CN116301341A - Wearable Sign Language Recognition System and Method Integrating Attachable Flexible Stretch Sensor and Inertial Sensing Unit - Google Patents
Wearable Sign Language Recognition System and Method Integrating Attachable Flexible Stretch Sensor and Inertial Sensing Unit Download PDFInfo
- Publication number
- CN116301341A CN116301341A CN202310113573.4A CN202310113573A CN116301341A CN 116301341 A CN116301341 A CN 116301341A CN 202310113573 A CN202310113573 A CN 202310113573A CN 116301341 A CN116301341 A CN 116301341A
- Authority
- CN
- China
- Prior art keywords
- sign language
- data
- sensing unit
- inertial sensing
- flexible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000009471 action Effects 0.000 claims abstract description 32
- 238000005452 bending Methods 0.000 claims abstract description 21
- 230000004044 response Effects 0.000 claims abstract description 7
- 230000001953 sensory effect Effects 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 55
- 229920005839 ecoflex® Polymers 0.000 claims description 53
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 41
- 239000004332 silver Substances 0.000 claims description 41
- 229910052709 silver Inorganic materials 0.000 claims description 41
- 239000000758 substrate Substances 0.000 claims description 41
- 239000002135 nanosheet Substances 0.000 claims description 40
- 239000003292 glue Substances 0.000 claims description 34
- 229920001940 conductive polymer Polymers 0.000 claims description 28
- 238000012360 testing method Methods 0.000 claims description 25
- 238000005070 sampling Methods 0.000 claims description 24
- 238000012544 monitoring process Methods 0.000 claims description 22
- 238000012549 training Methods 0.000 claims description 19
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 239000011259 mixed solution Substances 0.000 claims description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical group C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 12
- 238000013527 convolutional neural network Methods 0.000 claims description 11
- 230000000694 effects Effects 0.000 claims description 11
- 238000002360 preparation method Methods 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 10
- 239000004753 textile Substances 0.000 claims description 10
- 239000000853 adhesive Substances 0.000 claims description 9
- 230000001070 adhesive effect Effects 0.000 claims description 9
- 239000006229 carbon black Substances 0.000 claims description 9
- 235000019241 carbon black Nutrition 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 238000001914 filtration Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 7
- 239000000243 solution Substances 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- JKFYKCYQEWQPTM-UHFFFAOYSA-N 2-azaniumyl-2-(4-fluorophenyl)acetate Chemical compound OC(=O)C(N)C1=CC=C(F)C=C1 JKFYKCYQEWQPTM-UHFFFAOYSA-N 0.000 claims description 5
- 229910021612 Silver iodide Inorganic materials 0.000 claims description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 5
- 210000001145 finger joint Anatomy 0.000 claims description 5
- 229940045105 silver iodide Drugs 0.000 claims description 5
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 4
- 238000012795 verification Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 230000000717 retained effect Effects 0.000 claims description 2
- 230000008447 perception Effects 0.000 abstract description 4
- 210000000707 wrist Anatomy 0.000 abstract description 4
- 238000004891 communication Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 230000001133 acceleration Effects 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 210000004247 hand Anatomy 0.000 description 2
- 238000003698 laser cutting Methods 0.000 description 2
- 238000003760 magnetic stirring Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 206010011878 Deafness Diseases 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 210000000617 arm Anatomy 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000008921 facial expression Effects 0.000 description 1
- 230000005057 finger movement Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- -1 long-chain fatty acid silver salts Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003183 myoelectrical effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000016776 visual perception Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/16—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
- G01B7/18—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/18—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/014—Hand-worn input/output arrangements, e.g. data gloves
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computational Linguistics (AREA)
- Health & Medical Sciences (AREA)
- Automation & Control Theory (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Human Computer Interaction (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
本发明提供一种集成可贴附柔性拉伸传感器和惯性传感单元的可穿戴式手语识别系统与方法,该系统包括:柔性拉伸传感器,贴附于人体右手手指关节位置,用于监测手指的弯曲运动;惯性传感单元,贴附于手背位置,用于监测手在空间中的运动;柔性采集电路,与每个传感器数据通讯;手语识别系统,接收从柔性采集电路传输的传感数据,并据此判断手是否处于活动状态,以及在活动状态下,基于预先训练的基于CNN的第一识别模型,识别输出手语动作。本发明采用贴附性好、佩戴方便的附柔性拉伸传感器,结合惯性传感单元感知可实现对手腕、手臂在空间中的运动进行传感,融合弯曲特征和手部的运动状态特征,对复杂的动作进行快速准确的响应和识别。
The invention provides a wearable sign language recognition system and method that integrates a flexible stretch sensor and an inertial sensing unit. The system includes: a flexible stretch sensor that is attached to the joints of the fingers of the right hand of the human body and used to monitor the fingers The bending movement of the hand; the inertial sensing unit, attached to the back of the hand, is used to monitor the movement of the hand in space; the flexible acquisition circuit communicates with each sensor data; the sign language recognition system receives the sensory data transmitted from the flexible acquisition circuit , and accordingly judge whether the hand is in an active state, and in the active state, based on the pre-trained CNN-based first recognition model, recognize and output sign language actions. The present invention adopts a flexible stretch sensor with good adhesion and is easy to wear, combined with the perception of the inertial sensing unit, it can realize the sensing of the movement of the wrist and arm in space, and integrates the bending characteristics and the movement state characteristics of the hand, and the Complex movements for fast and accurate response and recognition.
Description
技术领域technical field
本发明涉及智能可穿戴设备技术领域,具体而言涉及一种集成新型可贴附柔性拉伸传感器和惯性传感单元的可穿戴式手语识别系统与方法。The invention relates to the technical field of smart wearable devices, in particular to a wearable sign language recognition system and method integrating a novel attachable flexible stretch sensor and an inertial sensing unit.
背景技术Background technique
手语是通过手、表情和身体传达的语言形式,主要通过视觉感知进行识别。然而,如果没有手语的事先知识,非手语使用者很难接受和理解这种对话媒介。由此,在手语使用者和非手语使用者之间造成了沟通障碍。Sign language is a form of language communicated through hands, facial expressions, and body, with recognition primarily through visual perception. However, without prior knowledge of sign language, it is difficult for non-sign language users to pick up and understand this medium of conversation. Thus, a communication barrier is created between sign language users and non-sign language users.
目前,现有技术尝试使用可穿戴电子设备等辅助手段来帮助在手语使用者和非手语使用者建立沟通和感知,可穿戴电子设备重量轻、成本低、灵活性高和适应性强等优点,使其可以通过可穿戴手语翻译设备的形式为这一通信障碍提供技术解决方案。At present, existing technologies try to use auxiliary means such as wearable electronic devices to help establish communication and perception between sign language users and non-sign language users. Wearable electronic devices have the advantages of light weight, low cost, high flexibility and strong adaptability, etc. Making it possible to provide a technological solution to this communication barrier in the form of wearable sign language interpreting devices.
在手势的监测领域,常用的传感器有柔性力学传感器(压力、应变等)、肌电信号传感器、图像传感器等。例如,公开号为CN110491251A的中国专利申请公开的一种标准化手语模拟智能手套,在监测时仅通过柔性传感器监测手指的弯曲,无法监测手在空间中的运动,丢失了重要信息。又如公开号为CN110189590A的中国专利申请公开的一种自适应校正式手语互译系统,采用了弯曲传感器和加速度计,用手套的方式承载所有传感器,但是商用的弯曲传感器并不轻薄,不具有很好的柔软性,手套佩戴不够舒适。In the field of gesture monitoring, commonly used sensors include flexible mechanical sensors (pressure, strain, etc.), myoelectric signal sensors, image sensors, and the like. For example, the Chinese patent application publication number CN110491251A discloses a standardized sign language simulating smart glove, which only monitors the bending of the finger through a flexible sensor, but cannot monitor the movement of the hand in space and loses important information. Another example is the self-adaptive corrective sign language inter-interpretation system disclosed in the Chinese patent application with the publication number CN110189590A, which uses a bending sensor and an accelerometer, and carries all the sensors in the form of a glove, but the commercial bending sensor is not light and thin, and does not have Good softness, gloves are not comfortable enough to wear.
因此,为了解决手语使用者和非手语使用者之间的沟通障碍,需要一些更加有效的辅助工具,以轻便,高效,灵活的方式帮助使用手语的聋哑人士与外界沟通。Therefore, in order to solve the communication barrier between sign language users and non-sign language users, some more effective auxiliary tools are needed to help deaf-mute people using sign language communicate with the outside world in a light, efficient and flexible way.
现有技术文献:Prior art literature:
专利文献1:CN110491251A一种标准化手语模拟智能手套Patent Document 1: CN110491251A A Standardized Sign Language Simulated Smart Glove
专利文献2:CN110189590A一种自适应校正式手语互译系统及方法Patent Document 2: CN110189590A An Adaptive Correction Sign Language Mutual Interpretation System and Method
专利文献3:CN109613976A一种智能柔性压力传感手语识别装置Patent Document 3: CN109613976A An Intelligent Flexible Pressure Sensing Sign Language Recognition Device
发明内容Contents of the invention
鉴于现有技术存在的缺陷,本发明旨在提出一种集成可贴附柔性拉伸传感器和惯性传感单元的可穿戴式手语识别系统与方法,采用新型的可贴附柔性拉伸传感器,贴附性好,佩戴方便,不会对佩戴者造成不适感或者动作阻力影响,不影响佩戴者本身的动作,而且具有较佳的动态性能和灵敏度,可以对复杂的动作进行快速且准确的响应;同时结合惯性传感单元感知可实现对手腕、手臂在空间中的运动进行传感,融合弯曲特征和手部的运动状态特征,一方面实现动作的判断,另一方面基于融合的特征进行卷积神经网络手语识别模型的训练,在实际使用时快速、准确地获得手语识别动作的意义,实时输出手语识别结果。In view of the defects existing in the prior art, the present invention aims to propose a wearable sign language recognition system and method integrating an attachable flexible stretch sensor and an inertial sensing unit. Good adhesion, easy to wear, will not cause discomfort or movement resistance to the wearer, does not affect the wearer's own movement, and has better dynamic performance and sensitivity, and can quickly and accurately respond to complex movements; At the same time, combined with the perception of inertial sensing units, the movement of the wrist and arm in space can be sensed, and the bending characteristics and the movement state characteristics of the hand can be fused. On the one hand, the judgment of the action can be realized, and on the other hand, convolution can be performed based on the fused features. The training of the neural network sign language recognition model can quickly and accurately obtain the meaning of sign language recognition actions in actual use, and output sign language recognition results in real time.
根据本发明目的的第一方面,提供一种集成可贴附柔性拉伸传感器和惯性传感单元的可穿戴式手语识别系统,包括:According to the first aspect of the purpose of the present invention, a wearable sign language recognition system integrating an attachable flexible stretch sensor and an inertial sensing unit is provided, including:
贴附于人体每个手指的关节位置的柔性拉伸传感器,用于监测手指的弯曲运动;A flexible stretch sensor attached to the joint position of each finger of the human body to monitor the bending movement of the finger;
惯性传感单元,贴附于手背位置,用于监测手在空间中的运动;Inertial sensing unit, attached to the back of the hand, is used to monitor the movement of the hand in space;
柔性采集电路,与每个柔性拉伸传感器以及惯性传感单元数据通讯;Flexible acquisition circuit, data communication with each flexible stretch sensor and inertial sensing unit;
手语识别系统,被设置成接收从所述柔性采集电路传输的传感数据,并据此判断手是否处于活动状态,以及在活动状态下,基于预先训练的第一识别模型识别输出手语动作。The sign language recognition system is configured to receive the sensory data transmitted from the flexible acquisition circuit, and judge whether the hand is in an active state accordingly, and recognize and output sign language actions based on the pre-trained first recognition model in the active state.
作为可选的实施例,所述柔性拉伸传感器为电阻型的柔性拉伸传感器,由第一基底层、第二基底层以及位于第一基底层、第二基底层之间的敏感材料层与可拉伸导线层构成,所述可拉伸导线层与敏感材料层电气连接。其中的敏感材料层为导电炭黑层。可拉伸导线层为Ecoflex材料与银纳米片以一定比例混合而制成的预定形状的导电聚合物。在一些实施例中,导电聚合物中的银纳米片的质量比为68%±1%。较少含量的银纳米片的导电能力过低,在较大拉伸下容易形成开路;而较大含量的银纳米片则在制备过程中难以搅拌混合,形成的泥状物过硬,难以在掩模版剥离后附着在基片上形成图案。因此,本发明优化的银纳米片的质量比可以在保证导电率的同时使得泥状物不过硬,易于图案化。As an optional embodiment, the flexible stretch sensor is a resistive flexible stretch sensor, which consists of a first base layer, a second base layer, and a sensitive material layer between the first base layer and the second base layer. The stretchable wire layer is formed, and the stretchable wire layer is electrically connected with the sensitive material layer. The sensitive material layer is a conductive carbon black layer. The stretchable wire layer is a predetermined shape conductive polymer made by mixing Ecoflex material and silver nanosheets in a certain ratio. In some embodiments, the mass ratio of the silver nanosheets in the conductive polymer is 68%±1%. The conductivity of silver nanosheets with a small content is too low, and it is easy to form an open circuit under a large stretch; while the silver nanosheets with a large content are difficult to stir and mix during the preparation process, and the formed mud is too hard to be exposed to the mask. After the template is peeled off, it is attached to the substrate to form a pattern. Therefore, the mass ratio of silver nanosheets optimized in the present invention can ensure electrical conductivity while making the slime not too hard and easy to pattern.
由此,本发明提出的可贴附柔性拉伸传感器轻薄柔软,同时具有良好的可贴附性,不需要其他辅助手段(如胶水、胶带等)即可良好地贴附手指关节的皮肤表面,不会对佩戴者造成不适感,不影响佩戴者本身的动作。Therefore, the attachable flexible tensile sensor proposed by the present invention is light, thin and soft, and has good attachability, and can be well attached to the skin surface of the finger joints without other auxiliary means (such as glue, tape, etc.), It will not cause discomfort to the wearer, and will not affect the wearer's own movements.
本发明实施例的可贴附柔性拉伸传感器可凭借材料本身的粘附力直接贴附在右手手指的第二关节处,一共有5个,贴附于手部的5根手指上。当手指弯曲时,关节处皮肤的拉伸带动传感器的拉伸动作,由于传感器轻薄柔软,弹性模量与人体皮肤接近,所以传感器可以在手指弯曲时仍保持较好贴附,佩戴者感受不到明显阻力。The attachable flexible stretch sensor of the embodiment of the present invention can be directly attached to the second joint of the right hand finger by virtue of the adhesive force of the material itself. There are 5 pieces in total, which are attached to the 5 fingers of the hand. When the finger is bent, the stretching of the skin at the joint drives the stretching action of the sensor. Since the sensor is light and soft, and its elastic modulus is close to that of human skin, the sensor can still maintain a good attachment when the finger is bent, and the wearer cannot feel it. Obvious resistance.
当传感器中的敏感材料层受到拉伸时,其中由导电炭黑形成的导电网络会部分断开,使其电阻显著增大;当拉伸被释放时,导电网络断开的部分又会恢复,所以其电阻也恢复。由此,手指弯曲的程度变化可实时地被转换成传感器电阻的变化。When the sensitive material layer in the sensor is stretched, the conductive network formed by the conductive carbon black will be partially disconnected, causing its resistance to increase significantly; when the stretch is released, the disconnected part of the conductive network will recover, So its resistance is also restored. Thus, changes in the degree of finger bending can be converted into changes in sensor resistance in real time.
作为可选的实施例,所述柔性拉伸传感器被设置成按照以下方式制成:As an optional embodiment, the flexible stretch sensor is configured to be made in the following manner:
步骤1、取一定厚度的亚克力板材,依照传感器形状将其切割成一定尺寸的基片;
步骤2、取50微米厚度的PI膜,切割出敏感材料层和可拉伸导线层的图案作为掩模版,并且切割成一定的尺寸;
步骤3、将基片置于匀胶机上,均匀地在基片上倾倒配置好的Ecoflex胶,并进行甩匀;
步骤4、将匀胶后的基片置于热板上,加热固化1小时,制备出第一基底层;Step 4, placing the uniformly glued substrate on a hot plate, heating and curing for 1 hour, and preparing the first base layer;
步骤5、将敏感材料层的掩模版与基片对准,使敏感材料层的PI膜贴附在固化的Ecoflex胶表面对应位置;
步骤6、将一定量的导电炭黑滚涂在被掩模版暴露出来的对应于敏感材料层位置的Ecoflex胶表面,反复多次,涂抹均匀;然后剥离敏感材料层的掩模版,基于Ecoflex胶和导电炭黑之间的作用力,导电炭黑则以所需的图案留在Ecoflex胶表面;Step 6. Roll-coat a certain amount of conductive carbon black on the surface of the Ecoflex adhesive corresponding to the position of the sensitive material layer exposed by the mask, repeat it several times, and apply it evenly; then peel off the mask of the sensitive material layer, based on Ecoflex adhesive and The force between the conductive carbon blacks, and the conductive carbon blacks stay on the surface of the Ecoflex glue in the desired pattern;
步骤7、将可拉伸导线层的掩模版与基片对准,使可拉伸导线层的PI膜贴附在固化的Ecoflex胶表面对应位置;Step 7. Align the mask plate of the stretchable wire layer with the substrate, so that the PI film of the stretchable wire layer is attached to the corresponding position on the surface of the cured Ecoflex glue;
步骤8、将Ecoflex材料与银纳米片混合而成的导电聚合物均匀涂抹在掩模版表面,可拉伸导线层对应的图案区域没有漏洞;Step 8. Apply the conductive polymer formed by mixing Ecoflex material and silver nanosheets evenly on the surface of the mask, and there is no hole in the pattern area corresponding to the stretchable wire layer;
步骤9、剥离可拉伸导线层的掩模版,导电聚合物以所需要的图案保留;Step 9, peeling off the mask plate of the stretchable wire layer, and the conductive polymer remains in the required pattern;
步骤10、取导电纺织线,并使用少量的导电聚合物将导电纺织线分别黏在每个可拉伸导线层的端部;
步骤11、将制备好第一基底层、敏感材料层和可拉伸导电层基片放在匀胶机上,再次均匀地布上第二层Ecoflex胶,封装器件;Step 11, put the prepared first base layer, sensitive material layer and stretchable conductive layer substrate on the glue spreader, spread the second layer of Ecoflex glue evenly again, and package the device;
步骤12、将基片置于热板上,加热固化1小时,制备出第二基底层,完成传感器制备。Step 12, placing the substrate on a hot plate, heating and curing for 1 hour, preparing a second base layer, and completing the sensor preparation.
作为可选的实施例,所述Ecoflex材料与银纳米片混合而成的导电聚合物,被设置成按照以下方式制备:As an optional embodiment, the conductive polymer formed by mixing the Ecoflex material with silver nanosheets is set to be prepared in the following manner:
将一定量的银纳米片、50ml乙醇、2ml去离子水混合磁力搅拌均匀,获得第一混合液;Mix a certain amount of silver nanosheets, 50ml ethanol, and 2ml deionized water with magnetic force and stir evenly to obtain the first mixed solution;
将一定量的0.01mol/L的碘化钾溶液滴入上述第一混合液中,继续搅拌,获得第二混合液;Drop a certain amount of 0.01mol/L potassium iodide solution into the first mixed solution, and continue stirring to obtain the second mixed solution;
将第二混合液真空抽滤,完成固液分离,并干燥;The second mixed solution is vacuum filtered to complete solid-liquid separation and dried;
将干燥后的银纳米片粉末在强光下暴露,以分解其中的碘化银;Expose the dried silver nanosheet powder to strong light to decompose the silver iodide therein;
将处理后的银纳米片粉末按照预设的质量比,与Ecoflex材料进行混合,完成导电聚合物的制备。The treated silver nanosheet powder is mixed with the Ecoflex material according to a preset mass ratio to complete the preparation of the conductive polymer.
作为可选的实施例,所述手语识别系统,被设置按照以下方式判断手是否处于活动状态:As an optional embodiment, the sign language recognition system is configured to determine whether the hand is active in the following manner:
接收5个柔性拉伸传感器按照预设采样周期T采集的第一传感数据,以及惯性传感单元的三轴加速度计按照预设采样周期T采样的第二传感数据;receiving the first sensing data collected by the five flexible tensile sensors according to the preset sampling period T, and the second sensing data sampled by the three-axis accelerometer of the inertial sensing unit according to the preset sampling period T;
对所述第一传感数据或者第二传感数据中的任意一项求导后的均方根超过预设的阈值,则判断处于活动状态,否则认为未处于活动状态。If the root-mean-square derivative of any one of the first sensing data or the second sensing data exceeds a preset threshold, it is judged to be in an active state; otherwise, it is deemed not to be in an active state.
作为可选的实施例,所述预先训练的第一识别模型被设置成基于卷积神经网络训练获得,其训练过程包括:As an optional embodiment, the pre-trained first recognition model is set to be obtained based on convolutional neural network training, and the training process includes:
在多种不同手语动作下,通过每个手指关节位置的柔性拉伸传感器以及手背位置的惯性传感单元分别监测手指弯曲和手的活动数据;然后将每个手语动作的监测数据进行数值和长度的标准化,建立手语动作的样本数据库;其中样本数据库中每一个手语动作对应监测数据的数值标准化是指将五个柔性拉伸传感器和惯性传感单元三个加速度计的输出数值分别进行标准化转换,长度标准化是指按照预定的时长范围进行标准化,获得200个采样点数据;Under a variety of different sign language actions, the flexible stretch sensor at the position of each finger joint and the inertial sensing unit at the back of the hand are used to monitor the finger bending and hand activity data respectively; The standardization of the sign language action sample database is established; the numerical standardization of the monitoring data corresponding to each sign language action in the sample database refers to the standardized conversion of the output values of the five flexible stretch sensors and the three accelerometers of the inertial sensing unit. Length standardization refers to standardization according to the predetermined time length range to obtain 200 sampling point data;
将样本数据库中每个样本对应的八个数据通道数据进行融合,形成包含了手指弯曲特征和手活动特征的8*200的矩阵;Fuse the eight data channel data corresponding to each sample in the sample database to form an 8*200 matrix including finger bending features and hand activity features;
将样本数据库按照80:20形成训练集和测试集;The sample database is formed into a training set and a test set according to 80:20;
以上述训练集作为训练数据,通过卷积神经网络训练用于手语动作识别的模型,并通过测试集进行测试验证,获得识别准确率达到预定水平的模型,作为所述第一识别模型。Using the above-mentioned training set as training data, train a model for sign language action recognition through a convolutional neural network, and conduct test verification through a test set to obtain a model with a recognition accuracy rate reaching a predetermined level as the first recognition model.
根据本发明目的的第二方面,还提出一种可穿戴式手语识别方法,包括以下过程:According to the second aspect of the purpose of the present invention, a wearable sign language recognition method is also proposed, including the following process:
步骤A、按照预设的采样周期T获取柔性拉伸传感器和惯性传感单元采集的监测数据;Step A, obtaining the monitoring data collected by the flexible tensile sensor and the inertial sensing unit according to the preset sampling period T;
步骤B、对柔性拉伸传感器和惯性传感单元采集的监测数据进行滤波处理;Step B, filtering the monitoring data collected by the flexible tensile sensor and the inertial sensing unit;
步骤C、根据柔性拉伸传感器和惯性传感单元采集的监测数据判断是否处于活动状态:Step C, judging whether it is in an active state according to the monitoring data collected by the flexible stretch sensor and the inertial sensing unit:
-响应于处于活动状态,则继续获取下一个采样周期T的监测数据,直到下一个非活动状态,记录该阶段的所有处于活动状态的监测数据,作为识别对象数据;- in response to being in an active state, continue to obtain the monitoring data of the next sampling period T until the next inactive state, and record all the monitoring data in the active state at this stage as the identification object data;
-响应于非活动状态,则放弃采样周期数据,并返回步骤A,继续获取下一个采样周期T的监测数据;- in response to the inactive state, abandon the sampling period data, and return to step A, and continue to obtain the monitoring data of the next sampling period T;
步骤D、判断所述识别对象数据的持续时间是否达到预设阈值时长:Step D. Judging whether the duration of the identified object data reaches a preset threshold duration:
-响应于未达到预设阈值时长,则放弃该段识别对象数据,并返回步骤A,,续获取下一个采样周期T的监测数据;- In response to not reaching the preset threshold duration, abandon the segment of identification object data, and return to step A, and continue to obtain the monitoring data of the next sampling period T;
-响应于达到预设阈值时长,则保留该段识别对象数据;- in response to reaching the preset threshold length of time, then retain the segment of identified object data;
步骤E、对保留的识别对象数据中对应五个柔性拉伸传感器和惯性传感单元三个加速度计的输出数值分别进行数值范围和长度的标准化处理,获得标准后的八个数据通道数据;将标准化处理后的八个数据通道数据进行融合,形成包含了手指弯曲特征和手活动特征的8*200的矩阵;Step E, standardize the value range and length of the output values corresponding to the five flexible stretch sensors and the three accelerometers of the inertial sensing unit in the retained identification object data, and obtain eight data channel data after standardization; The data of the eight data channels after standardized processing are fused to form an 8*200 matrix including finger bending features and hand activity features;
步骤F、将包含了手指弯曲特征和手活动特征的8*200的矩阵输入所述预先训练的第一识别模型进行手语动作识别,输出对应的手语动作识别结果。Step F: Input the 8*200 matrix including finger bending features and hand movement features into the pre-trained first recognition model for sign language action recognition, and output the corresponding sign language action recognition results.
应当理解,前述构思以及在下面更加详细地描述的额外构思的所有组合只要在这样的构思不相互矛盾的情况下都可以被视为本公开的发明主题的一部分。另外,所要求保护的主题的所有组合都被视为本公开的发明主题的一部分。It should be understood that all combinations of the foregoing concepts, as well as additional concepts described in more detail below, may be considered part of the inventive subject matter of the present disclosure, provided such concepts are not mutually inconsistent. Additionally, all combinations of claimed subject matter are considered a part of the inventive subject matter of this disclosure.
结合附图从下面的描述中可以更加全面地理解本发明教导的前述和其他方面、实施例和特征。本发明的其他附加方面例如示例性实施方式的特征和/或有益效果将在下面的描述中显见,或通过根据本发明教导的具体实施方式的实践中得知。The foregoing and other aspects, embodiments and features of the present teachings can be more fully understood from the following description when taken in conjunction with the accompanying drawings. Other additional aspects of the invention, such as the features and/or advantages of the exemplary embodiments, will be apparent from the description below, or learned by practice of specific embodiments in accordance with the teachings of the invention.
附图说明Description of drawings
附图不意在按比例绘制。在附图中,在各个图中示出的每个相同或近似相同的组成部分可以用相同的标号表示。为了清晰起见,在每个图中,并非每个组成部分均被标记。现在,将通过例子并参考附图来描述本发明的各个方面的实施例。The figures are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures may be represented by a like reference numeral. For purposes of clarity, not every component may be labeled in every drawing. Embodiments of various aspects of the invention will now be described by way of example and with reference to the accompanying drawings.
图1是本发明实施例的可穿戴式手语识别系统的原理示意图。FIG. 1 is a schematic diagram of the principle of a wearable sign language recognition system according to an embodiment of the present invention.
图2是本发明实施例的可穿戴式手语识别系统的穿戴效果示意图。Fig. 2 is a schematic diagram of the wearing effect of the wearable sign language recognition system according to the embodiment of the present invention.
图3是本发明实施例的可穿戴式手语识别系统的柔性拉伸传感器的示意图。Fig. 3 is a schematic diagram of a flexible stretch sensor of a wearable sign language recognition system according to an embodiment of the present invention.
图4a~4c分别是本发明实施例的柔性拉伸传感器的测试数据,其中4a为拉伸-释放的滞回曲线;4b为不同拉伸程度下的反复测试;4c为2000次循环拉伸释放的耐久度测试。Figures 4a to 4c are the test data of the flexible tensile sensor of the embodiment of the present invention, in which 4a is the stretch-release hysteresis curve; 4b is repeated tests under different stretching degrees; 4c is 2000 cycles of stretch release durability test.
图5是本发明实施例采用不同银纳米片重量占比的导电聚合物电阻率的曲线图。FIG. 5 is a graph of resistivity of conductive polymers with different weight ratios of silver nanosheets according to an embodiment of the present invention.
图6是本发明实施例的柔性采集电路的系统原理图。Fig. 6 is a system schematic diagram of the flexible acquisition circuit of the embodiment of the present invention.
图7是本发明实施例的柔性采集电路中电阻-电压转换电路(即图中R-V转换器)的电路原理图。Fig. 7 is a schematic circuit diagram of the resistance-voltage conversion circuit (ie, the R-V converter in the figure) in the flexible acquisition circuit of the embodiment of the present invention.
图8是本发明实施例中所采集的传感器数据波形的示意图。Fig. 8 is a schematic diagram of sensor data waveforms collected in an embodiment of the present invention.
图9是本发明实施例的可穿戴式手语识别方法的流程示意图。Fig. 9 is a schematic flowchart of a wearable sign language recognition method according to an embodiment of the present invention.
图10是本发明实施例的10个不同的手语单词样本的数据波形示意图。Fig. 10 is a schematic diagram of data waveforms of 10 different sign language word samples according to the embodiment of the present invention.
图中各个附图标记的定义如下:The definition of each reference sign in the figure is as follows:
101-柔性拉伸传感器,102-惯性传感单元,103-柔性采集电路,104-手语识别系统;101-flexible tensile sensor, 102-inertial sensing unit, 103-flexible acquisition circuit, 104-sign language recognition system;
201-基底,202-敏感材料层,203-可拉伸导线层,204-导电纺织线。201-substrate, 202-sensitive material layer, 203-stretchable wire layer, 204-conductive textile thread.
具体实施方式Detailed ways
为了更了解本发明的技术内容,特举具体实施例并配合所附图式说明如下。In order to better understand the technical content of the present invention, specific embodiments are given together with the attached drawings for description as follows.
在本公开中参照附图来描述本发明的各方面,附图中示出了许多说明的实施例。本公开的实施例不必定意在包括本发明的所有方面。应当理解,上面介绍的多种构思和实施例,以及下面更加详细地描述的那些构思和实施方式可以以很多方式中任意一种来实施,这是因为本发明所公开的构思和实施例并不限于任何实施方式。另外,本发明公开的一些方面可以单独使用,或者与本发明公开的其他方面的任何适当组合来使用。Aspects of the invention are described in this disclosure with reference to the accompanying drawings, which show a number of illustrated embodiments. Embodiments of the present disclosure are not necessarily intended to include all aspects of the invention. It should be appreciated that the various concepts and embodiments described above, as well as those described in more detail below, can be implemented in any of numerous ways, since the concepts and embodiments disclosed herein are not limited to any implementation. In addition, some aspects of the present disclosure may be used alone or in any suitable combination with other aspects of the present disclosure.
{可穿戴式手语识别系统}{Wearable Sign Language Recognition System}
结合图1、2所示的实施例的可穿戴式手语识别系统,包括贴附于人体每个手指的关节位置、用于监测手指的弯曲运动的柔性拉伸传感器,以及贴附于手背位置、用于监测手在空间中的运动的惯性传感单元。由此,融合多个传感器的传感组件具有多个维度的传感能力,不仅可以对手指关节的弯曲进行传感,也可以对手腕、手臂在空间中的运动进行传感,提高手语感知能力。The wearable sign language recognition system combined with the embodiment shown in Figures 1 and 2 includes a flexible stretch sensor attached to the joint position of each finger of the human body for monitoring the bending movement of the finger, and attached to the back of the hand, Inertial sensing unit for monitoring the movement of the hand in space. As a result, the sensing component fused with multiple sensors has multi-dimensional sensing capabilities, which can not only sense the bending of finger joints, but also sense the movement of wrists and arms in space, improving sign language perception .
如图1、2所示实施例的可穿戴式手语识别系统还包括柔性采集电路,其采集每个柔性拉伸传感器以及惯性传感单元的数据。The wearable sign language recognition system of the embodiment shown in Figures 1 and 2 also includes a flexible acquisition circuit, which acquires data from each flexible stretch sensor and inertial sensing unit.
手语识别系统,被设置成接收从所述柔性采集电路传输的传感数据,并据此判断手是否处于活动状态,以及在活动状态下,基于预先训练的第一识别模型识别输出手语动作。The sign language recognition system is configured to receive the sensory data transmitted from the flexible acquisition circuit, and judge whether the hand is in an active state accordingly, and recognize and output sign language actions based on the pre-trained first recognition model in the active state.
在一些实施例中,手语识别系统被设置成基于计算机系统实现,例如包括但不限于嵌入式计算机系统、桌上型/膝上型计算机系统、云端计算机系统等,他们通常可根据不同的应用场景和需求被配置,例如包括但不限于以下形式:与柔性采集电路集成;与柔性采集电路物理上分离并位于人体表面(例如手部、腕部、手臂部、胸部、头部等);与柔性采集电路物理上分离并且与人体分离;布置于云端服务器等。In some embodiments, the sign language recognition system is configured to be implemented based on a computer system, such as including but not limited to an embedded computer system, a desktop/laptop computer system, a cloud computer system, etc. And requirements are configured, for example, including but not limited to the following forms: integrated with flexible acquisition circuits; physically separated from flexible acquisition circuits and located on the surface of the human body (such as hands, wrists, arms, chest, head, etc.); The acquisition circuit is physically separated and separated from the human body; it is arranged on a cloud server, etc.
在一些实施例中,计算机系统通常具有数据通信接口模块、存储器以及处理器。数据接口模块用于实现数据通信,例如以无线(例如蓝牙、wifi等方式)或者有线通信的方式与柔性拉伸传感器、惯性传感单元进行数据交互,获得监测数据,并存储在存储器内。存储器尤其可采用非易失性存储器,与处理器之间通过数据总线实现数据的读取和写入。处理器用于读取监测数据并执行预设的计算机程序,实现对手语动作的识别和输出。In some embodiments, a computer system generally has a data communication interface module, a memory, and a processor. The data interface module is used to realize data communication, such as performing data interaction with the flexible tensile sensor and the inertial sensing unit in a wireless (such as bluetooth, wifi, etc.) or wired communication mode to obtain monitoring data and store it in the memory. In particular, the memory can be a non-volatile memory, and data can be read and written between the processor and the processor through a data bus. The processor is used to read the monitoring data and execute preset computer programs to realize the recognition and output of sign language actions.
在可选的实施例中,计算机系统还配置有用于向用于表征识别结果的模块,例如声音和/或可视表征模块,尤其是可被驱动发声的扬声器、可被驱动显示识别结果的显示屏模块。In an optional embodiment, the computer system is further configured with a module for characterizing the recognition result, such as an audio and/or visual characterizing module, especially a speaker that can be driven to produce sound, a display that can be driven to display the recognition result screen module.
柔性拉伸传感器flexible stretch sensor
在本发明的实施例中,图3示例性的表示了柔性拉伸传感器的示意图,其尤其可采用电阻型的柔性拉伸传感器,贴附于手指的第二关节位置,用以监测手指的弯曲运动。In an embodiment of the present invention, FIG. 3 exemplarily shows a schematic diagram of a flexible stretch sensor, which can especially adopt a resistive flexible stretch sensor attached to the second joint position of the finger to monitor the bending of the finger. sports.
柔性拉伸传感器可采用“三明治”结构形式,即两个基底201以及位于两个基底之间的敏感材料层202与可拉伸导线层203构成。在图3的示例中,柔性拉伸传感器由第一基底层(即下基底Ecoflex)、第二基底层(即上基底Ecoflex)以及位于第一基底层、第二基底层之间的敏感材料层202与可拉伸导线层203构成。可拉伸导线层203与敏感材料层202连接。The flexible stretch sensor can adopt a "sandwich" structure, that is, two
基底201作为传感器的载体和封装,承载和保护传感器内部组件。在可选的实施例中,基底201可选择具有低弹性模量和良好生物相容性的材料,例如Ecoflex材料,本发明的实施例中选择00-30材料,具有与人体皮肤相当的弹性模量。由此,可贴附的柔性拉伸传感器轻薄柔软,具有良好的可贴附性,不需要其他辅助手段(如胶水、胶带等)即可良好地贴附在人体皮肤表面。The
敏感材料层202为导电炭黑层,采用导电炭黑材料制备成型,例如ECP600JD导电炭黑。作为产生传感信号的核心,导电炭黑层的电阻会随着拉伸而变化。The
连接敏感材料层和外部电路的可拉伸导线203为Ecoflex材料和银纳米片以一定比例混合而成的导电聚合物,制成预定形状的导电聚合物,例如条状。本发明所采用的可拉伸导线203具有柔性、可拉伸、导电性好的优点,在较大拉伸下仍具有较好的导电性,起到引出敏感材料层并隔离敏感材料层与外部物理接触的作用。The
结合图3所示,柔性拉伸传感器101的导电纺织线204作为可拉伸导线的末端向外引出的导线,它在Ecoflex材料的封装之外,方便传感器与外部电路连接。As shown in FIG. 3 , the
结合图2、3所示的,本发明提出的三明治”结构的柔性拉伸传感器101,可以凭借基底材料本身的粘附力直接贴附在手指的第二关节处,对应五个手指配置五个柔性拉伸传感器101。图2的示例中,以贴附于右手的5根手指为例。As shown in Figures 2 and 3, the flexible
当手指弯曲时,关节处皮肤的拉伸带动了柔性拉伸传感器101的拉伸,由于柔性拉伸传感器101轻薄柔软,弹性模量与人体皮肤相当,所以柔性拉伸传感器101可以在手指弯曲时仍保持较好贴附,佩戴者感受不到明显阻力。When the finger is bent, the stretching of the skin at the joint drives the stretching of the
当柔性拉伸传感器101中的敏感材料层(例如导电炭黑层)部分受到拉伸时,其中由导电炭黑形成的导电网络会部分断开,使其电阻显著增大;当拉伸被释放时,导电网络断开的部分又会恢复,所以其电阻也恢复。由此,手指弯曲的程度变化就可以被转换成传感器电阻的变化。When the sensitive material layer (such as the conductive carbon black layer) in the flexible
柔性拉伸传感器的制备Fabrication of Flexible Stretch Sensors
在本发明公开的实施例提出一种针对上述柔性拉伸传感器的制备工艺,其包括以下过程:The embodiment disclosed in the present invention proposes a preparation process for the above-mentioned flexible stretch sensor, which includes the following process:
步骤1、取一定厚度的亚克力板材,依照传感器形状将其切割成一定尺寸的基片;
步骤2、取50微米厚度的PI膜,切割出敏感材料层和可拉伸导线层的图案作为掩模版,并且切割成一定的尺寸;
步骤3、将基片置于匀胶机上,均匀地在基片上倾倒配置好的Ecoflex胶,并进行甩匀;
步骤4、将匀胶后的基片置于热板上,加热固化1小时,制备出第一基底层;Step 4, placing the uniformly glued substrate on a hot plate, heating and curing for 1 hour, and preparing the first base layer;
步骤5、将敏感材料层的掩模版与基片对准,使敏感材料层的PI膜贴附在固化Ecoflex胶表面对应位置;
步骤6、将一定量的导电炭黑滚涂在被掩模版暴露出来的对应于敏感材料层位置的Ecoflex胶表面,反复多次,涂抹均匀;然后剥离敏感材料层的掩模版,基于Ecoflex胶和导电炭黑之间的作用力,导电炭黑则以所需的图案留在Ecoflex胶表面;Step 6. Roll-coat a certain amount of conductive carbon black on the surface of the Ecoflex adhesive corresponding to the position of the sensitive material layer exposed by the mask, repeat it several times, and apply it evenly; then peel off the mask of the sensitive material layer, based on Ecoflex adhesive and The force between the conductive carbon blacks, and the conductive carbon blacks stay on the surface of the Ecoflex glue in the desired pattern;
步骤7、将可拉伸导线层的掩模版与基片对准,使可拉伸导线层的PI膜贴附在固化的Ecoflex胶表面对应位置;Step 7. Align the mask plate of the stretchable wire layer with the substrate, so that the PI film of the stretchable wire layer is attached to the corresponding position on the surface of the cured Ecoflex glue;
步骤8、将Ecoflex材料与银纳米片混合而成的导电聚合物均匀涂抹在掩模版表面,可拉伸导线层对应的图案区域没有漏洞;Step 8. Spread the conductive polymer formed by mixing Ecoflex material and silver nanosheets evenly on the surface of the mask, and there is no hole in the pattern area corresponding to the stretchable wire layer;
步骤9、剥离可拉伸导线层的掩模版,导电聚合物以所需要的图案保留;Step 9, peeling off the mask plate of the stretchable wire layer, and the conductive polymer remains in the required pattern;
步骤10、取导电纺织线,并使用少量的导电聚合物将导电纺织线分别黏在每个可拉伸导线层的端部;
步骤11、将制备好第一基底层、敏感材料层和可拉伸导电层基片放在匀胶机上,再次均匀地布上第二层Ecoflex胶,封装器件;Step 11, put the prepared first base layer, sensitive material layer and stretchable conductive layer substrate on the glue spreader, spread the second layer of Ecoflex glue evenly again, and package the device;
步骤12、将基片置于热板上,加热固化1小时,制备出第二基底层,完成传感器制备。Step 12, placing the substrate on a hot plate, heating and curing for 1 hour, preparing a second base layer, and completing the sensor preparation.
据此,本实例采用上述工艺在2cm*6cm的基片上制备一个柔性拉伸传感器的过程包括:Accordingly, the process of preparing a flexible stretch sensor on a 2cm*6cm substrate using the above-mentioned process in this example includes:
1)取3mm厚的亚克力板材,依照传感器形状用激光切割机切割成2cm*6cm的基片;1) Take a 3mm thick acrylic sheet and cut it into a 2cm*6cm substrate with a laser cutting machine according to the shape of the sensor;
2)取50微米左右的PI膜,用激光切割机切出敏感材料层和可拉伸导线层的图案作为掩模版,并且也切割成2cm*6cm的尺寸;2) Take a PI film of about 50 microns, use a laser cutting machine to cut out the pattern of the sensitive material layer and the stretchable wire layer as a mask, and also cut it into a size of 2cm*6cm;
3)取适量EcoflexA胶+B胶,混合后,在真空中抽去气泡,一般抽气5min时间,获得待用的Ecoflex胶;3) Take an appropriate amount of EcoflexA glue + B glue, and after mixing, remove the air bubbles in a vacuum, usually for 5 minutes, to obtain the Ecoflex glue to be used;
4)将基片置于匀胶机上,均匀地在基片上倾倒上适量配置好的Ecoflex胶;以1000rpm左右的转速转20s,将基片上的Ecoflex胶甩匀,这样一层Ecoflex的厚度在几十微米水平,使得传感器足够轻薄;4) Place the substrate on the glue leveler, and evenly pour an appropriate amount of Ecoflex glue on the substrate; rotate at a speed of about 1000rpm for 20s, and shake the Ecoflex glue on the substrate evenly, so that the thickness of a layer of Ecoflex is several The level of ten microns makes the sensor thin enough;
5)将基片置于热板上,以70℃加热固化1小时;5) Place the substrate on a hot plate, heat and cure at 70°C for 1 hour;
6)将敏感材料层的掩模版与基片对准,使PI贴附在Ecoflex表面,并使图案处在正确的位置;6) Align the mask plate of the sensitive material layer with the substrate, so that PI is attached to the surface of Ecoflex, and the pattern is in the correct position;
7)用棉签蘸取少量炭黑,滚涂在被掩模版暴露出来的Ecoflex表面,反复多次,涂抹均匀。剥离PI掩模版,由于Ecoflex和炭黑之间较强的作用力,炭黑粉末则以所需的图案留在Ecoflex表面;7) Dip a small amount of carbon black with a cotton swab, and roll it on the surface of Ecoflex exposed by the mask, repeat it several times, and apply it evenly. Peel off the PI mask, and due to the strong force between Ecoflex and carbon black, the carbon black powder stays on the surface of Ecoflex in the desired pattern;
8)与步骤5)类似,将可拉伸导线层的掩模版与基片对准;8) Similar to step 5), align the mask plate of the stretchable wire layer with the substrate;
9)将Ecoflex与银纳米片混合而成的导电聚合物均匀涂抹在掩模版表面,确保图案区域没有漏洞;9) Evenly spread the conductive polymer made of Ecoflex and silver nanosheets on the surface of the mask to ensure that there are no holes in the pattern area;
10)剥离PI掩模版,由于导电聚合物本身的粘性,它也以所需要的图案得以保留;10) Peel off the PI mask, it is also retained in the required pattern due to the viscosity of the conductive polymer itself;
11)取两段5cm左右的导电纺织线,用少量导电聚合物分别粘连在可拉伸导线的两端,用万用表在两端的纺织线上测试传感器是否已经导通;若不导通则说明在制作过程中已经出现失误,需要重新制备;如果导通,则表明制备合格;11) Take two sections of conductive textile thread of about 5cm, and use a small amount of conductive polymer to adhere to the two ends of the stretchable wire respectively, and use a multimeter to test whether the sensor has been conducted on the textile thread at both ends; Mistakes have occurred during the production process and need to be re-prepared; if it is turned on, it indicates that the preparation is qualified;
12)将基片放在匀胶机上,在此匀上第二层的Ecoflex胶,封装器件;12) Put the substrate on the glue spreader, spread the second layer of Ecoflex glue here, and package the device;
13)将基片置于热板上,以70℃加热固化1小时;13) Place the substrate on a hot plate, heat and cure at 70°C for 1 hour;
14)固化完成后,将传感器从亚克力基片上剥离下来。14) After the curing is completed, the sensor is peeled off from the acrylic substrate.
至此,完成本发明提出的柔性拉伸传感器的制备。So far, the preparation of the flexible stretch sensor proposed by the present invention is completed.
作为可选的示例,其中使用的Ecoflex材料与银纳米片混合而成的导电聚合物,可采用以下方式制备:As an optional example, the conductive polymer in which Ecoflex material is mixed with silver nanosheets can be prepared in the following way:
将一定量的银纳米片、50ml乙醇、2ml去离子水混合磁力搅拌均匀,获得第一混合液;Mix a certain amount of silver nanosheets, 50ml ethanol, and 2ml deionized water with magnetic force and stir evenly to obtain the first mixed solution;
将一定量的0.01mol/L的碘化钾溶液滴入上述第一混合液中,继续搅拌,获得第二混合液;Drop a certain amount of 0.01mol/L potassium iodide solution into the first mixed solution, and continue stirring to obtain the second mixed solution;
将第二混合液真空抽滤,完成固液分离,并干燥;The second mixed solution is vacuum filtered to complete solid-liquid separation and dried;
将干燥后的银纳米片粉末在强光下暴露,以分解其中的碘化银;Expose the dried silver nanosheet powder to strong light to decompose the silver iodide therein;
将处理后的银纳米片粉末按照预设的质量比与Ecoflex材料混合,完成导电聚合物的制备。The processed silver nanosheet powder is mixed with the Ecoflex material according to a preset mass ratio to complete the preparation of the conductive polymer.
据此,我们采用上述工艺制备所需要的导电聚合物,具体步骤如下:Accordingly, we use the above process to prepare the required conductive polymer, the specific steps are as follows:
1)将2g商用银纳米片,50ml乙醇,2ml去离子水混合磁力搅拌1小时;1) Mix 2g of commercial silver nanosheets, 50ml of ethanol, and 2ml of deionized water with magnetic stirring for 1 hour;
2)配制适量0.01mol/L的碘化钾溶液;2) Prepare an appropriate amount of potassium iodide solution of 0.01mol/L;
3)步骤1)的磁力搅拌完成后,将5ml碘化钾溶液滴入上述混合液中,继续搅拌30min,待反应充分完成;3) After the magnetic stirring in step 1) is completed, drop 5ml of potassium iodide solution into the above-mentioned mixed solution, and continue to stir for 30min until the reaction is fully completed;
4)搅拌完成后,取将混合液真空抽滤,完成固液分离,并干燥;4) After the stirring is completed, vacuum filter the mixed solution to complete solid-liquid separation and dry;
5)将干燥后的银纳米片粉末在强光下暴露,以分解其中的碘化银;5) exposing the dried silver nanosheet powder to strong light to decompose the silver iodide therein;
6)准备适量Ecoflex胶,将处理后的银纳米片粉末与Ecoflex混合,银纳米片粉末的质量占比为68%±1%,由此完成导电聚合物的制备。6) Prepare an appropriate amount of Ecoflex glue, mix the treated silver nanosheet powder with Ecoflex, the mass ratio of the silver nanosheet powder is 68%±1%, and thus complete the preparation of the conductive polymer.
银纳米片是的优良导电填料。然而,商用银纳米片表面通常覆盖一层润滑剂,以防止加工过程中的冷焊。该润滑剂层通常以长链脂肪酸银盐的形式阻碍相邻银片之间的导电。商用银纳米片首先被碘化钾处理,将表面润滑剂和氧化银转化为碘化银,碘化银随后在光下分解,形成银纳米颗粒。由于去除了表面润滑剂,这些银纳米片的导电性被大大增强。Silver nanosheets are excellent conductive fillers. However, the surface of commercial silver nanosheets is usually covered with a layer of lubricant to prevent cold welding during processing. This lubricant layer typically hinders electrical conduction between adjacent silver flakes in the form of long-chain fatty acid silver salts. Commercially available silver nanosheets are first treated with potassium iodide, which converts the surface lubricant and silver oxide into silver iodide, which is then decomposed under light to form silver nanoparticles. Due to the removal of the surface lubricant, the electrical conductivity of these silver nanosheets was greatly enhanced.
对上述的银纳米片粉末与Ecoflex的混合比进一步加以说明:由于使Ecoflex导电需要加入占比较大的银纳米片粉末,使得Ecoflex被银纳米片分散,无法如纯的Ecoflex一样固化成型,呈现泥状。较少含量的银纳米片导电能力过低,在较大拉伸下容易导致开路;而较大含量的银纳米片则难以搅拌混合,形成的泥状物过硬,且难以在掩模版剥离后附着在基片上形成图案。图5显示了不同的银纳米片重量占比所制备的导电聚合物的电阻率,本发明选择适当的68%±1%质量比的银纳米片,可以在保证导电率的同时使得泥状物不过硬,易于图案化。The above-mentioned mixing ratio of silver nanosheet powder and Ecoflex is further explained: due to the need to add a large proportion of silver nanosheet powder to make Ecoflex conductive, Ecoflex is dispersed by silver nanosheets and cannot be solidified and formed like pure Ecoflex. shape. A small amount of silver nanosheets has too low electrical conductivity, and it is easy to cause an open circuit under a large stretch; while a large amount of silver nanosheets is difficult to stir and mix, and the formed mud is too hard, and it is difficult to attach after the mask is peeled off. A pattern is formed on the substrate. Fig. 5 has shown the electrical resistivity of the prepared conducting polymer of different silver nanosheet weight proportions, and the present invention selects the silver nanosheet of appropriate 68% ± 1% mass ratio, can make mud-like thing Not too rigid, easy to pattern.
图4a-4c示例性地表示对所制备的柔性拉伸传感器201的测试结果。在本发明的实施例中,使用线性位移台对制备的传感器的性能进行测试,包括灵敏度、线性度和可重复性耐久度。结合图4a-4c所示:4a为拉伸-释放的滞回曲线,显示出灵敏度GF值约为4,滞回较小,线性度良好;4b为不同拉伸程度下的反复测试,表明在不同程度的拉伸测试下都显示出良好的重复性;4c为2000次循环拉伸释放的耐久度测试,从测试结果可见,2000次循坏测试后传感器工作依旧稳定。4a-4c exemplarily show the test results of the fabricated
惯性传感单元Inertial Sensing Unit
在本发明的实施例中,惯性传感单元102贴附于手背处,选用了商用的惯性传感器,其包含了三轴加速度计,可以感知手在空间内的运动过程中,三个轴向加速度的变化,输出监测数据。In the embodiment of the present invention, the
作为可选的实施例,惯性传感单元102采用商用的MPU9250传感器,并使用其中三个加速度计的功能,通过I2C接口与柔性采集电路相连,实现数据通信。As an optional embodiment, the
应当理解,商用的MPU9250传感器内部集成有3轴陀螺仪、3轴加速度计和3轴磁力计,静态测量精度高。在本发明的实施例中只使用了MPU9250的3轴加速度计的传感数据,并通过I2C接口与柔性采集电路进行连接和数据通信,例如柔性采集电路的MCU可以通过I2C接口访问MPU9250内部的寄存器来获取数据。It should be understood that the commercial MPU9250 sensor integrates a 3-axis gyroscope, a 3-axis accelerometer, and a 3-axis magnetometer, and has high static measurement accuracy. In the embodiment of the present invention, only the sensing data of the 3-axis accelerometer of the MPU9250 is used, and the connection and data communication with the flexible acquisition circuit are carried out through the I2C interface. For example, the MCU of the flexible acquisition circuit can access the internal registers of the MPU9250 through the I2C interface to get the data.
柔性采集电路Flexible Acquisition Circuit
在本发明的实施例中,柔性采集电路103,用于采集上述多个传感器的信号数据(即5个柔性拉伸传感器和惯性传感单元102的三个加速度计输出的8个通道的信号数据),并进行预处理之后,发送至计算机系统进行后续的识别处理。In an embodiment of the present invention, the
作为可选的实施例,柔性采集电路103用于实现对传感信号的转换、采集、滤波和传输处理。如图6所示的柔性采集电路103包括:1)传感器的接口,便于各个传感器(惯性传感单元和柔性拉伸传感器)连接,实现数据通信;2)电阻-电压转换电路(即图6中的R-V转换器),把柔性拉伸传感器的电阻的变化转化成电压变化,便于数模转换器采集;结合图7,电阻-电压转换电路包括了对柔性拉伸传感器输出信号的滤波功能,采用一阶RC低通滤波器电路对信号滤波;3)微控制器(MCU)模块,包含数模转换,数据传输等功能,实现了对数据采集、传输的控制,其中也包含了数字滤波器,完成对数字信号滤波所需要的运算;MCU选择乐鑫公司的ESP32;4)电源模块,将电池或外部供电所提供的电压转换成各模块所需要的电压,提供各模块正常工作所需的电能。As an optional embodiment, the
应当理解,柔性采集电路103的数字滤波电路用于对加速度计信号进行滤波,采用卡尔曼滤波算法实现。由于从惯性传感单元中获取的加速度原始数据很容易受到震动的影响,容易包含较大噪声,不利于后续对数据的分析,所以在本发明的实施例中采用卡尔曼滤波算法对加速度计的数据进行滤波。卡尔曼滤波是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于滤波算法是时域的算法,并且当前滤波的结果可以仅仅依赖于上一次的结果和目前的测量值,具有计算量少,无需历史数据缓存的优点,所以在本发明的实施例中滤波效果良好。It should be understood that the digital filter circuit of the
结合图6所示,每一个通道的柔性拉伸传感器均对应配置了一个电阻-电压转换电路(即图6中的R-V转换器),把可贴附柔性拉伸传感器电阻的变化转化成电压变化,便于数模转换器采集。同时,如图7所示,电阻-电压转换电路还包括了对可贴附的柔性拉伸传感器的输出信号的RC滤波处理。As shown in Figure 6, each channel of the flexible stretch sensor is equipped with a resistance-voltage conversion circuit (that is, the R-V converter in Figure 6), which converts the change in the resistance of the attachable flexible stretch sensor into a voltage change , which is convenient for digital-to-analog converter acquisition. Meanwhile, as shown in FIG. 7 , the resistance-voltage conversion circuit also includes RC filter processing for the output signal of the attachable flexible tensile sensor.
结合图7所示的电阻-电压转换电路,其使用同向比例放大电路实现,可以实现对电阻转电压的线性转换。可贴附的柔性拉伸传感器作为反馈电阻接入电路,电路的输出电压如下:Combined with the resistance-to-voltage conversion circuit shown in FIG. 7 , it is realized by using a non-inverting proportional amplification circuit, which can realize the linear conversion of resistance to voltage. The attachable flexible stretch sensor is connected to the circuit as a feedback resistor, and the output voltage of the circuit is as follows:
接下来,信号经过一个一阶RC低通滤波器滤除高频噪声,该滤波器的截止频率为:Next, the signal passes through a first-order RC low-pass filter to filter out high-frequency noise. The cut-off frequency of the filter is:
由于需要检测的手指运动的信号带宽很低,为了滤除绝大部电磁干扰,本实例中将截止频率设置为100Hz。Since the signal bandwidth of the finger movement to be detected is very low, in order to filter out most of the electromagnetic interference, the cutoff frequency is set to 100Hz in this example.
由于有5个拉伸传感器,所以需要5组如图7所示的电阻-电压转换电路,可以使用LMV324四运放和LMV321单运放组合实现。Since there are 5 stretch sensors, 5 sets of resistance-voltage conversion circuits as shown in Figure 7 are required, which can be realized by using the combination of LMV324 four-op amp and LMV321 single-op amp.
如图7所示的电阻-电压转换电路中,电阻R1和R2通过分压VCC产生Vref,其取值使得Vref为0.5V左右即可。为保证信号在合理的动态范围,Rref的取值可为Rsensor初始值的2-3倍。本发明的柔性拉伸传感器的初始电阻为20k左右,所以Rref可取40k-60k。对于低通滤波器部分,电阻R、电容C可分别取16k和0.1μF,使截止频率接近100Hz。运放可选用LMV324或LMV321通用运放,其低压、轨对轨的特性适合于本发明实例。In the resistance-to-voltage conversion circuit shown in FIG. 7 , resistors R1 and R2 generate Vref by dividing the voltage of VCC, and the value of Vref is only about 0.5V. In order to ensure that the signal is in a reasonable dynamic range, the value of Rref can be 2-3 times the initial value of Rsensor. The initial resistance of the flexible tensile sensor of the present invention is about 20k, so Rref may be 40k-60k. For the low-pass filter part, the resistor R and the capacitor C can be 16k and 0.1μF respectively, so that the cut-off frequency is close to 100Hz. The op-amp can be LMV324 or LMV321 general-purpose op-amp, and its low-voltage, rail-to-rail characteristics are suitable for the examples of the present invention.
在本发明的实施例中,柔性采集电路103的MCU在工作时,其典型的处理流程包括:In an embodiment of the present invention, when the MCU of the
1)初始化外设、定时器、滤波器参数;1) Initialize peripherals, timers, and filter parameters;
2)等待定时器中断触发;2) Wait for the timer interrupt trigger;
3)定时器中断触发后,使用ADC采集5个拉伸传感器数据,I2C接口采集MPU9250的三轴加速度的数据;3) After the timer interrupt is triggered, use the ADC to collect the data of 5 tensile sensors, and the I2C interface to collect the data of the three-axis acceleration of the MPU9250;
4)使用卡尔曼滤波器对加速度计输出的数据进行滤波;4) Use a Kalman filter to filter the data output by the accelerometer;
5)将数据发送给上位的计算机系统;5) Send the data to the upper computer system;
6)回到步骤2)6) Go back to step 2)
在本发明的实施例中,定时器采用MCU内部提供的硬件定时器,它可以按照设定的时间周期性地触发相应地中断服务程序,整个系统的采样率由它决定。出于对数据量和数据还原度的综合考虑,将采样率设定在100Hz,这样可以使上位机的数据处理量不过大,又可以对手语动作有比较好的还原。In the embodiment of the present invention, the timer adopts the hardware timer provided inside the MCU, which can periodically trigger the corresponding interrupt service routine according to the set time, and the sampling rate of the whole system is determined by it. In consideration of the amount of data and the degree of data restoration, the sampling rate is set at 100Hz, so that the data processing capacity of the host computer is not too large, and the sign language movements can be restored better.
对于发送数据给作为上位机的计算机系统的方式,可选择有线或无线的方式。有线通过串口转USB的方式与PC相连,无线则可以通过蓝牙、WiFi等传输协议的方式实现。For the way of sending data to the computer system as the host computer, wired or wireless way can be selected. The wired connection is connected to the PC through serial port to USB, and the wireless connection can be realized through transmission protocols such as Bluetooth and WiFi.
MCU还应配备有程序下载电路,便于对程序进行调整和测试。本发明的实例中选用cp2102USB转串口芯片,支持MCU的程序下载。The MCU should also be equipped with a program download circuit, which is convenient for adjusting and testing the program. In the example of the present invention, the cp2102USB-to-serial port chip is selected to support the program download of the MCU.
手语识别系统Sign Language Recognition System
如图8所示为采用本发明配置的柔性拉伸传感器201以及惯性传感单元202所采集的波形的示意。在本发明的实施例中,手语识别系统204被设置按照以下方式判断手是否处于活动状态:FIG. 8 is a schematic diagram of waveforms collected by the flexible
接收5个柔性拉伸传感器按照预设采样周期T采集的第一传感数据,以及惯性传感单元的三轴加速度计按照预设采样周期T采样的第二传感数据;receiving the first sensing data collected by the five flexible tensile sensors according to the preset sampling period T, and the second sensing data sampled by the three-axis accelerometer of the inertial sensing unit according to the preset sampling period T;
对所述第一传感数据或者第二传感数据中的任意一项求导后的均方根超过预设的阈值,则判断处于活动状态,否则认为未处于活动状态。If the root-mean-square derivative of any one of the first sensing data or the second sensing data exceeds a preset threshold, it is judged to be in an active state; otherwise, it is deemed not to be in an active state.
活动状态判断Activity status judgment
通常对于均值为0信号来说,可以使用均方根值来判断受否处于活动状态。但是在该系统中,信号的均值并不是0,也就是说,信号并不是在0周围波动,所以直接计算均方根值来判断信号是否活动并不适合。Usually for a signal with a mean value of 0, the RMS value can be used to determine whether the receiver is active. But in this system, the mean value of the signal is not 0, that is, the signal does not fluctuate around 0, so it is not suitable to directly calculate the root mean square value to judge whether the signal is active or not.
因此,在本发明的实施例中,将原始监测的信号f(t)求导,使得f′(t)在0周围波动,因此可以使用f′(t)计算均方根值来判断信号是否处于活动状态,即:Therefore, in the embodiment of the present invention, the original monitored signal f(t) is derived so that f'(t) fluctuates around 0, so f'(t) can be used to calculate the root mean square value to judge whether the signal is active, that is:
上式中T表示采样时间,在这里取0.5s。由于是离散信号,也就是50个采样点。In the above formula, T represents the sampling time, which is 0.5s here. Since it is a discrete signal, that is 50 sampling points.
由于本实例中配置了3个轴的加速度的和5个拉伸传感器,总共8个通道的信号,只要有其中任意一个信号的导数的均方根值超过了某一阈值,则认为信号处于活动状态。即:Since the acceleration of 3 axes and 5 stretch sensors are configured in this example, there are 8 channels of signals in total. As long as the root mean square value of the derivative of any one of the signals exceeds a certain threshold, the signal is considered to be active. state. Right now:
(rms′x>thr1)∨(rms′y>thr1)∨(rms′z>thr1)∨(rms′R1>thr2)∨(rms′R2>thr2)(rms′ x >thr1)∨(rms′ y >thr1)∨(rms′ z >thr1)∨(rms′ R1 >thr2)∨(rms′ R2 >thr2)
∨(rms′R3>thr2)∨(rms′R4>thr2)∨(rms′R5>thr2)=1∨(rms′ R3 > thr2) ∨ (rms′ R4 > thr2) ∨ (rms′ R5 > thr2) = 1
上式中thr1为加速度计对应配置的阈值,thr2为可贴附的柔性拉伸传感器对应配置的阈值,只要上式中任何一项为真,则判断处于活动状态。In the above formula, thr1 is the threshold corresponding to the configuration of the accelerometer, and thr2 is the threshold corresponding to the configuration of the attachable flexible stretch sensor. As long as any item in the above formula is true, it is judged to be in an active state.
然后,基于判断的手处于活动状态,则进一步根据8个通道的传感器的传感数据作为输入,通过预先训练的第一识别模型(例如基于卷积神经网络CNN而训练)进行手语动作识别,输出识别结果。Then, based on the judgment that the hand is in an active state, the sensory data of the sensors of the 8 channels is further used as input, and the sign language action recognition is performed through the pre-trained first recognition model (for example, based on convolutional neural network CNN training), and the output recognition result.
预先训练的第一识别模型Pre-trained first recognition model
作为可选的方式,预先训练的第一识别模型被设置成基于卷积神经网络训练获得,其训练过程包括:As an optional manner, the pre-trained first recognition model is set to be obtained based on convolutional neural network training, and its training process includes:
在多种不同手语动作下,通过每个手指关节位置的柔性拉伸传感器以及手背位置的惯性传感单元分别监测手指弯曲和手的活动数据;然后将每个手语动作的监测数据进行数值和长度的标准化,建立手语动作的样本数据库;其中样本数据库中每一个手语动作对应监测数据的数值标准化是指将五个柔性拉伸传感器和惯性传感单元三个加速度计的输出数值分别进行标准化转换,长度标准化是指按照预定的时长(例如2s)范围进行标准化,获得200个采样点数据;Under a variety of different sign language actions, the flexible stretch sensor at the position of each finger joint and the inertial sensing unit at the back of the hand are used to monitor the finger bending and hand activity data respectively; The standardization of the sign language action sample database is established; the numerical standardization of the monitoring data corresponding to each sign language action in the sample database refers to the standardized conversion of the output values of the five flexible stretch sensors and the three accelerometers of the inertial sensing unit. Length standardization refers to standardization according to a predetermined time length (for example, 2s) to obtain 200 sampling point data;
将样本数据库中每个样本对应的八个数据通道数据进行融合,形成包含了手指弯曲特征和手活动特征的8*200的矩阵;Fuse the eight data channel data corresponding to each sample in the sample database to form an 8*200 matrix including finger bending features and hand activity features;
将样本数据库按照80∶20形成训练集和测试集;The sample database is formed into a training set and a test set according to 80:20;
以上述训练集作为训练数据,通过卷积神经网络训练用于手语动作识别的模型,并通过测试集进行测试验证,获得识别准确率达到预定水平(例如验证正确率高于95%)的模型,作为第一识别模型,用来识别手语动作。Using the above-mentioned training set as the training data, train a model for sign language action recognition through a convolutional neural network, and perform test verification through a test set to obtain a model with a recognition accuracy rate reaching a predetermined level (for example, the verification accuracy rate is higher than 95%), As the first recognition model, it is used to recognize sign language actions.
作为可选的实施例,检测数据的数值标准化处理,包括对加速度计输出数值的标准化处理以及对柔性拉伸传感器输出数值的标准化处理。As an optional embodiment, the numerical standardization processing of the detection data includes normalization processing of the output value of the accelerometer and normalization processing of the output value of the flexible stretch sensor.
对加速度计输出数值的标准化处理,可通过现有技术的方式,通过适当的数值缩放转化成单位为重力加速度g即可。The standardized processing of the output value of the accelerometer can be converted into the unit of gravitational acceleration g by means of the prior art through appropriate numerical scaling.
对柔性拉伸传感器输出数值的标准化处理,则需要校准传感器电阻的最大值和最小值,由此将检测数值的电阻R的变化标准化到0-1之间:To standardize the output value of the flexible stretch sensor, it is necessary to calibrate the maximum and minimum values of the sensor resistance, thereby normalizing the change of the resistance R of the detected value to between 0-1:
其中,Rmax表示柔性拉伸传感器的电阻最大值,Rmin表示柔性拉伸传感器的电阻最小值。Rnormalized表示标准化之后的柔性拉伸传感器输出数值。Wherein, R max represents the maximum resistance value of the flexible stretch sensor, and R min represents the minimum resistance value of the flexible stretch sensor. R normalized represents the output value of the flexible stretch sensor after normalization.
应当理解,在本发明的实施例中,需要采样手语动作的数据样本时,每次采样得到的长度可能不同,这是因为人在完成某一特定手语动作时,时间不可能完全一致,是时快时慢的。同一手语动作可能会得到长度为1.5s的样本,也可能会得到长度为2.0s的样本,也可能会有2.5s的样本。尽管长度不同,但它们都表示同一手语动作,这就给识别算法的处理造成难度。因此在发明的实施例中,除了对数据进行数值的标准化,还旨在减轻同一动作不同时长样本影响,将数据长度进行标准化处理。It should be understood that, in the embodiment of the present invention, when data samples of sign language movements need to be sampled, the lengths obtained by each sampling may be different, because when a person completes a specific sign language movement, the time cannot be completely consistent. Fast and slow. The same sign language action may get a sample with a length of 1.5s, or a sample with a length of 2.0s, or a sample with a length of 2.5s. Although they are different in length, they all represent the same sign language action, which makes it difficult for the recognition algorithm to process. Therefore, in the embodiment of the invention, in addition to standardizing the value of the data, it also aims to reduce the influence of samples of different durations of the same action, and standardize the length of the data.
根据本发明的发明人的观察和分析,绝大多数手语动作可以在1-3s内完成,于是本实例将手语动作样本都标准化到2s,也就是200个采样点,这样既不会让数据长度过长,又可以承载足够多的信息用于分析。According to the observation and analysis of the inventors of the present invention, most of the sign language movements can be completed within 1-3s, so this example normalizes the sign language movement samples to 2s, that is, 200 sampling points, so that the data length will not be reduced. Too long, but can carry enough information for analysis.
作为可选的示例,可通过抽值、插值、取平均等方式达到对采集到的数据波形“缩放”的效果,使得“缩放”后的波形应在形态上与原始波形基本相同,尽可能保留原始波形的信息。As an optional example, the effect of "zooming" the collected data waveform can be achieved by means of extraction, interpolation, averaging, etc., so that the waveform after "zooming" should be basically the same as the original waveform in shape, and the waveform should be preserved as much as possible. information about the original waveform.
作为可选的示例,我们将八个数据通道数据整理成一个融合了可贴附柔性拉伸传感器和惯性传感单元的特征信息的8*200的矩阵,包含了该手语动作的所有信息,即:As an optional example, we organize the data of the eight data channels into an 8*200 matrix that combines the characteristic information of the attachable flexible stretch sensor and the inertial sensing unit, which contains all the information of the sign language action, namely :
其中,分别表示8个通道的传感数据的标准化的矩阵。其中,表示X轴加速度计的第1~第200个特征,/>表示Y轴加速度计的第1~第200个特征,表示Z轴加速度计的第1~第200个特征。Wherein, respectively represent the normalized matrices of the sensing data of 8 channels. in, Indicates the 1st to 200th features of the X-axis accelerometer, /> Indicates the 1st to 200th features of the Y-axis accelerometer, Indicates the 1st to 200th features of the Z-axis accelerometer.
同理,表示第一个柔性拉伸传感器的第1~第200个特征,/>表示第二个柔性拉伸传感器的第1~第200个特征,/>表示第三个柔性拉伸传感器的第1~第200个特征,/>表示第四个柔性拉伸传感器的第1~第200个特征,/>表示第五个柔性拉伸传感器的第1~第200个特征。In the same way, Indicates the 1st to 200th features of the first flexible stretch sensor, /> Indicates the 1st to 200th features of the second flexible stretch sensor, /> Indicates the 1st to 200th features of the third flexible stretch sensor, /> Indicates the 1st to 200th features of the fourth flexible stretch sensor, /> Indicates the 1st to 200th features of the fifth flexible stretch sensor.
为了可以识别手语动作的意义,要多次采集不同手语动作的数据,建立数据集和测试集,对卷积神经网络模型进行训练和测试,根据测试结果调整模型的参数,从而得到能够准确识别手语单词的卷积神经网络的识别模型。In order to recognize the meaning of sign language actions, it is necessary to collect data of different sign language actions multiple times, establish a data set and a test set, train and test the convolutional neural network model, and adjust the parameters of the model according to the test results, so as to obtain the ability to accurately recognize sign language A recognition model for convolutional neural networks of words.
结合图9所示的可穿戴式手语识别系统的可穿戴式手语识别方法的流程,其实现包括以下过程:Combining the flow of the wearable sign language recognition method of the wearable sign language recognition system shown in Figure 9, its implementation includes the following processes:
步骤A、按照预设的采样周期T(例如取0.5s)获取柔性拉伸传感器和惯性传感单元采集的监测数据;Step A. Obtain the monitoring data collected by the flexible tensile sensor and the inertial sensing unit according to the preset sampling period T (for example, 0.5s);
步骤B、对柔性拉伸传感器和惯性传感单元采集的监测数据进行滤波处理,如前述的对柔性拉伸传感器输出数据进行一阶RC低通滤波,对惯性传感单元的加速度计输出数据进行卡尔曼滤波;Step B, filtering the monitoring data collected by the flexible stretch sensor and the inertial sensing unit, such as performing first-order RC low-pass filtering on the output data of the flexible stretch sensor, and performing the first-order RC low-pass filtering on the accelerometer output data of the inertial sensing unit Kalman filter;
步骤C、根据柔性拉伸传感器和惯性传感单元采集的监测数据判断是否处于活动状态:Step C, judging whether it is in an active state according to the monitoring data collected by the flexible stretch sensor and the inertial sensing unit:
-响应于处于活动状态,则继续获取下一个采样周期T的监测数据,直到下一个非活动状态,记录该阶段的所有处于活动状态的监测数据,作为识别对象数据;- in response to being in an active state, continue to obtain the monitoring data of the next sampling period T until the next inactive state, and record all the monitoring data in the active state at this stage as the identification object data;
-响应于非活动状态,则放弃采样周期数据,并返回步骤A,继续获取下一个采样周期T的监测数据;- in response to the inactive state, abandon the sampling period data, and return to step A, and continue to obtain the monitoring data of the next sampling period T;
步骤D、判断所述识别对象数据的持续时间是否达到预设阈值时长(一般可设定为1s):Step D, judging whether the duration of the identified object data reaches a preset threshold duration (generally, it can be set to 1s):
-响应于未达到预设阈值时长,则放弃该段识别对象数据,并返回步骤A,,续获取下一个采样周期T的监测数据;- In response to not reaching the preset threshold duration, abandon the segment of identification object data, and return to step A, and continue to obtain the monitoring data of the next sampling period T;
-响应于达到预设阈值时长,则保留该段识别对象数据;- in response to reaching the preset threshold length of time, then retain the segment of identified object data;
步骤E、对保留的识别对象数据中对应五个柔性拉伸传感器和惯性传感单元三个加速度计的输出数值分别进行数值范围和长度的标准化处理,获得标准后的八个数据通道数据;将标准化处理后的八个数据通道数据进行融合,形成包含了手指弯曲特征和手活动特征的8*200的矩阵;Step E, standardize the value range and length of the output values corresponding to the five flexible stretch sensors and the three accelerometers of the inertial sensing unit in the retained identification object data, and obtain eight data channel data after standardization; The data of the eight data channels after standardized processing are fused to form an 8*200 matrix including finger bending features and hand activity features;
步骤F、将包含了手指弯曲特征和手活动特征的8*200的矩阵输入所述预先训练的第一识别模型进行手语动作识别,输出对应的手语动作识别结果。Step F: Input the 8*200 matrix including finger bending features and hand movement features into the pre-trained first recognition model for sign language action recognition, and output the corresponding sign language action recognition results.
由此,实现手语动作的实时识别与输出。Thus, the real-time recognition and output of sign language movements is realized.
作为可选的方式,识别结果还被通过声音和/或可视化(例如通过显示屏显示)等方式进行表征。As an optional manner, the recognition result is also characterized by means of sound and/or visualization (for example, displayed on a display screen).
图10中展示了10个不同的手语单词样本的数据波形的示例,可见不同的手语单词的样本显示出良好的区分度。在本发明的实例中训练了50个常用的手语单词,每个单词采集了2个样本作为训练集,另外每个单词还采集了8个样本作为测试集,训练之后测试可以达到95%的识别准确率。Figure 10 shows examples of data waveforms of 10 different sign language word samples, and it can be seen that the different sign language word samples show good discrimination. In the example of the present invention, 50 commonly used sign language words are trained, and 2 samples are collected for each word as a training set, and 8 samples are also collected for each word as a test set. After training, the test can reach 95% recognition Accuracy.
在进一步可选的方案中,优选地,当识别独立的手语单词的卷积神经网络模型训练好之后,就可以进一步实现对连续的手语组成的句子进行识别。例如对于识别手语的句子来说,通过采用准确、自动地对手语动作序列进行切分,在连续的手语动作序列中切分提取出有效的单词,从而进行识别并输出结果。In a further optional solution, preferably, after the convolutional neural network model for recognizing independent sign language words is trained, it can further realize the recognition of sentences composed of continuous sign language. For example, for the recognition of sign language sentences, accurate and automatic sign language action sequences are used to segment and extract effective words from continuous sign language action sequences, so as to recognize and output results.
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art of the present invention may make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310113573.4A CN116301341A (en) | 2023-02-14 | 2023-02-14 | Wearable Sign Language Recognition System and Method Integrating Attachable Flexible Stretch Sensor and Inertial Sensing Unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310113573.4A CN116301341A (en) | 2023-02-14 | 2023-02-14 | Wearable Sign Language Recognition System and Method Integrating Attachable Flexible Stretch Sensor and Inertial Sensing Unit |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116301341A true CN116301341A (en) | 2023-06-23 |
Family
ID=86833405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310113573.4A Pending CN116301341A (en) | 2023-02-14 | 2023-02-14 | Wearable Sign Language Recognition System and Method Integrating Attachable Flexible Stretch Sensor and Inertial Sensing Unit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116301341A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117890215A (en) * | 2024-03-14 | 2024-04-16 | 苏州先准电子科技有限公司 | Performance detection method and system for stretchable circuit board |
-
2023
- 2023-02-14 CN CN202310113573.4A patent/CN116301341A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117890215A (en) * | 2024-03-14 | 2024-04-16 | 苏州先准电子科技有限公司 | Performance detection method and system for stretchable circuit board |
CN117890215B (en) * | 2024-03-14 | 2024-05-24 | 苏州先准电子科技有限公司 | Performance detection method and system for stretchable circuit board |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hou et al. | Borophene pressure sensing for electronic skin and human-machine interface | |
Sun et al. | Smart band-aid: Multifunctional and wearable electronic device for self-powered motion monitoring and human-machine interaction | |
CN117687477A (en) | Method and apparatus for a gesture control interface of a wearable device | |
KR20150114509A (en) | Electronic skin, preparation method and use thereof | |
Wang et al. | Wearable human-machine interface based on the self-healing strain sensors array for control interface of unmanned aerial vehicle | |
CN107811616A (en) | A kind of flexible many reference amounts human body physical sign detector and its application method | |
Ramalingame et al. | Wearable smart band for American sign language recognition with polymer carbon nanocomposite-based pressure sensors | |
CN108784716A (en) | A kind of headset equipment and its pay attention to force estimation training method | |
CN115145389A (en) | Wearable inertia-strain-myoelectricity multimode interactive bracelet | |
CN105943042A (en) | Operator-hand-behavior perception system based on electromyographic signals | |
CN116301341A (en) | Wearable Sign Language Recognition System and Method Integrating Attachable Flexible Stretch Sensor and Inertial Sensing Unit | |
CN109708785A (en) | Flexible capacitive tactile sensor, electronic skin, wearable device and method | |
Hu et al. | A triangular wavy substrate-integrated wearable and flexible piezoelectric sensor for a linear pressure measurement and application in human health monitoring | |
Liu et al. | A wearable system for sign language recognition enabled by a convolutional neural network | |
Nguyen et al. | A stretchable gold nanowire sensor and its characterization using machine learning for motion tracking | |
CN111722723B (en) | A bidirectional bending flexible sensor, sign language recognition system and method | |
CN207556713U (en) | A kind of high sensitivity pliable pressure sensor | |
CN210784356U (en) | Finger stall for detecting hand tremor of Parkinson disease patient | |
CN206470693U (en) | A kind of Emotion identification system based on wearable device | |
CN116046225A (en) | Strain sensing film and flexible strain sensor for multi-language handwriting character recognition and preparation method and application thereof | |
CN110780736A (en) | Human-computer interaction system and method based on flexible gloves | |
CN118444785A (en) | Haptic glove | |
CN209070491U (en) | A kind of pliable pressure sensing hand language recognition device | |
Alemu et al. | EchoGest: Soft Ultrasonic Waveguides based Sensing Skin for Subject-Independent Hand Gesture Recognition | |
CN107884101A (en) | A kind of high sensitivity pliable pressure sensor and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |