后处理,真空干燥得到生物粘附型水滑石-聚多巴胺复合光屏蔽剂。The present invention provides a preparation method of the above-mentioned bioadhesive hydrotalcite-polydopamine composite light shielding agent. Under the condition of avoiding light, different proportions of zinc-titanium-cerium hydrotalcite, dopamine and oxidant are added to the weak alkaline buffer solution to react at room temperature for 3 -72h, post-treatment, and vacuum drying to obtain a bioadhesive hydrotalcite-polydopamine composite light shielding agent.
进一步地,在上述技术方案中,按重量比计,锌钛铈水滑石:多巴胺=100:1-1:1;氧化剂:多巴胺=50:1-1:1,在10-40℃下反应3-72h;产物以5000~11000r/min的转速离心1~15min,洗涤3-8次,在40-70℃真空干燥8-72h,制得ZnTiCe-LDH@PDA纳米复合材料。本发明提供上述制备方法得到的ZnTiCe-LDH@PDA纳米复合材料,具有良好的光屏蔽性、光稳定性、抗自由基的能力、皮肤粘附性和防水性。Further, in the above technical scheme, by weight ratio, zinc-titanium-cerium hydrotalcite: dopamine=100:1-1:1; oxidizing agent: dopamine=50:1-1:1, react at 10-40°C for 3 -72h; the product was centrifuged at a speed of 5000-11000r/min for 1-15min, washed 3-8 times, and vacuum-dried at 40-70°C for 8-72h to obtain a ZnTiCe-LDH@PDA nanocomposite material. The invention provides the ZnTiCe-LDH@PDA nanocomposite material obtained by the above preparation method, which has good light shielding property, light stability, free radical resistance, skin adhesion and water resistance.
进一步地,在上述技术方案中,锌钛铈水滑石的化学式为[Zn2+ 1-x-yTi4+ xCe3+ y(OH)2](y+2x)+(CO3 2-)(y+2x)/2·mH2O,其中,x是Ti4+/(Zn2++Ti4++Ce3+)的物质的量比;y是Ce3+/(Zn2++Ti4++Ce3+)的物质的量比;(Ti4++Ce3+)/(Zn2++Ti4++Ce3+)的物质的量比为x+y,0.12≤x+y≤0.65;Ti4+/Ce3+的物质的量比为x/y,1≤x/y≤20;m是结晶水分子数,0.5≤m≤2。Further, in the above technical scheme, the chemical formula of zinc-titanium-cerium hydrotalcite is [Zn 2+ 1-xy Ti 4+ x Ce 3+ y (OH) 2 ] (y+2x)+ (CO 3 2- ) ( y+2x)/2 mH 2 O, where x is the amount ratio of Ti 4+ /(Zn 2+ +Ti 4+ +Ce 3+ ); y is Ce 3+ /(Zn 2+ +Ti 4+ +Ce 3+ ) substance ratio; (Ti 4+ +Ce 3+ )/(Zn 2+ +Ti 4+ +Ce 3+ ) substance ratio is x+y, 0.12≤x+ y≤0.65; the amount ratio of Ti 4+ /Ce 3+ is x/y, 1≤x/y≤20; m is the number of crystal water molecules, 0.5≤m≤2.
进一步地,在上述技术方案中,氧化剂是高碘酸钠、过硫酸铵、硫酸铜、过氧化氢,高锰酸钾和重铬酸钾的一种或两种以上组合。Further, in the above technical solution, the oxidizing agent is one or more combinations of sodium periodate, ammonium persulfate, copper sulfate, hydrogen peroxide, potassium permanganate and potassium dichromate.
进一步地,在上述技术方案中,缓冲溶液为N-三(羟甲基)甲基甘氨酸缓冲溶液、三乙醇胺缓冲溶液、三(羟甲基)氨基甲烷-盐酸缓冲溶液、磷酸氢二钠-柠檬酸缓冲溶液、硼砂-氢氧化钠缓冲溶液、磷酸氢二钠-氢氧化钠缓冲溶液中的一种,pH为7.5-12.0。Further, in the above technical scheme, the buffer solution is N-tris(hydroxymethyl)methylglycine buffer solution, triethanolamine buffer solution, tris(hydroxymethyl)aminomethane-hydrochloric acid buffer solution, disodium hydrogen phosphate-lemon One of acid buffer solution, borax-sodium hydroxide buffer solution, disodium hydrogen phosphate-sodium hydroxide buffer solution, pH is 7.5-12.0.
进一步地,在上述技术方案中,锌钛铈水滑石与缓冲溶液用量比为0.5-5g:100mL。Further, in the above technical scheme, the dosage ratio of the zinc-titanium-cerium hydrotalcite to the buffer solution is 0.5-5g:100mL.
ZnTiCe-LDH@PDA纳米复合材料的特征是吸收范围宽,能吸收UVB、UVA和可见光区域的光,能够很好地提供对太阳光的防护,同时还具有光稳定性、抗自由基的能力、皮肤粘附性和防水性等优异的性质。ZnTiCe-LDH@PDA nanocomposite is characterized by wide absorption range, can absorb light in UVB, UVA and visible light regions, can provide good protection against sunlight, and also has photostability, anti-free radical ability, Excellent properties such as skin adhesion and water resistance.
由于锌钛铈水滑石具有锌、钛、铈这三种元素,能吸收UVB和UVA区域的紫外线。聚多巴胺由于其苯环、儿茶酚和醌结构兼具光吸收能力、抗自由基的能力、皮肤粘附性和防水性。Since zinc-titanium-cerium hydrotalcite has three elements of zinc, titanium, and cerium, it can absorb ultraviolet rays in the UVB and UVA regions. Due to its benzene ring, catechol and quinone structure, polydopamine has both light absorption capacity, free radical resistance, skin adhesion and water resistance.
ZnTiCe-LDH@PDA纳米复合材料的光屏蔽性能评估、光稳定性评估、抗自由基能力评估和皮肤粘附性及防水性能评估实验,表明本发明材料具有优异的光屏蔽能力和对皮肤友好的特点。The light-shielding performance evaluation, photostability evaluation, anti-free radical ability evaluation and skin adhesion and waterproof performance evaluation experiments of ZnTiCe-LDH@PDA nanocomposites show that the material of the present invention has excellent light-shielding ability and skin-friendly features.
本发明与传统的防晒材料相比,其特点是:Compared with traditional sunscreen materials, the present invention is characterized by:
(1)锌钛铈水滑石吸收范围广,对UVB和UVA区域的紫外线有良好的吸收能力。(1) Zinc-titanium-cerium hydrotalcite has a wide absorption range and has good absorption capacity for ultraviolet rays in the UVB and UVA regions.
(2)与传统的聚多巴胺修饰材料表面的制备方法相比,本发明是通过氧化剂引发多巴胺自聚,其制备方法具有简单、高效、成本低等优点。(2) Compared with the traditional method for preparing the surface of polydopamine-modified materials, the present invention triggers the self-polymerization of dopamine through an oxidizing agent, and the preparation method has the advantages of simplicity, high efficiency, and low cost.
(3)锌钛铈水滑石被聚多巴胺修饰后,光屏蔽性、抗自由基的能力、皮肤粘附性和防水性得到明显的提高。(3) After the zinc-titanium-cerium hydrotalcite is modified by polydopamine, the light shielding property, the ability to resist free radicals, skin adhesion and water resistance are significantly improved.
附图说明Description of drawings
图1中(a)为样品PL0~4的透射电镜图、图1中(b)为样品PL0~4的XRD图;(a) in Figure 1 is the transmission electron microscope image of samples PL0-4, and (b) in Figure 1 is the XRD image of samples PL0-4;
图2为样品PL0~4的固体紫外-可见漫反射光谱图;Fig. 2 is the solid ultraviolet-visible diffuse reflectance spectrogram of sample PL0~4;
图3为样品PL0~4的光稳定性;柱状图中从左到右顺序依次为图标从左到右的顺序;Figure 3 shows the photostability of samples PL0-4; the order from left to right in the histogram is the order of icons from left to right;
图4为样品PL0~4的抗自由基能力;Figure 4 is the anti-free radical ability of samples PL0-4;
图5为Z样品PL0~4的皮肤粘附性和防水性;Figure 5 shows the skin adhesion and water resistance of Z samples PL0-4;
其中图中PL0~4分别表示对比例制备的锌钛铈水滑石和实施例1~4中生成的ZnTiCe-LDH@PDA纳米复合材料。PL0-4 in the figure represent the ZnTiCe hydrotalcite prepared in the comparative example and the ZnTiCe-LDH@PDA nanocomposite material produced in Examples 1-4, respectively.
具体实施方法Specific implementation method
下面结合实施例对本发明的方法做进一步说明,但并不是对本发明的限定。The method of the present invention will be further described below in conjunction with the examples, but the present invention is not limited.
(1)ZnTiCe-LDH@PDA纳米复合材料制备实施例(1) Example of ZnTiCe-LDH@PDA nanocomposite preparation
对比例comparative example
将称取的0.32g ZnCl2、0.17g TiCl4、0.042g CeCl3.7H2O和1.08g尿素溶解于50mL的烧杯中,超声至溶液澄清,转移到水热釜中,在150℃下晶化48h。待水热釜冷却至室温,取出釜中浆液,离心后洗涤数次,放入真空干燥箱干燥,制得锌钛铈水滑石PL0。由图1(a)PL0的透射电镜图和图1(b)PL0的XRD图可知,制得了锌钛铈水滑石。Dissolve 0.32g ZnCl 2 , 0.17g TiCl 4 , 0.042g CeCl 3 .7H 2 O and 1.08g urea in a 50mL beaker, sonicate until the solution is clear, transfer to a hydrothermal kettle, and crystallize at 150°C 48h. After the hydrothermal kettle was cooled to room temperature, the slurry in the kettle was taken out, washed several times after centrifugation, and dried in a vacuum drying oven to obtain zinc-titanium-cerium hydrotalcite PL0. It can be seen from the transmission electron microscope image of Fig. 1(a) PL0 and the XRD pattern of Fig. 1(b) PL0 that zinc-titanium-cerium hydrotalcite was prepared.
实施例1Example 1
在200mL pH=8的N-三(羟甲基)甲基甘氨酸缓冲溶液或三乙醇胺缓冲溶液中,加入4.00g对比例中制备的锌钛铈水滑石([Zn2+ 0.700Ti4+ 0.267Ce3+ 0.033(OH)2]0.567+(CO3 2-)0.284·H2O)、0.08g多巴胺和0.16g过硫酸铵,超声30min,室温反应5h;产物以6000r/min的转速离心3min,洗涤3次,在40℃真空干燥10h,制得ZnTiCe-LDH@PDA纳米复合材料。由图1(a)PL1的透射电镜图和图1(b)PL1的XRD图可知,制得ZnTiCe-LDH@PDA纳米复合材料。In 200mL of N-tris(hydroxymethyl)methylglycine buffer solution or triethanolamine buffer solution of pH=8, add 4.00g of zinc titanium cerium hydrotalcite ([Zn 2+ 0.700 Ti 4+ 0.267 Ce 3+ 0.033 (OH) 2 ] 0.567+ (CO 3 2- ) 0.284 H 2 O), 0.08g dopamine and 0.16g ammonium persulfate, sonicate for 30min, react at room temperature for 5h; centrifuge the product at 6000r/min for 3min, After washing three times, vacuum drying at 40°C for 10 h, the ZnTiCe-LDH@PDA nanocomposite was prepared. From the TEM image of PL1 in Fig. 1(a) and the XRD pattern of PL1 in Fig. 1(b), it can be seen that the ZnTiCe-LDH@PDA nanocomposite material was prepared.
实施例2Example 2
在200mL pH=9的三(羟甲基)氨基甲烷-盐酸缓冲溶液或磷酸氢二钠-柠檬酸缓冲溶液中,加入4.00g对比例中制备的锌钛铈水滑石([Zn2+ 0.700Ti4+ 0.267Ce3+ 0.033(OH)2]0.567+(CO3 2-)0.284·H2O)、0.20g多巴胺和0.40g高碘酸钠,超声30min,室温反应10h;产物以7000r/min的转速离心6min,洗涤4次,在50℃真空干燥15h,制得ZnTiCe-LDH@PDA纳米复合材料。由图1(a)PL2的透射电镜图和图1(b)PL2的XRD图可知,制得ZnTiCe-LDH@PDA纳米复合材料。In the tris(hydroxymethyl)aminomethane-hydrochloric acid buffer solution or disodium hydrogen phosphate-citric acid buffer solution of 200mL pH=9, add the zinc titanium cerium hydrotalcite ([Zn 2+ 0.700 Ti 4+ 0.267 Ce 3+ 0.033 (OH) 2 ] 0.567+ (CO 3 2- ) 0.284 H 2 O), 0.20g dopamine and 0.40g sodium periodate, ultrasonic 30min, room temperature reaction 10h; product at 7000r/min Centrifuge at a high speed for 6 min, wash 4 times, and dry in vacuum at 50 °C for 15 h to prepare ZnTiCe-LDH@PDA nanocomposites. From the transmission electron microscope image of PL2 in Fig. 1(a) and the XRD pattern of PL2 in Fig. 1(b), it can be seen that the ZnTiCe-LDH@PDA nanocomposite material was prepared.
实施例3Example 3
在200mL pH=10的N-三(羟甲基)甲基甘氨酸缓冲溶液或硼砂-氢氧化钠缓冲溶液中,加入4.00g对比例中制备的锌钛铈水滑石([Zn2+ 0.700Ti4+ 0.267Ce3+ 0.033(OH)2]0.567+(CO3 2-)0.284·H2O)、0.40g多巴胺和0.80g硫酸铜,超声30min,室温反应15h;产物以6000r/min的转速离心9min,洗涤5次,在60℃真空干燥20h,制得ZnTiCe-LDH@PDA纳米复合材料。由图1(a)PL3的透射电镜图和图1(b)PL3的XRD图可知,制得ZnTiCe-LDH@PDA纳米复合材料。In 200mL of N-tris(hydroxymethyl)methylglycine buffer solution or borax-sodium hydroxide buffer solution of pH=10, add the zinc titanium cerium hydrotalcite ([Zn 2+ 0.700 Ti 4 + 0.267 Ce 3+ 0.033 (OH) 2 ] 0.567+ (CO 3 2- ) 0.284 H 2 O), 0.40g dopamine and 0.80g copper sulfate, sonicate for 30min, react at room temperature for 15h; the product is centrifuged at 6000r/min 9min, washed 5 times, and vacuum dried at 60°C for 20h to prepare the ZnTiCe-LDH@PDA nanocomposite. From the transmission electron microscope image of PL3 in Fig. 1(a) and the XRD pattern of PL3 in Fig. 1(b), it can be seen that the ZnTiCe-LDH@PDA nanocomposite material was prepared.
实施例4Example 4
在200mL pH=12.0的磷酸氢二钠-柠檬酸缓冲溶液或磷酸氢二钠-氢氧化钠缓冲溶液中,加入4.00g纳米羟基磷灰石、0.80g多巴胺和1.60g硫酸铜,超声30min,室温反应20h;产物以10000r/min的转速离心12min,洗涤6次,在70℃真空干燥24h,制得ZnTiCe-LDH@PDA纳米复合材料。由图1(a)PL4的透射电镜图和图1(b)PL4的XRD图可知,制得ZnTiCe-LDH@PDA纳米复合材料。In 200mL disodium hydrogen phosphate-citric acid buffer solution or disodium hydrogen phosphate-sodium hydroxide buffer solution with pH=12.0, add 4.00g nano-hydroxyapatite, 0.80g dopamine and 1.60g copper sulfate, sonicate for 30min, room temperature Reacted for 20 hours; the product was centrifuged at 10000r/min for 12 minutes, washed 6 times, and vacuum-dried at 70°C for 24 hours to prepare the ZnTiCe-LDH@PDA nanocomposite. From the transmission electron microscope image of PL4 in Fig. 1(a) and the XRD pattern of PL4 in Fig. 1(b), it can be seen that the ZnTiCe-LDH@PDA nanocomposite material was prepared.
(2)ZnTiCe-LDH@PDA纳米复合材料的性能实施例(2) Performance examples of ZnTiCe-LDH@PDA nanocomposites
实施例5(光屏蔽性能测试)Embodiment 5 (light shielding performance test)
采用紫外/可见光/近红外分光光度计测试本发明材料的光屏蔽性能:使用配备积分球附件的Lambda 1050+型分光光度计在室温下记录其固体紫外-可见漫反射光谱图,将BaSO4作为背景。结果如图2所示,表明ZnTiCe-LDH@PDA在280–780nm范围内反射率较低,即表明其在此区间有强烈的吸收。Adopt ultraviolet/visible light/near-infrared spectrophotometer to test the light-shielding property of material of the present invention: use the Lambda 1050+ type spectrophotometer equipped with integrating sphere attachment to record its solid ultraviolet-visible diffuse reflectance spectrogram at room temperature, use BaSO as background. The results are shown in Figure 2, which shows that the reflectivity of ZnTiCe-LDH@PDA is low in the range of 280–780nm, which means that it has strong absorption in this range.
实施例6(光稳定性能测试)Embodiment 6 (photostable performance test)
在室温条件下,每个样品称取6mg,将其分别加入到75mL亚甲基蓝溶液(5mg/L)中,再在暗处搅拌30min,以达到吸附-解吸平衡。然后,分别在波长为365nm和254nm的紫外光下进行光降解反应,每间隔预定的时间,从每个烧杯中取出3mL悬浮液。最后,用紫外-可见光谱法在亚甲基蓝吸收最大处(664nm)测定了溶液中剩余亚甲基蓝的含量。将测试结果与商业中常用的且认为光稳定性好的金红石型二氧化钛的和未进行聚多巴胺改性的锌钛铈水滑石进行对比(图3)。由图3可知,ZnTiCe-LDH@PDA几乎不会降解亚甲基蓝,说明其具有良好的光稳定性。At room temperature, 6 mg of each sample was weighed, added to 75 mL of methylene blue solution (5 mg/L), and then stirred in the dark for 30 min to achieve adsorption-desorption equilibrium. Then, photodegradation reactions were carried out under ultraviolet light with wavelengths of 365 nm and 254 nm, respectively, and 3 mL of the suspension was taken out from each beaker at predetermined intervals. Finally, the remaining methylene blue content in the solution was measured at the maximum absorption point (664nm) of methylene blue by UV-visible spectroscopy. The test results were compared with those of rutile titanium dioxide commonly used in commerce and believed to have good photostability and zinc-titanium-cerium hydrotalcite without polydopamine modification (Figure 3). It can be seen from Figure 3 that ZnTiCe-LDH@PDA hardly degrades methylene blue, indicating that it has good photostability.
实施例7(抗自由基能力测试)Embodiment 7 (anti-free radical ability test)
分别将2mg制备好的材料加入到4mL的1,1-二苯-2-苦基肼(DPPH)的溶液中,然后在环境温度下避光反应30min。最后,使用紫外可见光谱仪在DPPH吸收最大值(517nm)处,测定每个样品的吸光度。抗氧化活性以抑制DPPH自由基的百分比表示,计算公式如下:2 mg of the prepared materials were added to 4 mL of 1,1-diphenyl-2-picrylhydrazine (DPPH) solution, and then reacted at ambient temperature for 30 min in the dark. Finally, the absorbance of each sample was measured at the DPPH absorption maximum (517 nm) using an ultraviolet-visible spectrometer. Antioxidant activity is represented by the percentage of inhibiting DPPH free radicals, and the calculation formula is as follows:
其中,Abs0和Absi分别代表了阴性对照(100%自由基)和被测样品的吸光度值。计算得到ZnTiCe-LDH@PDA的抗氧化活性,如图4所示,对比没有聚多巴胺涂层的锌钛铈水滑石可知,ZnTiCe-LDH@PDA的抗氧化能力显著提高。Wherein, Abs 0 and Abs i represent the absorbance values of the negative control (100% free radical) and the tested sample respectively. The antioxidant activity of ZnTiCe-LDH@PDA was calculated, as shown in Figure 4, compared with zinc-titanium-cerium hydrotalcite without polydopamine coating, the antioxidant capacity of ZnTiCe-LDH@PDA was significantly improved.
实施例8(皮肤粘附性和防水性测试)Embodiment 8 (skin adhesion and water resistance test)
首先要小心去除新鲜猪皮的毛发,避免损伤皮肤。然后将处理干净的猪皮保存于-20℃,使用前用生理盐水解冻。将解冻的猪皮切成1×1cm的方块,再各取2mg样品均匀涂抹在猪皮上,室温孵育30min,然后通过简单的漂洗、清洗和擦拭3种清除方式对其皮肤粘附性和防水性进行了评估。清除前后的结果如图5所示,表明和未经聚多巴胺修饰的锌钛铈水滑石相比,ZnTiCe-LDH@PDA具有优异的皮肤粘附性和防水性。Fresh pigskins are first carefully de-haired to avoid damaging the skin. The cleaned pigskins were then stored at -20°C and thawed with saline before use. Cut the thawed pigskin into 1×1cm squares, and then take 2mg of each sample and spread it evenly on the pigskin, incubate at room temperature for 30min, and then clean the skin by simple rinsing, cleaning and wiping. sex was assessed. The results before and after clearing are shown in Fig. 5, indicating that ZnTiCe-LDH@PDA has excellent skin adhesion and water resistance compared with ZnTiCe hydrotalcite without polydopamine modification.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310215110.9A CN116327640B (en) | 2023-03-08 | 2023-03-08 | Bioadhesive hydrotalcite-polydopamine skin composite light shielding agent and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310215110.9A CN116327640B (en) | 2023-03-08 | 2023-03-08 | Bioadhesive hydrotalcite-polydopamine skin composite light shielding agent and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116327640A true CN116327640A (en) | 2023-06-27 |
CN116327640B CN116327640B (en) | 2024-04-26 |
Family
ID=86894096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310215110.9A Active CN116327640B (en) | 2023-03-08 | 2023-03-08 | Bioadhesive hydrotalcite-polydopamine skin composite light shielding agent and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116327640B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116617098A (en) * | 2023-07-24 | 2023-08-22 | 广东药科大学 | Modified hyaluronic acid-based moisturizing sun-proof composite material and preparation method thereof |
CN119529659A (en) * | 2024-12-06 | 2025-02-28 | 江西航喜金属制品有限公司 | A production and processing technology of bamboo-like stainless steel guardrail |
CN119529659B (en) * | 2024-12-06 | 2025-07-01 | 江西航喜金属制品有限公司 | A production and processing technology of bamboo-like stainless steel guardrail |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6024945A (en) * | 1999-07-29 | 2000-02-15 | Reheis, Inc. | Antiperspirant compositions for aerosol formulations |
JP2008001774A (en) * | 2006-06-21 | 2008-01-10 | Kaisui Kagaku Kenkyusho:Kk | UV absorber and use thereof |
JP2008214465A (en) * | 2007-03-02 | 2008-09-18 | Kaisui Kagaku Kenkyusho:Kk | UV absorbers, resin compositions, sunscreen cosmetics |
US20170021060A1 (en) * | 2015-07-24 | 2017-01-26 | The Texas A&M University System | Shape memory polymer scaffolds for tissue defects |
CN108864673A (en) * | 2017-05-11 | 2018-11-23 | 江南大学 | A kind of highly-transparent ultraviolet-resistant polymer composition and its preparation method and application |
CN110279613A (en) * | 2019-07-08 | 2019-09-27 | 四川大学 | A kind of melanin suncream of light color and preparation method thereof |
CN110448721A (en) * | 2019-07-18 | 2019-11-15 | 西安交通大学 | A kind of conductive oxidation resistant injectable composite hydrogel and its preparation method and application that stops blooding of antibacterial adherency |
CN111228141A (en) * | 2020-02-28 | 2020-06-05 | 华南理工大学 | Bioadhesive lignin-polydopamine/chemical sunscreen microcapsule and preparation method and application thereof |
CN113061256A (en) * | 2021-04-13 | 2021-07-02 | 陕西师范大学 | A kind of sinapic acid-polydopamine composite broad-spectrum light shielding agent and its preparation method and application |
JP2021161367A (en) * | 2020-03-30 | 2021-10-11 | 株式会社海水化学研究所 | Ultraviolet absorber |
CN115304792A (en) * | 2022-08-26 | 2022-11-08 | 武汉理工大学 | Modified polyvinyl alcohol multifunctional hydrogel and preparation method and application thereof |
CN115414278A (en) * | 2022-08-29 | 2022-12-02 | 中国人民解放军空军军医大学 | Preparation method and application of bionic nano melanin photothermal solar protective agent |
-
2023
- 2023-03-08 CN CN202310215110.9A patent/CN116327640B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6024945A (en) * | 1999-07-29 | 2000-02-15 | Reheis, Inc. | Antiperspirant compositions for aerosol formulations |
JP2008001774A (en) * | 2006-06-21 | 2008-01-10 | Kaisui Kagaku Kenkyusho:Kk | UV absorber and use thereof |
JP2008214465A (en) * | 2007-03-02 | 2008-09-18 | Kaisui Kagaku Kenkyusho:Kk | UV absorbers, resin compositions, sunscreen cosmetics |
US20170021060A1 (en) * | 2015-07-24 | 2017-01-26 | The Texas A&M University System | Shape memory polymer scaffolds for tissue defects |
CN108864673A (en) * | 2017-05-11 | 2018-11-23 | 江南大学 | A kind of highly-transparent ultraviolet-resistant polymer composition and its preparation method and application |
CN110279613A (en) * | 2019-07-08 | 2019-09-27 | 四川大学 | A kind of melanin suncream of light color and preparation method thereof |
CN110448721A (en) * | 2019-07-18 | 2019-11-15 | 西安交通大学 | A kind of conductive oxidation resistant injectable composite hydrogel and its preparation method and application that stops blooding of antibacterial adherency |
CN111228141A (en) * | 2020-02-28 | 2020-06-05 | 华南理工大学 | Bioadhesive lignin-polydopamine/chemical sunscreen microcapsule and preparation method and application thereof |
JP2021161367A (en) * | 2020-03-30 | 2021-10-11 | 株式会社海水化学研究所 | Ultraviolet absorber |
CN113061256A (en) * | 2021-04-13 | 2021-07-02 | 陕西师范大学 | A kind of sinapic acid-polydopamine composite broad-spectrum light shielding agent and its preparation method and application |
CN115304792A (en) * | 2022-08-26 | 2022-11-08 | 武汉理工大学 | Modified polyvinyl alcohol multifunctional hydrogel and preparation method and application thereof |
CN115414278A (en) * | 2022-08-29 | 2022-12-02 | 中国人民解放军空军军医大学 | Preparation method and application of bionic nano melanin photothermal solar protective agent |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116617098A (en) * | 2023-07-24 | 2023-08-22 | 广东药科大学 | Modified hyaluronic acid-based moisturizing sun-proof composite material and preparation method thereof |
CN116617098B (en) * | 2023-07-24 | 2023-10-24 | 广东药科大学 | Modified hyaluronic acid-based moisturizing sun-proof composite material and preparation method thereof |
CN119529659A (en) * | 2024-12-06 | 2025-02-28 | 江西航喜金属制品有限公司 | A production and processing technology of bamboo-like stainless steel guardrail |
CN119529659B (en) * | 2024-12-06 | 2025-07-01 | 江西航喜金属制品有限公司 | A production and processing technology of bamboo-like stainless steel guardrail |
Also Published As
Publication number | Publication date |
---|---|
CN116327640B (en) | 2024-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105084412B (en) | Zinc oxide grains with manganese ion doping object | |
AU2015202309B2 (en) | Particulate zinc oxide with manganese, iron and copper dopant ions | |
EP1598056A1 (en) | Ultraviolet light screening compositions | |
CN116327640B (en) | Bioadhesive hydrotalcite-polydopamine skin composite light shielding agent and preparation method thereof | |
CN113841708B (en) | Silver sulfide/molybdenum disulfide/acidified attapulgite nano composite light-driven antibacterial material and preparation method and application thereof | |
CN113583298B (en) | A kind of ultraviolet shielding agent with low photocatalytic activity based on nano-zinc oxide and its preparation method and application | |
CN104844829A (en) | Preparation method of ultraviolet rejection attapulgite material | |
CN103215804B (en) | Method for modifying and dyeing polyester fiber by use of silver-doped nano titanium dioxide disperse dye | |
CN106040280B (en) | Full spectral response type ammonium tungsten bronze titanium dioxide composite photocatalyst | |
CN105191981A (en) | Preparation method for copper-doped nanometer titania with photo-catalysis antibacterial property | |
CN115414278A (en) | Preparation method and application of bionic nano melanin photothermal solar protective agent | |
CN110250205A (en) | A kind of cobalt-doped zinc oxide quantum dot nano antibacterial agent and preparation method thereof | |
CN110697769A (en) | Anatase/brookite complex phase titanium dioxide ultraviolet shielding agent and preparation method thereof | |
CN103724854A (en) | Nano-composite near-infrared absorbent and preparation method thereof | |
CN114736209B (en) | Zinc-europium-porphyrin phosphorus cluster material and preparation method and application thereof | |
US20050163702A1 (en) | Titanium oxide-based sol-gel polymer | |
CN103537309A (en) | Application of tetrahydroxy copper phosphate as organic wastewater degradation catalyst | |
CN110713204A (en) | Muscovite loaded nano ZnO composite anti-ultraviolet agent and preparation technology thereof | |
CN105542512A (en) | Preparation method of water-based zinc-titanium composite slurry | |
CN116747154A (en) | Cerium oxide-based sun-screening material capable of resisting blue light and preparation method thereof | |
CN112221541B (en) | Polyacid-porphyrin hybrid material and preparation method and application thereof | |
CN114081843B (en) | Micron-sized broad-spectrum ultraviolet shielding material containing zinc and cerium and preparation method thereof | |
CN117208871A (en) | Ultraviolet absorbing and antibacterial dual-functional hydroxyapatite powder | |
CN116410608A (en) | Preparation method and ultraviolet shielding application of ZnO/lignin two-dimensional nano-sheet composite material | |
TW202029951A (en) | Suncare composite particle, suncare formulation including the same and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |