CN116314305A - Lateral bipolar junction transistor including stress layer and method - Google Patents

Lateral bipolar junction transistor including stress layer and method Download PDF

Info

Publication number
CN116314305A
CN116314305A CN202211447416.9A CN202211447416A CN116314305A CN 116314305 A CN116314305 A CN 116314305A CN 202211447416 A CN202211447416 A CN 202211447416A CN 116314305 A CN116314305 A CN 116314305A
Authority
CN
China
Prior art keywords
layer
base
collector
dielectric layer
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211447416.9A
Other languages
Chinese (zh)
Inventor
J·辛格
A·M·德里克森
A·J·乔瑟夫
A·克诺尔
J·R·霍尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalFoundries US Inc
Original Assignee
GlobalFoundries US Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/555,561 external-priority patent/US11837653B2/en
Application filed by GlobalFoundries US Inc filed Critical GlobalFoundries US Inc
Publication of CN116314305A publication Critical patent/CN116314305A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D10/00Bipolar junction transistors [BJT]
    • H10D10/60Lateral BJTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D10/00Bipolar junction transistors [BJT]
    • H10D10/01Manufacture or treatment
    • H10D10/021Manufacture or treatment of heterojunction BJTs [HBT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D10/00Bipolar junction transistors [BJT]
    • H10D10/01Manufacture or treatment
    • H10D10/061Manufacture or treatment of lateral BJTs 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D10/00Bipolar junction transistors [BJT]
    • H10D10/80Heterojunction BJTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/113Isolations within a component, i.e. internal isolations
    • H10D62/115Dielectric isolations, e.g. air gaps

Landscapes

  • Bipolar Transistors (AREA)

Abstract

本发明涉及包括应力层的横向双极结型晶体管以及方法,揭示具有横向双极结型晶体管(BJT)的半导体结构。此半导体结构可很容易地集成于先进绝缘体上硅(SOI)技术平台中。而且,为保持或提升性能特性(例如,截止频率(fT)/最大振荡频率(fmax)以及贝塔截止频率)(否则这些特性将因该BJT的取向从垂直变为横向而受到负面影响),该半导体结构还可包括部分覆盖该横向BJT以增强电荷载流子迁移率的介电应力层(例如,在NPN型晶体管的情况的拉伸应变层,或者在PNP型晶体管的情况的压缩应变层),且该横向BJT可被配置为横向异质结双极型晶体管(HBT)。本发明还揭示形成该半导体结构的方法。

Figure 202211447416

The present invention relates to a lateral bipolar junction transistor including a stress layer and a method, and discloses a semiconductor structure having a lateral bipolar junction transistor (BJT). This semiconductor structure can be easily integrated into advanced silicon-on-insulator (SOI) technology platforms. Also, to maintain or improve performance characteristics such as cutoff frequency (fT)/maximum oscillation frequency (fmax) and beta cutoff frequency that would otherwise be negatively affected by changing the orientation of the BJT from vertical to lateral, the The semiconductor structure may also include a dielectric stress layer (e.g., a tensile strained layer in the case of an NPN transistor, or a compressive strained layer in the case of a PNP transistor) partially covering the lateral BJT to enhance charge carrier mobility. , and the lateral BJT may be configured as a lateral heterojunction bipolar transistor (HBT). The invention also discloses a method of forming the semiconductor structure.

Figure 202211447416

Description

包括应力层的横向双极结型晶体管以及方法Lateral bipolar junction transistor including stress layer and method

技术领域technical field

本发明涉及半导体结构,尤其涉及包括横向双极结型晶体管(bipolar junctiontransistor;BJT)的半导体结构的实施例以及形成该半导体结构的方法的实施例。The present invention relates to semiconductor structures, and more particularly to embodiments of semiconductor structures including lateral bipolar junction transistors (BJTs) and methods of forming the semiconductor structures.

背景技术Background technique

与利用先进绝缘体上硅(silicon-on-insulator;SOI)处理技术平台(例如,全耗尽绝缘体上硅(fully-depleted silicon-on-insulator;FDSOI)处理技术平台)制造互补金属氧化物半导体(CMOS)设计相关的优点包括例如降低功率、减少面积消耗、降低成本、高性能、多个核心阈值电压(Vt)选择等。在此类SOI晶片上制造的CMOS设计用于各种应用中,包括但不限于物联网(Internet-of-Things;IOT)装置、可穿戴装置、智能手机处理器、汽车电子装置、以及射频集成电路(radiofrequency integrated circuit;RFIC)(包括毫米波(mmWave)IC)。由于BJT往往具有较大的驱动且通常被认为比场效应晶体管(fieldeffecttransistor;FET)更适合模拟功能,因此这些相同的应用可通过包括双极结型晶体管(BJT)来获益。然而,通常将此类BJT形成为垂直装置(例如,具有衬底中的集极(collector)、在该集极上方对齐的基极(base)、以及在该基极上方对齐的发射极(emitter)),其不容易集成于先进SOI处理技术平台中。Complementary Metal Oxide Semiconductor ( Advantages associated with CMOS) designs include, for example, reduced power, reduced area consumption, reduced cost, high performance, multiple core threshold voltage (Vt) selections, and the like. CMOS fabricated on such SOI wafers are designed for use in a variety of applications, including but not limited to Internet-of-Things (IOT) devices, wearable devices, smartphone processors, automotive electronics, and radio frequency integration Circuit (radiofrequency integrated circuit; RFIC) (including millimeter wave (mmWave) IC). These same applications can benefit from the inclusion of bipolar junction transistors (BJTs) since BJTs tend to have larger drives and are generally considered better suited for analog functions than field effect transistors (FETs). However, such BJTs are typically formed as vertical devices (e.g., with a collector in the substrate, a base aligned over the collector, and an emitter aligned over the base). )), which are not easily integrated in advanced SOI processing technology platforms.

发明内容Contents of the invention

本文中揭示半导体结构的实施例。该半导体结构可包括横向双极结型晶体管(BJT)。该横向BJT可包括集极,发射极,以及横向位于该集极与该发射极之间的基极。该半导体结构还可包括第一介电层,尤其仅部分覆盖该横向BJT的介电应力层,其一端位于该集极与该发射极之间的该横向BJT上方。例如,该第一介电层可位于该集极上方,并且还延伸至该基极上,以使该第一介电层的一端在该基极上方对齐。Embodiments of semiconductor structures are disclosed herein. The semiconductor structure may include a lateral bipolar junction transistor (BJT). The lateral BJT may include a collector, an emitter, and a base laterally between the collector and the emitter. The semiconductor structure may further comprise a first dielectric layer, in particular a dielectric stress layer only partially covering the lateral BJT, one end of which is located above the lateral BJT between the collector and the emitter. For example, the first dielectric layer may be located over the collector and also extend over the base such that one end of the first dielectric layer is aligned over the base.

本文中揭示在先进绝缘体上硅(silicon-on-insulator;SOI)技术平台中形成的半导体结构的实施例。在这些实施例中,该半导体结构可包括半导体衬底,位于该半导体衬底上的绝缘体层,以及位于该绝缘体层上的半导体层。该半导体结构可包括横向双极结型晶体管(BJT),尤其横向异质结双极型晶体管(heterojunction bipolartransistor;HBT)。该横向HBT可包括基极。该基极可包括位于该半导体层内的第一基极区,位于该第一基极区上的第二基极区,以及位于该第二基极区上并宽于该第二基极区的第三基极区。该横向HBT还可包括集极及发射极。该基极可横向位于该集极与该发射极之间。而且,该集极及该发射极可由第一半导体材料制成,而至少该第二基极区可由不同于该第一半导体材料的第二半导体材料制成,从而提供异质结。该半导体结构还可包括第一介电层,尤其仅部分覆盖该横向BJT的介电应力层,其一端位于该集极与该发射极之间的该横向HBT上方。例如,该第一介电层可位于该集极上方,并且还延伸至该基极上,以使该第一介电层的一端在该基极上方对齐。Embodiments of semiconductor structures formed in advanced silicon-on-insulator (SOI) technology platforms are disclosed herein. In these embodiments, the semiconductor structure may include a semiconductor substrate, an insulator layer on the semiconductor substrate, and a semiconductor layer on the insulator layer. The semiconductor structure may include a lateral bipolar junction transistor (BJT), especially a lateral heterojunction bipolar transistor (HBT). The lateral HBT may include a base. The base may include a first base region located in the semiconductor layer, a second base region located on the first base region, and a base region located on the second base region and wider than the second base region. of the third base region. The lateral HBT may also include a collector and an emitter. The base may be located laterally between the collector and the emitter. Furthermore, the collector and the emitter may be made of a first semiconductor material, while at least the second base region may be made of a second semiconductor material different from the first semiconductor material, thereby providing a heterojunction. The semiconductor structure may further comprise a first dielectric layer, in particular a dielectric stress layer only partially covering the lateral BJT, one end of which is located above the lateral HBT between the collector and the emitter. For example, the first dielectric layer may be located over the collector and also extend over the base such that one end of the first dielectric layer is aligned over the base.

本文中还揭示用于形成上述半导体结构的方法实施例。该方法实施例可包括形成横向双极结型晶体管(BJT),该横向双极结型晶体管包括集极、发射极,以及横向位于该集极与该发射极之间的基极。该方法实施例还可包括形成第一介电层,尤其部分覆盖该横向BJT的介电应力层,其一端位于该集极与该发射极之间的该横向BJT上方。Embodiments of methods for forming the semiconductor structures described above are also disclosed herein. The method embodiment may include forming a lateral bipolar junction transistor (BJT) including a collector, an emitter, and a base laterally between the collector and the emitter. The method embodiment may further include forming a first dielectric layer, especially a dielectric stress layer partially covering the lateral BJT, one end of which is located above the lateral BJT between the collector and the emitter.

附图说明Description of drawings

通过参照附图自下面的详细说明将更好地理解本发明,该些附图并不一定按比例绘制,且其中:The present invention will be better understood from the following detailed description with reference to the accompanying drawings, which are not necessarily drawn to scale, and in which:

图1A-图1B分别是显示所揭示的具有由介电应力层部分覆盖的横向双极结型晶体管的半导体结构的实施例的布局图及剖视图;1A-1B are layout and cross-sectional views, respectively, showing an embodiment of the disclosed semiconductor structure having a lateral bipolar junction transistor partially covered by a dielectric stress layer;

图2是显示形成具有由介电应力层部分覆盖的横向双极结型晶体管的半导体结构的方法的实施例的流程图;2 is a flowchart showing an embodiment of a method of forming a semiconductor structure having a lateral bipolar junction transistor partially covered by a dielectric stress layer;

图3.1是显示依据图2的流程图形成的部分完成的半导体结构的剖视图;Figure 3.1 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of Figure 2;

图3.2是显示依据图2的流程图形成的部分完成的半导体结构的剖视图;Figure 3.2 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of Figure 2;

图3.3A及图3.3B分别是显示依据图2的流程图形成的部分完成的半导体结构的顶视图及剖视图;3.3A and 3.3B are top and cross-sectional views, respectively, showing a partially completed semiconductor structure formed according to the flowchart of FIG. 2;

图3.4是显示依据图2的流程图形成的部分完成的半导体结构的剖视图;3.4 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of FIG. 2;

图3.5A及图3.5B分别是显示依据图2的流程图形成的部分完成的半导体结构的顶视图及剖视图;3.5A and 3.5B are top and cross-sectional views, respectively, showing a partially completed semiconductor structure formed according to the flowchart of FIG. 2;

图3.6A及图3.6B分别是显示依据图2的流程图形成的部分完成的半导体结构的顶视图及剖视图;3.6A and 3.6B are top and cross-sectional views, respectively, showing a partially completed semiconductor structure formed according to the flowchart of FIG. 2;

图3.7是显示依据图2的流程图形成的部分完成的半导体结构的剖视图;3.7 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of FIG. 2;

图3.8是显示依据图2的流程图形成的部分完成的半导体结构的剖视图;3.8 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of FIG. 2;

图3.9是显示依据图2的流程图形成的部分完成的半导体结构的剖视图;Figure 3.9 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of Figure 2;

图3.10是显示依据图2的流程图形成的部分完成的半导体结构的剖视图;Figure 3.10 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of Figure 2;

图3.11是显示依据图2的流程图形成的部分完成的半导体结构的剖视图;Figure 3.11 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of Figure 2;

图3.12是显示依据图2的流程图形成的部分完成的半导体结构的剖视图;Figure 3.12 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of Figure 2;

图3.13是显示依据图2的流程图形成的部分完成的半导体结构的剖视图;以及Figure 3.13 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of Figure 2; and

图3.14是显示依据图2的流程图形成的部分完成的半导体结构的剖视图。FIG. 3.14 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of FIG. 2 .

具体实施方式Detailed ways

如上所述,与利用先进绝缘体上硅(SOI)处理技术平台(例如,全耗尽绝缘体上硅(FDSOI)处理技术平台)制造互补金属氧化物半导体(CMOS)设计相关的优点包括例如降低功率、减少面积消耗、降低成本、高性能、多个核心阈值电压(Vt)选择等。在此类SOI晶片上制造的CMOS设计用于各种应用中,包括但不限于物联网(Internet-of-Things;IOT)装置、可穿戴装置、智能手机处理器、汽车电子装置、以及射频集成电路(RFIC)(包括毫米波(mmWave)IC)。由于BJT往往具有较大的驱动且通常被认为比场效应晶体管(FET)更适合模拟功能,因此这些相同的应用可通过包括双极结型晶体管(BJT)来获益。然而,通常将此类BJT形成为垂直装置(例如,具有衬底中的集极、在该集极上方对齐的基极、以及在该基极上方对齐的发射极),其不容易集成于先进SOI处理技术平台中。As noted above, advantages associated with making complementary metal-oxide-semiconductor (CMOS) designs utilizing advanced silicon-on-insulator (SOI) process technology platforms, such as fully depleted silicon-on-insulator (FDSOI) process technology platforms, include, for example, reduced power, Reduced area consumption, reduced cost, high performance, multiple core threshold voltage (Vt) selections, and more. CMOS fabricated on such SOI wafers are designed for use in a variety of applications, including but not limited to Internet-of-Things (IOT) devices, wearable devices, smartphone processors, automotive electronics, and radio frequency integration circuits (RFICs) including millimeter wave (mmWave) ICs. These same applications can benefit from including bipolar junction transistors (BJTs) since BJTs tend to have larger drives and are generally considered better suited for analog functions than field effect transistors (FETs). However, such BJTs are typically formed as vertical devices (e.g., with a collector in the substrate, a base aligned over the collector, and an emitter aligned over the base), which are not easily integrated into advanced SOI processing technology platform.

鉴于上述,本文中揭示具有横向双极结型晶体管(BJT)的半导体结构的实施例。此半导体结构可很容易地集成于先进绝缘体上硅(SOI)技术平台中。而且,为保持或提升性能特性(例如,截止频率(fT)/最大振荡频率(fmax)以及贝塔(beta)截止频率)(否则这些特性将因该BJT的取向从垂直变为横向而受到负面影响),该半导体结构还可包括部分覆盖该横向BJT以增强电荷载流子迁移率的介电应力层(例如,在NPN型晶体管的情况下的拉伸应变层,或者在PNP型晶体管的情况下的压缩应变层),且可选地,该横向BJT可被配置为横向异质结双极型晶体管(HBT)。本文中还揭示形成该半导体结构的方法。In view of the foregoing, embodiments of semiconductor structures having lateral bipolar junction transistors (BJTs) are disclosed herein. This semiconductor structure can be easily integrated into advanced silicon-on-insulator (SOI) technology platforms. Also, in order to maintain or improve performance characteristics such as cutoff frequency (fT)/maximum oscillation frequency (fmax) and beta cutoff frequency (which would otherwise be negatively affected by changing the BJT orientation from vertical to lateral ), the semiconductor structure may also include a dielectric stress layer partially covering the lateral BJT to enhance charge carrier mobility (e.g., a tensile strain layer in the case of an NPN transistor, or a tensile strain layer in the case of a PNP transistor compressively strained layer), and optionally, the lateral BJT may be configured as a lateral heterojunction bipolar transistor (HBT). Methods of forming the semiconductor structures are also disclosed herein.

图1A-1B分别是显示所揭示的具有由介电应力层180部分覆盖的横向双极结型晶体管(BJT)150的半导体结构100的实施例的布局图及剖视图。应当注意,横向BJT 150可为标准BJT,其中,集极、发射极以及基极由相同的半导体材料(例如,硅)制成;或为异质结双极型晶体管(HBT)制成,其中,基极的至少一部分由与集极及发射极不同的半导体材料(例如,硅锗)制成。1A-1B are layout and cross-sectional views, respectively, showing an embodiment of a disclosed semiconductor structure 100 having a lateral bipolar junction transistor (BJT) 150 partially covered by a dielectric stress layer 180 . It should be noted that lateral BJT 150 can be a standard BJT, where the collector, emitter, and base are made of the same semiconductor material (eg, silicon), or a heterojunction bipolar transistor (HBT), where , at least a portion of the base is made of a different semiconductor material (eg, silicon germanium) than the collector and emitter.

具体地说,半导体结构100可为例如绝缘体上半导体结构(例如,绝缘体上硅(SOI)结构)。也就是说,半导体结构100可包括半导体衬底101。半导体衬底101可为第一半导体材料(例如,硅),其为单晶的结构。Specifically, the semiconductor structure 100 may be, for example, a semiconductor-on-insulator structure (eg, a silicon-on-insulator (SOI) structure). That is, the semiconductor structure 100 may include a semiconductor substrate 101 . The semiconductor substrate 101 may be a first semiconductor material (eg, silicon), which is a single crystal structure.

可选地,半导体衬底101可经掺杂以具有处于较低导电水平的P型导电性。因此,例如,半导体衬底101可为P-硅衬底。Alternatively, the semiconductor substrate 101 may be doped to have P-type conductivity at a lower conductivity level. Thus, for example, the semiconductor substrate 101 may be a P-silicon substrate.

可选地,半导体衬底101可包括埋置阱102(也称为埋置掺杂物注入区)。埋置阱102可经掺杂以具有P型导电性(例如,成为埋置Pwell)。或者,埋置阱102可经掺杂以具有N型导电性(例如,成为埋置Nwell)。Optionally, the semiconductor substrate 101 may include a buried well 102 (also referred to as a buried dopant implantation region). Buried well 102 may be doped to have P-type conductivity (eg, to be a buried Pwell). Alternatively, buried well 102 may be doped to have N-type conductivity (eg, as a buried Nwell).

半导体结构100还可包括位于半导体衬底101的顶部表面上(例如,埋置阱102上方)的绝缘体层103。绝缘体层103可为例如二氧化硅层(在本文中也称为埋置氧化物(BOX)层)或任意其它合适的绝缘体材料层。The semiconductor structure 100 may also include an insulator layer 103 on the top surface of the semiconductor substrate 101 (eg, over the buried well 102 ). The insulator layer 103 may be, for example, a layer of silicon dioxide (also referred to herein as a buried oxide (BOX) layer) or any other suitable layer of insulator material.

半导体结构100还可包括位于绝缘体层103上的半导体层104。半导体层104可为单晶的结构。半导体层104可为与半导体衬底101相同的半导体材料。也就是说,半导体层104可由第一半导体材料(例如,硅)制成。或者,半导体层104可为与半导体衬底101不同的半导体材料。也就是说,半导体层104可由第二半导体材料(例如,硅锗)制成。半导体层104可为未掺杂。或者,半导体层104可为掺杂的。半导体层104的掺杂可依据横向BJT 150是NPN型还是PNP型晶体管而变化。例如,对于NPN型晶体管,半导体层150可经掺杂而具有处于较低导电性的P型导电性(例如,成为P-半导体层),而对于PNP型晶体管,半导体层104可经掺杂而具有处于较低导电水平的N型导电性(例如,成为N-半导体层)。The semiconductor structure 100 may further include a semiconductor layer 104 on the insulator layer 103 . The semiconductor layer 104 can be a single crystal structure. The semiconductor layer 104 can be the same semiconductor material as the semiconductor substrate 101 . That is, the semiconductor layer 104 may be made of a first semiconductor material (eg, silicon). Alternatively, the semiconductor layer 104 may be a different semiconductor material than the semiconductor substrate 101 . That is, the semiconductor layer 104 may be made of a second semiconductor material (eg, silicon germanium). The semiconductor layer 104 may be undoped. Alternatively, the semiconductor layer 104 may be doped. The doping of the semiconductor layer 104 can vary depending on whether the lateral BJT 150 is an NPN or PNP transistor. For example, for an NPN transistor, the semiconductor layer 150 can be doped to have P-type conductivity at a lower conductivity (e.g., to become a P-semiconductor layer), while for a PNP transistor, the semiconductor layer 104 can be doped to have P-type conductivity at a lower conductivity. Has N-type conductivity at a lower conductivity level (eg, becomes an N-semiconductor layer).

半导体结构100还可包括浅沟槽隔离(shallow trench isolation;STI)区106。STI区106可基本垂直穿过半导体层104延伸至绝缘体层103,并可定义包括横向BJT 150的装置区域的边界。The semiconductor structure 100 may further include a shallow trench isolation (STI) region 106 . STI region 106 may extend substantially vertically through semiconductor layer 104 to insulator layer 103 and may define the boundary of a device region including lateral BJT 150 .

如上所述,半导体结构100还可包括横向BJT 150。本领域的技术人员将意识到,BJT通常包括三个端子:集极、发射极、以及位于该集极与该发射极之间的基极。在垂直BJT中,集极、基极及发射极垂直堆叠。在横向BJT中,基极横向位于集极与发射极之间。在任何情况下,基极将至少包括具有第一类型导电性的非本征基极区,且集极及发射极将具有不同于该第一类型导电性的第二类型导电性。因此,NPN型晶体管将至少包括P型非本征基极、N型集极、以及N型发射极;而PNP型晶体管将至少包括N型非本征基极、P型集极、以及P型发射极。在标准BJT中,基极、集极及发射极使用相同的半导体材料(例如硅)。或者,可使用不同的半导体材料。在此情况下,BJT被称为异质结双极型晶体管(HBT)。本领域的技术人员将意识到,异质结双极型晶体管(HBT)是BJT,其中,集极及发射极至少部分由一种半导体材料制成,而基极至少部分由不同的半导体材料制成。在发射极-基极结处及基极-集极结处使用不同的半导体材料形成适于操作较高频率的异质结。因此,在半导体结构100中,横向BJT150可包括三个端子:集极133、发射极132、以及横向位于集极133与发射极132之间的基极131。As mentioned above, the semiconductor structure 100 may also include a lateral BJT 150 . Those skilled in the art will appreciate that a BJT typically includes three terminals: a collector, an emitter, and a base between the collector and the emitter. In a vertical BJT, the collector, base, and emitter are stacked vertically. In a lateral BJT, the base is located laterally between the collector and emitter. In any case, the base will include at least an extrinsic base region of a first type of conductivity, and the collector and emitter will have a second type of conductivity different from the first type of conductivity. Therefore, an NPN transistor will at least include a P-type extrinsic base, an N-type collector, and an N-type emitter; and a PNP transistor will at least include an N-type extrinsic base, a P-type collector, and a P-type emitter. In a standard BJT, the same semiconductor material (such as silicon) is used for the base, collector, and emitter. Alternatively, different semiconductor materials may be used. In this case, the BJT is called a heterojunction bipolar transistor (HBT). Those skilled in the art will appreciate that a heterojunction bipolar transistor (HBT) is a BJT in which the collector and emitter are at least partially made of one semiconductor material and the base is at least partially made of a different semiconductor material. become. Different semiconductor materials are used at the emitter-base junction and at the base-collector junction to form heterojunctions suitable for higher frequencies of operation. Thus, in semiconductor structure 100 , lateral BJT 150 may include three terminals: collector 133 , emitter 132 , and base 131 laterally between collector 133 and emitter 132 .

基极131可位于绝缘体层103上方,并可包括例如三个不同的堆叠区。这三个不同的堆叠区可包括第一基极区131.1、位于该第一基极区上方的第二基极区131.2、以及位于该第二基极区上方的第三基极区131.3。The base 131 may be located above the insulator layer 103 and may include, for example, three different stacked regions. The three different stack regions may include a first base region 131.1, a second base region 131.2 above the first base region, and a third base region 131.3 above the second base region.

第一基极区131.1可位于半导体层104内,尤其可包括半导体层104的第一区域125,其可选地具有凹入的顶部表面。如上所述,半导体层104可为单晶的结构,并可为第一半导体材料(例如,硅)或第二半导体材料(例如,硅锗)。第一区域125可为未掺杂或掺杂的。例如,在NPN型晶体管的情况下,该第一区域可为P-区域,或者,在PNP型晶体管的情况下,该第一区域可为N-区域。The first base region 131.1 may be located within the semiconductor layer 104 and may in particular comprise the first region 125 of the semiconductor layer 104, which optionally has a concave top surface. As mentioned above, the semiconductor layer 104 may be a single crystal structure, and may be a first semiconductor material (eg, silicon) or a second semiconductor material (eg, silicon germanium). The first region 125 may be undoped or doped. For example, in the case of an NPN transistor, the first region may be a P-region, or in the case of a PNP transistor, the first region may be an N-region.

第二基极区131.2可为外延半导体层112。对于标准BJT,外延半导体层112可为第一半导体材料(例如,硅)。对于HBT,外延半导体层112可为第二半导体材料(例如,硅锗)。在任何情况下,此外延半导体层112可填充较窄的基极开口,该基极开口由位于第一侧间隙壁108(例如,由氮化硅或其它某种合适的介电侧间隙壁材料制成的侧间隙壁)之间的空间定义并在半导体层104的第一区域125上方对齐。换句话说,第二基极区131.2横向位于第一侧间隙壁108之间,并在第一基极区131.1上方对齐并与其接触,如图所示。可在处理期间自半导体层104选择性生长外延半导体层112,以使其基本为单晶的结构。而且,外延半导体层112可为未掺杂的(也就是,本征的)或掺杂的,如下所述。The second base region 131.2 can be the epitaxial semiconductor layer 112 . For a standard BJT, the epitaxial semiconductor layer 112 may be a first semiconductor material (eg, silicon). For HBT, the epitaxial semiconductor layer 112 may be a second semiconductor material (eg, silicon germanium). In any event, the epitaxial semiconductor layer 112 can fill the narrower base opening formed by the first side spacer 108 (e.g., silicon nitride or some other suitable dielectric side spacer material). The space between the formed side spacers) is defined and aligned over the first region 125 of the semiconductor layer 104 . In other words, the second base region 131.2 is located laterally between the first side spacers 108 and is aligned above and in contact with the first base region 131.1, as shown. Epitaxial semiconductor layer 112 may be selectively grown from semiconductor layer 104 during processing so that it is a substantially monocrystalline structure. Also, the epitaxial semiconductor layer 112 may be undoped (ie, intrinsic) or doped, as described below.

外延半导体层112的掺杂可依据横向BJT 150是NPN型还是PNP型晶体管而变化。例如,对于NPN型晶体管,外延半导体层112可为未掺杂,或者作为替代,可经掺杂以具有处于较低导电水平的P型导电性,或者具有梯度P型分布(例如,从半导体层104附近的未掺杂或低掺杂到远离半导体层104的较高掺杂)。因此,例如,对于NPN型晶体管,第二基极区131.2可为本征基极区(例如,i-SiGe基极区),或者作为替代,P-基极区或具有从未掺杂或P-到P或P+的梯度P型分布的基极区。然而,对于PNP型晶体管,外延半导体层112可为未掺杂,或者作为替代,可经掺杂以具有处于较低导电水平的N型导电性,或者具有梯度N型分布(例如,从半导体层104附近的未掺杂或低掺杂到远离半导体层104的较高掺杂)。因此,例如,对于PNP型晶体管,第二基极区131.2可为本征基极区(例如,i-SiGe基极),或者作为替代,N-基极区或具有从未掺杂或N-至N或N+的梯度N型分布的基极区。The doping of the epitaxial semiconductor layer 112 can vary depending on whether the lateral BJT 150 is an NPN or PNP transistor. For example, for an NPN type transistor, the epitaxial semiconductor layer 112 may be undoped, or alternatively, may be doped to have P-type conductivity at a lower conductivity level, or have a gradient P-type profile (e.g., from a semiconductor layer undoped or low doped near the semiconductor layer 104 to higher doped far away from the semiconductor layer 104). Thus, for example, for an NPN type transistor, the second base region 131.2 may be an intrinsic base region (eg, an i-SiGe base region), or alternatively, a P-base region with undoped or P - Gradient P-type profiled base region to P or P+. However, for a PNP type transistor, the epitaxial semiconductor layer 112 may be undoped, or alternatively, may be doped to have N-type conductivity at a lower conductivity level, or have a gradient N-type profile (e.g., from a semiconductor layer undoped or low doped near the semiconductor layer 104 to higher doped far away from the semiconductor layer 104). Thus, for example, for a PNP type transistor, the second base region 131.2 may be an intrinsic base region (eg, an i-SiGe base), or alternatively, an N-base region with undoped or N- Gradient N-type profiled base region to N or N+.

应当注意,第二侧间隙壁107(例如,由二氧化硅或其它某种合适的介电侧间隙壁材料制成的侧间隙壁)可横向邻近位于第二基极区131.2的相对侧上的第一侧间隙壁108设置。该第一及第二侧间隙壁可具有基本相同的高度,尤其,该第一及第二侧间隙壁的顶部可基本共面。It should be noted that the second side spacer 107 (eg, a side spacer made of silicon dioxide or some other suitable dielectric side spacer material) may be laterally adjacent to the The first side spacer 108 is provided. The first and second side spacers may have substantially the same height, and in particular, the tops of the first and second side spacers may be substantially coplanar.

第三基极区131.3可在第二基极区131.2上方对齐,可紧邻并可宽于第二基极区131.2,以使其横向延伸于第一侧间隙壁108及第二侧间隙壁107上方。因此,基极131基本为T形。如图所示,第三基极区131.3的相对侧壁可与第二侧间隙壁107的外垂直表面基本垂直对齐。第三基极区131.3可为由第一半导体材料(例如,硅)或者作为替代其它某种合适的基极半导体材料构成的外延半导体层113。可在处理期间非选择性生长外延半导体层113,以使其为基本多晶的结构(例如,使其为多晶硅)。外延半导体层113可为掺杂的,且掺杂将依据横向BJT150是NPN型晶体管还是PNP型晶体管而变化。例如,对于NPN型晶体管,外延半导体层113可经掺杂而具有处于较高导电水平的P型导电性,尤其与衬底相比处于较高导电水平且与下方基极区相比处于较高导电水平,以使第三基极区131.3为例如P+非本征基极区。对于PNP型晶体管,外延半导体层113可经掺杂而具有处于较高导电水平的N型导电性,尤其与下方基极区相比处于较高导电水平,以使第三基极区131.3为例如N+非本征基极区。The third base region 131.3 may be aligned above the second base region 131.2, may be immediately adjacent to and may be wider than the second base region 131.2, such that it extends laterally above the first side spacer 108 and the second side spacer 107 . Therefore, the base 131 is substantially T-shaped. As shown, the opposite sidewalls of the third base region 131.3 may be substantially vertically aligned with the outer vertical surface of the second side spacer 107 . The third base region 131.3 may be the epitaxial semiconductor layer 113 composed of the first semiconductor material (eg silicon) or alternatively some other suitable base semiconductor material. The epitaxial semiconductor layer 113 may be grown non-selectively during processing to make it a substantially polycrystalline structure (eg, to make it polysilicon). Epitaxial semiconductor layer 113 may be doped, and the doping will vary depending on whether lateral BJT 150 is an NPN or PNP transistor. For example, for an NPN transistor, the epitaxial semiconductor layer 113 can be doped to have P-type conductivity at a higher conductivity level, especially at a higher conductivity level compared to the substrate and at a higher conductivity level than the underlying base region. The conductivity level is such that the third base region 131.3 is, for example, a P+ extrinsic base region. For PNP-type transistors, the epitaxial semiconductor layer 113 can be doped to have N-type conductivity at a higher conductivity level, especially at a higher conductivity level than the underlying base region, so that the third base region 131.3 is, for example, N+ extrinsic base region.

应当注意,第三侧间隙壁115(例如,由氮化硅或其它某种合适的介电侧间隙壁材料制成的侧间隙壁)可横向邻近第三基极区131.3的相对侧壁设置,并且还可覆盖下方的第二侧间隙壁107的外垂直表面。It should be noted that a third side spacer 115 (eg, a side spacer made of silicon nitride or some other suitable dielectric side spacer material) may be disposed laterally adjacent to the opposite sidewall of the third base region 131.3, And it can also cover the outer vertical surface of the lower second side spacer 107 .

如上所述,横向BJT 150的三个端子还可包括位于基极131的相对侧上的集极133及发射极132。As noted above, the three terminals of lateral BJT 150 may also include collector 133 and emitter 132 on opposite sides of base 131 .

在一个示例结构中,集极133与发射极132可基本对称。集极133可包括第一集极区133.1以及位于第一集极区133.1上的第二集极区133.2。发射极132可包括第一发射极区132.1以及位于第一发射极区132.1上的第二发射极区132.2。第一集极区133.1及第一发射极区132.1可包括位于半导体层104中的掺杂区121,其可选地具有凹入的顶部表面(未显示)并位于第一基极区131.1的相对侧上(也就是,第一基极区131.1横向位于第一集极区133.1与第一发射极区132.1之间)。第二集极区133.2及第二发射极区132.2可为由第一半导体材料(例如硅)构成的外延半导体层122,且可为掺杂的。外延半导体层122的掺杂可依据横向BJT 150是NPN型晶体管还是PNP型晶体管而变化。例如,对于NPN型晶体管,外延半导体层122可经掺杂而具有处于较高导电水平的N型导电性。而且,在处理期间执行的退火可导致下方的半导体层104的部分也经掺杂而具有处于较高导电水平的N型导电性(也就是,参见掺杂区121)。因此,例如,对于NPN型晶体管,第一及第二集极区132.1-32.2以及第一及第二发射极区133.1-133.2可为N+集极及发射极区。对于PNP型晶体管,外延半导体层122可经掺杂而具有处于较高导电水平的P型导电性。而且,在处理期间执行的退火可导致下方的半导体层104的部分也经掺杂而具有处于较高导电水平的P型导电性(也就是,参见掺杂区121)。因此,例如,对于PNP型晶体管,第一及第二集极区132.1-132.2以及第一及第二发射极区133.1-133.2可为P+区。In one example structure, the collector 133 and the emitter 132 may be substantially symmetrical. The collector 133 may include a first collector region 133.1 and a second collector region 133.2 on the first collector region 133.1. The emitter 132 may include a first emitter region 132.1 and a second emitter region 132.2 on the first emitter region 132.1. The first collector region 133.1 and the first emitter region 132.1 may include a doped region 121 in the semiconductor layer 104, optionally having a concave top surface (not shown) and positioned opposite the first base region 131.1. side (that is, the first base region 131.1 is laterally located between the first collector region 133.1 and the first emitter region 132.1). The second collector region 133.2 and the second emitter region 132.2 may be the epitaxial semiconductor layer 122 composed of a first semiconductor material, such as silicon, and may be doped. The doping of the epitaxial semiconductor layer 122 may vary depending on whether the lateral BJT 150 is an NPN transistor or a PNP transistor. For example, for an NPN transistor, the epitaxial semiconductor layer 122 may be doped to have N-type conductivity at a higher conductivity level. Also, annealing performed during processing may cause portions of the underlying semiconductor layer 104 to also be doped to have N-type conductivity at a higher conductivity level (ie, see doped region 121 ). Thus, for example, for an NPN type transistor, the first and second collector regions 132.1-32.2 and the first and second emitter regions 133.1-133.2 may be N+ collector and emitter regions. For a PNP transistor, the epitaxial semiconductor layer 122 may be doped to have P-type conductivity at a higher conductivity level. Also, annealing performed during processing may cause portions of the underlying semiconductor layer 104 to also be doped to have P-type conductivity at a higher conductivity level (ie, see doped region 121 ). Thus, for example, for a PNP type transistor, the first and second collector regions 132.1-132.2 and the first and second emitter regions 133.1-133.2 may be P+ regions.

应当注意,提供上述集极133及发射极132的配置用以说明目的。或者,这些区132-133可为不对称的及/或具有其它某种合适的配置。在任何情况下,基极131横向位于集极133与发射极132之间。It should be noted that the configuration of the collector 133 and the emitter 132 described above is provided for illustrative purposes. Alternatively, the regions 132-133 may be asymmetrical and/or have some other suitable configuration. In any case, base 131 is located laterally between collector 133 and emitter 132 .

可选地,横向BJT 150还可包括位于基极131、集极133及发射极132的最上表面上的金属硅化物层199。金属硅化物层199可为例如硅化钴(CoSi)、硅化镍(NiSi)、硅化钨(WSi)、硅化钛(TiSi)或任意其它合适的金属硅化物材料层。Optionally, the lateral BJT 150 may further include a metal silicide layer 199 on the uppermost surfaces of the base 131 , the collector 133 and the emitter 132 . The metal silicide layer 199 may be, for example, cobalt silicide (CoSi), nickel silicide (NiSi), tungsten silicide (WSi), titanium silicide (TiSi), or any other suitable layer of metal silicide material.

半导体结构100还可包括仅部分覆盖横向BJT 150的第一介电层180。第一介电层180可为介电应力层。在一些实施例中,第一介电层180可为例如氮化硅层。第一介电层180可经形成而具有拉伸应变或压缩应变。具体地说,第一介电层180(也就是,介电应力层)可具有拉伸应变或压缩应变,取决于横向BJT 150是NPN型晶体管还是PNP型晶体管。例如,对于NPN型晶体管,第一介电层180可为拉伸应变层,以增强电子迁移率,而对于PNP型晶体管,第一介电层180可为压缩应变层,以增强空穴迁移率。此类介电应力层向下方的横向BJT的组件施加对应的应变,以通过增强电荷载流子迁移率来提升性能。The semiconductor structure 100 may also include a first dielectric layer 180 that only partially covers the lateral BJT 150 . The first dielectric layer 180 may be a dielectric stress layer. In some embodiments, the first dielectric layer 180 may be, for example, a silicon nitride layer. The first dielectric layer 180 may be formed to have tensile strain or compressive strain. Specifically, the first dielectric layer 180 (ie, the dielectric stress layer) may have tensile strain or compressive strain, depending on whether the lateral BJT 150 is an NPN type transistor or a PNP type transistor. For example, for NPN transistors, the first dielectric layer 180 can be a tensile strain layer to enhance electron mobility, and for a PNP transistor, the first dielectric layer 180 can be a compressive strain layer to enhance hole mobility. . Such dielectric stress layers apply corresponding strains to the underlying lateral BJT components to enhance performance by enhancing charge carrier mobility.

例如,第一介电层180可仅覆盖横向BJT 150的一侧,且第一介电层180的一端189可在集极133与发射极132之间某处的横向BJT150上方对齐。在一些实施例中,第一介电层180可完全覆盖集极133,并可部分覆盖基极131,以使第一介电层180的一端189在基极131上方对齐,且应力被施加于集极-基极结,如图所示。或者,第一介电层180可完全覆盖集极区133,并且还可完全延伸于基极131上方,以使第一介电层180的一端189在基极131与发射极132之间的第三侧间隙壁115上方对齐。通过设置于集极133上方并至少部分位于基极131上方的第一介电层,集极133及基极131将应变,而发射极132将保持松弛。For example, first dielectric layer 180 may cover only one side of lateral BJT 150 , and one end 189 of first dielectric layer 180 may be aligned over lateral BJT 150 somewhere between collector 133 and emitter 132 . In some embodiments, the first dielectric layer 180 may completely cover the collector 133 and may partially cover the base 131 such that one end 189 of the first dielectric layer 180 is aligned above the base 131 and stress is applied to Collector-base junction as shown in the figure. Alternatively, the first dielectric layer 180 can completely cover the collector region 133, and can also completely extend above the base electrode 131, so that one end 189 of the first dielectric layer 180 is at the second end between the base electrode 131 and the emitter electrode 132. The three side spacers 115 are aligned above. With the first dielectric layer disposed over collector 133 and at least partially over base 131 , collector 133 and base 131 will be strained while emitter 132 will remain relaxed.

例如,在NPN型晶体管的情况下(其中,第一介电层180为拉伸应变),集极133将为纵向拉伸且垂直压缩的集极,基极131将类似为纵向拉伸且垂直压缩的基极,而发射极132将为松弛的发射极。而在PNP型晶体管的情况下(其中,第一介电层180为压缩应变),集极133将为纵向压缩且垂直拉伸的集极,基极131将类似为纵向压缩且垂直拉伸的基极,而发射极132将为松弛的发射极。在集极-基极结上方而非发射极-基极结上方具有此类不对称介电应力层的实施例中,已呈现出最大的性能优势,尤其是增强的电荷载流子迁移率,从而有较快的开关速度。For example, in the case of an NPN type transistor (where the first dielectric layer 180 is tensile strained), the collector 133 would be a longitudinally stretched and vertically compressed collector, and the base 131 would similarly be longitudinally stretched and vertically compressed. A compressed base, while the emitter 132 will be a relaxed emitter. Whereas in the case of a PNP type transistor (where the first dielectric layer 180 is compressively strained), the collector 133 would be a longitudinally compressed and vertically stretched collector, and the base 131 would similarly be longitudinally compressed and vertically stretched base, while the emitter 132 will be the relaxed emitter. The greatest performance advantages, especially enhanced charge carrier mobility, have been shown in embodiments with such an asymmetric dielectric stress layer over the collector-base junction rather than the emitter-base junction, This results in a faster switching speed.

不过,应当理解,该些附图并非意图限制,作为替代,第一介电层180可覆盖该晶体管的一些不同部分,以微调施加于横向BJT 150的不同组件的应变。例如,第一介电层180可仅完全覆盖集极133,而不延伸至基极131上,以使第一介电层180的一端189在基极131与集极133之间的第三侧间隙壁115上方对齐。在此情况下,仅集极会应变,而基极及发射极将是松弛的。作为替代,第一介电层180可仅部分覆盖集极133且仅部分覆盖基极131,以使第一介电层180的一端在集极133上方对齐且第一介电层180的另一端189在基极131上方对齐,或者,第一介电层180可仅部分覆盖集极133并完全位于基极131上方,以使第一介电层180的一端在集极133上方对齐且第一介电层180的另一端189在发射极132与基极131之间的第三侧间隙壁115上方对齐。在这些情况下,集极及基极将应变较小的程度,而发射极仍为松弛的。作为替代,第一介电层180可位于发射极132上,且可选地,延伸至基极131上及/或上方,而不进一步延伸至集极133上(例如,以使发射极及(可选地)基极应变,而集极为松弛的),依此类推。However, it should be understood that these figures are not intended to be limiting, and instead, the first dielectric layer 180 may cover different portions of the transistor to fine-tune the strain applied to different components of the lateral BJT 150 . For example, the first dielectric layer 180 can only completely cover the collector 133 without extending to the base 131, so that the end 189 of the first dielectric layer 180 is on the third side between the base 131 and the collector 133. The top of the spacer wall 115 is aligned. In this case, only the collector will be strained, while the base and emitter will be relaxed. Alternatively, the first dielectric layer 180 may only partially cover the collector 133 and only partially cover the base 131 so that one end of the first dielectric layer 180 is aligned over the collector 133 and the other end of the first dielectric layer 180 189 is aligned over the base 131, alternatively, the first dielectric layer 180 may only partially cover the collector 133 and be completely over the base 131 so that one end of the first dielectric layer 180 is aligned over the collector 133 and the first The other end 189 of the dielectric layer 180 is aligned over the third side spacer 115 between the emitter 132 and the base 131 . In these cases, the collector and base will be strained to a lesser extent, while the emitter remains relaxed. Alternatively, first dielectric layer 180 may be located on emitter 132, and optionally, extend onto and/or over base 131 without further extending onto collector 133 (eg, so that the emitter and ( optionally) the base is strained and the set is relaxed), and so on.

半导体结构100还可包括一个或多个第二介电层185,其位于该第一介电层上,且进一步横向延伸超出该第一介电层的该端189并延伸至该横向BJT的松弛部分上(例如,在集极133上方)以及STI 106上。该第二介电层可包括例如一个或多个共形介电层(例如,共形氮化硅蚀刻停止层)以及位于该共形介电层上的覆被介电层(例如,覆被二氧化硅层或由其它某种合适介电材料构成的覆被层)。半导体结构100还可包括中间工艺(middle of theline;MOL)接触件,其包括穿过该介电层延伸至基极、集极以及发射极的接触件。The semiconductor structure 100 may also include one or more second dielectric layers 185 on the first dielectric layer and further extending laterally beyond the end 189 of the first dielectric layer and to the relaxed lateral BJT. partially (eg, over collector 133 ) and on STI 106 . The second dielectric layer may include, for example, one or more conformal dielectric layers (eg, a conformal silicon nitride etch stop layer) and a blanket dielectric layer (eg, a blanket dielectric layer) on the conformal dielectric layer. layer of silicon dioxide or a coating of some other suitable dielectric material). The semiconductor structure 100 may also include middle of the line (MOL) contacts including contacts extending through the dielectric layer to the base, collector and emitter.

通过使用第一介电层180,尤其使用用于增强电荷载流子迁移率的介电应力层(例如,在NPN型晶体管的情况下的拉伸应变层或在PNP型晶体管的情况下的压缩应变层)部分覆盖横向BJT,并通过可选地将该横向BJT配置为横向HBT(例如,基极包括SiGe且发射极及集极包括Si),可提升性能特征(例如,截止频率(fT)/最大振荡频率(fmax)以及贝塔(beta)截止频率)。By using the first dielectric layer 180, in particular a dielectric stress layer for enhanced charge carrier mobility (e.g. a tensile strain layer in the case of NPN transistors or a compressive strain in the case of PNP transistors) strained layer) partially covers the lateral BJT, and by optionally configuring the lateral BJT as a lateral HBT (e.g., base comprising SiGe and emitter and collector comprising Si), performance characteristics (e.g., cut-off frequency (fT) / maximum oscillation frequency (fmax) and beta (beta) cutoff frequency).

请参照图2的流程图,本文中还揭示形成绝缘体上半导体结构(例如,绝缘体上硅(SOI)结构)的方法的实施例,例如上面详细说明并在图1A-1B中显示的结构100,该结构包括横向双极结型晶体管(BJT)(例如,标准BJT或异质结双极型晶体管(HBT)),其由第一介电层尤其介电应力层部分覆盖,以提升性能。Referring to the flowchart of FIG. 2, an embodiment of a method of forming a semiconductor-on-insulator structure (eg, a silicon-on-insulator (SOI) structure), such as the structure 100 described in detail above and shown in FIGS. 1A-1B , is also disclosed herein, The structure includes a lateral bipolar junction transistor (BJT) (eg, a standard BJT or a heterojunction bipolar transistor (HBT)) partially covered by a first dielectric layer, especially a dielectric stress layer, to enhance performance.

该方法实施例可以初始绝缘体上半导体结构开始(参见工艺202及图3.1)。此绝缘体上半导体结构可包括半导体衬底101,位于半导体衬底101的顶部表面上的绝缘体层103,以及位于绝缘体层103上的半导体层104。半导体衬底101及半导体层104可例如由相同的半导体材料,尤其是第一半导体材料(例如,硅或其它某种合适的半导体衬底材料)制成。或者,半导体层104可由不同于第一半导体材料的第二半导体材料(例如,硅锗或替代硅的其它某种合适的半导体材料)制成。在任何情况下,半导体衬底101及半导体层104都可为单晶的结构。半导体衬底101可经掺杂而具有处于较低导电水平的P型导电性。因此,例如,半导体衬底101可为P-硅衬底。绝缘体层103可为二氧化硅层(在本文中也称为埋置氧化物(BOX)层)或其它某种合适的绝缘体材料层。Embodiments of the method may begin with an initial semiconductor-on-insulator structure (see process 202 and FIG. 3.1 ). The semiconductor-on-insulator structure may include a semiconductor substrate 101 , an insulator layer 103 on the top surface of the semiconductor substrate 101 , and a semiconductor layer 104 on the insulator layer 103 . The semiconductor substrate 101 and the semiconductor layer 104 may, for example, be made of the same semiconductor material, especially a first semiconductor material (eg, silicon or some other suitable semiconductor substrate material). Alternatively, the semiconductor layer 104 may be made of a second semiconductor material different from the first semiconductor material (eg, silicon germanium or some other suitable semiconductor material instead of silicon). In any case, the semiconductor substrate 101 and the semiconductor layer 104 may have a single crystal structure. The semiconductor substrate 101 may be doped to have P-type conductivity at a lower conductivity level. Thus, for example, the semiconductor substrate 101 may be a P-silicon substrate. The insulator layer 103 may be a layer of silicon dioxide (also referred to herein as a buried oxide (BOX) layer) or some other suitable layer of insulator material.

可选地,可执行掺杂物注入工艺,以在该半导体衬底中,尤其是在邻近绝缘体层103的该半导体衬底的顶部表面形成阱102(也称为掺杂物注入区)(参见工艺204及图3.2)。应当注意,阱102的导电类型可依据正在形成NPN型晶体管还是PNP型晶体管而变化。例如,对于NPN型晶体管,可将P型掺杂物注入邻近绝缘体层103的该P-衬底的顶部表面,以使所形成的阱102为Pwell并具有与相邻的该P-衬底的下部相比较高的P型导电水平。对于PNP型晶体管,可在邻近绝缘体层103的该P-衬底的顶部表面注入N型掺杂物,从而所形成的阱102为Nwell。Optionally, a dopant implantation process may be performed to form a well 102 (also referred to as a dopant implantation region) in the semiconductor substrate, especially at the top surface of the semiconductor substrate adjacent to the insulator layer 103 (see Process 204 and Figure 3.2). It should be noted that the conductivity type of well 102 may vary depending on whether an NPN type transistor or a PNP type transistor is being formed. For example, for an NPN type transistor, a P-type dopant can be implanted into the top surface of the P-substrate adjacent to the insulator layer 103, so that the formed well 102 is a Pwell and has the same characteristics as the adjacent P-substrate. Lower compared to higher P-type conductivity levels. For PNP transistors, N-type dopants can be implanted on the top surface of the P-substrate adjacent to the insulator layer 103, so that the formed well 102 is a Nwell.

可选地,若半导体层104由第一半导体材料(例如,硅)制成且半导体层104最佳由第二半导体材料(例如,硅锗)制成,则可执行转换工艺(参见工艺206及图3.2)。例如,可在工艺206执行锗浓缩工艺,以将位于绝缘体层103上的硅层转换为位于绝缘体层103上的硅锗层。锗浓缩工艺为本领域熟知,因此,自本说明书省略此类工艺的细节,以允许读者关注所揭示的实施例的显著态样。由此形成的硅锗层仍可为单晶的结构。Alternatively, if the semiconductor layer 104 is made of a first semiconductor material (eg, silicon) and the semiconductor layer 104 is preferably made of a second semiconductor material (eg, silicon germanium), a conversion process (see process 206 and Figure 3.2). For example, a germanium enrichment process may be performed in process 206 to convert the silicon layer on the insulator layer 103 into a silicon germanium layer on the insulator layer 103 . Germanium enrichment processes are well known in the art, therefore, details of such processes are omitted from this description to allow the reader to focus on salient aspects of the disclosed embodiments. The silicon germanium layer thus formed can still be a single crystal structure.

接着,可利用半导体层104形成横向双极结型晶体管(BJT)(参见工艺208)。应当注意,在工艺208形成的该横向BJT可为标准BJT,其中,集极、发射极及基极包括相同的半导体材料(例如,硅),或可为HBT,其中,基极的至少一部分包括与集极及发射极不同的半导体材料。此外,还应注意,在下面关于工艺步骤的讨论中,引用第一类型导电性及第二类型导电性,且该第一类型导电性及该第二类型导电性分别为P型导电性及N型导电性还是分别为N型导电性及P型导电性取决于在工艺208形成NPN型晶体管还是PNP型晶体管。具体地说,对于NPN型晶体管,该第一类型导电性是指P型导电性且该第二类型导电性是指N型导电性,而对于PNP型晶体管,该第一类型导电性是指N型导电性且该第二类型导电性是指P型导电性。Next, a lateral bipolar junction transistor (BJT) may be formed using the semiconductor layer 104 (see process 208 ). It should be noted that the lateral BJT formed in process 208 may be a standard BJT, wherein the collector, emitter, and base comprise the same semiconductor material (eg, silicon), or an HBT, wherein at least a portion of the base comprises A semiconductor material that is different from the collector and emitter. In addition, it should also be noted that in the following discussion about the process steps, the first type conductivity and the second type conductivity are cited, and the first type conductivity and the second type conductivity are P-type conductivity and N-type conductivity, respectively. Type conductivity or N-type conductivity and P-type conductivity, respectively, depends on whether an NPN-type transistor or a PNP-type transistor is formed in process 208 . Specifically, for NPN transistors, the first type of conductivity refers to P-type conductivity and the second type of conductivity refers to N-type conductivity, while for PNP-type transistors, the first type of conductivity refers to N-type conductivity. Type conductivity and the second type conductivity refers to P-type conductivity.

该横向BJT的形成可开始于可选的掺杂物注入工艺,以用第一类型导电掺杂物掺杂半导体层104,从而使半导体层104具有处于较低导电水平的第一类型导电性(参见工艺210及图3.2)。例如,对于NPN型晶体管,可注入P型掺杂物,以使该半导体层具有处于较低导电水平的P型导电性(例如,使该半导体层成为P-半导体层),而对于PNP型晶体管,可注入N型掺杂物,以使该半导体层具有处于较低导电水平的N型导电性(例如,使该半导体层成为N-半导体层)。Formation of the lateral BJT may begin with an optional dopant implantation process to dope the semiconductor layer 104 with a first-type conductivity dopant, thereby rendering the semiconductor layer 104 with the first-type conductivity at a lower conductivity level ( See Process 210 and Figure 3.2). For example, for an NPN transistor, a P-type dopant can be implanted so that the semiconductor layer has P-type conductivity at a lower conductivity level (e.g., making the semiconductor layer a P-semiconductor layer), while for a PNP transistor , N-type dopants may be implanted to render the semiconductor layer N-type conductivity at a lower conductivity level (eg, make the semiconductor layer an N-semiconductor layer).

可形成浅沟槽隔离(STI)区106(参见工艺212及图3.3A及3.3B)。STI区106可经形成以使它们定义装置区域的边界,并使它们基本垂直穿过半导体层104延伸至绝缘体层103。具体地说,在工艺212,可形成STI区的沟槽(例如,利用传统STI处理技术进行光刻图案化及蚀刻),以使它们基本垂直穿过该半导体层延伸至该绝缘体层,并使它们在该半导体层内定义装置区域。可进一步用一个或多个隔离材料层(例如,二氧化硅、氮化硅等)填充该沟槽,并可执行化学机械抛光(chemical mechanical polishing;CMP)工艺,以自该半导体层上方移除任意该隔离材料。Shallow trench isolation (STI) regions 106 may be formed (see process 212 and Figures 3.3A and 3.3B). STI regions 106 may be formed such that they define the boundaries of device regions and such that they extend substantially vertically through semiconductor layer 104 to insulator layer 103 . Specifically, at process 212, trenches for the STI region may be formed (eg, photolithographically patterned and etched using conventional STI processing techniques) such that they extend substantially vertically through the semiconductor layer to the insulator layer, and such that They define device regions within the semiconductor layer. The trench may be further filled with one or more layers of isolation material (eg, silicon dioxide, silicon nitride, etc.), and a chemical mechanical polishing (CMP) process may be performed to remove Any such insulating material.

接着,可在半导体层104及相邻STI区106上方形成隔离层109(参见工艺214及图3.4)。此隔离层109可例如为利用传统氧化工艺在工艺214形成的二氧化硅层。Next, isolation layer 109 may be formed over semiconductor layer 104 and adjacent STI region 106 (see process 214 and FIG. 3.4 ). The isolation layer 109 can be, for example, a silicon dioxide layer formed in process 214 using a conventional oxidation process.

接着,可在隔离层109中形成基极开口110(参见工艺216以及图3.5A及3.5B)。具体地说,在工艺214,可执行传统光刻处理及蚀刻技术,以在隔离层109中形成基极开口110。例如,基极开口110可经形成以垂直穿过隔离层109延伸至半导体层104,从而完全横穿并暴露该半导体层的中心部分,使得该基极开口110具有第一宽度(Wbo),且使得在该基极开口110的任一侧上的该半导体层的部分保持被覆盖。Next, a base opening 110 may be formed in the isolation layer 109 (see process 216 and FIGS. 3.5A and 3.5B). Specifically, in process 214 , conventional photolithography processing and etching techniques may be performed to form base opening 110 in isolation layer 109 . For example, the base opening 110 may be formed to extend vertically through the isolation layer 109 to the semiconductor layer 104, thereby completely traversing and exposing a central portion of the semiconductor layer, such that the base opening 110 has a first width (Wbo), and The portion of the semiconductor layer on either side of the base opening 110 remains covered.

接着,可在基极开口110内形成第一侧间隙壁108。例如,可共形沉积介电间隙壁材料,以覆盖隔离层109的顶部表面,并加衬基极开口110(参见图3.6A及3.6B)。该介电间隙壁材料可为例如氮化硅或不同于隔离层109的隔离材料的其它某种合适的介电间隙壁材料,以使其可相对于隔离材料107被选择性蚀刻。接着,可执行选择性非等向性侧间隙壁蚀刻工艺,以自水平表面移除该介电间隙壁材料,使其在该基极开口内的垂直表面上保持完好(也就是,作为第一侧间隙壁108)。通过在基极开口110内形成第一侧间隙壁108,基极开口110的宽度从第一宽度(Wbo)变窄至窄于该第一宽度的第二宽度(Wfbo),并暴露出该半导体层的第一区域。应当注意,该第一宽度可等于或接近利用传统光刻图案化可实现的最小宽度,且该第二宽度可小于该最小宽度。Next, first side spacers 108 may be formed within the base opening 110 . For example, a dielectric spacer material can be conformally deposited to cover the top surface of the isolation layer 109 and line the base opening 110 (see FIGS. 3.6A and 3.6B ). The dielectric spacer material may be, for example, silicon nitride or some other suitable dielectric spacer material different from the isolation material of the isolation layer 109 such that it can be selectively etched relative to the isolation material 107 . Next, a selective anisotropic side spacer etch process may be performed to remove the dielectric spacer material from the horizontal surfaces leaving it intact on the vertical surfaces within the base opening (ie, as the first side spacer 108). By forming the first side spacer 108 in the base opening 110, the width of the base opening 110 is narrowed from the first width (Wbo) to a second width (Wfbo) narrower than the first width, and the semiconductor is exposed. The first region of the layer. It should be noted that the first width may be equal to or close to the minimum width achievable using conventional photolithographic patterning, and the second width may be smaller than the minimum width.

可选地,可凹入暴露于该基极开口的底部的半导体层104的第一区域125(参见工艺218及图3.7)。也就是说,可执行选择性非等向性蚀刻工艺,以凹入(也就是,回蚀刻)在基极开口110的底部暴露的半导体层104的第一区域125的顶部表面。此选择性非等向性蚀刻工艺应当经执行而不完全蚀刻穿过半导体层104,从而半导体层104的第一区域125的至少下方部分保持完好,并可随后被用作晶种层。在基极开口110下方对齐的半导体层104的第一区域125(凹入(如图所示)或不凹入)可对应于正在形成的横向BJT(例如,标准BJT或HBT)的基极131的第一基极区131.1。Optionally, the first region 125 of the semiconductor layer 104 exposed at the bottom of the base opening may be recessed (see process 218 and FIG. 3.7 ). That is, a selective anisotropic etching process may be performed to recess (ie, etch back) the top surface of the first region 125 of the semiconductor layer 104 exposed at the bottom of the base opening 110 . This selective anisotropic etch process should be performed without etching completely through the semiconductor layer 104 so that at least an underlying portion of the first region 125 of the semiconductor layer 104 remains intact and can subsequently be used as a seed layer. A first region 125 of semiconductor layer 104 (recessed (as shown) or not) aligned under base opening 110 may correspond to base 131 of a lateral BJT (eg, a standard BJT or HBT) being formed. The first base region 131.1.

接着,可在第一基极区131.1上的基极开口110中形成第二基极区131.2(参见工艺220及图3.8)。具体地说,可在较窄的基极开口110(由第一侧间隙壁108之间的空间定义)内的半导体层104的暴露的第一区域125的顶部表面上生长外延半导体层112。在工艺220,可自半导体层104选择性生长外延半导体层112,以使其基本为单晶的结构。对于标准BJT,此半导体层104及外延半导体层112可为第一半导体材料(例如,硅)。对于HBT,半导体层104可为第一或第二半导体材料(例如,硅或硅锗),但外延半导体层112可具体为第二半导体材料(例如,硅锗)。在任一情况下,可在工艺220生长外延半导体层112,而没有任何原位掺杂(也就是,使其保持未掺杂/本征)。或者,在工艺220可原位掺杂此外延半导体层112,以使其具有处于较低导电水平的第一类型导电性,或使其具有梯度掺杂物分布(例如,从邻近该第一基极区的未掺杂或低掺杂到远离该第一基极区的较高掺杂)。Next, a second base region 131.2 may be formed in the base opening 110 above the first base region 131.1 (see process 220 and FIG. 3.8). Specifically, epitaxial semiconductor layer 112 may be grown on the top surface of exposed first region 125 of semiconductor layer 104 within narrower base opening 110 (defined by the space between first side spacers 108 ). At process 220, the epitaxial semiconductor layer 112 may be selectively grown from the semiconductor layer 104 to have a substantially monocrystalline structure. For a standard BJT, this semiconductor layer 104 and the epitaxial semiconductor layer 112 may be the first semiconductor material (eg, silicon). For HBT, the semiconductor layer 104 can be a first or second semiconductor material (eg, silicon or silicon germanium), but the epitaxial semiconductor layer 112 can be specifically a second semiconductor material (eg, silicon germanium). In either case, epitaxial semiconductor layer 112 may be grown at process 220 without any in-situ doping (ie, left undoped/intrinsic). Alternatively, the epitaxial semiconductor layer 112 may be doped in situ at process 220 to have the first type conductivity at a lower conductivity level, or to have a gradient dopant profile (eg, from adjacent to the first base undoped or lowly doped pole region to higher doped away from the first base region).

因此,在工艺220之后,对于NPN型标准BJT,第二基极区131.2可为单晶本征硅基极区(i-Si基极)、P-单晶硅基极区,或者具有从邻近该第一基极区的未掺杂或P-到远离该第一基极区的P或P+的梯度掺杂物分布的单晶硅基极区。对于NPN型HBT,第二基极区131.2可为单晶本征硅锗基极区(i-SiGe基极)、单晶P-硅锗基极区,或者具有从邻近该第一基极区的未掺杂或P-到远离该第一基极区的P或P+的梯度掺杂物分布的单晶硅锗基极区。对于PNP型标准BJT,第二基极区131.2可为单晶本征硅基极区(i-Si基极)、N-单晶硅基极区,或者具有从邻近该第一基极区的未掺杂或N-到远离该第一基极区的N或N+的梯度掺杂物分布的单晶硅基极区。对于PNP型HBT,第二基极区131.2可为单晶本征硅锗基极区(i-SiGe基极)、单晶N-硅锗基极区,或者具有从邻近该第一基极区的未掺杂或N-到远离该第一基极区的N或N+的梯度掺杂物分布的单晶硅锗基极区。Therefore, after process 220, for an NPN-type standard BJT, the second base region 131.2 can be a monocrystalline intrinsic silicon base region (i-Si base), a P-monocrystalline silicon base region, or a The single crystal silicon base region of the first base region is undoped or has a P- to P or P+ gradient dopant distribution away from the first base region. For an NPN type HBT, the second base region 131.2 can be a single crystal intrinsic silicon germanium base region (i-SiGe base), a single crystal P-silicon germanium base region, or have The undoped or P- to P or P+ graded dopant distribution away from the first base region of the single crystal silicon germanium base region. For a PNP type standard BJT, the second base region 131.2 can be a single crystal intrinsic silicon base region (i-Si base), an N-single crystal silicon base region, or a A monocrystalline silicon base region with a gradient dopant profile of undoped or N- to N or N+ away from the first base region. For a PNP type HBT, the second base region 131.2 can be a single crystal intrinsic silicon germanium base region (i-SiGe base), a single crystal N-silicon germanium base region, or have A single crystal silicon germanium base region with a gradient dopant distribution from undoped or N- to N or N+ away from the first base region.

可在第二基极区131.1上及隔离层109上方生长由该第一半导体材料(例如,硅)或其它某种合适的基极半导体材料构成的另一外延半导体层113(参见工艺222及图3.9)。在工艺222,可自该第二基极区及该隔离层非选择性生长外延半导体层113,以使其基本为多晶的结构。在工艺222,外延半导体层113可经原位掺杂而具有处于较高导电水平的第一类型导电性。因此,例如,对于NPN型标准BJT或HBT,此外延半导体层113可为P+多晶半导体层(例如,P+多晶硅层),而对于PNP型标准BJT或HBT,此外延半导体层113可为N+多晶半导体层(例如,N+多晶硅层)。Another epitaxial semiconductor layer 113 made of the first semiconductor material (eg, silicon) or some other suitable base semiconductor material may be grown on the second base region 131.1 and on the isolation layer 109 (see process 222 and FIG. 3.9). In process 222, the epitaxial semiconductor layer 113 may be non-selectively grown from the second base region and the isolation layer to have a substantially polycrystalline structure. In process 222, the epitaxial semiconductor layer 113 may be in-situ doped to have the first type conductivity at a higher conductivity level. Therefore, for example, for an NPN-type standard BJT or HBT, the epitaxial semiconductor layer 113 can be a P+ polysilicon layer (for example, a P+ polysilicon layer), and for a PNP-type standard BJT or HBT, the epitaxial semiconductor layer 113 can be an N+ polysilicon layer. A crystalline semiconductor layer (eg, N+ polysilicon layer).

可在外延半导体层113上形成薄覆盖层(cap layer)(例如,薄氮化硅覆盖层114)(参见图3.9)。A thin cap layer (eg, a thin silicon nitride cap layer 114 ) may be formed on the epitaxial semiconductor layer 113 (see FIG. 3.9 ).

随后,可形成基极堆叠(参见工艺224及图3.10)。具体地说,可执行光刻图案化及蚀刻工艺,以从在第二基极区131.2上方对齐的外延半导体层113的部分定义第三基极区131.3,并且进一步(从隔离层109)定义横向邻近第一侧间隙壁108设置的第二侧间隙壁107。由于在工艺224执行的该光刻图案化及蚀刻工艺,所形成的第三基极区131.3可在第二基极区131.2上方对齐,紧邻并宽于该第二基极区131.2,从而横向延伸于第一侧间隙壁108以及所形成的第二侧间隙壁107上方。因此,基极131基本为T形,且第三基极区131.3的相对侧壁与第二侧间隙壁107的外垂直表面基本垂直对齐。接着,第三侧间隙壁115可形成于该基极堆叠上,尤其邻近第三基极区131.3的相对侧壁,并且还邻近下方的第二侧间隙壁107的外垂直表面(参见图3.10)。例如,可共形沉积另一种介电间隙壁材料,以覆盖该基极堆叠。用以形成该第三侧间隙壁的介电间隙壁材料可为例如氮化硅或其它某种合适的介电间隙壁材料。接着,可执行选择性非等向性侧间隙壁蚀刻工艺,以从位于该基极堆叠的相对侧上的半导体层104的水平表面(尤其分别从第二及第三区域117a-117b)移除该介电间隙壁材料,并使该介电间隙壁材料在垂直表面上保持完好(也就是,作为第三侧间隙壁115)。Subsequently, a base stack may be formed (see process 224 and Figure 3.10). Specifically, a photolithographic patterning and etching process may be performed to define the third base region 131.3 from the portion of the epitaxial semiconductor layer 113 aligned over the second base region 131.2, and further define (from the isolation layer 109) the lateral The second side spacer 107 is disposed adjacent to the first side spacer 108 . As a result of the photolithographic patterning and etching process performed in process 224, the third base region 131.3 formed may be aligned over, immediately adjacent to, and wider than, the second base region 131.2, thereby extending laterally. Above the first side spacer 108 and the formed second side spacer 107 . Therefore, the base 131 is substantially T-shaped, and the opposite sidewalls of the third base region 131 . 3 are substantially vertically aligned with the outer vertical surfaces of the second side spacers 107 . Next, a third side spacer 115 may be formed on the base stack, especially adjacent to the opposite sidewall of the third base region 131.3, and also adjacent to the outer vertical surface of the underlying second side spacer 107 (see FIG. 3.10) . For example, another dielectric spacer material can be conformally deposited to cover the base stack. The dielectric spacer material used to form the third side spacer can be, for example, silicon nitride or some other suitable dielectric spacer material. Next, a selective anisotropic side spacer etch process may be performed to remove horizontal surfaces of the semiconductor layer 104 on opposite sides of the base stack, particularly from the second and third regions 117a-117b, respectively. The dielectric spacer material, and keeps the dielectric spacer material intact on the vertical surface (ie, as the third side spacer 115).

可选地,在形成第三侧间隙壁115期间暴露的半导体层104的第二及第三区域117a-117b可为凹入的(未显示)。也就是说,可执行选择性非等向性蚀刻工艺,以凹入(也就是,回蚀刻)位于半导体层104的第二及第三区域117a-117b中的半导体层104的顶部表面。此选择性非等向性蚀刻工艺应当经执行而不完全蚀刻穿过半导体层104,从而半导体层104的部分保持完好并可后续被用作晶种层。Optionally, the second and third regions 117a-117b of the semiconductor layer 104 exposed during the formation of the third side spacer 115 may be recessed (not shown). That is, a selective anisotropic etching process may be performed to recess (ie, etch back) the top surface of the semiconductor layer 104 located in the second and third regions 117 a - 117 b of the semiconductor layer 104 . This selective anisotropic etch process should be performed without etching completely through the semiconductor layer 104 so that portions of the semiconductor layer 104 remain intact and can subsequently be used as a seed layer.

接着,可在该基极堆叠的相对侧上形成集极133及发射极132(参见工艺226及图3.11)。例如,可自半导体层104的第二及第三区域117a-117b的暴露半导体表面选择性生长由第一半导体材料(例如,硅)或其它某种合适的集极/发射极半导体材料构成的额外外延半导体层122,以使它们基本为单晶的结构。在工艺226,额外外延半导体层122可经原位掺杂而具有处于较高导电水平的第二类型导电性。因此,例如,对于NPN型晶体管,额外外延半导体层122可为N+单晶半导体层(例如,N+硅层),而对于PNP型晶体管,额外外延半导体层122可为P+单晶半导体层(例如,P+硅层)。随后的退火工艺可使来自额外外延半导体层122的掺杂物扩散至该半导体层的第二及第三区域117a-117b中,以形成具有第二类型导电性的掺杂区121。在此情况下,半导体层104的第二及第三区域117a-117b的掺杂区121分别形成发射极132及集极133的下方发射极及集极区132.1、133.1。此外,在半导体层104的第二及第三区域117a-117b上生长的额外外延半导体层122分别形成发射极132及集极133的上方发射极及集极区132.2、133.2。应当注意,工艺226仅为可用以在该基极堆叠的相对侧上形成发射极132及集极133的一个示例工艺流程。作为替代,可采用任意其它合适的工艺流程来形成对称或不对称的发射极/集极区。Next, a collector 133 and an emitter 132 may be formed on opposite sides of the base stack (see process 226 and FIG. 3.11 ). For example, additional semiconductors composed of the first semiconductor material (eg, silicon) or some other suitable collector/emitter semiconductor material may be selectively grown from the exposed semiconductor surfaces of the second and third regions 117a-117b of the semiconductor layer 104. The semiconductor layers 122 are epitaxially formed so that they have a substantially monocrystalline structure. At process 226, the additional epitaxial semiconductor layer 122 may be in-situ doped to have a second type of conductivity at a higher conductivity level. Therefore, for example, for an NPN type transistor, the additional epitaxial semiconductor layer 122 can be an N+ single crystal semiconductor layer (for example, an N+ silicon layer), and for a PNP type transistor, the additional epitaxial semiconductor layer 122 can be a P+ single crystal semiconductor layer (for example, P+ silicon layer). The subsequent annealing process can diffuse dopants from the additional epitaxial semiconductor layer 122 into the second and third regions 117 a - 117 b of the semiconductor layer to form the doped region 121 with the second type conductivity. In this case, the doped regions 121 of the second and third regions 117a-117b of the semiconductor layer 104 form the underlying emitter and collector regions 132.1, 133.1 of the emitter 132 and collector 133, respectively. Furthermore, an additional epitaxial semiconductor layer 122 grown on the second and third regions 117a-117b of the semiconductor layer 104 forms upper emitter and collector regions 132.2, 133.2 of the emitter 132 and collector 133, respectively. It should be noted that process 226 is only one example process flow that may be used to form emitter 132 and collector 133 on opposite sides of the base stack. Alternatively, any other suitable process flow may be used to form symmetric or asymmetric emitter/collector regions.

可选地,该方法实施例还可包括自基极131的顶部选择性移除覆盖层114,并在基极131、集极133、以及发射极132的最上表面上形成金属硅化物层199(参见工艺252及图3.12)。金属硅化物层199可为例如硅化钴(CoSi)、硅化镍(NiSi)、硅化钨(WSi)、硅化钛(TiSi)或任意其它合适的金属硅化物材料层。用于形成金属硅化物层的技术为本领域熟知,因此,自本说明书省略,以允许读者关注所揭示的实施例的显著态样。Optionally, the method embodiment may also include selectively removing the capping layer 114 from the top of the base 131, and forming a metal silicide layer 199 on the uppermost surfaces of the base 131, the collector 133, and the emitter 132 ( See Process 252 and Figure 3.12). The metal silicide layer 199 may be, for example, cobalt silicide (CoSi), nickel silicide (NiSi), tungsten silicide (WSi), titanium silicide (TiSi), or any other suitable layer of metal silicide material. Techniques for forming metal suicide layers are well known in the art and, therefore, are omitted from this description to allow the reader to focus on salient aspects of the disclosed embodiments.

该方法实施例还可包括形成共形的第一介电层180,尤其介电应力层,以使其仅部分覆盖横向BJT 150(参见工艺254及图3.13-3.14)。第一介电层180(也就是,介电应力层)可例如为氮化硅应力层,其经沉积并根据需要进一步加工而具有拉伸应变或压缩应变,取决于横向BJT150是NPN型晶体管还是PNP型晶体管。例如,对于NPN型晶体管,可在工艺254沉积并根据需要进一步加工第一介电层180,以使其为拉伸应变层,而对于PNP型晶体管,可在工艺254沉积并(可选地)根据需要进一步加工第一介电层180,以使其为压缩应变层。用于形成拉伸应变介电层及压缩应变介电层的各种技术为本领域熟知,并可在所揭示的方法中使用。不过,已自本说明书省略这些技术的细节,以允许读者关注所揭示的实施例的显著态样。This method embodiment may also include forming a conformal first dielectric layer 180 , particularly a dielectric stressor layer, such that it only partially covers the lateral BJT 150 (see process 254 and FIGS. 3.13-3.14 ). The first dielectric layer 180 (i.e., the dielectric stressor layer) can be, for example, a silicon nitride stressor layer that is deposited and further processed as desired to have tensile or compressive strain, depending on whether the lateral BJT 150 is an NPN type transistor or PNP type transistor. For example, for NPN type transistors, the first dielectric layer 180 can be deposited at process 254 and further processed as desired to make it a tensile strained layer, while for PNP type transistors, it can be deposited at process 254 and (optionally) The first dielectric layer 180 is further processed as desired to make it a compressively strained layer. Various techniques for forming tensile and compressive strained dielectric layers are well known in the art and can be used in the disclosed methods. However, the details of these techniques have been omitted from this description to allow the reader to focus on the salient aspects of the disclosed embodiments.

在任何情况下,随后,可光刻图案化及蚀刻第一介电层180,以使其仅部分覆盖横向BJT 150,并使其具有在集极与发射极之间某处的晶体管上方对齐的一端。例如,可光刻图案化及蚀刻第一介电层180,以使其仅覆盖横向BJT 150的一侧,并使一端189在集极133与发射极132之间某处的横向BJT 150上方对齐。在一些实施例中,可图案化及蚀刻第一介电层180,以使其完全覆盖集极133,使其部分覆盖基极131,并使其具有在基极131上方对齐的一端189,如图所示。作为替代,可光刻图案化及蚀刻第一介电层180,以使其完全覆盖集极133,使其完全延伸于基极131上方,并使其具有在基极131与发射极132之间的第三侧间隙壁115上方对齐的一端189。通过位于集极133上方且至少部分位于基极131上方的第一介电层,集极133及基极131(以及集极-基极结)将应变,而发射极132将保持松弛。In any case, the first dielectric layer 180 can then be photolithographically patterned and etched so that it only partially covers the lateral BJT 150 and has a slit aligned over the transistor somewhere between the collector and emitter. one end. For example, first dielectric layer 180 may be photolithographically patterned and etched such that it covers only one side of lateral BJT 150 and that one end 189 is aligned over lateral BJT 150 somewhere between collector 133 and emitter 132. . In some embodiments, the first dielectric layer 180 may be patterned and etched such that it completely covers the collector 133, partially covers the base 131, and has an end 189 aligned over the base 131, as As shown in the figure. Alternatively, the first dielectric layer 180 may be photolithographically patterned and etched such that it completely covers the collector 133, extends completely over the base 131, and has a gap between the base 131 and the emitter 132. One end 189 of the third side spacer 115 is aligned above. With the first dielectric layer over collector 133 and at least partially over base 131 , collector 133 and base 131 (and the collector-base junction) will be strained, while emitter 132 will remain relaxed.

例如,在NPN型晶体管的情况下(其中,第一介电层180为拉伸应变),集极133将为纵向拉伸且垂直压缩的集极,基极131将类似为纵向拉伸且垂直压缩的基极,而发射极132将为松弛的发射极。而在PNP型晶体管的情况下(其中,第一介电层180为压缩应变),集极133将为纵向压缩且垂直拉伸的集极,基极131将类似为纵向压缩且垂直拉伸的基极,而发射极132将为松弛的发射极。在集极-基极结上方而非发射极-基极结上方具有此类不对称介电应力层的实施例中,已呈现最大的性能优势,尤其有增强的电荷载流子迁移率,从而有较快的开关速度。For example, in the case of an NPN type transistor (where the first dielectric layer 180 is tensile strained), the collector 133 would be a longitudinally stretched and vertically compressed collector, and the base 131 would similarly be longitudinally stretched and vertically compressed. A compressed base, while the emitter 132 will be a relaxed emitter. Whereas in the case of a PNP type transistor (where the first dielectric layer 180 is compressively strained), the collector 133 would be a longitudinally compressed and vertically stretched collector, and the base 131 would similarly be longitudinally compressed and vertically stretched base, while the emitter 132 will be the relaxed emitter. In embodiments having such an asymmetric dielectric stress layer over the collector-base junction rather than the emitter-base junction, the greatest performance advantages have been exhibited, especially enhanced charge carrier mobility, thereby Has a faster switching speed.

应当理解,该些附图并非意图限制,作为替代,可图案化及蚀刻该第一介电层,以使其覆盖该横向BJT的一些不同部分,从而微调施加于横向BJT 150的不同组件的应变。例如,可图案化及蚀刻第一介电层180,以使其仅完全覆盖集极133,以使其不延伸至基极131上,并使其具有在基极131与集极133之间的第三侧间隙壁115上方对齐的一端189。在此情况下,仅集极会应变,而基极及发射极将是松弛的。作为替代,可图案化及蚀刻第一介电层180,以使其仅部分覆盖集极133,并使其部分或完全覆盖基极131。在这些情况下,集极及基极将应变较小的程度,而发射极仍为松弛的。作为替代,可图案化及蚀刻第一介电层180,以使其位于发射极132上,且可选地,使其延伸至基极131上及/或上方,而不进一步延伸至集极133上(例如,以使发射极及(可选地)基极应变,而集极为松弛的),依此类推。It should be understood that these figures are not intended to be limiting, and instead, the first dielectric layer can be patterned and etched so that it covers different portions of the lateral BJT, thereby fine-tuning the strain applied to different components of the lateral BJT 150 . For example, the first dielectric layer 180 can be patterned and etched so that it only completely covers the collector 133, so that it does not extend onto the base 131, and so that it has a gap between the base 131 and the collector 133. One end 189 aligned above the third side spacer 115 . In this case, only the collector will be strained, while the base and emitter will be relaxed. Alternatively, the first dielectric layer 180 may be patterned and etched so that it only partially covers the collector 133 , and so that it partially or completely covers the base 131 . In these cases, the collector and base will be strained to a lesser extent, while the emitter remains relaxed. Alternatively, first dielectric layer 180 may be patterned and etched such that it lies on emitter 132 and, optionally, extends onto and/or over base 131 without extending further to collector 133. (eg, to strain the emitter and (optionally) base, and relax the collector), and so on.

而且,应当理解,上述用于形成仅部分覆盖该晶体管的第一介电层180的技术是出于说明目的而提供的,而非意图限制。例如,作为替代,可在该部分完成的结构上方形成掩膜层。该掩膜层可经图案化而具有暴露该横向BJT的一部分的开口,并使该横向BJT的另一部分保持被覆盖。该第一介电层(尤其该介电应力层)可形成于该沟槽内,并可选择性移除该掩膜层。Also, it should be understood that the techniques described above for forming the first dielectric layer 180 that only partially covers the transistor are provided for purposes of illustration and are not intended to be limiting. For example, a masking layer may instead be formed over the partially completed structure. The masking layer can be patterned with openings exposing a portion of the lateral BJT and leaving another portion of the lateral BJT covered. The first dielectric layer (especially the dielectric stress layer) can be formed in the trench, and the mask layer can be selectively removed.

该方法实施例还可包括形成一个或多个第二介电层185,其位于第一介电层180上,并进一步横向延伸超出第一介电层180的端189至未被第一介电层180覆盖的横向BJT150的部分上方(参见工艺256)。尽管未显示,但这些介电层可包括例如一个或多个共形介电层(例如,另一共形氮化硅蚀刻停止层)以及位于该共形介电层上的覆被介电层(例如,覆被二氧化硅层或由其它某种合适介电材料构成的覆被层)。该方法实施例还可包括形成中间工艺(MOL)接触件,其包括穿过该介电层延伸至基极、集极以及发射极的接触件(参见工艺258)。The method embodiment may also include forming one or more second dielectric layers 185 overlying the first dielectric layer 180 and further extending laterally beyond the end 189 of the first dielectric layer 180 to an area not covered by the first dielectric layer 180. Layer 180 overlies the portion of lateral BJT 150 (see process 256 ). Although not shown, these dielectric layers may include, for example, one or more conformal dielectric layers (e.g., another conformal silicon nitride etch stop layer) and a blanket dielectric layer overlying the conformal dielectric layer ( For example, a layer of silicon dioxide or a coating of some other suitable dielectric material). The method embodiment may also include forming mid-line (MOL) contacts including contacts extending through the dielectric layer to the base, collector, and emitter (see process 258 ).

应当理解,在上述结构及方法中,半导体材料是指导电属性可通过掺杂杂质而改变的材料。示例半导体材料包括例如硅基半导体材料(例如,硅、硅锗、碳化锗硅、碳化硅等)以及III-V族化合物半导体(也就是,通过将第III族元素例如铝(Al)、镓(Ga)、铟(In)与第V族元素例如氮(N)、磷(P)、砷(As)或锑(Sb)组合来获得)(例如,GaN、InP、GaAs或GaP)。纯半导体材料,尤其不掺杂用于增加导电性的杂质的半导体材料(也就是,未掺杂半导体材料)在本领域中被称为本征半导体。掺杂有用于增加导电性的杂质的半导体材料(也就是,掺杂半导体材料)在本领域中被称为非本征半导体,并且会比由相同的基材制成的本征半导体更加导电。也就是说,非本征硅将比本征硅更导电;非本征硅锗将比本征硅锗更导电;依此类推。而且,应当理解,可使用不同的杂质(也就是,不同的掺杂物)来获得不同的导电类型(例如,P型导电性及N型导电性),且掺杂物可依据所使用的不同半导体材料而变化。例如,通常用第III族掺杂物例如硼(B)或铟(In)掺杂硅基半导体材料(例如,硅、硅锗等),以获得P型导电性,通常用第V族掺杂物例如砷(As)、磷(P)或锑(Sb)掺杂硅基半导体材料,以获得N型导电性。通常用镁(Mg)掺杂氮化镓(GaN)基半导体材料,以获得P型导电性,以及用硅(Si)或氧掺杂,以获得N型导电性。本领域的技术人员还将意识到,不同的导电水平将依赖于给定半导体区中的掺杂物的相对浓度水平。It should be understood that in the above structures and methods, a semiconductor material refers to a material whose conductivity property can be changed by doping with impurities. Exemplary semiconductor materials include, for example, silicon-based semiconductor materials (e.g., silicon, silicon germanium, silicon germanium carbide, silicon carbide, etc.) Ga), indium (In) combined with group V elements such as nitrogen (N), phosphorus (P), arsenic (As) or antimony (Sb)) (for example, GaN, InP, GaAs or GaP). Pure semiconductor materials, especially semiconductor materials that are not doped with impurities that increase conductivity (ie, undoped semiconductor materials) are known in the art as intrinsic semiconductors. A semiconductor material doped with impurities to increase conductivity (ie, doped semiconductor material) is known in the art as an extrinsic semiconductor, and will be more conductive than an intrinsic semiconductor made from the same substrate. That is, extrinsic silicon will be more conductive than intrinsic silicon; extrinsic silicon germanium will be more conductive than intrinsic silicon germanium; and so on. Also, it should be understood that different impurities (ie, different dopants) can be used to obtain different conductivity types (eg, P-type conductivity versus N-type conductivity), and that the dopants can vary depending on the type used. depending on the semiconductor material. For example, silicon-based semiconductor materials (e.g., silicon, silicon germanium, etc.) are typically doped with Group III dopants such as boron (B) or indium (In) to obtain P-type conductivity, typically doped with Group V Doping silicon-based semiconductor materials with substances such as arsenic (As), phosphorus (P) or antimony (Sb) to obtain N-type conductivity. Gallium nitride (GaN)-based semiconductor materials are typically doped with magnesium (Mg) to obtain P-type conductivity, and silicon (Si) or oxygen to obtain N-type conductivity. Those skilled in the art will also appreciate that different conductivity levels will depend on the relative concentration levels of dopants in a given semiconductor region.

如上所述的方法可用于集成电路芯片的制造中。制造者可以原始晶圆形式(也就是,作为具有多个未封装芯片的单个晶圆)、作为裸管芯,或者以封装形式分配所得的集成电路芯片。在后一种情况中,该芯片设于单芯片封装件中(例如塑料承载件,其具有附着至母板或其它更高层次承载件的引脚)或者多芯片封装件中(例如陶瓷承载件,其具有单面或双面互连或嵌埋互连)。在任何情况下,接着将该芯片与其它芯片、分立电路元件和/或其它信号处理装置集成,作为(a)中间产品例如母板的部分,或者作为(b)最终产品的部分。该最终产品可为包括集成电路芯片的任意产品,涉及范围从玩具及其它低端应用直至具有显示器、键盘或其它输入装置以及中央处理器的先进计算机产品。The method as described above can be used in the manufacture of integrated circuit chips. A fabricator may distribute the resulting integrated circuit chips in raw wafer form (ie, as a single wafer with multiple unpackaged chips), as bare die, or in packaged form. In the latter case, the chip is provided in a single-chip package (such as a plastic carrier with pins attached to a motherboard or other higher-level carrier) or in a multi-chip package (such as a ceramic carrier , which have single- or double-sided interconnects or embedded interconnects). In any event, the chip is then integrated with other chips, discrete circuit elements, and/or other signal processing devices, either as part of (a) an intermediate product such as a motherboard, or (b) a final product. The final product can be anything that includes an integrated circuit chip, ranging from toys and other low-end applications to advanced computer products with displays, keyboards or other input devices, and central processing units.

应当理解,本文中所使用的术语是出于说明所揭示的结构及方法的目的,并非意图限制。例如,除非上下文中另外明确指出,否则这里所使用的单数形式“一个”以及“该”也意图包括复数形式。另外,本文中所使用的术语“包括”表明所述特征、整体、步骤、操作、元件和/或组件的存在,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、组件,和/或其群组。而且,本文中所使用的术语例如“右”、“左”、“垂直”、“水平”、“顶部”、“底部”、“上方”、“下方”、“平行”、“垂直”等意图说明当它们以附图中取向并显示时的相对位置(除非另外指出),且术语如“碰触”、“直接接触”、“毗邻”、“直接相邻”、“紧邻”等意图表示至少一个元件物理接触另一个元件(没有其它元件隔开所述元件)。本文中所使用的术语“横向”说明当元件以附图中取向并显示时该些元件的相对位置,尤其表示一个元件位于另一个元件的侧边而不是另一个元件的上方或下方。例如,一个元件横向邻近另一个元件将在该另一个元件旁边,一个元件横向紧邻另一个元件将直接在该另一个元件旁边,以及一个元件横向围绕另一个元件将邻近并环绕该另一个元件的外侧壁。下面的权利要求中的所有方式或步骤加功能元件的相应结构、材料、动作及等同意图包括执行该功能的任意结构、材料或动作结合具体请求保护的其它请求保护的元件。It is to be understood that the terminology used herein is for the purpose of describing the disclosed structures and methods and is not intended to be limiting. For example, as used herein, the singular forms "a," "an" and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. In addition, the term "comprising" used herein indicates the existence of said features, integers, steps, operations, elements and/or components, but does not exclude the existence or addition of one or more other features, integers, steps, operations, elements , components, and/or groups thereof. Moreover, terms such as "right", "left", "vertical", "horizontal", "top", "bottom", "above", "below", "parallel", "perpendicular", etc. as used herein are intended to relative positions when they are oriented and shown in the drawings (unless otherwise indicated), and terms such as "touching", "direct contact", "adjacent", "immediately adjacent", "immediately adjacent" and the like are intended to mean at least An element is in physical contact with another element (with no other element separating the elements). As used herein, the term "transverse" describes the relative position of elements when they are oriented and shown in the drawings, and particularly means that one element is located to the side of another element rather than above or below the other element. For example, an element laterally adjacent to another element will be next to the other element, an element laterally adjacent to another element will be directly next to the other element, and an element laterally around another element will be adjacent to and surround the other element. outer wall. The corresponding structures, materials, acts and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements specifically claimed.

对本发明的各种实施例所作的说明是出于示例说明的目的,而非意图详尽无遗或限于所揭示的实施例。许多修改及变更将对于本领域的普通技术人员显而易见,而不背离所述实施例的范围及精神。本文中所使用的术语经选择以最佳解释所述实施例的原理、实际应用或在市场已知技术上的技术改进,或者使本领域的普通技术人员能够理解本文中所揭示的实施例。The description of various embodiments of the present invention has been presented for purposes of illustration and is not intended to be exhaustive or limited to the disclosed embodiments. Many modifications and changes will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terms used herein were chosen to best explain the principles of the described embodiments, the practical application or technical improvements over technologies known in the marketplace, or to enable a person of ordinary skill in the art to understand the embodiments disclosed herein.

Claims (20)

1. A structure, comprising:
a transistor, comprising: a base; a collector; and an emitter, wherein the base is laterally located between the collector and the emitter; and
and a first dielectric layer partially covering the transistor, wherein one end of the first dielectric layer is positioned above the transistor between the collector and the emitter.
2. The structure of claim 1 wherein the first dielectric layer comprises a stress layer.
3. The structure of claim 1 wherein the first dielectric layer comprises a silicon nitride layer having one of tensile strain and compressive strain.
4. The structure of claim 1 wherein the transistor comprises an NPN heterojunction bipolar transistor and the first dielectric layer comprises a tensile strained layer.
5. The structure of claim 1 wherein the transistor comprises a PNP heterojunction bipolar transistor and the first dielectric layer comprises a compressively strained layer.
6. The structure of claim 1 wherein said first dielectric layer covers said collector and at least partially covers said base.
7. The structure of claim 6 further comprising a second dielectric layer on said first dielectric layer and further extending laterally beyond said end of said first dielectric layer above said emitter.
8. A structure, comprising:
an insulator layer;
a semiconductor layer on the insulator layer;
a transistor, comprising:
a base, comprising: a first base region within the semiconductor layer; a second base region located on the first base region; and a third base region located on the second base region and wider than the second base region;
a collector; and an emitter, wherein the base is laterally located between the collector and the emitter, wherein the collector and the emitter comprise a first semiconductor material, and wherein at least the second base region comprises a second semiconductor material different from the first semiconductor material; and
And a first dielectric layer partially covering the transistor, wherein one end of the first dielectric layer is positioned above the transistor between the collector and the emitter.
9. The structure of claim 8 wherein the first dielectric layer comprises a stress layer.
10. The structure of claim 8 wherein the first dielectric layer comprises a silicon nitride layer having one of tensile strain and compressive strain.
11. The structure of claim 10 wherein the transistor comprises an NPN heterojunction bipolar transistor and the first dielectric layer comprises a tensile strained layer.
12. The structure of claim 10 wherein the transistor comprises a PNP heterojunction bipolar transistor and the first dielectric layer comprises a compressively strained layer.
13. The structure of claim 8 wherein said first dielectric layer covers said collector and at least partially covers said base.
14. The structure of claim 13, further comprising a second dielectric layer on the first dielectric layer and further extending laterally beyond the end of the first dielectric layer above the collector.
15. A method, comprising:
Forming a transistor, the transistor comprising: a base; a collector; and an emitter, wherein the base is laterally located between the collector and the emitter; and
a first dielectric layer is formed to partially cover the transistor, wherein one end of the first dielectric layer is located over the transistor between the collector and the emitter.
16. The method of claim 15, wherein,
the forming of the transistor includes forming an NPN heterojunction bipolar transistor, an
Wherein the forming of the first dielectric layer includes forming a tensile strained layer.
17. The method of claim 15, wherein,
the forming of the transistor includes forming a PNP heterojunction bipolar transistor, an
Wherein the forming of the first dielectric layer includes forming a compressively strained layer.
18. The method of claim 15, wherein,
the collector and the emitter are formed to include a first semiconductor material, an
Wherein the base is formed to include: a first base region located in the semiconductor layer; a second base region located on the first base region; and a third base region located on and wider than the second base region, at least the second base region including a second semiconductor material different from the first semiconductor material.
19. The method of claim 15, wherein the first dielectric layer is formed to cover the collector and at least partially cover the base.
20. The method of claim 19, further comprising forming a second dielectric layer on the first dielectric layer and further extending laterally beyond the end of the first dielectric layer above the emitter.
CN202211447416.9A 2021-12-20 2022-11-18 Lateral bipolar junction transistor including stress layer and method Pending CN116314305A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/555,561 US11837653B2 (en) 2021-08-30 2021-12-20 Lateral bipolar junction transistor including a stress layer and method
US17/555,561 2021-12-20

Publications (1)

Publication Number Publication Date
CN116314305A true CN116314305A (en) 2023-06-23

Family

ID=86829288

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211447416.9A Pending CN116314305A (en) 2021-12-20 2022-11-18 Lateral bipolar junction transistor including stress layer and method

Country Status (1)

Country Link
CN (1) CN116314305A (en)

Similar Documents

Publication Publication Date Title
US9324846B1 (en) Field plate in heterojunction bipolar transistor with improved break-down voltage
US8847348B2 (en) Complementary bipolar inverter
US9202900B2 (en) Method to bridge extrinsic and intrinsic base by selective epitaxy in BiCMOS technology
US10777668B2 (en) Bipolar junction transistors with a self-aligned emitter and base
JP2001223224A (en) Method for forming silicon-germanium base in heterojunction bipolar transistor
TWI752599B (en) Structure and manufacture method of heterojunction bipolar transistor with marker layer
CN112786694A (en) Gated lateral bipolar junction/heterojunction transistor
US11888031B2 (en) Fin-based lateral bipolar junction transistor and method
US12142673B2 (en) Transistor with wrap-around extrinsic base
US11990535B2 (en) Lateral heterojunction bipolar transistor with emitter and/or collector regrown from substrate and method
US11967637B2 (en) Fin-based lateral bipolar junction transistor with reduced base resistance and method
US6908824B2 (en) Self-aligned lateral heterojunction bipolar transistor
US11837653B2 (en) Lateral bipolar junction transistor including a stress layer and method
CN116314305A (en) Lateral bipolar junction transistor including stress layer and method
US20210091212A1 (en) Asymmetrical lateral heterojunction bipolar transistors
US11777019B2 (en) Lateral heterojunction bipolar transistor with improved breakdown voltage and method
US20230032080A1 (en) Asymmetric lateral bipolar transistor and method
US11855197B2 (en) Vertical bipolar transistors
US11575029B2 (en) Lateral bipolar junction transistor and method
US11935923B2 (en) Lateral bipolar transistor with gated collector
US11646348B2 (en) Double mesa heterojunction bipolar transistor
US20230275083A1 (en) Forksheet semiconductor structure including at least one bipolar junction transistor and method
US11721722B2 (en) Bipolar junction transistors including a stress liner
US11848374B2 (en) Bipolar junction transistors including a portion of a base layer inside a cavity in a dielectric layer
US20240097029A1 (en) Field effect transistor with adjustable effective gate length

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination