CN116314305A - Lateral bipolar junction transistor including stress layer and method - Google Patents
Lateral bipolar junction transistor including stress layer and method Download PDFInfo
- Publication number
- CN116314305A CN116314305A CN202211447416.9A CN202211447416A CN116314305A CN 116314305 A CN116314305 A CN 116314305A CN 202211447416 A CN202211447416 A CN 202211447416A CN 116314305 A CN116314305 A CN 116314305A
- Authority
- CN
- China
- Prior art keywords
- layer
- base
- collector
- dielectric layer
- transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 88
- 239000004065 semiconductor Substances 0.000 claims abstract description 244
- 239000012212 insulator Substances 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims description 79
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 12
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 12
- 238000005516 engineering process Methods 0.000 abstract description 8
- 239000002800 charge carrier Substances 0.000 abstract description 6
- 230000010355 oscillation Effects 0.000 abstract description 3
- 230000008569 process Effects 0.000 description 55
- 125000006850 spacer group Chemical group 0.000 description 47
- 229910052710 silicon Inorganic materials 0.000 description 32
- 239000010703 silicon Substances 0.000 description 31
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 29
- 239000000758 substrate Substances 0.000 description 28
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 24
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 19
- 239000002019 doping agent Substances 0.000 description 19
- 238000002955 isolation Methods 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 239000013078 crystal Substances 0.000 description 12
- 229910052698 phosphorus Inorganic materials 0.000 description 8
- 229910021332 silicide Inorganic materials 0.000 description 8
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 8
- 238000005530 etching Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 235000012239 silicon dioxide Nutrition 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 5
- 229920005591 polysilicon Polymers 0.000 description 5
- 238000002513 implantation Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- -1 etc.) Substances 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- PEUPIGGLJVUNEU-UHFFFAOYSA-N nickel silicon Chemical compound [Si].[Ni] PEUPIGGLJVUNEU-UHFFFAOYSA-N 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- WNUPENMBHHEARK-UHFFFAOYSA-N silicon tungsten Chemical compound [Si].[W] WNUPENMBHHEARK-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 206010010144 Completed suicide Diseases 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D10/00—Bipolar junction transistors [BJT]
- H10D10/60—Lateral BJTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D10/00—Bipolar junction transistors [BJT]
- H10D10/01—Manufacture or treatment
- H10D10/021—Manufacture or treatment of heterojunction BJTs [HBT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D10/00—Bipolar junction transistors [BJT]
- H10D10/01—Manufacture or treatment
- H10D10/061—Manufacture or treatment of lateral BJTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D10/00—Bipolar junction transistors [BJT]
- H10D10/80—Heterojunction BJTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/113—Isolations within a component, i.e. internal isolations
- H10D62/115—Dielectric isolations, e.g. air gaps
Landscapes
- Bipolar Transistors (AREA)
Abstract
本发明涉及包括应力层的横向双极结型晶体管以及方法,揭示具有横向双极结型晶体管(BJT)的半导体结构。此半导体结构可很容易地集成于先进绝缘体上硅(SOI)技术平台中。而且,为保持或提升性能特性(例如,截止频率(fT)/最大振荡频率(fmax)以及贝塔截止频率)(否则这些特性将因该BJT的取向从垂直变为横向而受到负面影响),该半导体结构还可包括部分覆盖该横向BJT以增强电荷载流子迁移率的介电应力层(例如,在NPN型晶体管的情况的拉伸应变层,或者在PNP型晶体管的情况的压缩应变层),且该横向BJT可被配置为横向异质结双极型晶体管(HBT)。本发明还揭示形成该半导体结构的方法。
The present invention relates to a lateral bipolar junction transistor including a stress layer and a method, and discloses a semiconductor structure having a lateral bipolar junction transistor (BJT). This semiconductor structure can be easily integrated into advanced silicon-on-insulator (SOI) technology platforms. Also, to maintain or improve performance characteristics such as cutoff frequency (fT)/maximum oscillation frequency (fmax) and beta cutoff frequency that would otherwise be negatively affected by changing the orientation of the BJT from vertical to lateral, the The semiconductor structure may also include a dielectric stress layer (e.g., a tensile strained layer in the case of an NPN transistor, or a compressive strained layer in the case of a PNP transistor) partially covering the lateral BJT to enhance charge carrier mobility. , and the lateral BJT may be configured as a lateral heterojunction bipolar transistor (HBT). The invention also discloses a method of forming the semiconductor structure.
Description
技术领域technical field
本发明涉及半导体结构,尤其涉及包括横向双极结型晶体管(bipolar junctiontransistor;BJT)的半导体结构的实施例以及形成该半导体结构的方法的实施例。The present invention relates to semiconductor structures, and more particularly to embodiments of semiconductor structures including lateral bipolar junction transistors (BJTs) and methods of forming the semiconductor structures.
背景技术Background technique
与利用先进绝缘体上硅(silicon-on-insulator;SOI)处理技术平台(例如,全耗尽绝缘体上硅(fully-depleted silicon-on-insulator;FDSOI)处理技术平台)制造互补金属氧化物半导体(CMOS)设计相关的优点包括例如降低功率、减少面积消耗、降低成本、高性能、多个核心阈值电压(Vt)选择等。在此类SOI晶片上制造的CMOS设计用于各种应用中,包括但不限于物联网(Internet-of-Things;IOT)装置、可穿戴装置、智能手机处理器、汽车电子装置、以及射频集成电路(radiofrequency integrated circuit;RFIC)(包括毫米波(mmWave)IC)。由于BJT往往具有较大的驱动且通常被认为比场效应晶体管(fieldeffecttransistor;FET)更适合模拟功能,因此这些相同的应用可通过包括双极结型晶体管(BJT)来获益。然而,通常将此类BJT形成为垂直装置(例如,具有衬底中的集极(collector)、在该集极上方对齐的基极(base)、以及在该基极上方对齐的发射极(emitter)),其不容易集成于先进SOI处理技术平台中。Complementary Metal Oxide Semiconductor ( Advantages associated with CMOS) designs include, for example, reduced power, reduced area consumption, reduced cost, high performance, multiple core threshold voltage (Vt) selections, and the like. CMOS fabricated on such SOI wafers are designed for use in a variety of applications, including but not limited to Internet-of-Things (IOT) devices, wearable devices, smartphone processors, automotive electronics, and radio frequency integration Circuit (radiofrequency integrated circuit; RFIC) (including millimeter wave (mmWave) IC). These same applications can benefit from the inclusion of bipolar junction transistors (BJTs) since BJTs tend to have larger drives and are generally considered better suited for analog functions than field effect transistors (FETs). However, such BJTs are typically formed as vertical devices (e.g., with a collector in the substrate, a base aligned over the collector, and an emitter aligned over the base). )), which are not easily integrated in advanced SOI processing technology platforms.
发明内容Contents of the invention
本文中揭示半导体结构的实施例。该半导体结构可包括横向双极结型晶体管(BJT)。该横向BJT可包括集极,发射极,以及横向位于该集极与该发射极之间的基极。该半导体结构还可包括第一介电层,尤其仅部分覆盖该横向BJT的介电应力层,其一端位于该集极与该发射极之间的该横向BJT上方。例如,该第一介电层可位于该集极上方,并且还延伸至该基极上,以使该第一介电层的一端在该基极上方对齐。Embodiments of semiconductor structures are disclosed herein. The semiconductor structure may include a lateral bipolar junction transistor (BJT). The lateral BJT may include a collector, an emitter, and a base laterally between the collector and the emitter. The semiconductor structure may further comprise a first dielectric layer, in particular a dielectric stress layer only partially covering the lateral BJT, one end of which is located above the lateral BJT between the collector and the emitter. For example, the first dielectric layer may be located over the collector and also extend over the base such that one end of the first dielectric layer is aligned over the base.
本文中揭示在先进绝缘体上硅(silicon-on-insulator;SOI)技术平台中形成的半导体结构的实施例。在这些实施例中,该半导体结构可包括半导体衬底,位于该半导体衬底上的绝缘体层,以及位于该绝缘体层上的半导体层。该半导体结构可包括横向双极结型晶体管(BJT),尤其横向异质结双极型晶体管(heterojunction bipolartransistor;HBT)。该横向HBT可包括基极。该基极可包括位于该半导体层内的第一基极区,位于该第一基极区上的第二基极区,以及位于该第二基极区上并宽于该第二基极区的第三基极区。该横向HBT还可包括集极及发射极。该基极可横向位于该集极与该发射极之间。而且,该集极及该发射极可由第一半导体材料制成,而至少该第二基极区可由不同于该第一半导体材料的第二半导体材料制成,从而提供异质结。该半导体结构还可包括第一介电层,尤其仅部分覆盖该横向BJT的介电应力层,其一端位于该集极与该发射极之间的该横向HBT上方。例如,该第一介电层可位于该集极上方,并且还延伸至该基极上,以使该第一介电层的一端在该基极上方对齐。Embodiments of semiconductor structures formed in advanced silicon-on-insulator (SOI) technology platforms are disclosed herein. In these embodiments, the semiconductor structure may include a semiconductor substrate, an insulator layer on the semiconductor substrate, and a semiconductor layer on the insulator layer. The semiconductor structure may include a lateral bipolar junction transistor (BJT), especially a lateral heterojunction bipolar transistor (HBT). The lateral HBT may include a base. The base may include a first base region located in the semiconductor layer, a second base region located on the first base region, and a base region located on the second base region and wider than the second base region. of the third base region. The lateral HBT may also include a collector and an emitter. The base may be located laterally between the collector and the emitter. Furthermore, the collector and the emitter may be made of a first semiconductor material, while at least the second base region may be made of a second semiconductor material different from the first semiconductor material, thereby providing a heterojunction. The semiconductor structure may further comprise a first dielectric layer, in particular a dielectric stress layer only partially covering the lateral BJT, one end of which is located above the lateral HBT between the collector and the emitter. For example, the first dielectric layer may be located over the collector and also extend over the base such that one end of the first dielectric layer is aligned over the base.
本文中还揭示用于形成上述半导体结构的方法实施例。该方法实施例可包括形成横向双极结型晶体管(BJT),该横向双极结型晶体管包括集极、发射极,以及横向位于该集极与该发射极之间的基极。该方法实施例还可包括形成第一介电层,尤其部分覆盖该横向BJT的介电应力层,其一端位于该集极与该发射极之间的该横向BJT上方。Embodiments of methods for forming the semiconductor structures described above are also disclosed herein. The method embodiment may include forming a lateral bipolar junction transistor (BJT) including a collector, an emitter, and a base laterally between the collector and the emitter. The method embodiment may further include forming a first dielectric layer, especially a dielectric stress layer partially covering the lateral BJT, one end of which is located above the lateral BJT between the collector and the emitter.
附图说明Description of drawings
通过参照附图自下面的详细说明将更好地理解本发明,该些附图并不一定按比例绘制,且其中:The present invention will be better understood from the following detailed description with reference to the accompanying drawings, which are not necessarily drawn to scale, and in which:
图1A-图1B分别是显示所揭示的具有由介电应力层部分覆盖的横向双极结型晶体管的半导体结构的实施例的布局图及剖视图;1A-1B are layout and cross-sectional views, respectively, showing an embodiment of the disclosed semiconductor structure having a lateral bipolar junction transistor partially covered by a dielectric stress layer;
图2是显示形成具有由介电应力层部分覆盖的横向双极结型晶体管的半导体结构的方法的实施例的流程图;2 is a flowchart showing an embodiment of a method of forming a semiconductor structure having a lateral bipolar junction transistor partially covered by a dielectric stress layer;
图3.1是显示依据图2的流程图形成的部分完成的半导体结构的剖视图;Figure 3.1 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of Figure 2;
图3.2是显示依据图2的流程图形成的部分完成的半导体结构的剖视图;Figure 3.2 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of Figure 2;
图3.3A及图3.3B分别是显示依据图2的流程图形成的部分完成的半导体结构的顶视图及剖视图;3.3A and 3.3B are top and cross-sectional views, respectively, showing a partially completed semiconductor structure formed according to the flowchart of FIG. 2;
图3.4是显示依据图2的流程图形成的部分完成的半导体结构的剖视图;3.4 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of FIG. 2;
图3.5A及图3.5B分别是显示依据图2的流程图形成的部分完成的半导体结构的顶视图及剖视图;3.5A and 3.5B are top and cross-sectional views, respectively, showing a partially completed semiconductor structure formed according to the flowchart of FIG. 2;
图3.6A及图3.6B分别是显示依据图2的流程图形成的部分完成的半导体结构的顶视图及剖视图;3.6A and 3.6B are top and cross-sectional views, respectively, showing a partially completed semiconductor structure formed according to the flowchart of FIG. 2;
图3.7是显示依据图2的流程图形成的部分完成的半导体结构的剖视图;3.7 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of FIG. 2;
图3.8是显示依据图2的流程图形成的部分完成的半导体结构的剖视图;3.8 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of FIG. 2;
图3.9是显示依据图2的流程图形成的部分完成的半导体结构的剖视图;Figure 3.9 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of Figure 2;
图3.10是显示依据图2的流程图形成的部分完成的半导体结构的剖视图;Figure 3.10 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of Figure 2;
图3.11是显示依据图2的流程图形成的部分完成的半导体结构的剖视图;Figure 3.11 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of Figure 2;
图3.12是显示依据图2的流程图形成的部分完成的半导体结构的剖视图;Figure 3.12 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of Figure 2;
图3.13是显示依据图2的流程图形成的部分完成的半导体结构的剖视图;以及Figure 3.13 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of Figure 2; and
图3.14是显示依据图2的流程图形成的部分完成的半导体结构的剖视图。FIG. 3.14 is a cross-sectional view showing a partially completed semiconductor structure formed according to the flowchart of FIG. 2 .
具体实施方式Detailed ways
如上所述,与利用先进绝缘体上硅(SOI)处理技术平台(例如,全耗尽绝缘体上硅(FDSOI)处理技术平台)制造互补金属氧化物半导体(CMOS)设计相关的优点包括例如降低功率、减少面积消耗、降低成本、高性能、多个核心阈值电压(Vt)选择等。在此类SOI晶片上制造的CMOS设计用于各种应用中,包括但不限于物联网(Internet-of-Things;IOT)装置、可穿戴装置、智能手机处理器、汽车电子装置、以及射频集成电路(RFIC)(包括毫米波(mmWave)IC)。由于BJT往往具有较大的驱动且通常被认为比场效应晶体管(FET)更适合模拟功能,因此这些相同的应用可通过包括双极结型晶体管(BJT)来获益。然而,通常将此类BJT形成为垂直装置(例如,具有衬底中的集极、在该集极上方对齐的基极、以及在该基极上方对齐的发射极),其不容易集成于先进SOI处理技术平台中。As noted above, advantages associated with making complementary metal-oxide-semiconductor (CMOS) designs utilizing advanced silicon-on-insulator (SOI) process technology platforms, such as fully depleted silicon-on-insulator (FDSOI) process technology platforms, include, for example, reduced power, Reduced area consumption, reduced cost, high performance, multiple core threshold voltage (Vt) selections, and more. CMOS fabricated on such SOI wafers are designed for use in a variety of applications, including but not limited to Internet-of-Things (IOT) devices, wearable devices, smartphone processors, automotive electronics, and radio frequency integration circuits (RFICs) including millimeter wave (mmWave) ICs. These same applications can benefit from including bipolar junction transistors (BJTs) since BJTs tend to have larger drives and are generally considered better suited for analog functions than field effect transistors (FETs). However, such BJTs are typically formed as vertical devices (e.g., with a collector in the substrate, a base aligned over the collector, and an emitter aligned over the base), which are not easily integrated into advanced SOI processing technology platform.
鉴于上述,本文中揭示具有横向双极结型晶体管(BJT)的半导体结构的实施例。此半导体结构可很容易地集成于先进绝缘体上硅(SOI)技术平台中。而且,为保持或提升性能特性(例如,截止频率(fT)/最大振荡频率(fmax)以及贝塔(beta)截止频率)(否则这些特性将因该BJT的取向从垂直变为横向而受到负面影响),该半导体结构还可包括部分覆盖该横向BJT以增强电荷载流子迁移率的介电应力层(例如,在NPN型晶体管的情况下的拉伸应变层,或者在PNP型晶体管的情况下的压缩应变层),且可选地,该横向BJT可被配置为横向异质结双极型晶体管(HBT)。本文中还揭示形成该半导体结构的方法。In view of the foregoing, embodiments of semiconductor structures having lateral bipolar junction transistors (BJTs) are disclosed herein. This semiconductor structure can be easily integrated into advanced silicon-on-insulator (SOI) technology platforms. Also, in order to maintain or improve performance characteristics such as cutoff frequency (fT)/maximum oscillation frequency (fmax) and beta cutoff frequency (which would otherwise be negatively affected by changing the BJT orientation from vertical to lateral ), the semiconductor structure may also include a dielectric stress layer partially covering the lateral BJT to enhance charge carrier mobility (e.g., a tensile strain layer in the case of an NPN transistor, or a tensile strain layer in the case of a PNP transistor compressively strained layer), and optionally, the lateral BJT may be configured as a lateral heterojunction bipolar transistor (HBT). Methods of forming the semiconductor structures are also disclosed herein.
图1A-1B分别是显示所揭示的具有由介电应力层180部分覆盖的横向双极结型晶体管(BJT)150的半导体结构100的实施例的布局图及剖视图。应当注意,横向BJT 150可为标准BJT,其中,集极、发射极以及基极由相同的半导体材料(例如,硅)制成;或为异质结双极型晶体管(HBT)制成,其中,基极的至少一部分由与集极及发射极不同的半导体材料(例如,硅锗)制成。1A-1B are layout and cross-sectional views, respectively, showing an embodiment of a disclosed
具体地说,半导体结构100可为例如绝缘体上半导体结构(例如,绝缘体上硅(SOI)结构)。也就是说,半导体结构100可包括半导体衬底101。半导体衬底101可为第一半导体材料(例如,硅),其为单晶的结构。Specifically, the
可选地,半导体衬底101可经掺杂以具有处于较低导电水平的P型导电性。因此,例如,半导体衬底101可为P-硅衬底。Alternatively, the
可选地,半导体衬底101可包括埋置阱102(也称为埋置掺杂物注入区)。埋置阱102可经掺杂以具有P型导电性(例如,成为埋置Pwell)。或者,埋置阱102可经掺杂以具有N型导电性(例如,成为埋置Nwell)。Optionally, the
半导体结构100还可包括位于半导体衬底101的顶部表面上(例如,埋置阱102上方)的绝缘体层103。绝缘体层103可为例如二氧化硅层(在本文中也称为埋置氧化物(BOX)层)或任意其它合适的绝缘体材料层。The
半导体结构100还可包括位于绝缘体层103上的半导体层104。半导体层104可为单晶的结构。半导体层104可为与半导体衬底101相同的半导体材料。也就是说,半导体层104可由第一半导体材料(例如,硅)制成。或者,半导体层104可为与半导体衬底101不同的半导体材料。也就是说,半导体层104可由第二半导体材料(例如,硅锗)制成。半导体层104可为未掺杂。或者,半导体层104可为掺杂的。半导体层104的掺杂可依据横向BJT 150是NPN型还是PNP型晶体管而变化。例如,对于NPN型晶体管,半导体层150可经掺杂而具有处于较低导电性的P型导电性(例如,成为P-半导体层),而对于PNP型晶体管,半导体层104可经掺杂而具有处于较低导电水平的N型导电性(例如,成为N-半导体层)。The
半导体结构100还可包括浅沟槽隔离(shallow trench isolation;STI)区106。STI区106可基本垂直穿过半导体层104延伸至绝缘体层103,并可定义包括横向BJT 150的装置区域的边界。The
如上所述,半导体结构100还可包括横向BJT 150。本领域的技术人员将意识到,BJT通常包括三个端子:集极、发射极、以及位于该集极与该发射极之间的基极。在垂直BJT中,集极、基极及发射极垂直堆叠。在横向BJT中,基极横向位于集极与发射极之间。在任何情况下,基极将至少包括具有第一类型导电性的非本征基极区,且集极及发射极将具有不同于该第一类型导电性的第二类型导电性。因此,NPN型晶体管将至少包括P型非本征基极、N型集极、以及N型发射极;而PNP型晶体管将至少包括N型非本征基极、P型集极、以及P型发射极。在标准BJT中,基极、集极及发射极使用相同的半导体材料(例如硅)。或者,可使用不同的半导体材料。在此情况下,BJT被称为异质结双极型晶体管(HBT)。本领域的技术人员将意识到,异质结双极型晶体管(HBT)是BJT,其中,集极及发射极至少部分由一种半导体材料制成,而基极至少部分由不同的半导体材料制成。在发射极-基极结处及基极-集极结处使用不同的半导体材料形成适于操作较高频率的异质结。因此,在半导体结构100中,横向BJT150可包括三个端子:集极133、发射极132、以及横向位于集极133与发射极132之间的基极131。As mentioned above, the
基极131可位于绝缘体层103上方,并可包括例如三个不同的堆叠区。这三个不同的堆叠区可包括第一基极区131.1、位于该第一基极区上方的第二基极区131.2、以及位于该第二基极区上方的第三基极区131.3。The base 131 may be located above the
第一基极区131.1可位于半导体层104内,尤其可包括半导体层104的第一区域125,其可选地具有凹入的顶部表面。如上所述,半导体层104可为单晶的结构,并可为第一半导体材料(例如,硅)或第二半导体材料(例如,硅锗)。第一区域125可为未掺杂或掺杂的。例如,在NPN型晶体管的情况下,该第一区域可为P-区域,或者,在PNP型晶体管的情况下,该第一区域可为N-区域。The first base region 131.1 may be located within the
第二基极区131.2可为外延半导体层112。对于标准BJT,外延半导体层112可为第一半导体材料(例如,硅)。对于HBT,外延半导体层112可为第二半导体材料(例如,硅锗)。在任何情况下,此外延半导体层112可填充较窄的基极开口,该基极开口由位于第一侧间隙壁108(例如,由氮化硅或其它某种合适的介电侧间隙壁材料制成的侧间隙壁)之间的空间定义并在半导体层104的第一区域125上方对齐。换句话说,第二基极区131.2横向位于第一侧间隙壁108之间,并在第一基极区131.1上方对齐并与其接触,如图所示。可在处理期间自半导体层104选择性生长外延半导体层112,以使其基本为单晶的结构。而且,外延半导体层112可为未掺杂的(也就是,本征的)或掺杂的,如下所述。The second base region 131.2 can be the
外延半导体层112的掺杂可依据横向BJT 150是NPN型还是PNP型晶体管而变化。例如,对于NPN型晶体管,外延半导体层112可为未掺杂,或者作为替代,可经掺杂以具有处于较低导电水平的P型导电性,或者具有梯度P型分布(例如,从半导体层104附近的未掺杂或低掺杂到远离半导体层104的较高掺杂)。因此,例如,对于NPN型晶体管,第二基极区131.2可为本征基极区(例如,i-SiGe基极区),或者作为替代,P-基极区或具有从未掺杂或P-到P或P+的梯度P型分布的基极区。然而,对于PNP型晶体管,外延半导体层112可为未掺杂,或者作为替代,可经掺杂以具有处于较低导电水平的N型导电性,或者具有梯度N型分布(例如,从半导体层104附近的未掺杂或低掺杂到远离半导体层104的较高掺杂)。因此,例如,对于PNP型晶体管,第二基极区131.2可为本征基极区(例如,i-SiGe基极),或者作为替代,N-基极区或具有从未掺杂或N-至N或N+的梯度N型分布的基极区。The doping of the
应当注意,第二侧间隙壁107(例如,由二氧化硅或其它某种合适的介电侧间隙壁材料制成的侧间隙壁)可横向邻近位于第二基极区131.2的相对侧上的第一侧间隙壁108设置。该第一及第二侧间隙壁可具有基本相同的高度,尤其,该第一及第二侧间隙壁的顶部可基本共面。It should be noted that the second side spacer 107 (eg, a side spacer made of silicon dioxide or some other suitable dielectric side spacer material) may be laterally adjacent to the The
第三基极区131.3可在第二基极区131.2上方对齐,可紧邻并可宽于第二基极区131.2,以使其横向延伸于第一侧间隙壁108及第二侧间隙壁107上方。因此,基极131基本为T形。如图所示,第三基极区131.3的相对侧壁可与第二侧间隙壁107的外垂直表面基本垂直对齐。第三基极区131.3可为由第一半导体材料(例如,硅)或者作为替代其它某种合适的基极半导体材料构成的外延半导体层113。可在处理期间非选择性生长外延半导体层113,以使其为基本多晶的结构(例如,使其为多晶硅)。外延半导体层113可为掺杂的,且掺杂将依据横向BJT150是NPN型晶体管还是PNP型晶体管而变化。例如,对于NPN型晶体管,外延半导体层113可经掺杂而具有处于较高导电水平的P型导电性,尤其与衬底相比处于较高导电水平且与下方基极区相比处于较高导电水平,以使第三基极区131.3为例如P+非本征基极区。对于PNP型晶体管,外延半导体层113可经掺杂而具有处于较高导电水平的N型导电性,尤其与下方基极区相比处于较高导电水平,以使第三基极区131.3为例如N+非本征基极区。The third base region 131.3 may be aligned above the second base region 131.2, may be immediately adjacent to and may be wider than the second base region 131.2, such that it extends laterally above the
应当注意,第三侧间隙壁115(例如,由氮化硅或其它某种合适的介电侧间隙壁材料制成的侧间隙壁)可横向邻近第三基极区131.3的相对侧壁设置,并且还可覆盖下方的第二侧间隙壁107的外垂直表面。It should be noted that a third side spacer 115 (eg, a side spacer made of silicon nitride or some other suitable dielectric side spacer material) may be disposed laterally adjacent to the opposite sidewall of the third base region 131.3, And it can also cover the outer vertical surface of the lower
如上所述,横向BJT 150的三个端子还可包括位于基极131的相对侧上的集极133及发射极132。As noted above, the three terminals of
在一个示例结构中,集极133与发射极132可基本对称。集极133可包括第一集极区133.1以及位于第一集极区133.1上的第二集极区133.2。发射极132可包括第一发射极区132.1以及位于第一发射极区132.1上的第二发射极区132.2。第一集极区133.1及第一发射极区132.1可包括位于半导体层104中的掺杂区121,其可选地具有凹入的顶部表面(未显示)并位于第一基极区131.1的相对侧上(也就是,第一基极区131.1横向位于第一集极区133.1与第一发射极区132.1之间)。第二集极区133.2及第二发射极区132.2可为由第一半导体材料(例如硅)构成的外延半导体层122,且可为掺杂的。外延半导体层122的掺杂可依据横向BJT 150是NPN型晶体管还是PNP型晶体管而变化。例如,对于NPN型晶体管,外延半导体层122可经掺杂而具有处于较高导电水平的N型导电性。而且,在处理期间执行的退火可导致下方的半导体层104的部分也经掺杂而具有处于较高导电水平的N型导电性(也就是,参见掺杂区121)。因此,例如,对于NPN型晶体管,第一及第二集极区132.1-32.2以及第一及第二发射极区133.1-133.2可为N+集极及发射极区。对于PNP型晶体管,外延半导体层122可经掺杂而具有处于较高导电水平的P型导电性。而且,在处理期间执行的退火可导致下方的半导体层104的部分也经掺杂而具有处于较高导电水平的P型导电性(也就是,参见掺杂区121)。因此,例如,对于PNP型晶体管,第一及第二集极区132.1-132.2以及第一及第二发射极区133.1-133.2可为P+区。In one example structure, the
应当注意,提供上述集极133及发射极132的配置用以说明目的。或者,这些区132-133可为不对称的及/或具有其它某种合适的配置。在任何情况下,基极131横向位于集极133与发射极132之间。It should be noted that the configuration of the
可选地,横向BJT 150还可包括位于基极131、集极133及发射极132的最上表面上的金属硅化物层199。金属硅化物层199可为例如硅化钴(CoSi)、硅化镍(NiSi)、硅化钨(WSi)、硅化钛(TiSi)或任意其它合适的金属硅化物材料层。Optionally, the
半导体结构100还可包括仅部分覆盖横向BJT 150的第一介电层180。第一介电层180可为介电应力层。在一些实施例中,第一介电层180可为例如氮化硅层。第一介电层180可经形成而具有拉伸应变或压缩应变。具体地说,第一介电层180(也就是,介电应力层)可具有拉伸应变或压缩应变,取决于横向BJT 150是NPN型晶体管还是PNP型晶体管。例如,对于NPN型晶体管,第一介电层180可为拉伸应变层,以增强电子迁移率,而对于PNP型晶体管,第一介电层180可为压缩应变层,以增强空穴迁移率。此类介电应力层向下方的横向BJT的组件施加对应的应变,以通过增强电荷载流子迁移率来提升性能。The
例如,第一介电层180可仅覆盖横向BJT 150的一侧,且第一介电层180的一端189可在集极133与发射极132之间某处的横向BJT150上方对齐。在一些实施例中,第一介电层180可完全覆盖集极133,并可部分覆盖基极131,以使第一介电层180的一端189在基极131上方对齐,且应力被施加于集极-基极结,如图所示。或者,第一介电层180可完全覆盖集极区133,并且还可完全延伸于基极131上方,以使第一介电层180的一端189在基极131与发射极132之间的第三侧间隙壁115上方对齐。通过设置于集极133上方并至少部分位于基极131上方的第一介电层,集极133及基极131将应变,而发射极132将保持松弛。For example, first
例如,在NPN型晶体管的情况下(其中,第一介电层180为拉伸应变),集极133将为纵向拉伸且垂直压缩的集极,基极131将类似为纵向拉伸且垂直压缩的基极,而发射极132将为松弛的发射极。而在PNP型晶体管的情况下(其中,第一介电层180为压缩应变),集极133将为纵向压缩且垂直拉伸的集极,基极131将类似为纵向压缩且垂直拉伸的基极,而发射极132将为松弛的发射极。在集极-基极结上方而非发射极-基极结上方具有此类不对称介电应力层的实施例中,已呈现出最大的性能优势,尤其是增强的电荷载流子迁移率,从而有较快的开关速度。For example, in the case of an NPN type transistor (where the
不过,应当理解,该些附图并非意图限制,作为替代,第一介电层180可覆盖该晶体管的一些不同部分,以微调施加于横向BJT 150的不同组件的应变。例如,第一介电层180可仅完全覆盖集极133,而不延伸至基极131上,以使第一介电层180的一端189在基极131与集极133之间的第三侧间隙壁115上方对齐。在此情况下,仅集极会应变,而基极及发射极将是松弛的。作为替代,第一介电层180可仅部分覆盖集极133且仅部分覆盖基极131,以使第一介电层180的一端在集极133上方对齐且第一介电层180的另一端189在基极131上方对齐,或者,第一介电层180可仅部分覆盖集极133并完全位于基极131上方,以使第一介电层180的一端在集极133上方对齐且第一介电层180的另一端189在发射极132与基极131之间的第三侧间隙壁115上方对齐。在这些情况下,集极及基极将应变较小的程度,而发射极仍为松弛的。作为替代,第一介电层180可位于发射极132上,且可选地,延伸至基极131上及/或上方,而不进一步延伸至集极133上(例如,以使发射极及(可选地)基极应变,而集极为松弛的),依此类推。However, it should be understood that these figures are not intended to be limiting, and instead, the
半导体结构100还可包括一个或多个第二介电层185,其位于该第一介电层上,且进一步横向延伸超出该第一介电层的该端189并延伸至该横向BJT的松弛部分上(例如,在集极133上方)以及STI 106上。该第二介电层可包括例如一个或多个共形介电层(例如,共形氮化硅蚀刻停止层)以及位于该共形介电层上的覆被介电层(例如,覆被二氧化硅层或由其它某种合适介电材料构成的覆被层)。半导体结构100还可包括中间工艺(middle of theline;MOL)接触件,其包括穿过该介电层延伸至基极、集极以及发射极的接触件。The
通过使用第一介电层180,尤其使用用于增强电荷载流子迁移率的介电应力层(例如,在NPN型晶体管的情况下的拉伸应变层或在PNP型晶体管的情况下的压缩应变层)部分覆盖横向BJT,并通过可选地将该横向BJT配置为横向HBT(例如,基极包括SiGe且发射极及集极包括Si),可提升性能特征(例如,截止频率(fT)/最大振荡频率(fmax)以及贝塔(beta)截止频率)。By using the
请参照图2的流程图,本文中还揭示形成绝缘体上半导体结构(例如,绝缘体上硅(SOI)结构)的方法的实施例,例如上面详细说明并在图1A-1B中显示的结构100,该结构包括横向双极结型晶体管(BJT)(例如,标准BJT或异质结双极型晶体管(HBT)),其由第一介电层尤其介电应力层部分覆盖,以提升性能。Referring to the flowchart of FIG. 2, an embodiment of a method of forming a semiconductor-on-insulator structure (eg, a silicon-on-insulator (SOI) structure), such as the
该方法实施例可以初始绝缘体上半导体结构开始(参见工艺202及图3.1)。此绝缘体上半导体结构可包括半导体衬底101,位于半导体衬底101的顶部表面上的绝缘体层103,以及位于绝缘体层103上的半导体层104。半导体衬底101及半导体层104可例如由相同的半导体材料,尤其是第一半导体材料(例如,硅或其它某种合适的半导体衬底材料)制成。或者,半导体层104可由不同于第一半导体材料的第二半导体材料(例如,硅锗或替代硅的其它某种合适的半导体材料)制成。在任何情况下,半导体衬底101及半导体层104都可为单晶的结构。半导体衬底101可经掺杂而具有处于较低导电水平的P型导电性。因此,例如,半导体衬底101可为P-硅衬底。绝缘体层103可为二氧化硅层(在本文中也称为埋置氧化物(BOX)层)或其它某种合适的绝缘体材料层。Embodiments of the method may begin with an initial semiconductor-on-insulator structure (see process 202 and FIG. 3.1 ). The semiconductor-on-insulator structure may include a
可选地,可执行掺杂物注入工艺,以在该半导体衬底中,尤其是在邻近绝缘体层103的该半导体衬底的顶部表面形成阱102(也称为掺杂物注入区)(参见工艺204及图3.2)。应当注意,阱102的导电类型可依据正在形成NPN型晶体管还是PNP型晶体管而变化。例如,对于NPN型晶体管,可将P型掺杂物注入邻近绝缘体层103的该P-衬底的顶部表面,以使所形成的阱102为Pwell并具有与相邻的该P-衬底的下部相比较高的P型导电水平。对于PNP型晶体管,可在邻近绝缘体层103的该P-衬底的顶部表面注入N型掺杂物,从而所形成的阱102为Nwell。Optionally, a dopant implantation process may be performed to form a well 102 (also referred to as a dopant implantation region) in the semiconductor substrate, especially at the top surface of the semiconductor substrate adjacent to the insulator layer 103 (see
可选地,若半导体层104由第一半导体材料(例如,硅)制成且半导体层104最佳由第二半导体材料(例如,硅锗)制成,则可执行转换工艺(参见工艺206及图3.2)。例如,可在工艺206执行锗浓缩工艺,以将位于绝缘体层103上的硅层转换为位于绝缘体层103上的硅锗层。锗浓缩工艺为本领域熟知,因此,自本说明书省略此类工艺的细节,以允许读者关注所揭示的实施例的显著态样。由此形成的硅锗层仍可为单晶的结构。Alternatively, if the
接着,可利用半导体层104形成横向双极结型晶体管(BJT)(参见工艺208)。应当注意,在工艺208形成的该横向BJT可为标准BJT,其中,集极、发射极及基极包括相同的半导体材料(例如,硅),或可为HBT,其中,基极的至少一部分包括与集极及发射极不同的半导体材料。此外,还应注意,在下面关于工艺步骤的讨论中,引用第一类型导电性及第二类型导电性,且该第一类型导电性及该第二类型导电性分别为P型导电性及N型导电性还是分别为N型导电性及P型导电性取决于在工艺208形成NPN型晶体管还是PNP型晶体管。具体地说,对于NPN型晶体管,该第一类型导电性是指P型导电性且该第二类型导电性是指N型导电性,而对于PNP型晶体管,该第一类型导电性是指N型导电性且该第二类型导电性是指P型导电性。Next, a lateral bipolar junction transistor (BJT) may be formed using the semiconductor layer 104 (see process 208 ). It should be noted that the lateral BJT formed in
该横向BJT的形成可开始于可选的掺杂物注入工艺,以用第一类型导电掺杂物掺杂半导体层104,从而使半导体层104具有处于较低导电水平的第一类型导电性(参见工艺210及图3.2)。例如,对于NPN型晶体管,可注入P型掺杂物,以使该半导体层具有处于较低导电水平的P型导电性(例如,使该半导体层成为P-半导体层),而对于PNP型晶体管,可注入N型掺杂物,以使该半导体层具有处于较低导电水平的N型导电性(例如,使该半导体层成为N-半导体层)。Formation of the lateral BJT may begin with an optional dopant implantation process to dope the
可形成浅沟槽隔离(STI)区106(参见工艺212及图3.3A及3.3B)。STI区106可经形成以使它们定义装置区域的边界,并使它们基本垂直穿过半导体层104延伸至绝缘体层103。具体地说,在工艺212,可形成STI区的沟槽(例如,利用传统STI处理技术进行光刻图案化及蚀刻),以使它们基本垂直穿过该半导体层延伸至该绝缘体层,并使它们在该半导体层内定义装置区域。可进一步用一个或多个隔离材料层(例如,二氧化硅、氮化硅等)填充该沟槽,并可执行化学机械抛光(chemical mechanical polishing;CMP)工艺,以自该半导体层上方移除任意该隔离材料。Shallow trench isolation (STI)
接着,可在半导体层104及相邻STI区106上方形成隔离层109(参见工艺214及图3.4)。此隔离层109可例如为利用传统氧化工艺在工艺214形成的二氧化硅层。Next,
接着,可在隔离层109中形成基极开口110(参见工艺216以及图3.5A及3.5B)。具体地说,在工艺214,可执行传统光刻处理及蚀刻技术,以在隔离层109中形成基极开口110。例如,基极开口110可经形成以垂直穿过隔离层109延伸至半导体层104,从而完全横穿并暴露该半导体层的中心部分,使得该基极开口110具有第一宽度(Wbo),且使得在该基极开口110的任一侧上的该半导体层的部分保持被覆盖。Next, a
接着,可在基极开口110内形成第一侧间隙壁108。例如,可共形沉积介电间隙壁材料,以覆盖隔离层109的顶部表面,并加衬基极开口110(参见图3.6A及3.6B)。该介电间隙壁材料可为例如氮化硅或不同于隔离层109的隔离材料的其它某种合适的介电间隙壁材料,以使其可相对于隔离材料107被选择性蚀刻。接着,可执行选择性非等向性侧间隙壁蚀刻工艺,以自水平表面移除该介电间隙壁材料,使其在该基极开口内的垂直表面上保持完好(也就是,作为第一侧间隙壁108)。通过在基极开口110内形成第一侧间隙壁108,基极开口110的宽度从第一宽度(Wbo)变窄至窄于该第一宽度的第二宽度(Wfbo),并暴露出该半导体层的第一区域。应当注意,该第一宽度可等于或接近利用传统光刻图案化可实现的最小宽度,且该第二宽度可小于该最小宽度。Next,
可选地,可凹入暴露于该基极开口的底部的半导体层104的第一区域125(参见工艺218及图3.7)。也就是说,可执行选择性非等向性蚀刻工艺,以凹入(也就是,回蚀刻)在基极开口110的底部暴露的半导体层104的第一区域125的顶部表面。此选择性非等向性蚀刻工艺应当经执行而不完全蚀刻穿过半导体层104,从而半导体层104的第一区域125的至少下方部分保持完好,并可随后被用作晶种层。在基极开口110下方对齐的半导体层104的第一区域125(凹入(如图所示)或不凹入)可对应于正在形成的横向BJT(例如,标准BJT或HBT)的基极131的第一基极区131.1。Optionally, the
接着,可在第一基极区131.1上的基极开口110中形成第二基极区131.2(参见工艺220及图3.8)。具体地说,可在较窄的基极开口110(由第一侧间隙壁108之间的空间定义)内的半导体层104的暴露的第一区域125的顶部表面上生长外延半导体层112。在工艺220,可自半导体层104选择性生长外延半导体层112,以使其基本为单晶的结构。对于标准BJT,此半导体层104及外延半导体层112可为第一半导体材料(例如,硅)。对于HBT,半导体层104可为第一或第二半导体材料(例如,硅或硅锗),但外延半导体层112可具体为第二半导体材料(例如,硅锗)。在任一情况下,可在工艺220生长外延半导体层112,而没有任何原位掺杂(也就是,使其保持未掺杂/本征)。或者,在工艺220可原位掺杂此外延半导体层112,以使其具有处于较低导电水平的第一类型导电性,或使其具有梯度掺杂物分布(例如,从邻近该第一基极区的未掺杂或低掺杂到远离该第一基极区的较高掺杂)。Next, a second base region 131.2 may be formed in the
因此,在工艺220之后,对于NPN型标准BJT,第二基极区131.2可为单晶本征硅基极区(i-Si基极)、P-单晶硅基极区,或者具有从邻近该第一基极区的未掺杂或P-到远离该第一基极区的P或P+的梯度掺杂物分布的单晶硅基极区。对于NPN型HBT,第二基极区131.2可为单晶本征硅锗基极区(i-SiGe基极)、单晶P-硅锗基极区,或者具有从邻近该第一基极区的未掺杂或P-到远离该第一基极区的P或P+的梯度掺杂物分布的单晶硅锗基极区。对于PNP型标准BJT,第二基极区131.2可为单晶本征硅基极区(i-Si基极)、N-单晶硅基极区,或者具有从邻近该第一基极区的未掺杂或N-到远离该第一基极区的N或N+的梯度掺杂物分布的单晶硅基极区。对于PNP型HBT,第二基极区131.2可为单晶本征硅锗基极区(i-SiGe基极)、单晶N-硅锗基极区,或者具有从邻近该第一基极区的未掺杂或N-到远离该第一基极区的N或N+的梯度掺杂物分布的单晶硅锗基极区。Therefore, after
可在第二基极区131.1上及隔离层109上方生长由该第一半导体材料(例如,硅)或其它某种合适的基极半导体材料构成的另一外延半导体层113(参见工艺222及图3.9)。在工艺222,可自该第二基极区及该隔离层非选择性生长外延半导体层113,以使其基本为多晶的结构。在工艺222,外延半导体层113可经原位掺杂而具有处于较高导电水平的第一类型导电性。因此,例如,对于NPN型标准BJT或HBT,此外延半导体层113可为P+多晶半导体层(例如,P+多晶硅层),而对于PNP型标准BJT或HBT,此外延半导体层113可为N+多晶半导体层(例如,N+多晶硅层)。Another
可在外延半导体层113上形成薄覆盖层(cap layer)(例如,薄氮化硅覆盖层114)(参见图3.9)。A thin cap layer (eg, a thin silicon nitride cap layer 114 ) may be formed on the epitaxial semiconductor layer 113 (see FIG. 3.9 ).
随后,可形成基极堆叠(参见工艺224及图3.10)。具体地说,可执行光刻图案化及蚀刻工艺,以从在第二基极区131.2上方对齐的外延半导体层113的部分定义第三基极区131.3,并且进一步(从隔离层109)定义横向邻近第一侧间隙壁108设置的第二侧间隙壁107。由于在工艺224执行的该光刻图案化及蚀刻工艺,所形成的第三基极区131.3可在第二基极区131.2上方对齐,紧邻并宽于该第二基极区131.2,从而横向延伸于第一侧间隙壁108以及所形成的第二侧间隙壁107上方。因此,基极131基本为T形,且第三基极区131.3的相对侧壁与第二侧间隙壁107的外垂直表面基本垂直对齐。接着,第三侧间隙壁115可形成于该基极堆叠上,尤其邻近第三基极区131.3的相对侧壁,并且还邻近下方的第二侧间隙壁107的外垂直表面(参见图3.10)。例如,可共形沉积另一种介电间隙壁材料,以覆盖该基极堆叠。用以形成该第三侧间隙壁的介电间隙壁材料可为例如氮化硅或其它某种合适的介电间隙壁材料。接着,可执行选择性非等向性侧间隙壁蚀刻工艺,以从位于该基极堆叠的相对侧上的半导体层104的水平表面(尤其分别从第二及第三区域117a-117b)移除该介电间隙壁材料,并使该介电间隙壁材料在垂直表面上保持完好(也就是,作为第三侧间隙壁115)。Subsequently, a base stack may be formed (see
可选地,在形成第三侧间隙壁115期间暴露的半导体层104的第二及第三区域117a-117b可为凹入的(未显示)。也就是说,可执行选择性非等向性蚀刻工艺,以凹入(也就是,回蚀刻)位于半导体层104的第二及第三区域117a-117b中的半导体层104的顶部表面。此选择性非等向性蚀刻工艺应当经执行而不完全蚀刻穿过半导体层104,从而半导体层104的部分保持完好并可后续被用作晶种层。Optionally, the second and
接着,可在该基极堆叠的相对侧上形成集极133及发射极132(参见工艺226及图3.11)。例如,可自半导体层104的第二及第三区域117a-117b的暴露半导体表面选择性生长由第一半导体材料(例如,硅)或其它某种合适的集极/发射极半导体材料构成的额外外延半导体层122,以使它们基本为单晶的结构。在工艺226,额外外延半导体层122可经原位掺杂而具有处于较高导电水平的第二类型导电性。因此,例如,对于NPN型晶体管,额外外延半导体层122可为N+单晶半导体层(例如,N+硅层),而对于PNP型晶体管,额外外延半导体层122可为P+单晶半导体层(例如,P+硅层)。随后的退火工艺可使来自额外外延半导体层122的掺杂物扩散至该半导体层的第二及第三区域117a-117b中,以形成具有第二类型导电性的掺杂区121。在此情况下,半导体层104的第二及第三区域117a-117b的掺杂区121分别形成发射极132及集极133的下方发射极及集极区132.1、133.1。此外,在半导体层104的第二及第三区域117a-117b上生长的额外外延半导体层122分别形成发射极132及集极133的上方发射极及集极区132.2、133.2。应当注意,工艺226仅为可用以在该基极堆叠的相对侧上形成发射极132及集极133的一个示例工艺流程。作为替代,可采用任意其它合适的工艺流程来形成对称或不对称的发射极/集极区。Next, a
可选地,该方法实施例还可包括自基极131的顶部选择性移除覆盖层114,并在基极131、集极133、以及发射极132的最上表面上形成金属硅化物层199(参见工艺252及图3.12)。金属硅化物层199可为例如硅化钴(CoSi)、硅化镍(NiSi)、硅化钨(WSi)、硅化钛(TiSi)或任意其它合适的金属硅化物材料层。用于形成金属硅化物层的技术为本领域熟知,因此,自本说明书省略,以允许读者关注所揭示的实施例的显著态样。Optionally, the method embodiment may also include selectively removing the
该方法实施例还可包括形成共形的第一介电层180,尤其介电应力层,以使其仅部分覆盖横向BJT 150(参见工艺254及图3.13-3.14)。第一介电层180(也就是,介电应力层)可例如为氮化硅应力层,其经沉积并根据需要进一步加工而具有拉伸应变或压缩应变,取决于横向BJT150是NPN型晶体管还是PNP型晶体管。例如,对于NPN型晶体管,可在工艺254沉积并根据需要进一步加工第一介电层180,以使其为拉伸应变层,而对于PNP型晶体管,可在工艺254沉积并(可选地)根据需要进一步加工第一介电层180,以使其为压缩应变层。用于形成拉伸应变介电层及压缩应变介电层的各种技术为本领域熟知,并可在所揭示的方法中使用。不过,已自本说明书省略这些技术的细节,以允许读者关注所揭示的实施例的显著态样。This method embodiment may also include forming a conformal first
在任何情况下,随后,可光刻图案化及蚀刻第一介电层180,以使其仅部分覆盖横向BJT 150,并使其具有在集极与发射极之间某处的晶体管上方对齐的一端。例如,可光刻图案化及蚀刻第一介电层180,以使其仅覆盖横向BJT 150的一侧,并使一端189在集极133与发射极132之间某处的横向BJT 150上方对齐。在一些实施例中,可图案化及蚀刻第一介电层180,以使其完全覆盖集极133,使其部分覆盖基极131,并使其具有在基极131上方对齐的一端189,如图所示。作为替代,可光刻图案化及蚀刻第一介电层180,以使其完全覆盖集极133,使其完全延伸于基极131上方,并使其具有在基极131与发射极132之间的第三侧间隙壁115上方对齐的一端189。通过位于集极133上方且至少部分位于基极131上方的第一介电层,集极133及基极131(以及集极-基极结)将应变,而发射极132将保持松弛。In any case, the
例如,在NPN型晶体管的情况下(其中,第一介电层180为拉伸应变),集极133将为纵向拉伸且垂直压缩的集极,基极131将类似为纵向拉伸且垂直压缩的基极,而发射极132将为松弛的发射极。而在PNP型晶体管的情况下(其中,第一介电层180为压缩应变),集极133将为纵向压缩且垂直拉伸的集极,基极131将类似为纵向压缩且垂直拉伸的基极,而发射极132将为松弛的发射极。在集极-基极结上方而非发射极-基极结上方具有此类不对称介电应力层的实施例中,已呈现最大的性能优势,尤其有增强的电荷载流子迁移率,从而有较快的开关速度。For example, in the case of an NPN type transistor (where the
应当理解,该些附图并非意图限制,作为替代,可图案化及蚀刻该第一介电层,以使其覆盖该横向BJT的一些不同部分,从而微调施加于横向BJT 150的不同组件的应变。例如,可图案化及蚀刻第一介电层180,以使其仅完全覆盖集极133,以使其不延伸至基极131上,并使其具有在基极131与集极133之间的第三侧间隙壁115上方对齐的一端189。在此情况下,仅集极会应变,而基极及发射极将是松弛的。作为替代,可图案化及蚀刻第一介电层180,以使其仅部分覆盖集极133,并使其部分或完全覆盖基极131。在这些情况下,集极及基极将应变较小的程度,而发射极仍为松弛的。作为替代,可图案化及蚀刻第一介电层180,以使其位于发射极132上,且可选地,使其延伸至基极131上及/或上方,而不进一步延伸至集极133上(例如,以使发射极及(可选地)基极应变,而集极为松弛的),依此类推。It should be understood that these figures are not intended to be limiting, and instead, the first dielectric layer can be patterned and etched so that it covers different portions of the lateral BJT, thereby fine-tuning the strain applied to different components of the
而且,应当理解,上述用于形成仅部分覆盖该晶体管的第一介电层180的技术是出于说明目的而提供的,而非意图限制。例如,作为替代,可在该部分完成的结构上方形成掩膜层。该掩膜层可经图案化而具有暴露该横向BJT的一部分的开口,并使该横向BJT的另一部分保持被覆盖。该第一介电层(尤其该介电应力层)可形成于该沟槽内,并可选择性移除该掩膜层。Also, it should be understood that the techniques described above for forming the
该方法实施例还可包括形成一个或多个第二介电层185,其位于第一介电层180上,并进一步横向延伸超出第一介电层180的端189至未被第一介电层180覆盖的横向BJT150的部分上方(参见工艺256)。尽管未显示,但这些介电层可包括例如一个或多个共形介电层(例如,另一共形氮化硅蚀刻停止层)以及位于该共形介电层上的覆被介电层(例如,覆被二氧化硅层或由其它某种合适介电材料构成的覆被层)。该方法实施例还可包括形成中间工艺(MOL)接触件,其包括穿过该介电层延伸至基极、集极以及发射极的接触件(参见工艺258)。The method embodiment may also include forming one or more second
应当理解,在上述结构及方法中,半导体材料是指导电属性可通过掺杂杂质而改变的材料。示例半导体材料包括例如硅基半导体材料(例如,硅、硅锗、碳化锗硅、碳化硅等)以及III-V族化合物半导体(也就是,通过将第III族元素例如铝(Al)、镓(Ga)、铟(In)与第V族元素例如氮(N)、磷(P)、砷(As)或锑(Sb)组合来获得)(例如,GaN、InP、GaAs或GaP)。纯半导体材料,尤其不掺杂用于增加导电性的杂质的半导体材料(也就是,未掺杂半导体材料)在本领域中被称为本征半导体。掺杂有用于增加导电性的杂质的半导体材料(也就是,掺杂半导体材料)在本领域中被称为非本征半导体,并且会比由相同的基材制成的本征半导体更加导电。也就是说,非本征硅将比本征硅更导电;非本征硅锗将比本征硅锗更导电;依此类推。而且,应当理解,可使用不同的杂质(也就是,不同的掺杂物)来获得不同的导电类型(例如,P型导电性及N型导电性),且掺杂物可依据所使用的不同半导体材料而变化。例如,通常用第III族掺杂物例如硼(B)或铟(In)掺杂硅基半导体材料(例如,硅、硅锗等),以获得P型导电性,通常用第V族掺杂物例如砷(As)、磷(P)或锑(Sb)掺杂硅基半导体材料,以获得N型导电性。通常用镁(Mg)掺杂氮化镓(GaN)基半导体材料,以获得P型导电性,以及用硅(Si)或氧掺杂,以获得N型导电性。本领域的技术人员还将意识到,不同的导电水平将依赖于给定半导体区中的掺杂物的相对浓度水平。It should be understood that in the above structures and methods, a semiconductor material refers to a material whose conductivity property can be changed by doping with impurities. Exemplary semiconductor materials include, for example, silicon-based semiconductor materials (e.g., silicon, silicon germanium, silicon germanium carbide, silicon carbide, etc.) Ga), indium (In) combined with group V elements such as nitrogen (N), phosphorus (P), arsenic (As) or antimony (Sb)) (for example, GaN, InP, GaAs or GaP). Pure semiconductor materials, especially semiconductor materials that are not doped with impurities that increase conductivity (ie, undoped semiconductor materials) are known in the art as intrinsic semiconductors. A semiconductor material doped with impurities to increase conductivity (ie, doped semiconductor material) is known in the art as an extrinsic semiconductor, and will be more conductive than an intrinsic semiconductor made from the same substrate. That is, extrinsic silicon will be more conductive than intrinsic silicon; extrinsic silicon germanium will be more conductive than intrinsic silicon germanium; and so on. Also, it should be understood that different impurities (ie, different dopants) can be used to obtain different conductivity types (eg, P-type conductivity versus N-type conductivity), and that the dopants can vary depending on the type used. depending on the semiconductor material. For example, silicon-based semiconductor materials (e.g., silicon, silicon germanium, etc.) are typically doped with Group III dopants such as boron (B) or indium (In) to obtain P-type conductivity, typically doped with Group V Doping silicon-based semiconductor materials with substances such as arsenic (As), phosphorus (P) or antimony (Sb) to obtain N-type conductivity. Gallium nitride (GaN)-based semiconductor materials are typically doped with magnesium (Mg) to obtain P-type conductivity, and silicon (Si) or oxygen to obtain N-type conductivity. Those skilled in the art will also appreciate that different conductivity levels will depend on the relative concentration levels of dopants in a given semiconductor region.
如上所述的方法可用于集成电路芯片的制造中。制造者可以原始晶圆形式(也就是,作为具有多个未封装芯片的单个晶圆)、作为裸管芯,或者以封装形式分配所得的集成电路芯片。在后一种情况中,该芯片设于单芯片封装件中(例如塑料承载件,其具有附着至母板或其它更高层次承载件的引脚)或者多芯片封装件中(例如陶瓷承载件,其具有单面或双面互连或嵌埋互连)。在任何情况下,接着将该芯片与其它芯片、分立电路元件和/或其它信号处理装置集成,作为(a)中间产品例如母板的部分,或者作为(b)最终产品的部分。该最终产品可为包括集成电路芯片的任意产品,涉及范围从玩具及其它低端应用直至具有显示器、键盘或其它输入装置以及中央处理器的先进计算机产品。The method as described above can be used in the manufacture of integrated circuit chips. A fabricator may distribute the resulting integrated circuit chips in raw wafer form (ie, as a single wafer with multiple unpackaged chips), as bare die, or in packaged form. In the latter case, the chip is provided in a single-chip package (such as a plastic carrier with pins attached to a motherboard or other higher-level carrier) or in a multi-chip package (such as a ceramic carrier , which have single- or double-sided interconnects or embedded interconnects). In any event, the chip is then integrated with other chips, discrete circuit elements, and/or other signal processing devices, either as part of (a) an intermediate product such as a motherboard, or (b) a final product. The final product can be anything that includes an integrated circuit chip, ranging from toys and other low-end applications to advanced computer products with displays, keyboards or other input devices, and central processing units.
应当理解,本文中所使用的术语是出于说明所揭示的结构及方法的目的,并非意图限制。例如,除非上下文中另外明确指出,否则这里所使用的单数形式“一个”以及“该”也意图包括复数形式。另外,本文中所使用的术语“包括”表明所述特征、整体、步骤、操作、元件和/或组件的存在,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、组件,和/或其群组。而且,本文中所使用的术语例如“右”、“左”、“垂直”、“水平”、“顶部”、“底部”、“上方”、“下方”、“平行”、“垂直”等意图说明当它们以附图中取向并显示时的相对位置(除非另外指出),且术语如“碰触”、“直接接触”、“毗邻”、“直接相邻”、“紧邻”等意图表示至少一个元件物理接触另一个元件(没有其它元件隔开所述元件)。本文中所使用的术语“横向”说明当元件以附图中取向并显示时该些元件的相对位置,尤其表示一个元件位于另一个元件的侧边而不是另一个元件的上方或下方。例如,一个元件横向邻近另一个元件将在该另一个元件旁边,一个元件横向紧邻另一个元件将直接在该另一个元件旁边,以及一个元件横向围绕另一个元件将邻近并环绕该另一个元件的外侧壁。下面的权利要求中的所有方式或步骤加功能元件的相应结构、材料、动作及等同意图包括执行该功能的任意结构、材料或动作结合具体请求保护的其它请求保护的元件。It is to be understood that the terminology used herein is for the purpose of describing the disclosed structures and methods and is not intended to be limiting. For example, as used herein, the singular forms "a," "an" and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. In addition, the term "comprising" used herein indicates the existence of said features, integers, steps, operations, elements and/or components, but does not exclude the existence or addition of one or more other features, integers, steps, operations, elements , components, and/or groups thereof. Moreover, terms such as "right", "left", "vertical", "horizontal", "top", "bottom", "above", "below", "parallel", "perpendicular", etc. as used herein are intended to relative positions when they are oriented and shown in the drawings (unless otherwise indicated), and terms such as "touching", "direct contact", "adjacent", "immediately adjacent", "immediately adjacent" and the like are intended to mean at least An element is in physical contact with another element (with no other element separating the elements). As used herein, the term "transverse" describes the relative position of elements when they are oriented and shown in the drawings, and particularly means that one element is located to the side of another element rather than above or below the other element. For example, an element laterally adjacent to another element will be next to the other element, an element laterally adjacent to another element will be directly next to the other element, and an element laterally around another element will be adjacent to and surround the other element. outer wall. The corresponding structures, materials, acts and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements specifically claimed.
对本发明的各种实施例所作的说明是出于示例说明的目的,而非意图详尽无遗或限于所揭示的实施例。许多修改及变更将对于本领域的普通技术人员显而易见,而不背离所述实施例的范围及精神。本文中所使用的术语经选择以最佳解释所述实施例的原理、实际应用或在市场已知技术上的技术改进,或者使本领域的普通技术人员能够理解本文中所揭示的实施例。The description of various embodiments of the present invention has been presented for purposes of illustration and is not intended to be exhaustive or limited to the disclosed embodiments. Many modifications and changes will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terms used herein were chosen to best explain the principles of the described embodiments, the practical application or technical improvements over technologies known in the marketplace, or to enable a person of ordinary skill in the art to understand the embodiments disclosed herein.
Claims (20)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/555,561 US11837653B2 (en) | 2021-08-30 | 2021-12-20 | Lateral bipolar junction transistor including a stress layer and method |
US17/555,561 | 2021-12-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116314305A true CN116314305A (en) | 2023-06-23 |
Family
ID=86829288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211447416.9A Pending CN116314305A (en) | 2021-12-20 | 2022-11-18 | Lateral bipolar junction transistor including stress layer and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116314305A (en) |
-
2022
- 2022-11-18 CN CN202211447416.9A patent/CN116314305A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9324846B1 (en) | Field plate in heterojunction bipolar transistor with improved break-down voltage | |
US8847348B2 (en) | Complementary bipolar inverter | |
US9202900B2 (en) | Method to bridge extrinsic and intrinsic base by selective epitaxy in BiCMOS technology | |
US10777668B2 (en) | Bipolar junction transistors with a self-aligned emitter and base | |
JP2001223224A (en) | Method for forming silicon-germanium base in heterojunction bipolar transistor | |
TWI752599B (en) | Structure and manufacture method of heterojunction bipolar transistor with marker layer | |
CN112786694A (en) | Gated lateral bipolar junction/heterojunction transistor | |
US11888031B2 (en) | Fin-based lateral bipolar junction transistor and method | |
US12142673B2 (en) | Transistor with wrap-around extrinsic base | |
US11990535B2 (en) | Lateral heterojunction bipolar transistor with emitter and/or collector regrown from substrate and method | |
US11967637B2 (en) | Fin-based lateral bipolar junction transistor with reduced base resistance and method | |
US6908824B2 (en) | Self-aligned lateral heterojunction bipolar transistor | |
US11837653B2 (en) | Lateral bipolar junction transistor including a stress layer and method | |
CN116314305A (en) | Lateral bipolar junction transistor including stress layer and method | |
US20210091212A1 (en) | Asymmetrical lateral heterojunction bipolar transistors | |
US11777019B2 (en) | Lateral heterojunction bipolar transistor with improved breakdown voltage and method | |
US20230032080A1 (en) | Asymmetric lateral bipolar transistor and method | |
US11855197B2 (en) | Vertical bipolar transistors | |
US11575029B2 (en) | Lateral bipolar junction transistor and method | |
US11935923B2 (en) | Lateral bipolar transistor with gated collector | |
US11646348B2 (en) | Double mesa heterojunction bipolar transistor | |
US20230275083A1 (en) | Forksheet semiconductor structure including at least one bipolar junction transistor and method | |
US11721722B2 (en) | Bipolar junction transistors including a stress liner | |
US11848374B2 (en) | Bipolar junction transistors including a portion of a base layer inside a cavity in a dielectric layer | |
US20240097029A1 (en) | Field effect transistor with adjustable effective gate length |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |