CN116310844B - 一种农业作物生长监测系统 - Google Patents

一种农业作物生长监测系统 Download PDF

Info

Publication number
CN116310844B
CN116310844B CN202310562731.4A CN202310562731A CN116310844B CN 116310844 B CN116310844 B CN 116310844B CN 202310562731 A CN202310562731 A CN 202310562731A CN 116310844 B CN116310844 B CN 116310844B
Authority
CN
China
Prior art keywords
crop
layer
image
profile
contour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310562731.4A
Other languages
English (en)
Other versions
CN116310844A (zh
Inventor
陈宇锋
蒋应良
朱芳高
张友挺
张佳惠
冯良勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Cpt Information Technology Co ltd
Original Assignee
Sichuan Cpt Information Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Cpt Information Technology Co ltd filed Critical Sichuan Cpt Information Technology Co ltd
Priority to CN202310562731.4A priority Critical patent/CN116310844B/zh
Publication of CN116310844A publication Critical patent/CN116310844A/zh
Application granted granted Critical
Publication of CN116310844B publication Critical patent/CN116310844B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/188Vegetation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Databases & Information Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Image Processing (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供了一种农业作物生长监测系统,属于图像数据处理技术领域,本发明通过图像采集单元采集农业作物图像,并对农业作物图像进行滤波和提取轮廓处理,得到作物轮廓图像,先对作物轮廓图像进行识别,得到作物类型,再通过识别叶片轮廓,得到叶片数量,从而获知作物的生长情况,在知道作物的类型后,根据叶片数量,更能精细化的获知的作物生长阶段,实现精确预估。

Description

一种农业作物生长监测系统
技术领域
本发明涉及图像数据处理技术领域,具体而言,涉及一种农业作物生长监测系统。
背景技术
在农作物生长时期,需要监控作物生长情况,根据生长情况从而采取相应的挽救措施。现有对农作物生长情况的监测是通过将地表反射率数据和土壤温度数据等地表特征数据输入卷积神经网络中,从而得到作物的生长情况,但这种方式仅能从宏观上粗略估计作物的生长情况,无法做到对作物生长情况进行精确预估。
发明内容
针对现有技术中的上述不足,本发明提供的一种农业作物生长监测系统解决了现有农业作物生长监测系统存在作物生长情况无法实现精确预估的问题。
为了达到上述发明目的,本发明采用的技术方案为:一种农业作物生长监测系统,包括:图像采集单元、图像预处理单元、作物识别单元、叶片轮廓识别单元和作物生长阶段分类单元;
所述图像采集单元用于采集农业作物图像;所述图像预处理单元用于对农业作物图像进行滤波和提取轮廓处理,得到作物轮廓图像;所述作物识别单元用于对作物轮廓图像进行识别,得到作物类型;所述叶片轮廓识别单元用于识别出作物轮廓图像上的叶片轮廓,得到叶片数量;所述作物生长阶段分类单元用于根据作物类型和叶片数量,对作物生长阶段进行分类。
进一步地,所述滤波公式为:
其中,为第/>个像素点的滤波像素值,/>为第/>个像素点的像素值,/>为第/>个像素点邻域范围第/>个像素点的像素值,/>为邻域范围内像素点的数量,/>为第/>个像素点的滤波像素值。
上述进一步地方案的有益效果为:本发明以当前待滤波像素点的像素值和临近像素点的像素值的大小作为滤波的核心,同时考虑当前的像素值和上一个滤波像素值,通过上一个滤波像素值和临近像素值弱化当前像素值的影响,但为了不破坏轮廓上的像素点像素值的特征,本发明仅选取和/>作为衡量像素值/>的滤波情况,从而使其保障滤波后图像的轮廓特征。
进一步地,所述作物识别单元包括:第一卷积层、第二卷积层、第三卷积层、第四卷积层、第五卷积层、第一加法器、第二加法器、乘法器、LSTM层、激活函数层、池化层和全连接层;
所述第一卷积层的输入端与第一加法器的输入端连接,并作为作物识别单元的输入端;所述第二卷积层的输入端与第一卷积层的输出端连接,其输出端与第一加法器的输入端连接;所述第一加法器的输出端分别与第三卷积层的输入端和LSTM层的输入端连接;所述第三卷积层的输出端与第四卷积层的输入端连接;所述第二加法器的输入端分别与第四卷积层的输出端和LSTM层的输出端连接,其输出端分别与第五卷积层的输入端和乘法器的输入端连接;所述第五卷积层的输出端与激活函数层的输入端连接;所述激活函数层的输出端与乘法器的输入端连接;所述乘法器的输出端与池化层的输入端连接;所述全连接层的输入端与池化层的输出端连接,其输出端作为作物识别单元的输出端。
上述进一步地方案的有益效果为:本发明的作物轮廓图像通过第一卷积层和第二卷积层提取特征后,汇入第一加法器,又将作物轮廓图像直接加入第一加法器,实现恒等映射,解决网络退化的问题,在第一加法器后,本发明设置两条路径:第三卷积层和第四卷积层、LSTM层,本发明分别通过这两条路线实现不同特征提取,在第二加法器后,设置第五卷积层对特征进行提取,为了防止误差被进一步累计放大,采用激活函数层对数据进行统一,加速模型训练速度,同时为了自适应的对特征数据增加关注度,本发明连接乘法器和第二加法器。
进一步地,所述激活函数层的公式为:
其中,为激活函数层的第/>个输出数据,/>为激活函数层的学习权重参数,/>为激活函数层的学习偏置参数,/>为调节系数,/>为激活函数层的第/>个输入数据,/>为激活函数层的输入数据的数量。
进一步地,所述LSTM层的细胞单元的表达式为:
其中,为遗忘层第/>时刻的输出,/>为sigmoid函数,/>为遗忘层的权重,/>为遗忘层的偏置,/>为细胞单元第/>时刻的输入,/>为细胞单元第/>时刻的输出,/>为细胞单元第/>时刻的输出,/>为细胞单元第/>时刻的输出状态,/>为双曲正切函数,为输入门的权重,/>为输入门的偏置,/>为输入门第/>时刻的输出,/>为更新门第/>时刻的输出,/>为更新门的权重,/>为更新门的偏置,/>为细胞单元第/>时刻的输出状态,/>为输出门的第一权重,/>为输出门的第一偏置,/>为输出门的第二权重,/>为输出门的第二偏置。
上述进一步地方案的有益效果为:本发明在遗忘门处设置了3个输入量,从而增强遗忘门选择遗忘的范围,以及可以保留的范围,再将输入门和更新门的输入量和更新量分别融合到传输带的不同位置,从而使得输出状态/>具备更丰富的特征,在输出门中分别对激活函数/>和/>赋予不同权重和偏置,使得输出/>建立起分别与、/>的对应关系,实现输出/>分别从/>、/>上提取特征。
进一步地,所述作物识别单元的损失函数为:
其中,为损失函数,/>为第/>次训练时第/>个作物轮廓图像属于作物类型/>的标签概率,/>为第/>次训练时第/>个作物轮廓图像属于作物类型/>的预测概率,/>为第/>次训练时第/>个作物轮廓图像属于作物类型/>的预测概率,/>为第/>次训练时第/>个作物轮廓图像属于作物类型/>的标签概率,/>为统计的临近训练次数,/>为统计的临近训练次数的标号。
上述进一步地方案的有益效果为:本发明考虑多次训练的损失情况,但仅通过标签概率和预测概率/>两者的差值无法真实反映两者的距离,本发明还通过标签概率/>与预测概率/>的比值真实反映两者从比例上的差距,从而实现对损失的补充,通过本发明的损失函数,不仅使得标签概率/>和预测概率/>两者在数值上差值较小,同时也使得比值更接近于1。
进一步地,所述叶片轮廓识别单元包括:叶片识别子单元和叶片标注子单元;
所述叶片识别子单元用于识别出作物轮廓图像上叶片轮廓;
所述叶片标注子单元用于对识别出的叶片轮廓进行标注,得到叶片数量。
进一步地,所述叶片识别子单元包括:特征提取模块和特征匹配模块;
所述特征提取模块用于提取作物轮廓图像的轮廓分布特征;
所述特征匹配模块用于计算轮廓分布特征与存储轮廓分布特征的匹配度,在匹配度高于阈值时,该处为叶片轮廓。
进一步地,所述特征提取模块具体包括:设置轮廓提取窗,采用轮廓提取窗在作物轮廓图像上进行滑动,每滑动一次,计算出当前轮廓提取窗下的像素点的轮廓分布特征,通过多次滑动,遍历完作物轮廓图像;
所述轮廓分布特征的公式为:
其中,为轮廓分布特征,/>为当前轮廓提取窗下的第/>个像素点到窗口中心的距离,/>为当前轮廓提取窗下的像素点到窗口中心的最远距离,/>为当前轮廓提取窗下的像素点到窗口中心的最近距离,/>为当前轮廓提取窗下的像素点数量。
上述进一步地方案的有益效果为:由于叶片属于作物轮廓图像上的小部分区域,因此,很难通过作物轮廓图像整体上的对比或者特征提取,获得叶片的位置,因此,本发明设置轮廓提取窗,不断框选出作物轮廓图像上的区域,进行局部对比,找到匹配高的位置,标注为叶片位置。本发明在进行提取轮廓分布特征时,本发明计算各个轮廓点在窗口中心的距离,从而根据各个点到窗口中心的长度,确定各个轮廓点的分布特征。
进一步地,所述匹配度的计算公式为:
其中,为匹配度,/>为作物轮廓图像的轮廓分布特征,/>为存储轮廓分布特征,/>为匹配因子。
本发明实施例的技术方案至少具有如下优点和有益效果:本发明通过图像采集单元采集农业作物图像,并对农业作物图像进行滤波和提取轮廓处理,得到作物轮廓图像,先对作物轮廓图像进行识别,得到作物类型,再通过识别叶片轮廓,得到叶片数量,从而获知作物的生长情况,在知道作物的类型后,根据叶片数量,更能精细化的获知的作物生长阶段,实现精确预估。
附图说明
图1为一种农业作物生长监测系统的系统框图;
图2为作物识别单元的系统框图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
如图1所示,一种农业作物生长监测系统,包括:图像采集单元、图像预处理单元、作物识别单元、叶片轮廓识别单元和作物生长阶段分类单元;
所述图像采集单元用于采集农业作物图像;所述图像预处理单元用于对农业作物图像进行滤波和提取轮廓处理,得到作物轮廓图像;所述作物识别单元用于对作物轮廓图像进行识别,得到作物类型;所述叶片轮廓识别单元用于识别出作物轮廓图像上的叶片轮廓,得到叶片数量;所述作物生长阶段分类单元用于根据作物类型和叶片数量,对作物生长阶段进行分类。
在本实施例中,图像采集单元为摄像单元,摄像单元可以搭载在无人机上,通过巡查的方式,拍摄农作物图像,实现对整片农业区域的监测,摄像单元也可以固定在某个位置,从而实现对固定区域的农作物的实时监测。
在图像预处理单元中先对农业作物图像进行滤波处理,得到滤波图像,再对滤波图像进行提取轮廓,去除噪点。
所述滤波公式为:
其中,为第/>个像素点的滤波像素值,/>为第/>个像素点的像素值,/>为第/>个像素点邻域范围第/>个像素点的像素值,/>为邻域范围内像素点的数量,/>为第/>个像素点的滤波像素值。
本发明以当前待滤波像素点的像素值和临近像素点的像素值的大小作为滤波的核心,同时考虑当前的像素值和上一个滤波像素值,通过上一个滤波像素值和临近像素值弱化当前像素值的影响,但为了不破坏轮廓上的像素点像素值的特征,本发明仅选取和/>作为衡量像素值/>的滤波情况,从而使其保障滤波后图像的轮廓特征。
如图2所示,所述作物识别单元包括:第一卷积层、第二卷积层、第三卷积层、第四卷积层、第五卷积层、第一加法器、第二加法器、乘法器、LSTM层、激活函数层、池化层和全连接层;
所述第一卷积层的输入端与第一加法器的输入端连接,并作为作物识别单元的输入端;所述第二卷积层的输入端与第一卷积层的输出端连接,其输出端与第一加法器的输入端连接;所述第一加法器的输出端分别与第三卷积层的输入端和LSTM层的输入端连接;所述第三卷积层的输出端与第四卷积层的输入端连接;所述第二加法器的输入端分别与第四卷积层的输出端和LSTM层的输出端连接,其输出端分别与第五卷积层的输入端和乘法器的输入端连接;所述第五卷积层的输出端与激活函数层的输入端连接;所述激活函数层的输出端与乘法器的输入端连接;所述乘法器的输出端与池化层的输入端连接;所述全连接层的输入端与池化层的输出端连接,其输出端作为作物识别单元的输出端。
本发明的作物轮廓图像通过第一卷积层和第二卷积层提取特征后,汇入第一加法器,又将作物轮廓图像直接加入第一加法器,实现恒等映射,解决网络退化的问题,在第一加法器后,本发明设置两条路径:第三卷积层和第四卷积层、LSTM层,本发明分别通过这两条路线实现不同特征提取,在第二加法器后,设置第五卷积层对特征进行提取,为了防止误差被进一步累计放大,采用激活函数层对数据进行统一,加速模型训练速度,同时为了自适应的对特征数据增加关注度,本发明连接乘法器和第二加法器。
所述激活函数层的公式为:
其中,为激活函数层的第/>个输出数据,/>为激活函数层的学习权重参数,/>为激活函数层的学习偏置参数,/>为调节系数,/>为激活函数层的第/>个输入数据,/>为激活函数层的输入数据的数量。
所述LSTM层的细胞单元的表达式为:
其中,为遗忘层第/>时刻的输出,/>为sigmoid函数,/>为遗忘层的权重,/>为遗忘层的偏置,/>为细胞单元第/>时刻的输入,/>为细胞单元第/>时刻的输出,/>为细胞单元第/>时刻的输出,/>为细胞单元第/>时刻的输出状态,/>为双曲正切函数,为输入门的权重,/>为输入门的偏置,/>为输入门第/>时刻的输出,/>为更新门第/>时刻的输出,/>为更新门的权重,/>为更新门的偏置,/>为细胞单元第/>时刻的输出状态,/>为输出门的第一权重,/>为输出门的第一偏置,/>为输出门的第二权重,/>为输出门的第二偏置。
本发明在遗忘门处设置了3个输入量,从而增强遗忘门选择遗忘的范围,以及可以保留的范围,再将输入门和更新门的输入量和更新量分别融合到传输带的不同位置,从而使得输出状态/>具备更丰富的特征,在输出门中分别对激活函数/>和/>赋予不同权重和偏置,使得输出/>建立起分别与/>、/>的对应关系,实现输出/>分别从/>、/>上提取特征。
所述作物识别单元的损失函数为:
其中,为损失函数,/>为第/>次训练时第/>个作物轮廓图像属于作物类型/>的标签概率,/>为第/>次训练时第/>个作物轮廓图像属于作物类型/>的预测概率,/>为第/>次训练时第/>个作物轮廓图像属于作物类型/>的预测概率,/>为第/>次训练时第/>个作物轮廓图像属于作物类型/>的标签概率,/>为统计的临近训练次数,/>为统计的临近训练次数的标号。
本发明考虑多次训练的损失情况,但仅通过标签概率和预测概率/>两者的差值无法真实反映两者的距离,本发明还通过标签概率/>与预测概率/>的比值真实反映两者从比例上的差距,从而实现对损失的补充,通过本发明的损失函数,不仅使得标签概率/>和预测概率/>两者在数值上差值较小,同时也使得比值更接近于1。
所述叶片轮廓识别单元包括:叶片识别子单元和叶片标注子单元;
所述叶片识别子单元用于识别出作物轮廓图像上叶片轮廓;
所述叶片标注子单元用于对识别出的叶片轮廓进行标注,得到叶片数量。
所述叶片识别子单元包括:特征提取模块和特征匹配模块;
所述特征提取模块用于提取作物轮廓图像的轮廓分布特征;
所述特征匹配模块用于计算轮廓分布特征与存储轮廓分布特征的匹配度,在匹配度高于阈值时,该处为叶片轮廓。
在本实施例中,存储轮廓分布特征为从已知作物类型的各个生长阶段的作物轮廓图像上提取的。
所述特征提取模块具体包括:设置轮廓提取窗,采用轮廓提取窗在作物轮廓图像上进行滑动,每滑动一次,计算出当前轮廓提取窗下的像素点的轮廓分布特征,通过多次滑动,遍历完作物轮廓图像;
所述轮廓分布特征的公式为:
其中,为轮廓分布特征,/>为当前轮廓提取窗下的第/>个像素点到窗口中心的距离,/>为当前轮廓提取窗下的像素点到窗口中心的最远距离,/>为当前轮廓提取窗下的像素点到窗口中心的最近距离,/>为当前轮廓提取窗下的像素点数量。
由于叶片属于作物轮廓图像上的小部分区域,因此,很难通过作物轮廓图像整体上的对比或者特征提取,获得叶片的位置,因此,本发明设置轮廓提取窗,不断框选出作物轮廓图像上的区域,进行局部对比,找到匹配高的位置,标注为叶片位置。本发明在进行提取轮廓分布特征时,本发明计算各个轮廓点在窗口中心的距离,从而根据各个点到窗口中心的长度,确定各个轮廓点的分布特征。
所述匹配度的计算公式为:
其中,为匹配度,/>为作物轮廓图像的轮廓分布特征,/>为存储轮廓分布特征,/>为匹配因子。
本发明实施例的技术方案至少具有如下优点和有益效果:本发明通过图像采集单元采集农业作物图像,并对农业作物图像进行滤波和提取轮廓处理,得到作物轮廓图像,先对作物轮廓图像进行识别,得到作物类型,再通过识别叶片轮廓,得到叶片数量,从而获知作物的生长情况,在知道作物的类型后,根据叶片数量,更能精细化的获知的作物生长阶段,实现精确预估。
在本实施例中,作物生长阶段分类单元可根据对应的作物类型,存储各个作物类型的各个生长阶段的叶片数量,从而根据叶片数量就能推断或者查表得到生长阶段,其次,还可以通过叶片数据判断出一个区域中作物的密度,从而实现对生长阶段的估计。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种农业作物生长监测系统,其特征在于,包括:图像采集单元、图像预处理单元、作物识别单元、叶片轮廓识别单元和作物生长阶段分类单元;
所述图像采集单元用于采集农业作物图像;所述图像预处理单元用于对农业作物图像进行滤波和提取轮廓处理,得到作物轮廓图像;所述作物识别单元用于对作物轮廓图像进行识别,得到作物类型;所述叶片轮廓识别单元用于识别出作物轮廓图像上的叶片轮廓,得到叶片数量;所述作物生长阶段分类单元用于根据作物类型和叶片数量,对作物生长阶段进行分类;
所述作物识别单元包括:第一卷积层、第二卷积层、第三卷积层、第四卷积层、第五卷积层、第一加法器、第二加法器、乘法器、LSTM层、激活函数层、池化层和全连接层;
所述第一卷积层的输入端与第一加法器的输入端连接,并作为作物识别单元的输入端;所述第二卷积层的输入端与第一卷积层的输出端连接,其输出端与第一加法器的输入端连接;所述第一加法器的输出端分别与第三卷积层的输入端和LSTM层的输入端连接;所述第三卷积层的输出端与第四卷积层的输入端连接;所述第二加法器的输入端分别与第四卷积层的输出端和LSTM层的输出端连接,其输出端分别与第五卷积层的输入端和乘法器的输入端连接;所述第五卷积层的输出端与激活函数层的输入端连接;所述激活函数层的输出端与乘法器的输入端连接;所述乘法器的输出端与池化层的输入端连接;所述全连接层的输入端与池化层的输出端连接,其输出端作为作物识别单元的输出端;
所述激活函数层的公式为:
其中,为激活函数层的第/>个输出数据,/>为激活函数层的学习权重参数,/>为激活函数层的学习偏置参数,/>为调节系数,/>为激活函数层的第/>个输入数据,/>为激活函数层的输入数据的数量;
所述LSTM层的细胞单元的表达式为:
其中,为遗忘层第/>时刻的输出,/>为sigmoid函数,/>为遗忘层的权重,/>为遗忘层的偏置,/>为细胞单元第/>时刻的输入,/>为细胞单元第/>时刻的输出,/>为细胞单元第/>时刻的输出,/>为细胞单元第/>时刻的输出状态,/>为双曲正切函数,/>为输入门的权重,/>为输入门的偏置,/>为输入门第/>时刻的输出,/>为更新门第/>时刻的输出,/>为更新门的权重,/>为更新门的偏置,/>为细胞单元第/>时刻的输出状态,/>为输出门的第一权重,/>为输出门的第一偏置,/>为输出门的第二权重,/>为输出门的第二偏置;
所述作物识别单元的损失函数为:
其中,为损失函数,/>为第/>次训练时第/>个作物轮廓图像属于作物类型/>的标签概率,/>为第/>次训练时第/>个作物轮廓图像属于作物类型/>的预测概率,/>为第次训练时第/>个作物轮廓图像属于作物类型/>的预测概率,/>为第/>次训练时第/>个作物轮廓图像属于作物类型/>的标签概率,/>为统计的临近训练次数,/>为统计的临近训练次数的标号。
2.根据权利要求1所述的农业作物生长监测系统,其特征在于,所述滤波公式为:
其中,为第/>个像素点的滤波像素值,/>为第/>个像素点的像素值,/>为第/>个像素点邻域范围第/>个像素点的像素值,/>为邻域范围内像素点的数量,/>为第/>个像素点的滤波像素值。
3.根据权利要求1所述的农业作物生长监测系统,其特征在于,所述叶片轮廓识别单元包括:叶片识别子单元和叶片标注子单元;
所述叶片识别子单元用于识别出作物轮廓图像上叶片轮廓;
所述叶片标注子单元用于对识别出的叶片轮廓进行标注,得到叶片数量。
4.根据权利要求3所述的农业作物生长监测系统,其特征在于,所述叶片识别子单元包括:特征提取模块和特征匹配模块;
所述特征提取模块用于提取作物轮廓图像的轮廓分布特征;
所述特征匹配模块用于计算轮廓分布特征与存储轮廓分布特征的匹配度,在匹配度高于阈值时,该处为叶片轮廓。
5.根据权利要求4所述的农业作物生长监测系统,其特征在于,所述特征提取模块具体包括:设置轮廓提取窗,采用轮廓提取窗在作物轮廓图像上进行滑动,每滑动一次,计算出当前轮廓提取窗下的像素点的轮廓分布特征,通过多次滑动,遍历完作物轮廓图像;
所述轮廓分布特征的公式为:
其中,为轮廓分布特征,/>为当前轮廓提取窗下的第/>个像素点到窗口中心的距离,为当前轮廓提取窗下的像素点到窗口中心的最远距离,/>为当前轮廓提取窗下的像素点到窗口中心的最近距离,/>为当前轮廓提取窗下的像素点数量。
6.根据权利要求4所述的农业作物生长监测系统,其特征在于,所述匹配度的计算公式为:
其中,为匹配度,/>为作物轮廓图像的轮廓分布特征,/>为存储轮廓分布特征,/>为匹配因子。
CN202310562731.4A 2023-05-18 2023-05-18 一种农业作物生长监测系统 Active CN116310844B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310562731.4A CN116310844B (zh) 2023-05-18 2023-05-18 一种农业作物生长监测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310562731.4A CN116310844B (zh) 2023-05-18 2023-05-18 一种农业作物生长监测系统

Publications (2)

Publication Number Publication Date
CN116310844A CN116310844A (zh) 2023-06-23
CN116310844B true CN116310844B (zh) 2023-07-28

Family

ID=86801726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310562731.4A Active CN116310844B (zh) 2023-05-18 2023-05-18 一种农业作物生长监测系统

Country Status (1)

Country Link
CN (1) CN116310844B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117530031B (zh) * 2024-01-10 2024-04-05 北京科百宏业科技有限公司 智能水肥管理方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104657593A (zh) * 2015-01-21 2015-05-27 中国科学院自动化研究所 一种作物性状动态形成过程评估品种的方法
JP2015167470A (ja) * 2015-06-23 2015-09-24 墫野 和夫 国の全額借金返済と都道府県市町村区の全額借金返済後に対して自給自足型の農業及び漁業及び林業及び中小企業が世界トップの日本円銀行団体と世界最高銀行団体に成る為の完全自給自足物流通システムに対しての知的所有財産を使った財団経営の未来的農業漁業林業一体型中小工企業体システム。
CN109946427A (zh) * 2019-03-25 2019-06-28 大夏数据服务有限公司 一种农业农作物生长计算分析系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9617190B2 (en) * 2012-05-24 2017-04-11 Niha Corp. Bioactive nutrient fortified fertilizers and related methods
CN104023166B (zh) * 2014-06-20 2017-08-11 武汉烽火众智数字技术有限责任公司 一种环境自适应视频图像降噪方法及装置
CN107798356A (zh) * 2017-11-24 2018-03-13 郑州大学西亚斯国际学院 基于深度卷积神经网络的作物叶片病害识别方法
CN109977924A (zh) * 2019-04-15 2019-07-05 北京麦飞科技有限公司 针对农作物的无人机机上实时图像处理方法及系统
CN110689022B (zh) * 2019-06-18 2023-06-20 华南农业大学 基于叶片匹配的各株作物图像提取方法
CN110532936A (zh) * 2019-08-26 2019-12-03 李清华 一种识别大田作物长势监控图像中绿色植物的方法及系统
CN113895629B (zh) * 2021-11-08 2024-04-26 广东省农业科学院蔬菜研究所 一种基于无人机的蔬菜生长监测及喷药系统
CN113822825B (zh) * 2021-11-25 2022-02-11 电子科技大学成都学院 基于3d-r2n2的光学建筑目标三维重建方法
CN114548265B (zh) * 2022-02-21 2024-06-21 安徽农业大学 一种作物叶片病害图像生成模型训练方法、作物叶片病害识别方法、电子设备及存储介质
CN114926735A (zh) * 2022-05-17 2022-08-19 东北农业大学 一种基于raml的作物叶片复合侵染性多病害识别方法
CN115250887B (zh) * 2022-07-27 2023-05-23 中化现代农业有限公司 农作物灌溉方法、系统、设备及介质
CN116030345A (zh) * 2022-12-30 2023-04-28 黑龙江省农垦科学院 基于机器学习模型的叶龄预测方法
CN115761518B (zh) * 2023-01-10 2023-04-11 云南瀚哲科技有限公司 一种基于遥感图像数据的作物分类方法
CN116051996A (zh) * 2023-01-13 2023-05-02 大连东软信息学院 一种基于多模态信息的二阶段农作物生长预测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104657593A (zh) * 2015-01-21 2015-05-27 中国科学院自动化研究所 一种作物性状动态形成过程评估品种的方法
JP2015167470A (ja) * 2015-06-23 2015-09-24 墫野 和夫 国の全額借金返済と都道府県市町村区の全額借金返済後に対して自給自足型の農業及び漁業及び林業及び中小企業が世界トップの日本円銀行団体と世界最高銀行団体に成る為の完全自給自足物流通システムに対しての知的所有財産を使った財団経営の未来的農業漁業林業一体型中小工企業体システム。
CN109946427A (zh) * 2019-03-25 2019-06-28 大夏数据服务有限公司 一种农业农作物生长计算分析系统

Also Published As

Publication number Publication date
CN116310844A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
CN107665324B (zh) 一种图像识别方法及终端
CN110046631B (zh) 用于自动推断时空图像的变化的系统和方法
CN116310844B (zh) 一种农业作物生长监测系统
CN111476713A (zh) 基于多深度卷积神经网络融合的天气图像智能识别方法及系统
CN109684906B (zh) 基于深度学习的检测红脂大小蠹的方法
CN111352113B (zh) 一种强对流天气短临预报方法及系统、存储介质和终端
CN111476280A (zh) 植物叶片识别方法及系统
CN106897998B (zh) 太阳能直射辐射强度信息预测方法和系统
CN113936254B (zh) 结合积温订正的水稻发育期识别模型训练方法、识别方法及装置
CN111161362A (zh) 一种茶树生长状态光谱影像鉴别方法
CN109086823B (zh) 一种小麦赤霉病病穗率自动统计方法
CN116776238B (zh) 一种基于多源信息水旱灾害动态风险评估方法和系统
CN113723157B (zh) 一种农作物病害识别方法、装置、电子设备及存储介质
CN113850312A (zh) 森林生态状况的监测方法、装置、电子设备及存储介质
CN110532875A (zh) 夜晚模式镜头付着物的检测系统、终端和存储介质
CN111340041A (zh) 一种基于深度学习的车牌识别方法及装置
CN115311689A (zh) 牛脸身份识别特征提取模型构建方法及牛脸身份识别方法
CN111241987B (zh) 基于代价敏感的三支决策的多目标模型视觉追踪方法
CN114881286A (zh) 一种基于深度学习的短时降水预测方法
CN117705815A (zh) 一种基于机器视觉的印刷缺陷检测方法
CN116206208B (zh) 一种基于人工智能的林业病虫害快速分析系统
CN112115984A (zh) 基于深度学习的茶园异常数据校正方法、系统和存储介质
CN111931670B (zh) 基于卷积神经网的深度图像头部检测与定位方法及系统
CN113569786A (zh) 基于多模态影像的作物病虫害检测方法及系统、设备、存储介质
CN114040124A (zh) 森林草原巡视无人机的相机自适应曝光处理系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant