CN116322494A - 跟踪使用超声波供电的可植入设备 - Google Patents

跟踪使用超声波供电的可植入设备 Download PDF

Info

Publication number
CN116322494A
CN116322494A CN202180068432.4A CN202180068432A CN116322494A CN 116322494 A CN116322494 A CN 116322494A CN 202180068432 A CN202180068432 A CN 202180068432A CN 116322494 A CN116322494 A CN 116322494A
Authority
CN
China
Prior art keywords
ultrasound
implantable device
interrogator
focus
backscatter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180068432.4A
Other languages
English (en)
Inventor
J·凯伊
S·戈达
M·M·马哈贝兹
J·M·卡梅纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iota Biotechnology
Original Assignee
Iota Biotechnology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iota Biotechnology filed Critical Iota Biotechnology
Publication of CN116322494A publication Critical patent/CN116322494A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/686Permanently implanted devices, e.g. pacemakers, other stimulators, biochips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37217Means for communicating with stimulators characterised by the communication link, e.g. acoustic or tactile
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/15Circuit arrangements or systems for wireless supply or distribution of electric power using ultrasonic waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2063Acoustic tracking systems, e.g. using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply
    • A61B2560/0219Operational features of power management of power generation or supply of externally powered implanted units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • A61N1/3787Electrical supply from an external energy source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/20The network being internal to a load
    • H02J2310/23The load being a medical device, a medical implant, or a life supporting device

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Power Engineering (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Robotics (AREA)
  • Acoustics & Sound (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Human Computer Interaction (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Prostheses (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Electrotherapy Devices (AREA)
  • Surgical Instruments (AREA)

Abstract

描述了用于使用超声波来发现或跟踪可植入受试者中的设备的方法和系统实施例。用于跟踪可植入设备的方法可以包括:建立与可植入设备的同步状态;估计可植入设备的位置;以及基于超声信号强度来确定是维持还是调节将超声波束聚焦在何处。用于发现使用超声波供电的可植入设备的方法可以包括:发射超声波束以相继地聚焦在多个焦点上,接收与聚焦在焦点上的超声波束对应的超声反向散射,并且将所接收的超声反向散射与和待发现的可植入设备相关联的预定图案进行比较,以生成指示超声反向散射包括预定图案的可能性的分数;以及基于分数确定可植入设备的位置。

Description

跟踪使用超声波供电的可植入设备
相关申请的交叉引用
本申请要求于2020年8月24日提交的美国临时申请第63/069,522号的优先权权益,该美国临时申请以引用的方式并入本文,以用于一些目的。
技术领域
本发明总体上涉及使用超声波为可植入设备供电,更具体地,涉及使用超声波跟踪可植入设备以有效地向可植入设备递送功率。
背景技术
已经开发了用于治疗患者的各种身体状况的方法。这些方法可涉及将诸如心脏或神经生物植入物的可植入医疗设备插入患者体内。以无线方式操作这种可植入设备对于许多生物医学应用仍然是技术挑战。这部分地是因为使用射频(radio frequency,RF)来控制无线设备的传统方法在生物医学背景下具有许多限制并且可能对患者造成健康危害。例如,处理RF所需的RF天线可能具有大的形状因数,并且将使得使用RF天线的可植入设备太大而不能安全且舒适地放置在体内的许多位置处。生物组织还易于从RF载波频率吸收能量,这将限制可植入设备的可植入深度。另外,由于RF能量的高吸收率,生物组织更可能过热并对患者造成健康危害。
使用RF的一种替代方案是使用外部超声询问器,其发射超声波以操作患者体内的小型可植入设备并为其供电。然而,在使用期间,由于询问器与可植入设备之间的运动,询问器和目标可植入设备经常错位。例如,由于身体运动或患者的呼吸,可植入设备的位置可能移位。类似地,由于询问器操作者的运动(例如手抖动或身体运动),询问器的位置可能移位。在任一情况下,询问器将由于错位而不能高效地为可植入设备供电。虽然可以增加询问器所递送的功率来补偿错位,但是超声功率仅可以增加到保持在规定准则内并防止伤害患者的身体的程度。如果不能高效地跟踪可植入设备,则可植入设备将无法被充分供电,并且其操作将不可靠。
本文所引用的所有公开物、专利和专利申请的公开内容各自以引用的方式全文并入本文。如果以引用的方式并入的任何参考文献与本发明存在冲突,应以本发明为准。
发明内容
使用超声波来操作可植入设备并为其供电将比其它方法有利,因为生物组织具有比诸如RF波的其它类型的波显著更低的超声波吸收率。超声波的这种特性可以允许设备植入到受试者中的更大深度处,而且减少由于组织吸收的能量而引起的组织加热。例如,可植入设备可包括超声换能器,其能够接收由询问器发射的超声波并将所接收的超声波的机械能转换成电能以向可植入设备供电。然而,仍然需要使询问器能够高效地跟踪使用超声波供电的可植入设备。
在一些实施例中,一种用于跟踪使用超声波供电的可植入设备以维持向可植入设备供应的功率的方法包括:建立与可植入设备的同步状态,包括:向第一焦点发射超声波束并接收与所发射的超声波束对应的第一超声反向散射;基于第一超声反向散射确定第一信号强度;以及响应于确定第一信号强度处于或高于预定阈值,建立与可植入设备的同步状态;估计可植入设备的位置;向比第一焦点更靠近估计位置的第二焦点发射超声波束,并且接收与所发射的超声波束相对应的第二超声反向散射;基于第二超声反向散射确定第二信号强度;以及基于将所确定的第二信号强度与第一信号强度进行比较来确定是维持还是调节将所发射的超声波束聚焦在何处。
在用于跟踪可植入设备的方法的一些实施例中,建立同步状态包括:控制超声波束以相继地聚焦在搜索区域中的多个焦点上,以确定第一信号强度满足预定阈值的第一焦点。在一些实施例中,控制超声波束包括:在第一方向上引导超声波束以相继地聚焦在多个焦点上,直到确定根据第一超声反向散射确定的第一信号强度高于预定阈值。
在用于跟踪可植入设备的方法的一些实施例中,该方法包括:响应于确定将超声波束的所确定焦点维持在第二焦点处:将超声波束维持为聚焦在所确定的第二焦点上,并且监测根据在超声波束聚焦在所确定的第二焦点上时接收的超声反向散射确定的信号强度。
在一些实施例中,所监测的信号强度对应于由可植入设备生成的调制信号,以将信息编码到询问器处接收的超声反向散射中。在一些实施例中,编码信息唯一地标识可植入设备。
在用于跟踪可植入设备的方法的一些实施例中,该方法包括:响应于确定调节超声波束的第二焦点,基于所接收的超声反向散射迭代地估计可植入设备的位置并且在所估计位置的方向上更新超声波束的焦点,直到根据针对更新的焦点接收的超声反向散射确定的信号强度不再增加。
在用于跟踪可植入设备的方法的一些实施例中,基于第一超声反向散射确定第一信号强度包括:从第一超声反向散射提取与可植入设备相关联的植入物信号;以及基于所提取的植入物信号来确定第一信号强度。在一些实施例中,提取植入物信号包括:消除来自反向散射超声波的信号干扰以提取植入物信号。在一些实施例中,该方法包括:基于所提取的植入物信号来标识被跟踪的可植入设备。
在用于跟踪可植入设备的方法的一些实施例中,第一超声反向散射包括:第一部分,其包括由可植入设备编码到第一超声反向散射的植入物信号;和第二部分,其不包括植入物信号。在一些实施例中,该方法包括:基于比较第一超声反向散射的第一部分和第二部分来确定植入物信号的第一信号强度。
在用于跟踪可植入设备的方法的一些实施例中,在建立同步状态之后估计可植入设备的位置。
在用于跟踪可植入设备的方法的一些实施例中,基于接收波束成形来估计可植入设备的位置。
在用于跟踪可植入设备的方法的一些实施例中,该方法包括:确定与局部最大信号强度相关联的焦点,迭代地包括:估计可植入设备的位置;基于可植入设备的估计位置相对于当前焦点的方向,将超声波束从当前焦点引导到测试焦点,其中,当前焦点变为先前焦点;当向测试焦点发射超声波束时,基于超声反向散射确定信号强度;以及将向测试焦点发射超声波束时的信号强度与向先前焦点发射超声波束时的信号强度进行比较。在一些实施例中,该方法包括:响应于确定与局部最大值相关联的焦点,建立与可植入设备的稳态,其中,如果信号强度降低到第二预定阈值以下,则重新确定与局部最大信号相关联的焦点。
在用于跟踪可植入设备的方法的一些实施例中,确定是否维持所发射的超声波束聚焦在何处包括:监测询问器的移动;以及基于所监测的移动来确定对超声波束的焦点的调节。
在用于跟踪可植入设备的方法的一些实施例中,该方法是在询问器设备处执行的。
在一种用于跟踪使用超声波供电的可植入设备的系统的一些实施例中,该系统包括:换能器阵列,其包括多个换能器;和控制器,其被配置为:建立与可植入设备的同步状态,包括:控制换能器阵列向第一焦点发射超声波束并接收与所发射的超声波束对应的第一超声反向散射;基于第一超声反向散射确定第一信号强度;以及响应于确定第一信号强度处于或高于预定阈值,建立与可植入设备的同步状态;估计可植入设备的位置;控制换能器阵列向比第一焦点更靠近估计位置的第二焦点发射超声波束,并且接收与所发射的超声波束相对应的第二超声反向散射;基于第二超声反向散射确定第二信号强度;以及基于将所确定的第二信号强度与第一信号强度进行比较来确定是维持还是调节将所发射的超声波束聚焦在何处。
在一种用于发现使用超声波供电的可植入设备的方法的一些实施例中,该方法包括:发射超声波束以相继地聚焦在多个焦点上;在多个焦点中的各个焦点处:将聚焦的超声波束保持在焦点处一段持续时间,该持续时间允许可植入设备在位于焦点时将来自超声波束的超声波的能量转换成电能以从断电状态进入通电状态,接收对应于聚焦在焦点上的超声波束的超声反向散射,并且将所接收的超声反向散射与和待发现的可植入设备相关联的预定图案进行比较,以生成指示超声反向散射包括预定图案的可能性的分数;以及基于针对多个焦点内的各个焦点生成的多个分数来从多个焦点确定可植入设备的位置。
在用于发现可植入设备的方法的一些实施例中,该方法包括:使可植入设备进入通电状态。
在用于发现可植入设备的方法的一些实施例中,该方法还包括:使用由询问器发射的聚焦在对应于可植入设备的所确定的位置的焦点处的超声波建立与可植入设备的超声通信链路。
在用于发现可植入设备的方法的一些实施例中,多个焦点对应于超声波束的可操控范围。
在用于发现可植入设备的方法的一些实施例中,预定图案包括一个或多个方波。
在用于发现可植入设备的方法的一些实施例中,预定图案唯一地标识可植入设备。
在用于发现可植入设备的方法的一些实施例中,预定图案包括由可植入设备编码到超声反向散射中的信息。在一些实施例中,可植入设备接收来自发射的超声波束的超声波,并且通过调制基于在可植入设备处接收的超声波生成的电信号来将信息编码到超声反向散射中。
在用于发现可植入设备的方法的一些实施例中,确定可植入设备的位置包括:从多个焦点内的焦点子集选择焦点,其中,与焦点子集内的各个焦点对应的分数高于预定阈值。
在用于发现可植入设备的方法的一些实施例中,确定可植入设备的位置包括:基于多个分数从多个焦点中选择作为可植入设备的最可能位置的焦点。
在用于发现可植入设备的方法的一些实施例中,该方法包括:确认可植入设备的位置,包括发射超声波束以聚焦在所选择的焦点上预定时间段;以及分析在超声波束聚焦在所选择的焦点上时接收的超声反向散射,以确认可植入设备位于所选择的焦点处。在一些实施例中,该方法包括:响应于确认可植入设备位于所选择的焦点处,将超声波束维持在所选择的焦点处。
在一些实施例中,用于发现可植入设备的方法是在询问器设备处执行的。在一些实施例中,询问器包括换能器阵列中的多个换能器,并且其中,发射超声波束以相继地聚焦在多个焦点上包括:控制多个换能器以发送超声波束中的超声波以相继地聚焦在多个焦点上。在一些实施例中,发射超声波束包括:在换能器阵列的可操控角度范围内将聚焦超声波束相继地引导到多个焦点中的各个焦点。在一些实施例中,发射超声波束包括:机械地移动换能器阵列以将聚焦超声波束相继地引导到多个焦点中的各个焦点。在一些实施例中,发射超声波束包括:控制何时向换能器阵列中的各个换能器供应功率以将聚焦超声波束相继地引导到多个焦点中的各个焦点。
在用于发现可植入设备的方法的一些实施例中,可植入设备包括一个或多个电容器,以存储从超声波束的超声波转换的电能以从断电状态进入通电状态。
在上述方法的一些实施例中,超声波束具有小于10mm的斑尺寸。
在一些实施例中,一种用于发现使用超声波供电的可植入设备的询问器设备包括:换能器阵列,其包括多个换能器;和控制器,其被配置为:控制换能器阵列发射相继地聚焦在多个焦点上的超声波束;在多个焦点中的各个焦点处:将聚焦的超声波束保持在焦点处一段持续时间,该持续时间允许可植入设备在位于焦点时将来自超声波束的超声波的能量转换成电能并从断电状态进入通电状态,接收对应于所发射的超声波束的超声反向散射,并且将所接收的超声反向散射与和待发现的可植入设备相关联的预定图案进行比较,以生成指示超声反向散射包括预定图案的可能性的分数;以及基于针对多个对应焦点生成的多个分数根据多个焦点来确定可植入设备的位置。
本文进一步描述了根据任何前述方法实施例的用于使用超声波来操作可植入设备的各种系统实施例。
附图说明
当结合附图阅读时,可以更好地理解前面的概述以及下面的实施例的详细描述。为了说明本发明的目的,附图示出了本发明的示例性实施例;然而,本发明并不限于所公开的具体方法和装置。在附图中:
图1例示了根据一些实施例的用于使用由询问器发射的超声波为可植入设备供电的系统;
图2例示了根据一些实施例的面板,其示出了用于为可植入设备供电的所发射的超声波的部分;
图3例示了根据一些实施例的面板,其示出了询问器如何处理在询问器处接收的超声反向散射;
图4A例示了根据一些实施例的示例图,其示出了询问器如何控制超声(US)波束聚焦在何处以发现可植入设备并为其供电;
图4B例示了根据一些实施例的示例图,其示出了询问器如何控制US波束聚焦在何处以有效地为可植入设备供电;
图5例示了根据一些实施例的询问器,其被配置为使用超声波为一个或多个可植入设备供电;
图6例示了根据一些实施例的使用超声波供电和操作的可植入设备;
图7例示了根据一些实施例的用于使用超声波来发现可植入设备的方法;
图8例示了根据一些实施例的图,其示出了使用超声波有效地为可植入设备供电的询问器的示例性操作逻辑;
图9例示了根据一些实施例的用于跟踪使用超声波供电的可植入设备的方法;
图10例示了根据一些实施例的用于跟踪使用超声波供电的可植入设备以有效地维持向可植入设备供应的功率的方法;
图11例示了根据一些实施例的用于跟踪使用超声波供电的可植入设备以有效地维持向可植入设备供应的功率的方法;
图12例示了根据一些实施例的示例图,其示出了由可植入设备编码到由询问器接收的超声反向散射中的图案;
图13例示了根据一些实施例的示例图,其示出了询问器在发现模式下对可植入设备的位置的估计的准确度;以及
图14例示了根据一些实施例的被配置为与受试者的神经相互作用的可植入设备的图。
具体实施方式
本文描述了用于使用由询问器发射的超声波来发现和跟踪可植入到受试者内的设备的系统和方法。可植入设备可以包括超声换能器,该超声换能器被配置为接收由询问器发射的超声波并且将所接收的超声波的机械能转换成电能。因为可植入设备接收由超声波发送的功率,所以来自询问器的功率传递应当是高效且可靠的。在一些实施例中,为了提供这些功能,询问器需要能够与可植入设备通信以评估所发射的超声波是否有效地将功率输送到可植入设备。在一些实施例中,可植入设备可被配置为在可植入设备上的超声换能器处调制电信号,以将植入物信号嵌入对应于由询问器发射的超声波的超声反向散射内。例如,嵌入信号可以包括由可植入设备生成的信息或与可植入设备相关联的信息。
通过这种机制,询问器可以被配置为导出从接收的超声反向散射提取的植入物信号的信号强度,并且使用导出的信号强度作为关于超声功率输送到可植入设备的效率的指示。例如,由于可能由患者或询问器操作者的运动引起的、询问器发射的超声(US)波束与可植入设备之间的错位,所导出的信号强度将较低或降低。因此,询问器可以被配置为控制US波束的波束焦点以增加对准并且因此最大化入射在可植入设备的超声换能器上的功率。而且,询问器可以被配置为监测从超声反向散射确定的信号强度,以在可植入设备的位置移位时跟踪可植入设备,从而维持与可植入设备的对准并向可植入设备高效地递送功率。
图1例示了根据一些实施例的用于使用由询问器106发射的超声波来为可植入设备120供电的系统100。在一些实施例中,可植入设备120可以被植入在例如患者的受试者内,并且询问器106可以是在受试者外部(即,非植入)或完全植入到受试者中的单独设备。如系统100所示,可植入设备120可以位于区域102(例如受试者的皮肤区域)中并且植入受试者内。
在一些实施例中,询问器106可被配置为控制多个超声换能器108发射缩窄成超声(US)波束110的超声波以为可植入设备120供电。例如,如以下将关于图5进一步描述的,超声换能器108可被提供为换能器阵列,并且询问器106可单独地控制超声换能器108以用被称为电子束成形的技术来生成US波束110。作为该技术的结果,由多个超声换能器108发射的超声波的波前将在焦点112处相交,该焦点对应于US波束110的具有最高波束强度的特定部分。焦点112还对应于US波束110的波束直径的最窄部分。因此,询问器106可将US波束110的超声功率输送到有限区域,即焦点112。进一步地,询问器106可以被配置为单独地控制超声换能器108以改变焦点112的位置。在一些实施例中,询问器106可生成具有约1mm或更小、约2mm或更小、约3mm或更小、约5mm或更小、约7mm或更小、或约10mm或更小的斑尺寸的US波束110。在一些实施例中,询问器106可生成具有至少0.5mm、至少1mm、至少2mm、至少3mm、至少5mm或至少7mm的斑尺寸的US波束110。在一些实施例中,斑尺寸可以在大约2mm-8mm、2mm-5mm或2mm-4mm之间。
在超声换能器108是2D换能器阵列的元件的一些实施例中,询问器106可以改变US波束110的焦点112在由垂直轴线114A和114B表示的平面内的位置。换言之,询问器106可以将焦点112引导到超声换能器108的可操控范围内的多个位置,该可操控范围可以包含例如区域102。在一些实施例中,如下面将进一步描述的,询问器106可控制US波束110被聚焦在何处以增加US波束110与可植入设备120之间的对准。增加的对准不仅使得超声功率能够更有效地输送到可植入设备120,而且增加了更高的设备可靠性和安全性,因为不需要将超声功率增加到超过不安全水平。如图所示,询问器106可以发送包括US波束110形式的载波信号的超声波。
在一些实施例中,可植入设备120可以由从询问器106发射的超声波无线供电和操作,如下面将关于图5至图6进一步描述的。例如,可植入设备120可包括一个或多个超声换能器122,其被配置为接收US波束110的超声波并将超声波的机械能转换成电能以供电并操作可植入设备120。例如,可植入设备120可以包括一个或多个传感器124,其可以被控制为检测或测量患者的生理状况。US波束110与可植入设备120越对准,即焦点112越靠近可植入设备120,则可植入设备120的一个或多个超声换能器122可从US波束110的超声波提取的机械能越多。
在一些实施例中,为了使得询问器106能够使用超声波跟踪或发现可植入设备120,可植入设备120可以被配置为通过超声通信与询问器106无线通信。特别地并且如下面将关于图6进一步描述的,可植入设备120可以被配置为调制超声换能器122的电信号以将植入物信号嵌入超声反向散射124内。在一些实施例中,植入物信号可以包括由可植入设备120导出或生成的信息。例如,可植入设备120可以嵌入包括由传感器124生成的测量结果的信息。在其他实施例中,植入物信号可以包括与可植入设备120相关联的预定图案。
在一些实施例中,询问器106可以被配置为在发射模式与接收模式之间切换,以分别发射和接收超声波。在发射模式下,询问器106可发射US波束110。在接收模式下,询问器106可以被配置为接收和分析超声反向散射124。在一些实施例中,如下面将进一步描述的,询问器106可从接收的超声反向散射124提取植入物信号以确定是否以及如何调节焦点112的位置以增加US波束110与可植入设备120之间的对准。例如,询问器106可以确定和监测所提取的植入物信号的信号强度,以确定如何调节焦点112的位置。在一些实施例中,询问器106可以通过接收波束成形接收超声反向散射124。基于接收到的超声反向散射124,询问器106可以估计可植入设备102的位置并沿朝向所估计位置的方向引导焦点112。
在一些实施例中,询问器106可以被配置为通过分析是否在超声反向散射124中接收到植入物信号来发现可植入设备120。例如,可植入设备120可以最初处于断电状态。在一些实施例中,询问器106可被配置为使其US波束110扫过区域102中的多个焦点以提供足够的超声功率来使可植入设备120从断电状态变为通电状态。在一些实施例中,在启动阶段期间,可植入设备120可以被配置为在超声反向散射124内嵌入标识可植入设备120的植入物信号。在一些实施例中,询问器106可以评估植入物信号在多个焦点处存在于接收的超声反向散射的可能性,以估计位置并因此发现最初断电的可植入设备。
图2例示了根据一些实施例的面板210A-210C,其示出了用于为可植入设备供电的所发射的超声波的部分。例如,在面板210A-210C中示出的超声波可以由图1的询问器106(或图5的询问器502)在US波束110内发射。
面板210A示出了所发射的超声波包括一系列超声波命令,例如超声波命令202A和202B。在一些实施例中,超声波命令可以由接收超声波的可植入设备接收和解码,以控制可植入设备的操作。例如,超声波命令可以包括将可植入设备从断电状态供电到通电状态的命令。其它示例超声波命令可包括请求可植入设备检测受试者的生理状况和/或经由发射的超声反向散射将检测到的状况发送回询问器的命令。
在一些实施例中,各个超声波命令可以包括一个或多个超声波脉冲(即,也称为超声脉冲)的预定图案。例如,面板210B示出了超声波命令202B的放大视图,其可以包括三个超声脉冲(例如脉冲204A-204B)的序列。仅为了说明的目的,超声波命令202B中的各个脉冲的振幅(即,压力振幅)和脉冲宽度(即,也称为脉冲长度或脉冲持续时间)被示出为不同,但是,情况可能不是这样。在一些实施例中,各个超声脉冲的振幅或脉冲宽度可由询问器所实现的超声波协议规定。因此,脉冲的振幅和脉冲宽度可以相同或不同,这取决于超声波协议。在一些实施例中,各个唯一超声波命令可以包括唯一地标识超声波命令的预定图案。预定图案可以包括多个脉冲,各个脉冲具有特定特性(例如振幅和脉冲宽度)。
在一些实施例中,各个超声脉冲可以包括一个或多个载波周期(即,也称为振动或振荡周期或载波)。如在本文的本发明中使用的,载波周期可以对应于超声波的单个振荡。例如,面板210C示出了包括五个载波周期(例如超声周期206A-206B)的超声脉冲204A的放大视图,载波周期包括超声脉冲204A的脉冲持续时间208。在一些实施例中,单个超声脉冲可以包括包含多个载波周期的波图案以编码特定信息,例如特定的超声波命令。例如,波图案可以包括多个载波周期,其中至少两个载波周期具有不同的波长或不同的振幅。如上所述,超声脉冲204A内的多个载波周期的信号特性可以由超声波协议规定以表示特定的超声波命令。在一些实施例中,通过允许超声脉冲204A的载波周期是非均匀的,可以编码更多类型的超声波命令以与可植入设备通信。
图3例示了根据一些实施例的面板,其示出了询问器(例如询问器106)如何处理在询问器处接收的超声反向散射。在一些实施例中,可植入设备(例如图1的可植入设备120或图6的可植入设备602)可以被配置为响应于接收超声波(例如上面关于图2的面板210A描述的那些超声波)而发射超声反向散射,如面板306所示。如上面关于图1描述的,可植入设备可以被配置为调制其换能器中的一者或多者的电信号,以在发射的超声反向散射内编码植入物数据。如下面将关于图6进一步描述的,植入物数据可以包括对超声波命令的响应。例如,植入物数据可以包括在可植入设备处测量的传感器数据。在另一示例中,植入物数据可以包括可植入设备的唯一标识符(例如序列号)。
面板306示出了在询问器处从可植入设备接收的超声反向散射。在一些实施例中,超声反向散射可以对应于发送到可植入设备的超声波的反向散射,如图2的面板210A所示。如面板306所示,超声反向散射可以包括反向散射部分302A-302B,其对应于面板210A的所发送的超声波的操作模式命令部分的反向散射。在一些实施例中,在发射周期结束时,询问器可以被配置为控制开关(例如图5的开关529),以断开发射模块,并且连接接收模块以接收超声反向散射。
面板308示出了单个超声脉冲304的反向散射的放大视图,该反向散射可以被分析,以提取由可植入设备编码到反向散射304中的数据。在一些实施例中,可以通过模拟信号处理310来分析反向散射304。在一些实施例中,可以通过数字信号处理312来分析反向散射304。
在一些实施例中,模拟信号处理310包括在面板310A-310C中示出的一系列步骤。例如,如面板310A所示,可以滤波超声反向散射304。在一些实施例中,由询问器发送的超声波被反射离开可植入设备,例如可植入设备的超声换能器的表面。从换能器的表面反射的反向散射波的振幅可以作为返回到超声换能器的电流的阻抗的变化的函数变化,并且可以被称为“响应反向散射”,因为该反向散射对在可植入设备处生成的信息进行编码。例如,面板310A所示的超声反向散射部分的振幅特性可以取决于可植入设备如何调制超声换能器的电信号。这些改变可以使得询问器能够更好地将US波束与可植入设备对准以提高功率效率以及超声通信可靠性,如将在下面进一步描述的。对滤波后的反向散射的进一步分析可以包括:对超声反向散射进行整流,如面板310B所示;以及对整流的信号进行积分以对数据进行解码,如面板310C所示。
在一些实施例中,数字信号处理312包括在面板312A-312B中示出的一系列步骤。类似于面板310A,面板312A示出了滤波后的反向散射304的放大视图。如上面关于图1所述并且下面将关于图6进一步描述的,可植入设备可以通过将其压电超声换能器分流穿过数控开关来调制其声阻抗,在该开关中,高电平对应于接通(open)配置,低电平对应于断开(close)配置。面板312A示出了取决于可植入设备的换能器是处于短路/断开配置还是处于接通配置的反向散射304的滤波信号的振幅差。在一些实施例中,可植入设备可以控制超声换能器的电极处于短路和接通配置以将植入物数据嵌入反向散射内。由于开关活动引起的阻抗变化产生反向散射峰值振幅,其在接通开关配置中比在断开开关配置中大11.5mV—6.45%的调制深度。
在一些实施例中,可植入设备可以被配置为实现线路代码以控制超声换能器开关活动以嵌入数字数据。例如,线路代码可以包括单极性、极性、双极性或曼彻斯特(Manchester)码。询问器可以被配置为具有解码由可植入设备使用的线路代码的能力,以解码数字数据。例如,面板312B示出了换能器上的调制值和可植入设备的换能器的对应提取的调制值。所提取的信号值的绝对值和噪声裕度取决于各种因素,例如可植入设备距离、方位和尺寸;然而,提取的波形保持表示可植入设备的调制信号,其变化线性比例因子。例如,可植入设备可以实现脉冲振幅调制的不归零电平编码,通过该编码可以将11字符ASCII消息(“hello world”)传送到询问器。特别地,如面板312B所示,询问器可以基于提取的反向散射调制电压区分断开或接通配置的两个换能器状态。这些提取的换能器状态可以被映射为二进制值0和1以编码数字数据。在一些实施例中,数字信号处理312可以优于模拟信号处理310方法,因为由可植入设备实现的线路编码协议可以提高可植入设备与询问器之间的超声通信可靠性。
在一些实施例中,由可植入设备传送并且嵌入在发射的超声反向散射内的信息可以包括可以被数字化的各种数据。在一些实施例中,信息可以包括由可植入设备收集或生成的数据。例如,该信息可以包括传感器数据,例如温度、压力、pH、应变、分析物的存在或量、或者电生理信号(例如神经动作电位)。
图4A例示了根据一些实施例的示例图400A,其示出了询问器(例如图1的询问器106)如何控制超声(US)波束聚焦在何处以发现可植入设备400并为其供电。例如,图400A示出了其中可植入设备402被植入受试者或患者的区域(例如区域102)。
在一些实施例中,在发现模式下,询问器可被配置为引导US波束聚焦在范围404中的多个焦点404A-404D上。例如,询问器可以从焦点404A朝向焦点404D在线性方向上扫掠US波束。在一些实施例中,询问器可以将US波束保持在各个焦点处一段持续时间,该持续时间允许可植入设备402在位于焦点的阈值距离内时从断电状态通电。
在一些实施例中,询问器可被配置为在包括406和408的多个范围内扫掠US波束。例如,在各个范围内,询问器可相继引导US波束以在线性方向上聚焦在多个焦点(例如焦点406A-406D)上,如范围406所示。
在一些实施例中,一旦可植入设备402从US波束接收足够的能量,可植入设备402就可以被配置为将包括预定图案的信号嵌入发射的超声反向散射内以广播其存在。例如,根据一些实施例,预定图案可以与可植入设备402相关联并且可以唯一地标识可植入设备。
取决于可植入设备402与US波束的焦点之间的距离,询问器所接收的嵌入信号的信号强度将变化。如果距离太大,则可能不容易将嵌入的信号与噪声区分。在一些实施例中,询问器可以被配置为检查针对焦点404A-404D、406A-406D和408A-408C中的每一者接收的超声反向散射,以确定在各个超声反向散射中找到与可植入设备402相关联的预定图案的可能性。然后,询问器可以被配置为统计地确定可植入设备的可能位置,如下面将进一步描述的。
例如,询问器可以确定预定图案最可能存在于针对焦点404B和404C接收的超声反向散射中。基于该确定,询问器可以估计可植入设备402的位置接近焦点404B和404C。
图4B例示了根据一些实施例的示例图400B,其示出了询问器(例如图1的询问器106)如何控制US波束聚焦在何处以有效地跟踪可植入设备410。例如,图400B示出了其中可植入设备411被植入受试者或患者内的区域(例如区域102)。
在一些实施例中,询问器可在线性方向412上递增所发射的US波束的波束焦点的位置。例如,询问器可以相继地引导US波束以聚焦在范围412内的多个焦点412A-412C上。在各个焦点412A-412C处,询问器可接收对应的超声反向散射。如上所述,可植入设备410可以被配置为在超声反向散射内编码与可植入设备410相关联的植入物信号。例如,植入物信号可以是与可植入设备110相关联的预定图案。在一些实施例中,询问器可以被配置为从超声反向散射提取植入物信号并且确定所提取信号的信号强度。
在一些实施例中,信号强度表示根据超声反向散射确定的信噪比。在一些实施例中,在各个焦点处,询问器可以被配置为发送多个超声脉冲,并且可植入设备可以被配置为将信息编码在对应于这些超声脉冲的一部分的超声反向散射中。因此,询问器可以将提取的信号与不包括提取的信号的超声反向散射进行比较以确定信号强度。在一些实施例中,可植入设备可以被配置为在不发生信号调制的无源模式与发生调制的有源模式之间切换。在两个实施例中,询问器可以被配置为将对应于无信号调制的第一反向散射信号与对应于信号调制的第二反向散射信号进行比较,以消除环境干扰或噪声。例如,询问器可以被配置为从第二反向散射信号中减去第一反向散射信号(即,不发生调制的无源反射),使得可以消除环境噪声。
在一些实施例中,询问器可被配置为通过确定反向散射信号的调制深度或振幅变化来确定滤波后的反向散射信号的信号强度。例如,询问器可以确定反向散射信号的振幅变化的百分比,以确定信号强度。
在一些实施例中,一旦询问器确定焦点(例如焦点412C)的信号强度超过预定阈值,询问器就确定焦点在可植入设备410的“近”距离内。因此,询问器可以进入信号优化状态,其中,询问器递增地调节波束焦点的位置以接近可植入设备410的位置。
在一些实施例中,询问器可以基于接收波束成形来估计可植入设备410的位置。基于该位置,询问器可将焦点412C的位置朝向方向416A递增到焦点414A处。其后,询问器可以类似地确定在更新的焦点处接收的超声反向散射的信号强度,以确定信号强度是否增加,即,是否高于在先前焦点处确定的信号强度。因此,询问器可在相应的方向416B-414E上从焦点414A至414E递增地调节焦点,直到询问器确定提取的信号强度不再增加。在这一点上,询问器可以确定焦点414E与可植入设备410的真实位置紧密对准,因为提取的信号强度处于局部最大值。
在一些实施例中,一旦确定了该焦点414E,询问器可被配置为将US波束的波束焦点保维持在焦点414E处,直到可植入设备410变得与询问器错位。例如,由于询问器的操作者的移动和其中植入可植入设备410的受试者的移动,可植入设备410与焦点414E之间的距离可以超过表示可接受距离的阈值距离。在一些实施例中,询问器可通过在US波束对准在焦点414E时监测从超声反向散射提取的信号强度来确定是否发生这种错位。在一些实施例中,一旦检测到错位,询问器就可以重新进入跟踪模式以调节波束焦点。
图5例示了根据一些实施例的包括询问器502的系统500,其被配置为使用超声波来为一个或多个可植入设备540供电。在一些实施例中,询问器502可以是如上关于图1所述的询问器106的示例。
在一些实施例中,询问器502包括电源503、计算电路510、信号生成电路520、和超声换能器电路504。如图所示,电源503可以被配置为向计算电路510和信号生成电路520供电。在一些实施例中,电源503可以提供1.8V,但可以使用任何合适的电压。例如,电源503可以包括一个或多个电池,以供应1.8V。
在一些实施例中,信号生成电路520包括被配置为向一个或多个通道524供电的电荷泵522。在一些实施例中,电荷泵522可以被配置为增加由电源503提供的电压。例如,电荷泵522可以将由电源503供应的1.8V增加到32V。在一些实施例中,如下面将进一步描述的,信号生成电路520可以单独地为换能器阵列504的各个超声换能器508供电并控制其生成并发射超声波被缩窄到焦点(例如图1所示的US波束110的焦点112)的US波束。
在一些实施例中,各个通道524耦合到换能器电路504的对应超声换能器508并控制其操作。在一些实施例中,连接到通道524的超声换能器508可以被配置为仅接收或仅发送超声波,在这种情况下,开关529可以可选地从通道524省略。在一些实施例中,各个通道524可以包括以下电子组件:延迟控制部526、电平移位器528和开关529。
在一些实施例中,延迟控制部526可以被配置为控制由超声换能器508发送的超声波的波形和/或信号。在一些实施例中,延迟控制部526可以基于来自控制器电路512的命令来控制例如相移、时间延迟、脉冲频率、波形(包括振幅和波长)或其组合,以生成发送波形。在一些实施例中,表示各个通道的波形和频率的数据可以存储在延迟控制部526或存储器516中存储的“波表”中。这可以允许各个通道524上的发送波形不同。
在一些实施例中,延迟控制部526可连接到电平移位器528,其被配置为将来自延迟控制部526的输入脉冲移位到较高电压,该较高电压由超声换能器508用来发送超声波。在一些实施例中,延迟控制部526和电平移位器528可以被配置为用于将数据串流成到换能器阵列506的实际发送信号。在一些实施例中,换能器阵列506可以是超声换能器的线性阵列。在其他实施例中,换能器阵列506可以是超声换能器的2D阵列。在一些实施例中,换能器阵列506可以包括线性超声换能器的相控阵列。在其它实施例中,换能器阵列506可包括超声换能器的线性弯曲阵列或曲线阵列。在一些实施例中,各个通道524的发送波形可以直接由微控制器或其他数字系统的高速串行输出产生,并且通过电平移位器528或高压放大器发送到换能器元件(例如超声换能器508)。
在一些实施例中,通道524的开关529可以配置对应的超声换能器508,以接收例如超声反向散射的超声波。在一些实施例中,所接收的超声波由超声换能器508(设置在接收模式中)转换成电流,并且被发送到数据处理器511,以处理在所接收的超声波中捕获的数据。例如,数据处理器511可以被配置为实现接收波束成形以使得询问器502能够估计和确定可植入设备540的位置。在一些实施例中,可以包括放大器、模数转换器(ADC)、可变增益放大器或补偿组织损失的时间增益控制的可变增益放大器和/或带通滤波器,以处理所接收的超声波。
在一些实施例中,上述通道524不包括T/Rx开关529,而是包含独立的Tx(发送)和Rx(接收),其中高压Rx(接收电路)采用具有良好饱和恢复的低噪声放大器的形式。在一些实施例中,T/Rx电路包括环行器。在一些实施例中,换能器阵列506包括比处理通道524更多的换能器元件(例如超声换能器508),并且询问器502可以被配置为包括复用器,以针对各个脉冲选择不同组的发送元件。例如,64个发送/接收通道可以经由3:1复用器连接到192个物理换能器元件-其中在给定脉冲上仅有64个换能器元件是有效的。
在一些实施例中,询问器502可以包括移动传感器530,其可以包括一个或多个移动传感器。在一些实施例中,移动传感器530可以被配置为检测和测量询问器502的移动。例如,询问器502可能由于询问器502的操作者的移动或手抖动而移动。在一些实施例中,移动传感器530可以包括加速度计、陀螺仪或惯性移动单元(IMU)中的一者或多者。
在一些实施例中,计算电路510可以是数字电路、模拟电路或混合信号集成电路。计算电路510的示例可以包括微处理器、有限状态机(FSM)、现场可编程门阵列(FPGA)和微控制器。在一些实施例中,询问器502可以包括易失性存储器,其可以由计算电路510访问。
在一些实施例中,计算电路510包括控制器电路512、数据处理器511和用户界面513。在一些实施例中,控制器电路512包括命令生成器514、植入器跟踪器517和存储超声波设置518的存储器516。
在一些实施例中,命令生成器514可以被配置为生成指令,以控制延迟控制部526的操作,从而将一个或多个操作模式命令发送到一个或多个可植入设备540,以操作一个或多个可植入设备540。例如,操作模式命令可指示接收操作模式命令的可植入设备(例如可植入设备542)上传某些设备数据或下载在操作模式命令中编码的数据。
在一些实施例中,植入物跟踪器517可以被配置为以多种模式操作以跟踪可植入设备540。在一些实施例中,植入物跟踪器517可以在发现模式下操作以检测初始断电的可植入设备542,如下面将关于图7进一步描述的。在一些实施例中,植入物跟踪器517可以在跟踪模式下操作以跟踪可植入设备542的位置,如下面将关于图8至图11进一步描述的。在一些实施例中,植入物跟踪器517可被配置为分析移动传感器530所生成的移动数据,以确定是否以及如何调节US波束的波束焦点来抵消由操作者引起的询问器502的移动。在两种模式下,植入物跟踪器517可被配置为控制超声换能器电路504改变所发射的US波束的焦点。
在一些实施例中,由数据处理器511接收和处理的设备数据可以包括由可植入设备542嵌入在接收的超声反向散射内的信息。在这些实施例中,命令生成器514可被配置为设置或选择超声波设置以控制换能器阵列504的超声换能器来改变或维持所发射的US波束的焦点。
在一些实施例中,换能器电路504包括一个或多个超声换能器508,其被配置为发送超声波,以向例如可植入设备542的可植入设备540供电。在一些实施例中,如图5所示,换能器电路504包括具有多个超声换能器508的换能器阵列506。在一些实施例中,换能器阵列506包括1个或多个、2个或更多个、3个或更多个、5个或更多个、7个或更多个、10个或更多个、15个或更多个、20个或更多个、25个或更多个、50个或更多个、100个或更多个、250个或更多个、500个或更多个、1000个或更多个、2500个或更多个、5000个或更多个、或10000个或更多个超声换能器。在一些实施例中,换能器阵列206包括100000个或更少、50000个或更少、25000个或更少、10000个或更少、5000个或更少、2500个或更少、1000个或更少、500个或更少、200个或更少、150个或更少、100个或更少、90个或更少、80个或更少、70个或更少、60个或更少、50个或更少、40个或更少、30个或更少、25个或更少、20个或更少、15个或更少、10个或更少、7个或更少或5个或更少的超声换能器。换能器阵列506可以是例如包括50个或更多个超声换能器像素的芯片。
如图5所示,换能器电路504包括单个换能器阵列506;然而,根据一些实施例,换能器电路504可以包括1个或多个、2个或更多个、或3个或更多个单独的换能器阵列。在一些实施例中,换能器电路504包括10个或更少的换能器阵列(诸如9个、8个、7个、6个、5个、4个、3个、2个或1个换能器阵列)。在一些实施例中,单独的换能器阵列可以被放置在受试者的不同点处,并且可以与相同或不同的可植入设备540通信。在一些实施例中,换能器阵列可以位于例如可植入设备542的可植入设备的相对侧上。
在一些实施例中,询问器502的换能器阵列506的具体设计取决于换能器阵列506内的各个超声换能器508的期望穿透深度、孔径尺寸和尺寸。换能器阵列506的瑞利距离R被计算为:
Figure BDA0004162536460000151
D2>>λ2
其中,D是孔径的尺寸,λ是传播介质(即组织)中的超声波的波长。如本领域所理解的,瑞利距离是完全形成由换能器阵列506辐射的波束的距离。即,压力场在瑞利距离处会聚到自然焦点,以最大化所接收的功率。因此,在一些实施例中,可植入设备540可以与换能器阵列506相距与瑞利距离近似相同的距离。
换能器阵列506中的各个超声换能器508可以被调制,以通过波束成形或波束操控的过程来控制由换能器阵列506发射的超声波的波束的瑞利距离和位置。例如线性约束最小方差(LCMV)波束成形的技术可用于将多个可植入设备540(例如可植入设备542)与外部超声收发器通信。参见,例如,Bertrand等人的Beamforming Approaches for Untethered,Ultrasonic Neural Dust Motes for Cortical Recording:a Simulation Study,IEEEEMBC(2014年8月)。在一些实施例中,通过调节由换能器阵列506中的超声换能器508发射的超声波的功率或相位来执行波束操控。
在一些实施例中,询问器502(例如计算电路510)包括用于使用一个或多个超声换能器508对超声波进行波束操控的指令、用于确定一个或多个可植入设备540的相对位置的指令、用于监测一个或多个可植入设备540的相对移动的指令、用于记录一个或多个可植入设备540的相对移动的指令、以及用于对来自多个可植入设备540的反向散射进行去卷积的指令中的一个或多个。
在一些实施例中,用户界面513可以被配置为允许用户(例如医师或患者)控制询问器502的操作,以向可植入设备540供电或操作可植入设备540或与可植入设备240通信。在一些实施例中,用户界面513可以包括向询问器502提供输入的输入设备,例如触摸屏或监视器、键盘、鼠标或语音识别设备。在一些实施例中,用户界面513可以包括输出设备,例如提供输出的任何合适的设备,例如触摸屏、监视器、打印机、磁盘驱动器或扬声器。
在一些实施例中,可以使用单独的计算机系统(未示出)来控制询问器502,计算机系统例如为移动设备(例如智能电话或平板电脑)。计算机系统可以例如通过网络连接、射频(RF)连接或蓝牙与询问器502无线通信。计算机系统可以例如打开或关闭询问器502或分析在由询问器502接收的超声波中编码的信息。
在一些实施例中,询问器502与多个可植入设备540通信。这可以例如使用多输入多输出(MIMO)系统理论来执行。例如,可以使用时分复用、空间复用或频率复用来执行询问器502与多个可植入设备540之间的通信。询问器502可以接收来自多个可植入设备540的组合超声反向散射(其可以被去卷积),从而从各个可植入设备542提取信息。在一些实施例中,询问器502可以被配置为通过波束操控来将从换能器阵列506发送的超声波聚焦到特定的可植入设备。例如,询问器502可以将发送的超声波聚焦到第一可植入设备(例如可植入设备542),接收来自第一可植入设备的反向散射,将所发送的超声波聚焦到第二可植入设备,并且接收来自第二可植入设备的反向散射。在一些实施例中,询问器502将超声波发送到多个可植入设备540,然后接收来自多个可植入设备540的超声反向散射。
在一些实施例中,询问器502或一个或多个超声换能器508是可穿戴的。例如,询问器502或一个或多个超声换能器508可以通过条带或粘合剂固定到受试者的身体。在另一个示例中,询问器502可以是棒,其可以由用户(例如健康护理专业人员)持有。在一些实施例中,询问器502可以通过缝合、简单的表面张力、基于衣服的固定设备(例如布包、袖套、弹性带)或通过皮下固定而保持到身体上。在一些实施例中,询问器502的一个或多个超声换能器508或换能器阵列506可以与询问器502的其余部分分开定位。例如,换能器阵列206可以在第一位置处(例如接近一个或多个植入设备)固定到受试者的皮肤,并且询问器502的其余部分可以位于第二位置处,其中,导线将超声换能器508或换能器阵列506拴系到询问器502的其余部分。
图6例示了根据一些实施例的使用超声波来供电和操作的可植入设备604。在一些实施例中,可植入设备604可以由从询问器602发送的超声波无线供电和操作,如上面关于图5所述。在一些实施例中,可植入设备604可以被配置为通过超声通信与询问器602无线通信。在一些实施例中,可植入设备604可以被配置为通过超声通信与一个或多个其他可植入设备无线通信。在一些实施例中,可植入设备604可以被植入在例如患者的受试者内,并且询问器602可以是在受试者外部(即,非植入)或完全植入到受试者中的单独设备。
在一些实施例中,为了使可植入设备604能够使用超声波来供电和操作,可植入设备604可以包括以下设备组件:超声换能器电路606、调制解调电路612、刺激电路614、检测电路616、控制器电路620、和功率电路630。在一些实施例中,这些设备组件中的一个或多个可以根据其操作而被实现为数字电路、模拟电路或混合信号集成电路。例如,控制器电路620可以包括微处理器、有限状态机(FSM)、现场可编程门阵列(FPGA)或微控制器。
在一些实施例中,超声换能器电路606包括耦合到匹配网络610的超声换能器608。在一些实施例中,超声换能器电路606不包括匹配网络610。在一些实施例中,超声换能器608可以被配置为从询问器602接收超声波,并且将来自所接收的超声波的能量转换成电信号,以向可植入设备604的一个或多个设备组件供电。在一些实施例中,电信号可以由超声换能器608生成,因为由所接收的超声波引起的超声换能器608的振动在超声换能器608的电端子两端引起电压,这引起电流流动。
在一些实施例中,如上所述,来自所接收的超声波的功率可以由可植入设备604使用,以向其设备组件供电;因此,这些超声波在本文中有时被称为供能超声波。在一些实施例中,所接收的超声波可以编码信息,其包括用于操作可植入设备的操作模式命令;因此,这些超声波在本文中有时被称为通信超声波。在一些实施例中,类似于可以如何处理供能超声波,通信超声波可以由超声换能器608接收,以生成具有流过超声换能器608的电流的电信号。在一些实施例中,所生成的电信号将操作模式命令编码在电流中。在一些实施例中,相同的超声波可以被配置为既为可植入设备604供电又编码用于发送到可植入设备604的信息。在一些实施例中,如下面关于图2描述的,各个操作模式命令可以包括一个或多个超声脉冲,并且各个超声脉冲可以包括超声波的一个或多个载波周期。
在一些实施例中,超声换能器电路606包括耦合到多个对应匹配网络的多个超声换能器。根据一些实施例,通过包括至少两个超声换能器,可植入设备604可以被配置为由至少两个超声换能器生成的电信号供电,以更高效且一致性地提取由询问器602提供的功率。在一些实施例中,可植入设备604可以被配置为从选自多个超声换能器中的一个或多个超声换能器采集功率。例如,可植入设备604可以选择提供最高功率或最一致功率的超声换能器。
例如,许多因素,例如超声换能器的方位或在超声换能器608与超声波源询问器602之间的介入生物材料,可以显著地降低在超声换能器608处可接收的功率。通过添加一个或多个附加超声换能器,在单个超声换能器(例如超声换能器608)处可接收的降低的功率不太可能不利地影响可植入设备604的操作。
在一些实施例中,包括至少两个超声换能器能够使用超声波来更可靠地控制可植入设备602。例如,可植入设备602可以被配置为比较至少两个超声换能器的信号强度,并且选择具有最高信号强度的信号来操作可植入设备602。在一些实施例中,可植入设备602可以使用所选的超声换能器来接收通信(即,在下行链路期间)和反向散射信息(即,在上行链路期间)。在一些实施例中,可植入设备602可以选择至少两个超声换能器中的第一超声换能器来接收用于下行链路超声通信的超声通信,并且选择至少两个超声换能器中的第二超声换能器来反向散射编码用于上行链路超声通信的信息。在一些实施例中,可植入设备602可以被配置为用至少两个超声换能器执行波束成形,以改善上行链路和下行链路超声通信的信噪比。在一些实施例中,这些超声换能器中的一个或多个可以是微机械超声换能器,例如电容式微机械超声换能器(CMUT)或压电式微机械超声换能器(PMUT),或者可以是体压电换能器。下面关于图14描述超声换能器608的另外的实现方式。
在一些实施例中,匹配网络610可以是电子电路,其被配置为选择超声换能器608的电阻抗与可植入设备604(例如功率电路630)的电阻抗之间的阻抗匹配,以减少信号反射。在一些实施例中,匹配网络610可以以一个或多个电路元件的各种配置来实现,该电路元件例如为电感器、电容器、电阻器、二极管、晶体管或其任意组合。例如,匹配网络610可以被实现为多个电容器,其并联连接并且耦合到多个对应开关。通过控制开关中的哪个接通或断开,匹配网络610可以控制如何对多个电容器充电以选择阻抗。在一些实施例中,匹配网络610可以被配置为使由超声换能器608生成的电信号能够经由单独的导线绕过多个电容器,该单独的导线由开关控制。
在一些实施例中,为了能够使可植入设备604使用超声波来供电,电源电路630可以包括电耦合到调节电路638的功率恢复电路632。在一些实施例中,功率恢复电路632可以被配置为接收和处理由超声换能器电路606生成的电信号。在一些实施例中,功率恢复电路632可以包括整流电路(例如有源整流器),以将AC形式的电信号转换成DC形式,其中,转换的电信号可以与第一电压(即,所接收的超声波的电源电压)相关联。
在一些实施例中,由于在通过受试者的生物组织传播高功率波时的健康危害,政府规定可以限制由询问器602所发送的超声波提供的功率量(例如720mW/cm2)。因此,源自所接收的超声波的第一电压可能不够高以操作可植入设备104的电子组件。例如,在互补金属氧化物半导体(CMOS)技术中使用的晶体管可能需要最少大约2伏来操作晶体管。
在一些实施例中,为了提供较高的第一电压来操作可植入设备602的电子组件,供能超声波可以作为脉宽调制(PWM)信号发送。在一些实施例中,通过将供能超声波作为PWM信号发送,询问器602可以被配置为提供短的高强度脉冲,使得平均强度保持在调节限制内,并且提供更高的瞬时功率,以生成更高的第一电压。在一些实施例中,询问器可以被配置为控制PWM信号的瞬时强度和/或脉冲宽度(例如示例超声波设置),以控制由供能超声波提供的功率。
在一些实施例中,为了使可植入设备604能够由这些超声波供电,功率输送电路634可以包括电荷泵,其被配置为将第一电压转换成大于第一电压的第二电压。在一些实施例中,电荷泵可以包括多个耦合电容器,其由一个或多个开关控制以生成第二电压。在一些实施例中,电荷泵可以实现至少1倍、2倍、3倍或4倍的转换增益。在一些实施例中,可以基于一个或多个开关的开关频率来控制第二电压的大小。
如上所述,由于许多因素,包括例如可植入设备604的植入物深度或超声换能器608与超声波源(例如询问器602)之间的介入生物材料,由所接收的超声波提供的功率可能是不一致的。因此,在一些实施例中,为了向可植入设备604提供更一致的功率,功率恢复电路632可以包括耦合到功率输送电路634的能量存储设备636。在一些实施例中,能量存储设备包括电池或存储电容器。在一些实施例中,为了保持可植入设备604的小形状因数,能量存储设备可以被配置为存储电容器。
在一些实施例中,存储电容器可以具有至少0.1μF、至少0.25μF、至少0.5μF、至少1μF、至少2μF、至少4μF或至少8μF的电容。在一些实施例中,存储电容器可以具有小于10μF、小于8μF、小于4μF、小于2μF、小于1μF、小于0.5μF或小于0.25μF的电容。例如,存储电容器可以具有在0.1μF-10μF范围内的电容,例如在0.5μF-2μF范围内的电容。在一些实施例中,存储电容器可以具有大约1μF的电容。
在一些实施例中,能量存储设备636可以被配置为以至少两种功率模式操作,以使可植入设备604能够更高效地利用所接收的超声波的功率并提供更一致的功率。在一些实施例中,功率模式包括充电模式,其中,所接收的超声波的功率的一部分可被输送到能够存储能量的能量存储设备636。在一些实施例中,功率输送电路634可以被配置为基于所生成的第一电压对能量存储设备636充电。在一些实施例中,功率模式包括放电模式,其中,存储在能量存储设备636处的能量的一部分被放电,以从能量存储设备636输送功率,从而向可植入设备604的其他设备组件(例如刺激电路614、检测电路616或控制器电路620等)提供附加的功率。在一些实施例中,到和来自能量存储设备636的功率流可以通过功率输送电路634被路由。
在一些实施例中,调节电路638可以被配置为调节由功率输送电路634生成的输出电压(例如第二电压),以向可植入设备604的一个或多个电路负载提供调节后的电压。在一些实施例中,在功率输送电路634包括电荷泵的情况下,调节电路638可以被配置为去除或减少由操作电荷泵的开关引起的潜在电压纹波。在一些实施例中,调节电路638包括DC电压调节器(例如低压降(LDO)调节器),以调节向可植入设备604的数字电路负载供应的电压。在一些实施例中,调节电路638包括DC电压调节器(例如低压降(LDO)调节器),以调节向可植入设备604的数字电路负载供应的电压。在一些实施例中,调节电路638包括AC电压调节器(例如低压降(LDO)调节器),以调节向可植入设备604的模拟电路负载供应的电压。
在一些实施例中,调制解调电路612可以包括解调电路,其被配置为解调由超声换能器电路606生成的电信号,以提取编码在所接收的超声波中的信息。在一些实施例中,解调电路可以将包括指令的所提取的信息发送到控制器电路620,其被配置为基于指令控制可植入设备604如何操作。
在一些实施例中,为了使可植入设备604能够与询问器602无线传送信息,调制解调电路612可以包括调制电路,其被配置为使用超声反向散射对信息进行编码。该信息由可植入设备604生成,并且为了便于说明,在以下描述中有时将其称为设备信息。
通常,当可植入设备604被嵌入受试者内时,由询问器602的超声收发器发射的超声波(包括载波)将在由可植入设备604的超声换能器电路606接收之前穿过生物组织。如上所述,载波引起超声换能器608(例如体压电换能器)上的机械振动,以生成超声换能器608两端的电压,该电压然后给予电流,以流动到可植入设备604的其余部分。在一些实施例中,流过超声换能器608的电流使超声换能器电路606发射与所接收的超声波相对应的反向散射超声波。
在一些实施例中,调制电路612可以被配置为调制流过超声换能器608的电流,以对设备信息进行编码,这使得所得到的超声反向散射波也对设备信息进行编码。因此,从可植入设备604发射的超声反向散射可以编码与可植入设备604有关的设备信息。在一些实施例中,调制电路可以包括一个或多个开关,例如通/接通关或场效应晶体管(FET)。可以与可植入设备604的一些实施例一起使用的示例性FET包括金属氧化物半导体场效应晶体管(MOSFET)。在一些实施例中,调制电路可以被配置为改变流过超声换能器608的电流的阻抗,并且流动的电流的变化对信息进行编码。
如上所述,询问器602所提供的超声功率仅能增加这么多,并且需要低于监管机构认为安全的阈值。然而,由于超声换能器608与询问器602所发射的US波束之间的错位,由询问器602供应的功率可能未被超声换能器608有效地接收。在一些实施例中,可植入设备604可以通过将植入物信号或信息嵌入超声反向散射内来利用超声通信,以使询问器602能够更好地跟踪可植入设备604。例如,如上面关于图5所述,超声反向散射可由询问器602接收并解密以提取在超声反向散射中编码的设备信息。然后,根据一些实施例,询问器602可将所提取的信息与和可植入设备604相关联的预定图案进行比较和/或从所提取的信息确定信号强度以改变所发射的US波束的波束焦点,从而增加与可植入设备604的超声换能器608的对准。在一些实施例中,超声反向散射可以由询问器接收,该询问器可以与发送由超声换能器608接收的超声波的询问器602相同或不同。
在一些实施例中,检测电路616可以被配置为与一个或多个传感器640A-640C接口连接,以测量或检测受试者的一个或多个生理状况。在一些实施例中,检测电路616可以包括驱动器,其被配置为向一个或多个传感器640A-640C提供电流,并且从一个或多个传感器640A-640C接收所生成的信号。在一些实施例中,所接收的信号可以包括信息,其表示检测到的生理状况或表示所测量的生理状况。在一些实施例中,检测电路616可以被配置为将信息发送到控制器电路620。
在一些实施例中,传感器640A-640C中的一者或多者可以位于可植入设备604内部或者耦合到可植入设备604的外部。在一些实施例中,可植入设备604包括至少两个传感器640A-640C。在一些实施例中,一个或多个生理状况可以包括温度、pH、压力、心率、应变、氧张力、分析物的存在或分析物的量。例如,分析物可以是氧或葡萄糖。
在一些实施例中,传感器640A-640C可以包括光学传感器。在一些实施例中,光学传感器包括光源和光学检测器。在一些实施例中,光学传感器检测血压或脉搏。在一些实施例中,光学传感器包括基质,该基质包括荧光团或发光探针,并且其中,荧光团的荧光强度或荧光寿命取决于分析物的量。在一些实施例中,光学传感器被配置为执行近红外光谱。在一些实施例中,光学传感器检测葡萄糖。
在一些实施例中,传感器640A-640C可以包括电位式化学传感器或电流式化学传感器。在一些实施例中,传感器检测氧、pH或葡萄糖。在一些实施例中,传感器640A-640C可以包括温度传感器。在一些实施例中,温度传感器是热敏电阻、热电偶、或与绝对温度成比例(PTAT)电路。在一些实施例中,传感器640A-640C可以包括压力传感器。在一些实施例中,压力传感器是微机电系统(MEMS)传感器。在一些实施例中,检测电路616被配置为测量血压或脉搏。在一些实施例中,传感器640A-640C可以包括应变传感器。
在一些实施例中,检测电路616可以被配置为与例如传感器640C接口连接,以检测来自神经或神经内的神经纤维的目标子集的电生理信号,如将在下面关于图14进一步说明的。在一些实施例中,传感器640C可以包括电极极板,其可以与由刺激电路614操作的电极极板642相同或不同。在一些实施例中,检测电路616可以被配置为基于检测到的电生理信号记录神经或神经纤维的目标子集的神经活动。
在一些实施例中,例如计算建模(例如有限元模型)、反向源估计、多极(例如三极)神经记录、速度选择性记录或波束成形的一种或多种技术,可以由检测电路116(单独地或与控制器电路120结合)实现,以选择性地以神经纤维的子集为目标。参见,例如,Taylor等人的Multiple-electrode nerve cuffs for low-velocity and velocity selectiveneural recording,Medical&Biological Engineering&Computing,第42卷,第634-643页(2004年);和Wodlinger等人的Localization and Recovery of Peripheral NeuralSources with Beamforming Algorithms,IEEE Transactions on Neural Systems andRehabilitation Engineering,第17卷,第5期,第461-468页(2009年)。
在一些实施例中,检测电路616可以被配置为操作传感器640C的多个电极,以用于电生理信号的目标检测。例如,传感器640C可以是从可植入设备604延伸的弯曲构件,如下面关于图14进一步描述的。在一些实施例中,检测电路616可以分析由所有电极极板或电极极板的子集检测到的电生理信号,以确定神经内的发送电生理信号的神经纤维的子集。某些神经可以发送复合电生理信号(或复合动作电位),其是由神经纤维的两个或更多个不同子集同时发送的电生理信号(或动作电位)的总和。基于由多个电极极板检测到的电生理信号,检测电路616可以能够确定神经纤维的哪个子集发送哪个电生理信号。在一些实施例中,从询问器602接收的数据(例如温度数据、或与分析物浓度或其他生理状况有关的数据)进一步用于确定神经纤维的哪个子集发送电生理信号。
例如,在一些实施例中,检测电路616可以被配置为使用速度选择性记录来选择性地检测来自神经纤维的目标子集的电生理信号,该速度选择性记录可以与多极(例如三极)记录(其可以包括一个或多个弯曲构件上的多个电极内的任何数量的三极)组合。
波束成形可以另外地或替代性地用于检测来自神经纤维的目标子集的电生理信号。一个或多个弯曲构件的电极极板的一部分或全部可以检测来自神经的电生理信号,并且检测电路616可以基于由一个或多个弯曲构件的电极极板的一部分或全部检测到的电生理信号的差异来确定所发送的信号在神经内的横截面位置。
在一些实施例中,在与可植入设备604的位置分离的位置处的一个或多个神经的刺激可以导致在可植入设备604的位置处的电生理信号的调制。在与可植入设备604的电极极板(例如电极极板642)电通信的神经内的神经纤维的不同子集处检测到的电生理信号的调制可以是不同远端神经中的刺激的结果。例如,脾神经的刺激可以导致从迷走神经内的神经纤维的第一子集检测到的电生理信号的调制,并且肾神经的刺激可以导致从迷走神经内的神经纤维的第二子集检测到的电生理信号的调制。因此,定位在迷走神经上的可植入设备可以检测来自神经纤维的第一子集的电生理信号,以监测脾神经的刺激,并且检测来自神经纤维的第二子集的电生理信号,以监测肾神经的刺激。
在一些实施例中,刺激电路614可以被配置为通过选择性地激活连接到神经纤维的子集的一个或多个电极极板642来向神经内的神经纤维的子集发射目标电脉冲。在一些实施例中,可植入设备604可以包括一个或多个弯曲构件,其将刺激电路614电连接到电极极板642,如将在下面关于图14进一步描述的。
在一些实施例中,刺激电路614可以由控制器电路620控制,以操作电极极板642或选择性地激活电极极板642。选择性激活可以包括例如激活一个或多个弯曲构件的多个电极极板642内的电极极板的一部分和/或不同地激活一个或多个弯曲构件的多个电极极板642内的电极极板的全部或一部分。因此,可以操作多个电极以将由多个电极极板642发射的电脉冲引导到神经纤维的目标子集。根据一些实施例,可以使用例如电场干扰或多极刺激(例如三极刺激)的技术来使电脉冲对准神经内的神经纤维的子集。参见,例如,Grossman等人的Noninvasive Deep Brain Stimulation via Temporally InterferingElectrical Fields,Cell,第169卷,第1029-1041页(2017年)。一个或多个弯曲构件内的电极极板142可由控制器电路120选择性地激活,以使所发射的电脉冲对准神经纤维的子集。
由所发射的电脉冲对准的神经纤维的子集可以与检测电路616从其检测电生理信号的神经纤维的子集相同或不同。被配置为发射目标电脉冲的一个或多个弯曲构件可以与被配置为检测电生理信号的可植入设备604上的一个或多个弯曲构件相同或不同。所发射的目标电脉冲可以刺激可植入设备604的位置处的神经。由电脉冲对准的神经纤维的子集可以是选择性地检测电生理信号的神经纤维的相同或不同子集。
由可植入设备604发射的电脉冲对准的神经纤维的子集可以是例如神经内的一个或多个(例如2个、3个、4个或更多个)神经纤维束、或一个或多个(例如2个、3个、4个或更多个)神经纤维束的一部分。在一些实施例中,神经纤维的子集包括神经内的传入神经纤维或神经内的传入神经纤维的子集,或由其构成。在一些实施例中,神经纤维的子集包括神经内的传出神经纤维或神经内的传出神经纤维的子集,或由其构成。在一些实施例中,神经纤维的子集包括神经内的两个或更多个神经纤维束内的传出神经纤维或神经内的两个或更多个神经纤维束内的传入神经纤维,或由其构成。
通过向神经纤维的子集发射目标电脉冲而对神经纤维的子集进行目标刺激可以导致对远离神经位置的位置处的神经的刺激。由可植入设备604刺激的远端神经取决于由该设备发射的电脉冲对准的可植入设备604的位置处的神经子集。在一些实施例中,可植入设备604定位在第一神经位点处,并且被配置为通过向与第二神经位点相关联的第一神经位点内的神经纤维子集发射目标电脉冲来刺激第二神经位点。在一些实施例中,第一神经位点和第二神经位点被一个或多个神经分支点或一个或多个突触分开。在一些实施例中,第二神经位点相对于第一神经位点接近大脑,并且在一些实施例中,第二神经位点相对于第一神经位点远离大脑。在一些实施例中,神经纤维的目标子集包括传入神经纤维或由其构成。在一些实施例中,神经纤维的目标子集包括传出神经纤维或由其构成。
在一些实施例中,控制器电路620包括命令处理器622、模式检测器626、和存储器650。在一些实施例中,存储器650包括非瞬态储存存储器,例如寄存器存储器、处理器高速缓存或随机存取存储器(RAM)。在一些实施例中,控制器电路620可以是数字电路、模拟电路或混合信号集成电路。控制器电路120的示例可以包括微处理器、有限状态机(FSM)、现场可编程门阵列(FPGA)和微控制器。
在一些实施例中,模式检测器626可以被配置为从由超声换能器608接收的超声波确定操作模式命令。在一些实施例中,模式检测器626可以在确定与多个预定图案656的图案的对应性时确定操作模式命令,这些预定图案存储在存储器650中。例如,该图案可以是具有特定超声波特性的一个或多个脉冲的序列,特定超声波特性例如是超声脉冲持续时间。在该示例中,模式检测器626可以将操作模式命令的一部分与预定图案656中的一个或多个进行匹配,以确定匹配图案。在另一示例中,图案可以对应于超声特性,例如脉冲持续时间、振幅、或者相位或频率变化。在该示例中,模式检测器626可以分析该部分的超声特性(例如脉冲持续时间),以确定与图案的对应性。在一些实施例中,操作模式命令的该部分可以是指示操作模式命令的开始的单个脉冲。在其它实施例中,该部分可以是超声脉冲序列。
在一些实施例中,模式检测器626可以接收超声波作为电信号,该电信号已经由调制解调电路612基于在超声换能器电路606中接收的超声波而生成(例如解调)。在一些实施例中,模式检测器626可以包括一个或多个检测电路,其被配置为从电信号检测一个或多个超声波特性。在一些实施例中,这些检测电路中的一个可以包括过零电路,其被配置为确定操作模式命令中的每个超声脉冲的脉冲持续时间。例如,过零电路可以被配置为计数和存储电信号的第一部分在预定数量的时钟周期内与预定电压电平相交的实例的数量,以确定脉冲持续时间。在一些实施例中,预定电压电平是接近0V(例如小于10mV、小于50mV、小于100mV或小于200mV)的电压。
在一些实施例中,命令处理器622可以被配置为基于由模式检测器626确定的操作模式命令将可植入设备604的操作模式设置为多个预定操作模式652中的一个操作模式。在一些实施例中,命令处理器622可以将所接收的操作模式命令和相关联的指令存储在例如指令寄存器的存储器650中。在一些实施例中,命令处理器622可以被配置为基于所存储的操作模式命令,来控制可植入设备604进入对应于操作模式的操作状态。例如,命令处理器622可以作为FSM或微控制器中的程序植入,该FSM或微控制器中的程序基于当前操作状态和一个或多个检测到的输入来控制可植入设备604的操作状态,检测到的输入例如为一个或多个所接收的操作模式命令、一个或多个传感器值或其组合。
在一些实施例中,命令处理器622可以被配置为从操作模式命令的一部分提取信息,以配置各种参数或选择操作模式。在由询问器发射的超声波中编码并由闭环可植入设备接收的信息可以包括:例如用于开始或停止神经调制的指令、一个或多个校准指令、对操作软件的一个或多个更新、和/或一个或多个模板(例如模板电生理信号、一个或多个模板电生理信号、和/或一个或多个模板刺激信号)。在一些实施例中,命令处理器622可以被配置为处理所接收的指令并将其存储在存储器650中。在一些实施例中,命令处理器622可基于一个或多个所接收的操作模式命令而进入多个操作模式中的一个操作模式。在一些实施例中,多个操作模式可包括例如刺激神经的模式、记录神经活动的模式或确定一个或多个生理状况的模式。例如,如果操作模式命令指示可植入设备604应当进入神经刺激模式,则控制器电路620可以被配置为控制刺激电路614刺激神经的特定神经纤维或部分。
在一些实施例中,当命令处理器622控制可植入设备104进入神经活动记录模式或确定一个或多个生理状况的模式时,命令处理器622可以控制检测电路616检索设备信息(例如神经记录或所检测/测量的生理状况)。在一些实施例中,命令处理器622可以被配置为检索与当前操作模式652相关联的命令654,以控制可植入设备604的操作。例如,在神经活动记录模式中,命令处理器622可以接收对应于神经活动记录模式的命令654,并且发出命令654,以控制检测电路616对神经的神经活动(例如设备信息的示例)进行采样。在一些实施例中,在检索设备信息时,命令处理器622可以被配置为基于命令654来控制调制解调电路612,以在超声反向散射中编码设备信息,如上所述。
图7例示了根据一些实施例的用于使用超声波来发现可植入设备的方法700。在一些实施例中,可植入设备可以是如上面关于图1描述的可植入设备120的示例。在一些实施例中,方法700的一个或多个步骤可以由询问器(例如上面分别关于图1和图5描述的询问器106或询问器502)执行。例如,方法700的一个或多个步骤可以由植入物跟踪器517执行。为了便于解释,方法700的以下各个步骤可以参考询问器502的组件。在一些实施例中,方法700可以由包括与一个或多个计算设备通信的询问器的系统执行。例如,一些计算密集步骤可以从询问器卸载到一个或多个计算设备以提高计算速度和效率。
在步骤702中,询问器发射超声(US)波束以相继地聚焦在多个焦点上。例如,询问器的植入物跟踪器(例如植入物跟踪器517)可控制US波束如何通过命令生成器(例如命令生成器514)发射。在一些实施例中,询问器包括换能器阵列,其包括多个换能器,该多个换能器可由询问器通过电子束形成来控制以将US波束聚焦在特定焦点处。例如,命令生成器可以生成控制换能器阵列的指令,如上面关于图5所述。在一些实施例中,多个焦点表示US波束的可操控范围。在一些实施例中,可操控范围可以包括线性范围。在换能器阵列可包括2D换能器阵列的其它实施例中,可操控范围可包括2D区域。
在步骤704中,在多个焦点中的各个焦点处,询问器确定可植入设备位于焦点处的可能性。在一些实施例中,询问器可以在多个焦点中的各个焦点处执行步骤704A-704C。
在步骤704A中,询问器将聚焦的US波束保持在焦点处一段持续时间,该持续时间允许可植入设备在位于焦点时将来自US波束的超声波的能量转换成电能以从断电状态进入通电状态。在一些实施例中,持续时间可以是预先确定的时间段,该时间段基于各种因素预先确定,这些因素包括US波束的强度、可植入设备的功率要求、可植入设备的能量存储容量、或者询问器与可植入设备之间的平均或估计最大距离中的一者或多者。
在步骤704B中,询问器接收对应于聚焦在焦点上的US波束的反向散射超声波。在一些实施例中,询问器可以操作开关以在发送US波束与接收超声反向散射之间切换。在一些实施例中,接收US波束的超声波的可植入设备可以被配置为将信息编码在由可植入设备发射的超声反向散射中。例如,可植入设备可以通过数字地控制开关以分流超声换能器来调制电信号,从而编码信息。在一些实施例中,信息可以包括标识可植入设备的预定图案。在一些实施例中,预定图案可以是方波振荡,通过该方波振荡,可植入设备周期性地将其一个或多个换能器的压电端子短路预定的时间段。在一些实施例中,预定图案可以是由询问器解码的数字数据序列,如上面关于图3的数字数据处理312描述的。
在步骤704C中,询问器将所接收的反向散射超声波与和待发现的可植入设备相关联的预定图案进行比较,以生成指示反向散射超声波包括预定图案的可能性的分数。例如,植入物跟踪器可以将预定图案存储在存储器中,并且将预定图案与反向散射的超声波进行比较。在一些实施例中,植入物跟踪器可以存储与预定图案对应的数字数据序列,并且对反向散射超声波进行解码以确定在反向散射超声波中是否存在预定图案。在一些实施例中,分数可以指示是否从超声反向散射检测到可植入设备的预定图案。在一些实施例中,询问器可以与一个或多个计算设备通信(例如通过有线连接或无线连接)以生成分数。
在步骤706中,询问器基于针对多个对应的焦点生成的多个分数从多个焦点确定可植入设备的位置。在一些实施例中,询问器的植入物跟踪器可以基于多个焦点中的哪些焦点具有至少为预定阈值或置信水平的分数来估计可植入设备的位置。例如,询问器可以通过计算一个或多个集中趋势的度量(例如分数等于或高于预定阈值(例如80%、90%、95%等)的焦点的中值、众数或平均值)来确定位置。在一些实施例中,植入物跟踪器可以被配置为计算跨多个焦点的分数的谱质心(即,质心)。换言之,植入物跟踪器可以计算跨多个焦点的分数的加权平均值,以识别表示多个焦点相对于多个对应分数的“质心”的“平均”焦点值。在一些实施例中,询问器可以从多个焦点中选择表示可植入设备的位置的焦点。
在一些实施例中,一旦询问器确定可植入设备的估计位置,询问器就可被配置为将US波束引导至最靠近估计位置的焦点以确认可植入设备位于该焦点处。例如,询问器可在步骤706中确定估计位置时将US波束聚焦在从多个焦点中选择的焦点上。在一些实施例中,询问器可以分析在US波束聚焦在所选择的焦点上时接收的超声反向散射,以确认可植入设备位于所选择的焦点。例如,询问器可以将从超声反向散射提取的信号强度与预定阈值进行比较。在一些实施例中,询问器可以响应于确认可植入设备位于所选择的焦点而将US波束维持在所选择的焦点。否则,根据一些实施例,询问器可以响应于确认可植入设备不位于所选择的焦点而操控US波束重新聚焦在来自第二多个焦点中的一个或多个焦点上。例如,一个或多个焦点可以从步骤702的多个焦点中选择。
在一些实施例中,一旦询问器发现可植入设备并确定可植入设备的位置,询问器就可以进入跟踪模式,在该模式下,询问器确定并维持US波束与可植入设备之间的对准,如下面将关于图8至图11进一步描述的。
图8例示了根据一些实施例的图800,其示出了使用超声波有效地跟踪可植入设备并为其供电的询问器(例如图1的询问器106或图5的询问器502)的示例性操作逻辑。如上所述,询问器的控制器电路(例如控制器电路512)可以被配置为实现有限状态机(FSM),以控制询问器的操作。例如,询问器的植入物跟踪器(例如植入物跟踪器517)可以实现FSM。例如,图800示出了Moore状态机。如图800所示,FSM可以包括用于跟踪可植入设备的多个操作状态802-806。虽然FSM被示出为Moore机器,但是询问器可以被配置为根据其他类型的FSM来控制其操作逻辑。例如,代替Moore机器,FSM可以被实现为Mealy状态机、Harel状态机或统一建模语言(UML)状态机。
在操作状态802下,询问器可以被配置为建立与可植入设备的同步状态。在一些实施例中,询问器操控其US波束聚焦在多个焦点上,以确定从所接收的超声反向散射确定的信号强度高于预定同步阈值的焦点。如图所示,如果所确定的信号强度低于预定阈值,则询问器保持在操作状态802。一旦信号强度满足或超过预定阈值,询问器就进入操作状态804。
在操作状态804下,询问器可以被配置为跟踪可植入设备的位置。在一些实施例中,询问器调节US波束聚焦在何处以最大化从所接收的超声反向散射提取的信号的信号强度。在一些实施例中,询问器可以被配置为保持在操作状态804下并且调节焦点的位置,直到对应的信号强度不再增加,即,已经找到局部最大值。一旦信号强度已经最大化,询问器就进入操作状态806。
在操作状态806下,询问器维持US波束聚焦在焦点上,该焦点在操作状态804下产生最大信号强度。在一些实施例中,该最大信号强度可以表示稳态阈值。为了在询问器与可植入设备之间提供一致的功率和可靠的超声通信,询问器被配置为监测在超声反向散射中接收的信号的信号强度。如果所监测的信号强度被确定为在稳态阈值的预定范围内,那么询问器维持US波束焦点。否则,如果所监测的信号强度落在稳态阈值的范围之外,则询问器重新进入操作状态804以跟踪可植入设备的位置。
图9例示了根据一些实施例的用于跟踪使用超声波供电的可植入设备以维持向可植入设备供应的功率的方法。在一些实施例中,可植入设备可以是如上面关于图1描述的可植入设备120的示例。在一些实施例中,方法900的一个或多个步骤可以由询问器(例如上面分别关于图1和图5描述的询问器106和询问器502)执行。例如,方法900的一个或多个步骤可由可植入设备502的植入物跟踪器517执行,如上面关于图5所述。在一些实施例中,方法900可以由包括与一个或多个计算设备通信的询问器的跟踪系统执行。例如,一些计算密集步骤可以从询问器卸载到一个或多个计算设备以提高计算速度和效率。为了便于解释,方法900的以下各个步骤可以参考询问器502的组件。
在步骤902中,询问器建立与可植入设备的同步状态。在一些实施例中,步骤902包括步骤904-908。
在步骤904中,询问器向第一焦点发射超声(US)波束并接收与所发射的US波束相对应的第一超声反向散射。如上所述,当US波束的超声波接触可植入设备时,超声波被散射并且其能量的一部分在所有空间方向(包括向后朝向询问器)上辐射。在一些实施例中,可植入设备可以被配置为调制电信号以在超声反向散射内编码信息。
在步骤906中,询问器基于第一超声反向散射确定第一信号强度。在一些实施例中,询问器的植入物跟踪器可以被配置为从超声反向散射提取植入物信号并且确定其信号强度。如上面关于图3所述,植入物信号可以对应于由可植入设备执行的信号调制以编码植入物数据。
在一些实施例中,植入物跟踪器可以从所接收的反向散射超声波中消除信号干扰或环境噪声以提取植入物信号。在一些实施例中,植入物跟踪器可以通过将包括植入物信号的超声反向散射的第一部分与不包括植入物信号的超声反向散射的第二部分进行比较来执行干扰消除,以提取植入物信号。例如,植入物信号可以从第一部分(对应于具有植入物调制的有源反向散射)减去第二部分(对应于不具有植入物调制的无源反向散射)来消除环境噪声或干扰。
在一些实施例中,植入物跟踪器可以被配置为根据从超声反向散射提取的植入物信号来确定信号强度。在一些实施例中,植入物跟踪器可以通过确定提取的信号的调制深度或振幅变化来确定信号强度。例如,植入物跟踪器可以将振幅变化确定为振幅变化的百分比。
在步骤908中,询问器响应于确定第一信号强度满足预定阈值来建立与可植入设备的同步状态。例如,预定阈值可以是最小振幅阈值。
在步骤910中,一旦建立同步状态,询问器就通过调节US波束聚焦在何处来跟踪可植入设备。换言之,询问器跟踪可植入设备的位置,使得US波束的焦点与可植入设备的位置对准。在一些实施例中,跟踪可植入设备对于维持由US波束提供给可植入设备的足够功率以及实现询问器与可植入设备之间的可靠的双向超声通信是关键的。通过跟踪可植入设备,询问器可以被配置为根据针对体内设备的最大可允许功率的规章准则来操作。在一些实施例中,步骤910包括步骤912-918。
在步骤912中,询问器估计可植入设备的位置。在一些实施例中,询问器可以被配置为基于第一超声反向散射来估计位置。在一些实施例中,询问器基于接收波束成形来确定调节第一焦点的位置的方向。在一些实施例中,询问器可以基于第一超声反向散射的一个或多个预定部分确定估计位置。在一些实施例中,询问器可以基于在第一超声反向散射之后接收的一个或多个超声反向散射来确定估计位置。
在步骤914中,询问器向比第一焦点更靠近估计位置的第二焦点发射US波束,并且接收与所发射的US波束相对应的第二超声反向散射。
在步骤916中,询问器基于在步骤914中接收的第二超声反向散射确定第二信号强度。例如,与在步骤906中可以如何从第一超声反向散射确定第一信号强度类似,询问器的植入物跟踪器可以从第二超声反向散射提取第二植入物信号并且根据第二提取的植入物信号确定第二信号强度。
在步骤918中,询问器基于将第二信号强度与先前确定的信号强度进行比较来确定是维持还是调节所发射的US波束聚焦在何处,从而跟踪可植入设备。在一些实施例中,询问器可将第二信号强度与先前确定的第一信号强度进行比较以确定是维持还是调节US波束的焦点。例如,如果第二信号强度大于第一信号强度,则询问器可以在第二焦点的方向上调节焦点。在另一示例中,如果第二信号强度小于先前确定的信号强度,那么询问器可以将焦点维持在第一焦点处以维持US波束与可植入设备之间的可接受水平的同步或对准。
图10例示了根据一些实施例的用于跟踪使用超声波供电的可植入设备以有效地维持向可植入设备供应的功率的方法1000。在一些实施例中,方法1000例示了在步骤910上扩展的附加细节,如上面关于图9所述。在一些实施例中,方法1000的一个或多个步骤可以由询问器502的植入物跟踪器(例如植入物跟踪器517)执行,如上面关于图5所述。
在步骤1002中,询问器建立与可植入设备的同步状态,如上面关于图9的步骤902所述。特别地,步骤1002包括步骤1004,在该步骤,询问器确定从当前超声反向散射确定的当前信号强度满足预定阈值。如上面关于图9所述,询问器的植入物跟踪器可以被配置为通过从超声反向散射提取植入物信号并且确定所提取的植入物信号的信号强度来从所接收的超声反向散射确定信号强度。
在步骤1010中,询问器通过调节US波束聚焦在何处来跟踪可植入设备。在一些实施例中,步骤1010包括步骤1012-1020。
在步骤1012中,询问器基于与聚焦在当前焦点上的US波束相对应的当前超声反向散射来估计可植入设备的位置。例如,询问器的植入物跟踪器可以使用接收波束成形来估计位置。在一些实施例中,估计位置可由估计角度表示以调节US波束聚焦在何处。在一些实施例中,估计位置可由US波束相对于询问器的换能器阵列的估计角度来表示。在一些实施例中,植入物跟踪器可以基于使用接收波束成形来确定表示位置估计的估计角度。例如,通过在由估计角度指示的方向上引导US波束及其相应焦点,可减小可植入设备的真实位置与US波束的焦点之间的距离。
在步骤1014中,询问器将当前焦点的位置朝向估计位置递增,由此当前焦点变为先前焦点,并且递增后的位置变为当前焦点。在一些实施例中,该位置可以递增预定量。例如,该量可以是至少0.1mm、0.2mm、0.25mm、0.5mm、0.6mm。例如,该量可以小于0.7mm、0.6mm、0.5mm、0.4mm、0.25mm或0.2mm。在估计位置由估计角度表示的一些实施例中,询问器可以被配置为在由估计角度指示的方向上递增当前焦点的位置。因此,通过估计可植入设备的位置并且控制US波束聚焦在何处,询问器可以减少需要被搜索的焦点的数量并且提高搜索速度和效率。
在步骤1016中,询问器向与递增后的位置相对应的当前焦点发射US波束并接收与所发射的US波束相对应的超声反向散射。
在步骤1018中,询问器基于对应于递增后的位置的接收的超声反向散射确定当前信号强度。在一些实施例中,如上面关于图9的步骤906所述,询问器可以从反向散射提取植入物信号(即,由可植入设备嵌入在超声反向散射中的信号)并且确定所提取的植入物信号的信号强度。
在步骤1020中,询问器将当前信号强度与先前信号强度进行比较,以确定当前信号强度是否高于先前信号强度。换言之,询问器可以确定从先前焦点到当前焦点递增波束焦点的位置是否增加了信号强度并因此改善了询问器与可植入设备之间的对准。
在一些实施例中,如果当前信号强度增加,那么方法1000返回到步骤1012,其中询问器继续调节焦点的位置。在一些实施例中,一旦确定当前信号强度不再增加或减少,询问器确定已经确定局部最大信号强度并且相关联焦点最靠近可植入设备的位置。在一些实施例中,询问器可选地执行步骤1022,在该步骤调节当前焦点的位置。例如,询问器可以将当前焦点的递增位置恢复一半增量,以考虑离散的递增量。
在步骤1024中,询问器通过维持US波束聚焦在当前焦点上来建立与可植入设备的信号稳态。
图11例示了根据一些实施例的用于跟踪使用超声波供电的可植入设备以有效地维持向可植入设备供应的功率的方法1100。在一些实施例中,方法1100例示了在步骤1024上扩展的附加细节,如上面关于图10所述。在一些实施例中,方法1100的一个或多个步骤可以由询问器502的植入物跟踪器(例如植入物跟踪器517)执行,如上面关于图5所述。
在步骤1102中,询问器建立与可植入设备的信号稳态。在一些实施例中,步骤1102包括步骤1104-1106。
在步骤1104中,询问器存储根据在建立的信号稳态下接收的超声反向散射确定的信号强度。换言之,询问器可以被配置为存储在跟踪可植入设备时确定的最大信号强度,如上面关于图10所述。
在步骤1106中,询问器存储在步骤1104中确定信号强度的焦点。在一些实施例中,焦点对应于询问器发射的US波束对准在何处。
在步骤1108中,询问器维持所发射的US波束聚焦在信号稳态下所确定的焦点上。
在步骤1110中,询问器监测从在US波束在焦点处发射时接收到的超声反向散射提取的信号的信号强度。例如,类似于图9的步骤906,询问器的植入物跟踪器可以被配置为基于从超声反向散射提取植入物信号来确定信号强度。
在步骤1112中,询问器基于将所监测的信号强度与所存储的信号强度进行比较来确定是否应当调节所发射的US波束的焦点。在一些实施例中,如果询问器确定所监测的信号强度没有降至所存储的信号强度的预定阈值以下,则方法1100返回至步骤1108,在该步骤处维持所发射的US波束的焦点。否则,方法1100进行到步骤1114。在一些实施例中,询问器可以基于监测的信号强度是否降低到存储的信号强度的百分比以下来确定是否应当调节焦点。如上所述,所存储的信号强度表示先前识别的局部最大值。因此,询问器可以调节询问器与可植入设备之间的对准以抵消受试者的移动,该移动导致可植入设备的位置变化。
在一些实施例中,除了监测信号强度以抵消可植入设备的移动之外,询问器可被配置为监测询问器的移动以确定是否以及如何调节发射的US波束的焦点以抵消询问器的移动。例如,询问器可以包括惯性移动单元(IMU)、加速度计或陀螺仪中的一者或多者,以检测和测量询问器的移动。在这些实施例中,询问器可以计算对焦点位置的调节,该调节抵消所测量的移动。例如,通过计算和应用这种调节,询问器可以通过电子地操控超声波束来补偿询问器操作者的手的小移动,使得焦点的绝对位置的净变化保持接近于零。
在步骤1114中,询问器进入信号跟踪状态以增加所发射的US波束与可植入设备的对准。在一些实施例中,步骤1114对应于图9的步骤910和图10的步骤1010。在一些实施例中,步骤1114包括步骤1116-1118。
在步骤1116中,询问器基于所接收的超声反向散射估计可植入设备的位置。
在步骤1118中,询问器发射US波束以聚焦在更靠近估计位置的焦点上。如上所述,询问器可以使用接收波束成形来确定调节焦点的方向,并在所确定的方向上增加焦点。如上面关于图9至图10所述,一旦跟踪了可植入设备,询问器就可以重新建立与可植入设备的信号稳态。
图12例示了根据一些实施例的示例图1200,其示出了由可植入设备编码到由询问器接收的超声反向散射1202中的预定图案。如图1200所示,超声波反向散射1202具有随时间变化的振幅(以25MHz采样)。
如上所述,当询问器在可植入设备处发射US波束时,US波束内的超声波以超声反向散射的形式被反射。超声反向散射1202可以包括描述超声波的植入物反射的部分1204和描述由可植入设备嵌入超声反向散射1202内的波形图案的部分1206。在一些实施例中,如上面关于图7所述,询问器可以将超声反向散射1202与和可植入设备相关联的预定图案进行比较,以确定其是否匹配被通电的可植入设备的预期预定图案。
图13例示了根据一些实施例的示例图1302-1308,其示出了询问器在发现模式下对可植入设备的位置的估计的准确度。在四个实验设置中,询问器被配置为执行图7的方法700。如图1302-1308所示,询问器针对在多个焦点(示出为侧向焦点)上的超声反向散射中是否检测到可植入设备的预定图案确定的置信水平在0.0至1.0的范围内。
在一些实施例中,询问器可以被配置为将统计测量应用于焦点,在这些焦点处以高于阈值(例如80%、90%、95%等)的置信度检测到可植入设备的预定图案以确定可植入设备的估计位置。在示例图1302-1308中,询问器被配置为计算焦点的侧向焦点范围上的置信水平(也称为“分数”)的谱质心(即,质心)。如图13所示,在四个实验设置中的每一者中的询问器的估计位置接近可植入设备的真实位置。
图14例示了根据一些实施例的被配置为与受试者的神经1414相互作用的可植入设备1411的图1400。在一些实施例中,可植入设备1411可以是如上面分别关于图1和图6描述的可植入设备120或604的示例实现方式。如图1400所示,可植入设备1411可以植入在神经1414上,并且包括一个或多个弯曲构件,例如从主体1412延伸的弯曲构件1402。可植入设备1411的主体1412可以包括集成电路1424(包括例如调制解调电路612、刺激电路614、检测电路616或控制器电路620)、非瞬态存储器1426(例如存储器680)、电源电路1428(例如电源电路630)和超声换能器1430(例如超声换能器608或超声换能器电路606)。在一些实施例中,主体1412包括多个超声换能器,其包括超声换能器1430。因此,应当理解,如图800所示,超声换能器1430可以表示多个超声换能器。
在一些实施例中,超声换能器1430可以被配置为接收由询问器(例如图1的询问器106或图5的询问器502)发送的超声波,并且将超声波的机械能转换成具有电能的电信号。在一些实施例中,超声波可以包括一个或多个操作模式命令,其由集成电路1424检测,以将可植入设备1411的操作模式设置为多个操作模式中的一个操作模式。在一些实施例中,电信号包括一个或多个操作模式命令的电气表示。
在一些实施例中,电信号的一部分可以由电源电路1428处理,以向可植入设备1411的组件供电。在一些实施例中,电源电路1428可以包括功率输送电路(例如功率输送电路634),其被配置为将具有第一电压的电信号转换成具有第二电压的第二信号,以向集成电路1424的各个组件供电。在一些实施例中,电源电路1428可以包括整流电路(例如有源整流器),以将AC形式的电信号转换成DC形式,其中,转换的电信号可以与第一电压相关联。在一些实施例中,功率输送电路可以包括电荷泵,以生成大于第一电压的第二电压。在一些实施例中,电源电路1428可包括能量存储设备(例如能量存储设备636),其被配置为存储由电信号提供的多余能量,并且在询问器所供应的功率不足时作为二次电源操作。在一些实施例中,功率输送电路可以被配置为控制是向能量存储设备输送功率还是从能量存储设备输送功率,这分别有效地对能量存储设备充电或放电。在一些实施例中,功率输送电路可以被配置为除了控制功率流动的方向(例如正向流动或反向流动)之外,还控制输送功率的时间量(例如时钟周期的数量)。
在一些实施例中,集成电路1424包括控制器电路(例如控制器电路620),其被配置为基于在超声波中接收的操作模式命令来设置可植入设备1411的操作模式。
在一些实施例中,操作模式命令可以指示可植入设备1411进入功率同步模式,其中,控制器电路可以生成指示可植入设备1411的信息。例如,集成电路1424可以被配置为调制电信号以将预定图案嵌入由可植入设备1411发射的超声反向散射内。如上面关于图1至图13所述,接收超声反向散射的询问器可以提取预定图案以发现或跟踪可植入设备1411的位置。通过调节所发射的US波束的波束焦点,询问器可更有效地将US波束与可植入设备1411对准以维持供应至可植入设备1411的足够功率。而且,由于询问器所发射的US波束用于为可植入设备1411供电并与其通信,因此维持足够的功率还改善了询问器与可植入设备1411之间的超声通信。
在一些实施例中,操作模式命令可以指示可植入设备1411进入神经刺激模式或检测模式,各个模式可以操作弯曲构件1402上的电极极板1418。在一些实施例中,检测模式可以是与向例如询问器的其它设备发送设备数据相关联的上行链路模式的示例。在一些实施例中,在检测模式中,电极极板1418被配置为检测电生理信号,并且基于电生理信号的检测信号由集成电路1424接收。由集成电路1424接收的检测信号可以在由控制器电路接收之前由检测电路(例如由检测电路616)处理(例如放大、数字化和/或滤波)。在一些实施例中,控制器电路可以访问非瞬态存储器(例如存储器680),以存储与检测到的电生理信号有关的数据。在一些实施例中,在检测模式中,控制器电路可以被配置为操作超声换能器1430,以发射所接收的超声波的反向散射,其中,反向散射的超声波对与检测到的电生理信号有关的数据进行编码。
在一些实施例中,操作模式命令可以指示可植入设备1411进入神经刺激模式。在刺激模式中,控制器电路可以基于检测信号生成刺激信号,并且基于刺激信号操作一个或多个电极极板1418,以向神经1414发射电脉冲。在一些实施例中,控制器电路可以访问非瞬态存储器(例如存储器680),以存储与发射到神经1414的刺激信号或电脉冲有关的数据。在一些实施例中,在刺激模式中,控制器电路可以被配置为操作超声换能器1430,以发射所接收的超声波的反向散射,其中,反向散射的超声波对与刺激的状态有关的数据进行编码。
存储在非瞬态存储器上的数据可以通过由超声换能器1430发射的超声反向散射波无线地发送。如上面关于图6描述的,为了使用超声反向散射来发送数据,超声换能器1430可以首先接收超声波,并且生成流过调制电路的电流。然后,控制器电路可以访问存储器,并且操作调制电路以调制流过调制电路的电流,以便编码数据。通过这种处理,由超声换能器1430发射的超声反向散射波可以编码数据。
在一些实施例中,如图1400所示,弯曲构件1402可以包括在点1416处由主体1412桥接的第一部分1402a和第二部分1402b。在一些实施例中,第一部分1402a和第二部分1402b直接连接,并且弯曲构件1402通过连接构件附接到主体1412。弯曲构件1402可以包括在弯曲构件1402的内表面上的多个电极极板1418,并且电极极板1418可以围绕平行于神经1414的长度的轴线径向地定位。第一部分1402a与第二部分1402b之间的间隔1420沿着弯曲构件1402存在(其可类似地存在于可植入设备1411的其它弯曲构件中)。在一些实施例中,可植入设备411可以通过以下方式来植入:向外折曲弯曲构件1402的第一部分1402a和第二部分1402b,从而扩大间隔的尺寸,并且允许神经1414或其它丝状组织穿过间隔1420并配合在由弯曲构件1402形成的圆柱形空间内。弯曲构件1402的第一部分1402a和第二部分1402b可被释放,这允许弯曲构件1402围绕神经1414或其它丝状组织缠绕。
如图14所示的多个电极极板1418在神经1414的外部,但是与神经1414的神经外膜直接接触。神经1414可以包括若干神经纤维束1422。在一些实施例中,弯曲构件1402内的电极极板1418可以被操作用于电脉冲到一个或多个神经纤维束1422或神经纤维的其他子集的目标发射,和/或被操作用于由一个或多个神经纤维束1422或神经纤维的其他子集发送的电生理信号的目标检测。例如,电极极板1418可以由容纳在主体1412内的集成电路1424内的控制器电路选择性地激活,以发射对准到一个或多个神经纤维束1422的电脉冲。在另一示例中,电极极板418由控制器电路操作,以检测由神经1414内的一个或多个神经纤维束1422发送的电生理信号。在一些实施例中,弯曲构件1402可以被配置为检测由神经1414或神经纤维的子集发送的电生理信号,向神经1414发射电脉冲或使电脉冲对准神经纤维的子集,或者既检测由神经1414或神经纤维的子集发送的电生理信号又向神经1414发射电脉冲或使电脉冲对准神经纤维的子集。例如,可植入设备1411可以包括多个弯曲构件(包括弯曲构件1402),其中,第一弯曲构件可以被配置为检测由神经1414或神经纤维的子集发送的电生理信号,并且第二弯曲构件可以被配置为向神经1414发射电脉冲或使电脉冲对准神经纤维的子集。
在一些实施例中,弯曲构件1402的尺寸可以被设计成接合所选神经1414或包含神经1414的纤维组织。神经1414可以是脊髓或外周神经。在一些实施例中,神经414是自主神经或躯体神经。在一些实施例中,神经414是交感神经或副交感神经。在一些实施例中,神经1414是迷走神经、肠系膜神经、脾神经、坐骨神经、胫神经、阴部神经、腹腔神经节、骶神经或其任何分支。
可植入设备1411上的弯曲构件1402的尺寸、形状和间距可取决于可植入设备1411接合的组织的类型和尺寸。在一些实施例中,可植入设备1411的两个或更多个弯曲构件被隔开约0.25mm或更多(例如约0.5mm或更多、约1mm或更多、约2mm或更多、约3mm或更多、约4mm或更多、约5mm或更多、约6mm或更多、或约7mm或更多)。在一些实施例中,两个或更多个弯曲构件被隔开约8mm或更小(例如约7mm或更小、约6mm或更小、约5mm或更小、约4mm或更小、约3mm或更小、约2mm或更小、约1mm或更小、或约0.5mm或更小)。以示例的方式,两个或更多个弯曲构件可以被隔开约0.25mm至约0.5mm、约0.5mm至约1mm、约1mm至约2mm、约2mm至约3mm、约3mm至约4mm、约4mm至约5mm、约5mm至约6mm、约5mm至约7mm、或约7mm至约8mm。弯曲构件1402的宽度也可根据可植入设备1411的应用或由可植入设备1411接合的组织而变化。在一些实施例中,弯曲构件1402的宽度为约100μm或更大(例如约150μm或更大、约250μm或更大、约500μm或更大、约1mm或更大、或约1.5mm或更大)。在一些实施例中,弯曲构件1402的宽度为约2mm或更小(例如约1.5mm或更小、约1mm或更小、约500μm或更小、约250μm或更小、或约150μm或更小。在一些实施例中,弯曲构件1402的宽度为约100μm至约2mm(例如约100μm至约150μm、约150μm至约250μm、约250μm至约500μm、约500μm至约1mm、约1mm至约1.5mm、或约1.5mm至约2mm)。弯曲构件1402的内表面形成神经414和/或丝状组织通过的圆柱形空间。由弯曲构件402形成的圆柱形空间的直径取决于可植入设备1411将接合的目标神经和/或丝状组织。在一些实施例中,弯曲构件1402形成圆柱形空间,其直径为约50μm至约15mm(例如约50μm至约100μm、约100μm至约250μm、约250μm至约500μm、约500μm至约1mm、约1mm至约1.5mm、约1.5mm至约2.5mm、约2.5mm至约5mm、约5mm至约10mm、或约10mm至约15mm)。
在一些实施例中,可植入设备1411包括一个或多个附加的固定构件,其被配置为将可植入设备1411固定到丝状组织。这种固定构件可包括例如用于将可植入设备缝合到解剖结构(例如丝状组织或神经、或围绕丝状组织或神经的其它组织)的环、销或夹具。例如,可植入设备1411可以缝合到丝状组织或神经1414或围绕丝状组织或神经的组织,以一旦植入就限制可植入设备1411的移动。
在一些实施例中,可植入设备1411的弯曲构件1402可以包括金属、金属合金、陶瓷、硅或非聚合材料。弯曲构件1402可以是柔性的,并且优选地是装有弹簧的,使得弯曲构件1402可以围绕神经1414和/或丝状组织定位。在一些实施例中,弯曲构件1402或弯曲构件1402的一部分涂布有弹性体涂层或非弹性体涂层,其优选为生物惰性的,例如聚二甲基硅氧烷(PDMS)、硅酮、聚氨酯聚合物、聚(对二甲苯)聚合物(例如以商品名
Figure BDA0004162536460000361
销售的聚(对二甲苯)聚合物)或聚酰亚胺。弯曲构件1402可以包括在内表面上的多个电极极板1418。在一些实施例中,弯曲构件1402的内表面上的电极极板1418未涂布有弹性体涂层或非弹性体聚合物涂层,但内表面可以涂布有导电材料(例如电镀有PEDOT聚合物或金属,以改善电极极板的电特性)。因此,在一些实施例中,仅弯曲构件402的外表面涂布有涂层。可选地,涂层还涂布主体1412的壳体。
在一些实施例中,多个电极极板1418可以包括3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个或更多个电极极板,例如在约3个至约50个电极极板之间、在约3个至约5个电极极板之间、在约5个至约10个电极极板之间、在约10个至约25个电极极板之间或在约25个至约50个电极极板之间。在一些实施例中,多个电极极板1418内的电极极板可以由控制器电路选择性地激活,这允许目标电脉冲发射,如本文进一步描述的。
在一些实施例中,电极极板1418可以包括任何合适的导电材料,例如钨、铂、钯、金、铱、铌、钽或钛中的一种或多种(或者一种或多种的合金)。检测电极极板和刺激电极极板的材料可以相同或不同。电极极板1418的尺寸和形状也可以相同或不同。例如,给定弯曲构件1402上的电极极板1418可以具有相同或不同的尺寸,并且不同弯曲构件上的电极极板可以具有相同或不同的尺寸。
在一些实施例中,可植入设备1411的电极极板1418通过弯曲构件1402定位,以与神经1414电通信。在一些实施例中,电极极板1418不与神经1414直接接触(例如在神经1414外部并且不与神经1414间接接触),而是与神经814电通信。在一些实施例中,电极极板1418定位在神经1414的约2mm内(例如约1.8mm内、约1.6mm内、约1.4mm内、约1.2mm内、约1.0mm内、约0.8mm内、约0.6mm内、约0.4mm内或约0.2mm内)。在一些实施例中,电极极板1418被配置为在一个或多个位置处穿透神经1414的神经外膜。例如,电极极板1418可以是针形的,这允许穿透神经外膜。在一些实施例中,电极极板818直接接触神经1414,例如神经1414的神经外膜。
在一些实施例中,主体1412包括壳体,其可以包括基部、一个或多个侧壁和顶部。壳体可以包围超声换能器1430和集成电路1424。壳体可以被密封封闭(例如通过焊接或激光焊接),以防止间质液与超声换能器1430或集成电路1424接触。壳体优选由生物惰性材料制成,例如生物惰性金属(例如钢或钛)或生物惰性陶瓷(例如二氧化钛或氧化铝)。壳体(或壳体的顶部)可以较薄,以允许超声波穿透壳体。在一些实施例中,壳体的厚度为约100微米(μm)或更小,例如约75μm或更小、约50μm或更小、约25μm或更小、或约10μm或更小。在一些实施例中,壳体的厚度为约5μm至约10μm、约10μm至约25μm、约25μm至约50μm、约50μm至约75μm、或约75μm至约100μm。
在一些实施例中,可植入设备1411的主体1412相对较小,这允许舒适且长期的植入,同时限制通常与可植入医疗设备相关联的组织炎症。在一些实施例中,主体1412的最长尺寸为约10mm或更小,例如约5mm至约9mm或约6mm至约8mm。例如,最长尺寸可以是可植入设备1411的主体1412的长度或高度。在一些实施例中,主体1412的最长宽度为约5mm或更小,例如约2mm至5mm、或约3mm至4mm。
在一些实施例中,主体1412包括在壳体内的材料,例如聚合物。材料可以填充壳体内的空的空间,以减少壳体外部的组织与壳体内的组织之间的声阻抗失配。因此,根据一些实施例,主体1412优选地没有空气或真空。
在一些实施例中,超声换能器1430可以包括微机械超声换能器,例如电容式微机械超声换能器(CMUT)或压电式微机械超声换能器(PMUT),或者可以包括体压电换能器。体压电换能器可以是任何天然或合成材料,例如晶体、陶瓷或聚合物。示例体压电换能器材料可以包括钛酸钡(BaTiO3)、锆钛酸铅(PZT)、氧化锌(ZO)、氮化铝(AlN)、石英、块磷铝矿(AlPO4)、黄玉、硅酸镓镧(La3Ga5SiO14)、正磷酸镓(GaPO4)、铌酸锂(LiNbO3)、钽酸锂(LiTaO3)、铌酸钾(KNbO3)、钨酸钠(Na2WO3)、铁酸铋(BiFeO3)、聚偏二氟乙烯(PVDF)和铌镁酸铅-钛酸铅(PMN-PT)。
在一些实施例中,体压电换能器近似为立方体的(即,纵横比为约1:1:1(长度:宽度:高度))。在一些实施例中,压电换能器是板状的,在长度或宽度方面具有约5:5:1或更大的纵横比,例如约7:5:1或更大、或约10:10:1或更大。在一些实施例中,体压电换能器是长且窄的,具有大约3:1:1或更大的纵横比,其中最长尺寸与超声反向散射波的方向(即,偏振轴)对准。在一些实施例中,体压电换能器的一个尺寸等于与换能器的驱动频率或谐振频率对应的波长(λ)的一半。在谐振频率下,撞击在换能器的任一面上的超声波将经历180°的相移,以达到相反的相位,这引起两个面之间的最大位移。在一些实施例中,压电换能器的高度为约10μm至约1000μm(例如约40μm至约400μm、约100μm至约250μm、约250μm至约500μm、或约500μm至约1000μm)。在一些实施例中,压电换能器的高度为约5mm或更小(例如约4mm或更小、约3mm或更小、约2mm或更小、约1mm或更小、约500μm或更小、约400μm或更小、250μm或更小、约100μm或更小、或约40μm或更小)。在一些实施例中,压电换能器的高度在长度上为约20μm或更大(例如约40μm或更大、约100μm或更大、约250μm或更大、约400μm或更大、约500μm或更大、约1mm或更大、约2mm或更大、约3mm或更大、或约4mm或更大)。
在一些实施例中,超声换能器1430在最长尺寸上具有约5mm或更小(例如约4mm或更小、约3mm或更小、约2mm或更小、约1mm或更小、约500μm或更小、约400μm或更小、250μm或更小、约100μm或更小、或约40μm或更小)的长度。在一些实施例中,超声换能器1430在最长尺寸上具有约20μm或更大(例如约40μm或更大、约100μm或更大、约250μm或更大、约400μm或更大、约500μm或更大、约1mm或更大、约2mm或更大、约3mm或更大、或约4mm或更大)的长度。
在一些实施例中,超声换能器1430连接到两个电极,以允许与集成电路1424电通信。第一电极附接到超声换能器1430的第一面,并且第二电极附接到超声换能器1430的第二面,其中第一面和第二面在超声换能器1430的沿着一个尺寸的相对侧上。在一些实施例中,电极包括银、金、铂、铂黑、聚(3,4-乙烯二氧噻吩)(PEDOT)、导电聚合物(例如导电PDMS或聚酰亚胺)或镍。在一些实施例中,超声换能器1430的电极之间的轴线与超声换能器1430的运动正交。
前面的描述阐述了示例性方法、参数等。然而,应认识到,这样的描述并不旨在作为对本发明的范围的限制,而是作为对示范性实施例的描述而提供。上述说明性实施例不是穷举的,也不是要将本发明限制到所公开的精确形式。鉴于上述教导,许多修改和变化是可能的。选择和描述实施例以最好地解释所公开的技术的原理及其实际应用。从而,本领域的其他技术人员能够最好地利用具有适于所考虑的特定用途的各种修改的技术和各种实施例。
尽管已经参考附图充分描述了本发明和示例,但是应当注意,各种改变和修改对于本领域技术人员将变得明了。这样的改变和修改将被理解为包括在由权利要求限定的本发明和示例的范围内。在本发明和实施例的前述描述中,参考了附图,在附图中通过例示来示出可以实践的具体实施例。应当理解,可以实践其他实施例和示例,并且可以在不脱离本发明的范围的情况下进行改变。
尽管前面的描述使用术语第一、第二等来描述各种元件,但是这些元件不应受术语限制。这些术语仅用于区分一个元件与另一个元件。
本文提及的“约”或“大约”值或参数包括(和描述)涉及该值或参数本身的变化。例如,提及“约X”的描述包括“X”的描述。
应当理解,本文所述的本发明的方面和变化包括由方面和变化“构成”和/或“基本上构成”。
术语“可植入的”和“植入的”是指物体完全可植入或完全植入受试者内,使得物体的任何部分都不会破坏受试者的表面。
术语“大致”是指90%或更多。例如,大致围绕神经的横截面的弯曲构件是指围绕神经的横截面的90%或更多的弯曲构件。
术语“受试者”和“患者”在本文中可互换使用,是指脊椎动物,例如人。
术语“治疗(treat)”、“治疗(treating)”和“治疗(treatment)”在本文中同义地使用,是指向患有病情或病症的受试者提供益处的任何动作,包括通过减轻、抑制、压制或消除至少一种症状来改善病症,延迟疾病或病症的进展,延迟疾病或病症的复发,或抑制疾病或病症。
在提供值的范围的情况下,应当理解,在该范围的上限和下限之间的各个中间值、以及在该规定范围内的任何其它规定的或中间值,被包含在本发明的范围内。当所述范围包括上限或下限时,排除那些包括的限值中的任一个的范围也包括在本发明中。
另外,还应当理解,除非上下文另外明确指出,否则在前述描述中使用的单数形式“一”、“一个”和“所述”旨在也包括复数形式。还应当理解,本文使用的术语“和/或”是指并包含一个或多个相关联的所列项目的任何和所有可能的组合。还应当理解,术语“包括”和/或“包含”当在本文中使用时,指定所陈述的特征、整数、步骤、操作、元件、组件和/或单元的存在,但是不排除一个或多个其它特征、整数、步骤、操作、元件、组件、单元和/或其组的存在或添加。
术语“如果”可以被解释为意味着“当……时”或“在……时”或“响应于确定”或“响应于检测到”,这取决于上下文。类似地,短语“如果确定”或“如果检测到[所述条件或事件]”可以被解释为意味着“在确定时”或“响应于确定”或“在检测到[所述条件或事件]时”或“响应于检测到[所述条件或事件]”,这取决于上下文。
上面关于“实施例”描述的特征和偏好是不同的偏好,并且不仅限于该特定实施例;在技术可行的情况下,它们可以与来自其它实施例的特征自由地组合,并且可以形成特征的优选组合。提供该描述以使本领域普通技术人员能够制造和使用本发明,并且该描述是在专利申请及其要求的上下文中提供的。对所描述的实施例的各种修改对于本领域技术人员将是容易明了的,并且本文的一般原理可以应用于其它实施例。因此,本发明并不旨在限于所示的实施例,而是要符合与本文描述的原理和特征一致的最宽范围。

Claims (39)

1.一种用于跟踪使用超声波供电的可植入设备以维持向所述可植入设备供应的功率的方法,包括:
建立与所述可植入设备的同步状态,包括:
向第一焦点发射超声波束并接收与所发射的超声波束对应的第一超声反向散射;
基于所述第一超声反向散射确定第一信号强度;以及
响应于确定所述第一信号强度处于或高于预定阈值来建立与所述可植入设备的所述同步状态;
估计所述可植入设备的位置;
向比所述第一焦点更靠近所估计位置的第二焦点发射超声波束,并且接收与所发射的超声波束相对应的第二超声反向散射;
基于所述第二超声反向散射确定第二信号强度;以及
基于将所确定的第二信号强度与所述第一信号强度进行比较来确定是维持还是调节将所述所发射的超声波束聚焦在何处。
2.根据权利要求1所述的方法,其中,建立所述同步状态包括:控制所述超声波束以相继地聚焦在搜索区域中的多个焦点上,以确定所述第一信号强度满足所述预定阈值的所述第一焦点。
3.根据权利要求2所述的方法,其中,控制所述超声波束包括:在第一方向上引导所述超声波束以相继地聚焦在所述多个焦点上,直到确定根据所述第一超声反向散射确定的所述第一信号强度高于所述预定阈值。
4.根据权利要求1至3中任一项所述的方法,包括:响应于确定将所述超声波束的所确定焦点维持在所述第二焦点处:
将所述超声波束维持为聚焦在所确定的第二焦点上,以及
监测根据在所述超声波束聚焦在所述所确定的第二焦点上时接收的超声反向散射确定的信号强度。
5.根据权利要求4所述的方法,其中,所监测的信号强度对应于由所述可植入设备生成的调制信号,以将信息编码到询问器处接收的超声反向散射中。
6.根据权利要求5所述的方法,其中,所编码信息唯一地标识所述可植入设备。
7.根据权利要求1至3中任一项所述的方法,包括:响应于确定调节所述超声波束的所述第二焦点,基于所接收的超声反向散射迭代地估计所述可植入设备的所述位置并且在所述所估计位置的方向上更新所述超声波束的焦点,直到根据针对所更新的焦点接收的超声反向散射确定的信号强度不再增加。
8.根据权利要求1至7中任一项所述的方法,其中,基于所述第一超声反向散射确定所述第一信号强度包括:
从所述第一超声反向散射提取与所述可植入设备相关联的植入物信号;以及
基于所提取的植入物信号确定所述第一信号强度。
9.根据权利要求8所述的方法,其中,提取所述植入物信号包括:消除来自反向散射超声波的信号干扰以提取所述植入物信号。
10.根据权利要求9所述的方法,包括:基于所述所提取的植入物信号来标识被跟踪的所述可植入设备。
11.根据权利要求1至10中任一项所述的方法,其中,所述第一超声反向散射包括第一部分和第二部分;所述第一部分包括由所述可植入设备编码到所述第一超声反向散射的植入物信号,所述第二部分不包括所述植入物信号。
12.根据权利要求11所述的方法,包括:基于比较所述第一超声反向散射的所述第一部分和所述第二部分确定所述植入物信号的所述第一信号强度。
13.根据权利要求1至12中任一项所述的方法,其中,在建立所述同步状态之后估计所述可植入设备的所述位置。
14.根据权利要求1至13中任一项所述的方法,其中,基于接收波束成形来估计所述可植入设备的所述位置。
15.根据权利要求1至14中任一项所述的方法,包括:确定与局部最大信号强度相关联的焦点,迭代地包括:
估计所述可植入设备的所述位置;
基于所述可植入设备的所估计位置相对于当前焦点的方向,将所述超声波束从所述当前焦点引导到测试焦点,其中,所述当前焦点变为先前焦点;
当向所述测试焦点发射所述超声波束时,基于超声反向散射确定信号强度;以及
将向所述测试焦点发射超声波束时的信号强度与向所述先前焦点发射超声波束时的信号强度进行比较。
16.根据权利要求15所述的方法,包括:响应于确定与局部最大值相关联的所述焦点,建立与所述可植入设备的稳态,其中,如果所述信号强度降低到第二预定阈值以下,则重新确定与所述局部最大信号相关联的所述焦点。
17.根据权利要求1至16中任一项所述的方法,其中,确定是否维持将所述所发射的超声波束聚焦在何处包括:
监测询问器的移动;以及
基于所监测的移动来确定对所述超声波束的焦点的调节。
18.根据权利要求1至17中任一项所述的方法,其中,用于跟踪所述可植入设备的所述方法是在询问器设备处执行的。
19.一种用于跟踪使用超声波供电的可植入设备的系统,包括:
换能器阵列,其包括多个换能器;和
控制器,其被配置为:
建立与所述可植入设备的同步状态,包括:
控制所述换能器阵列向第一焦点发射超声波束并接收与所发射的超声波束对应的第一超声反向散射;
基于所述第一超声反向散射确定第一信号强度;以及
响应于确定所述第一信号强度处于或高于预定阈值来建立与所述可植入设备的所述同步状态;
估计所述可植入设备的位置;
控制所述换能器阵列向比所述第一焦点更靠近所估计位置的第二焦点发射超声波束,并且接收与所发射的超声波束相对应的第二超声反向散射;
基于所述第二超声反向散射确定第二信号强度;以及
基于将所确定的第二信号强度与所述第一信号强度进行比较来确定是维持还是调节将所述所发射的超声波束聚焦在何处。
20.一种用于发现使用超声波供电的可植入设备的方法,包括:
发射超声波束以相继地聚焦在多个焦点上;
在所述多个焦点中的各个焦点处:
将所聚焦的超声波束保持在所述焦点处一段持续时间,所述持续时间允许所述可植入设备在位于所述焦点时将来自所述超声波束的超声波的能量转换成电能以从断电状态进入通电状态,
接收与聚焦在所述焦点上的所述超声波束对应的超声反向散射,以及
将所接收的超声反向散射与和待发现的可植入设备相关联的预定图案进行比较,以生成指示所述超声反向散射包括所述预定图案的可能性的分数;以及
基于针对所述多个焦点内的各个焦点生成的多个分数根据所述多个焦点来确定所述可植入设备的位置。
21.根据权利要求20所述的方法,包括:使所述可植入设备进入所述通电状态。
22.根据权利要求20或21所述的方法,还包括:使用由询问器发射的聚焦在与所述可植入设备的所确定位置对应的所述焦点处的超声波来建立与所述可植入设备的超声通信链路。
23.根据权利要求20至22中任一项所述的方法,其中,所述多个焦点对应于所述超声波束的可操控范围。
24.根据权利要求20至23中任一项所述的方法,其中,所述预定图案包括一个或多个方波。
25.根据权利要求20至24中任一项所述的方法,其中,所述预定图案唯一地标识所述可植入设备。
26.根据权利要求20至25中任一项所述的方法,其中,所述预定图案包括由所述可植入设备编码到所述超声反向散射中的信息。
27.根据权利要求26所述的方法,其中,所述可植入设备接收来自所发射的超声波束的所述超声波,并且通过调制基于在所述可植入设备处接收的所述超声波生成的电信号将所述信息编码到所述超声反向散射中。
28.根据权利要求20至27中任一项所述的方法,其中,确定所述可植入设备的所述位置包括:从所述多个焦点内的焦点子集中选择焦点,其中,与所述焦点子集内的各个焦点对应的所述分数高于预定阈值。
29.根据权利要求20至27中任一项所述的方法,其中,确定所述可植入设备的所述位置包括:基于所述多个分数从所述多个焦点中选择作为所述可植入设备的最可能位置的焦点。
30.根据权利要求28或29所述的方法,包括:确认所述可植入设备的所述位置,包括:
发射所述超声波束以预定时间段聚焦在所选择的焦点上;以及
分析在所述超声波束聚焦在所述所选择的焦点上时接收的超声反向散射,以确认所述可植入设备位于所述所选择的焦点处。
31.根据权利要求30所述的方法,包括:响应于确认所述可植入设备位于所述所选择的焦点处,将所述超声波束维持在所述所选择的焦点处。
32.根据权利要求20至31中任一项所述的方法,其中,用于发现所述可植入设备的所述方法是在询问器设备处执行的。
33.根据权利要求32所述的方法,其中,所述询问器包括换能器阵列中的多个换能器,并且其中,发射所述超声波束以相继地聚焦在所述多个焦点上包括:控制所述多个换能器以发送所述超声波束中的超声波以相继地聚焦在所述多个焦点上。
34.根据权利要求33所述的方法,其中,发射所述超声波束包括:在所述换能器阵列的可操控角度范围内将聚焦的超声波束相继地引导到所述多个焦点中的各个焦点处。
35.根据权利要求33所述的方法,其中,发射所述超声波束包括:机械地移动所述换能器阵列以将聚焦的超声波束相继地引导到所述多个焦点中的各个焦点处。
36.根据权利要求33至35中任一项所述的方法,其中,发射所述超声波束包括:控制何时向所述换能器阵列中的各个换能器供应功率以将聚焦的超声波束相继地引导到所述多个焦点中的各个焦点处。
37.根据权利要求20至36中任一项所述的方法,其中,所述可植入设备包括一个或多个电容器,所述一个或多个电容器存储从所述超声波束的所述超声波转换的所述电能,以从所述断电状态进入所述通电状态。
38.根据权利要求1至18和20至37中任一项所述的方法,其中,所述超声波束具有小于10mm的斑尺寸。
39.一种用于发现使用超声波供电的可植入设备的系统,包括:
换能器阵列,其包括多个换能器;和
控制器,其被配置为:
控制所述换能器阵列发射相继地聚焦在多个焦点上的超声波束;
在所述多个焦点中的各个焦点处:
将所聚焦的超声波束保持在所述焦点处一段持续时间,所述持续时间允许所述可植入设备在位于所述焦点时将来自所述超声波束的超声波的能量转换成电能并从断电状态进入通电状态,
接收与所发射的超声波束对应的超声反向散射,以及
将所接收的超声反向散射与和待发现的可植入设备相关联的预定图案进行比较,以生成指示所述超声反向散射包括所述预定图案的可能性的分数;以及
基于针对多个对应焦点生成的多个分数根据所述多个焦点来确定所述可植入设备的位置。
CN202180068432.4A 2020-08-24 2021-08-24 跟踪使用超声波供电的可植入设备 Pending CN116322494A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063069522P 2020-08-24 2020-08-24
US63/069,522 2020-08-24
PCT/US2021/047353 WO2022046770A1 (en) 2020-08-24 2021-08-24 Tracking an implantable device powered using ultrasonic waves

Publications (1)

Publication Number Publication Date
CN116322494A true CN116322494A (zh) 2023-06-23

Family

ID=80355689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180068432.4A Pending CN116322494A (zh) 2020-08-24 2021-08-24 跟踪使用超声波供电的可植入设备

Country Status (11)

Country Link
US (1) US20240024032A1 (zh)
EP (1) EP4200956A1 (zh)
JP (1) JP2023538658A (zh)
KR (1) KR20230056703A (zh)
CN (1) CN116322494A (zh)
AU (1) AU2021335193A1 (zh)
BR (1) BR112023002801A2 (zh)
CA (1) CA3190010A1 (zh)
IL (1) IL300522A (zh)
MX (1) MX2023002297A (zh)
WO (1) WO2022046770A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020021286A2 (pt) 2018-04-19 2021-01-26 Iota Biosciences, Inc. implantes usando comunicação ultrassônica para modular a atividade do nervo esplênico
AU2019255377A1 (en) 2018-04-19 2020-11-26 Iota Biosciences, Inc. Implants using ultrasonic communication for neural sensing and stimulation
EP3843830B1 (en) 2018-08-29 2024-05-22 Iota Biosciences, Inc. Implantable closed-loop neuromodulation device
WO2023250011A1 (en) * 2022-06-21 2023-12-28 The Trustees Of Columbia University In The City Of New York Systems and methods for providing augmented ultrasonography with an implanted electronic device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018009912A1 (en) * 2016-07-07 2018-01-11 The Regents Of The University Of California Implants using ultrasonic waves for stimulating tissue
US20190199139A1 (en) * 2017-12-21 2019-06-27 uBeam Inc. Coordinated wireless power transfer
MX2021008140A (es) * 2019-01-04 2021-08-11 Iota Biosciences Inc Protocolo basado en ultrasonido para operar un dispositivo implantable.

Also Published As

Publication number Publication date
AU2021335193A1 (en) 2023-03-09
IL300522A (en) 2023-04-01
EP4200956A1 (en) 2023-06-28
MX2023002297A (es) 2023-03-17
WO2022046770A1 (en) 2022-03-03
BR112023002801A2 (pt) 2023-03-14
JP2023538658A (ja) 2023-09-08
US20240024032A1 (en) 2024-01-25
KR20230056703A (ko) 2023-04-27
CA3190010A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
US20220062650A1 (en) Power controls for an implantable device powered using ultrasonic waves
US11033746B2 (en) Implants using ultrasonic communication for neural sensing and stimulation
US20240024032A1 (en) Tracking an implantable device powered using ultrasonic waves
JP7492514B2 (ja) 神経活動を調節するためのデバイスネットワーク
EP3843830B1 (en) Implantable closed-loop neuromodulation device
US20220143414A1 (en) Ultrasound-based protocol for operating an implantable device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination