CN116295409A - Route processing method, route processing device, computer readable medium and electronic equipment - Google Patents
Route processing method, route processing device, computer readable medium and electronic equipment Download PDFInfo
- Publication number
- CN116295409A CN116295409A CN202310161446.1A CN202310161446A CN116295409A CN 116295409 A CN116295409 A CN 116295409A CN 202310161446 A CN202310161446 A CN 202310161446A CN 116295409 A CN116295409 A CN 116295409A
- Authority
- CN
- China
- Prior art keywords
- link
- route
- planned route
- target
- training
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Automation & Control Theory (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本申请可以应用于地图、交通等技术领域,具体提供了一种路线处理方法、装置、计算机可读介质及电子设备。该方法包括:生成规划路线样本对应的链路表达式;通过预训练模型提取链路表达式中的各个元素对应的多个初始嵌入向量,并生成各个元素对应的输入特征向量;根据各个元素对应的输入特征向量进行多层前向传播处理,并基于规划路线样本、预训练模型对应的训练任务,以及各个元素对应的中间结果向量进行模型训练处理,以基于收敛后的预训练模块对指定路线进行处理。本申请技术方案可以解决需要大量有标注数据进行模型训练而带来的工作量巨大的问题,并且可以提高业务处理的准确性。
The present application can be applied to technical fields such as maps and traffic, and specifically provides a route processing method, device, computer-readable medium, and electronic equipment. The method includes: generating a link expression corresponding to a planned route sample; extracting multiple initial embedding vectors corresponding to each element in the link expression through a pre-training model, and generating an input feature vector corresponding to each element; Multi-layer forward propagation processing of the input feature vector, and model training processing based on the planning route samples, training tasks corresponding to the pre-training model, and intermediate result vectors corresponding to each element, so that the specified route can be corrected based on the converged pre-training module to process. The technical solution of the present application can solve the problem of huge workload caused by requiring a large amount of labeled data for model training, and can improve the accuracy of business processing.
Description
技术领域technical field
本申请涉及计算机及通信技术领域,具体而言,涉及一种路线处理方法、装置、计算机可读介质及电子设备。The present application relates to the technical field of computer and communication, and in particular, relates to a route processing method, device, computer readable medium and electronic equipment.
背景技术Background technique
路径规划是在规定的区域内找到一条从起点到终点的路线,比如在地图导航领域中,当地图使用者在地图上选定起点位置和终点位置之后,可以规划出一条从起点位置到终点位置的路线。又比如在机器人控制领域中,路径规划即为规划出机器人从起点位置到终点位置的无碰撞安全路线。当得到规划路线之后,通常可以对规划路线进行诸如合理性评估等相关业务的处理,以基于评估结果改进路径规划的策略。相关技术中,通常需要开发人员基于行业经验来进行建模,并基于特征工程来实现对模型的训练,这种方案不仅存在工作量巨大的问题,而且业务处理结果的准确性较低。Path planning is to find a route from the start point to the end point in a specified area. For example, in the field of map navigation, after the map user selects the start point and end point on the map, he can plan a route from the start point to the end point. route. Another example is in the field of robot control, path planning is to plan a collision-free safe route from the starting point to the end point of the robot. After the planned route is obtained, related business processing such as rationality evaluation can usually be performed on the planned route, so as to improve the path planning strategy based on the evaluation result. In related technologies, developers usually need to model based on industry experience and implement model training based on feature engineering. This solution not only has a huge workload, but also has low accuracy of business processing results.
发明内容Contents of the invention
本申请的实施例提供了一种路线处理方法、装置、计算机可读介质及电子设备,进而可以解决需要大量有标注数据进行模型训练而带来的工作量巨大的问题,并且可以提高业务处理的准确性。Embodiments of the present application provide a route processing method, device, computer-readable medium, and electronic equipment, which can solve the problem of a huge workload caused by requiring a large amount of labeled data for model training, and can improve the efficiency of business processing. accuracy.
本申请的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本申请的实践而习得。Other features and advantages of the present application will become apparent from the following detailed description, or in part, be learned by practice of the present application.
根据本申请实施例的一个方面,提供了一种路线处理方法,包括:根据规划路线样本所包含的多条链路,以及各条链路的属性信息,生成所述规划路线样本对应的链路表达式;通过预训练模型提取所述链路表达式中的各个元素对应的多个初始嵌入向量,并根据所述多个初始嵌入特征向量生成所述各个元素对应的输入特征向量;根据所述各个元素对应的输入特征向量进行多层前向传播处理,并基于所述规划路线样本、所述预训练模型对应的训练任务,以及所述多层前向传输处理得到的所述各个元素对应的中间结果向量进行模型训练处理,以基于收敛后的预训练模块对指定路线进行处理。According to an aspect of an embodiment of the present application, a route processing method is provided, including: generating a link corresponding to the planned route sample according to a plurality of links included in the planned route sample and attribute information of each link expression; a plurality of initial embedding vectors corresponding to each element in the link expression is extracted through a pre-training model, and an input feature vector corresponding to each element is generated according to the plurality of initial embedding feature vectors; according to the The input feature vector corresponding to each element is subjected to multi-layer forward propagation processing, and based on the planned route sample, the training task corresponding to the pre-training model, and the multi-layer forward transfer processing obtained corresponding to each element The intermediate result vector is processed for model training, so as to process the specified route based on the converged pre-training module.
根据本申请实施例的一个方面,提供了一种路线处理装置,包括:第一生成单元,配置为根据规划路线样本所包含的多条链路,以及各条链路的属性信息,生成所述规划路线样本对应的链路表达式;特征提取单元,配置为通过预训练模型提取所述链路表达式中的各个元素对应的多个初始嵌入向量;第二生成单元,配置为根据所述多个初始嵌入特征向量生成所述各个元素对应的输入特征向量;模型训练单元,配置为根据所述各个元素对应的输入特征向量进行多层前向传播处理,并基于所述规划路线样本、所述预训练模型对应的训练任务,以及所述多层前向传输处理得到的所述各个元素对应的中间结果向量进行模型训练处理,以基于收敛后的预训练模块对指定路线进行处理。。According to an aspect of the embodiments of the present application, there is provided a route processing device, including: a first generating unit configured to generate the The link expression corresponding to the planned route sample; the feature extraction unit is configured to extract a plurality of initial embedding vectors corresponding to each element in the link expression through a pre-training model; the second generation unit is configured to initial embedding feature vectors to generate input feature vectors corresponding to each element; the model training unit is configured to perform multi-layer forward propagation processing according to the input feature vectors corresponding to each element, and based on the planned route samples, the described The training task corresponding to the pre-training model and the intermediate result vector corresponding to each element obtained by the multi-layer forward transmission process are subjected to model training processing, so as to process the specified route based on the converged pre-training module. .
在本申请的一些实施例中,基于前述方案,所述第一生成单元配置为:根据所述各条链路的属性信息所包含的至少一个属性特征,生成所述各条链路对应的用于表示属性特征的元素;按照所述多条链路在所述规划路线样本中的顺序,对所述多条链路分别对应的元素进行组合,生成所述规划路线样本对应的链路表达式。In some embodiments of the present application, based on the foregoing solution, the first generation unit is configured to: generate the user information corresponding to each link according to at least one attribute feature included in the attribute information of each link. According to the order of the plurality of links in the planned route sample, the elements corresponding to the plurality of links are combined to generate the link expression corresponding to the planned route sample .
在本申请的一些实施例中,基于前述方案,所述第一生成单元配置为:根据所述多条链路中指定链路在所述规划路线样本中的位置,在所述链路表达式中添加所述指定链路对应的位置标志位;其中,所述位置标识位包括以下至少一个:在所述规划路线样本中的起始链路所对应的元素之前所添加的第一标志位、在指定的两条链路所对应的元素之间所添加的第二标志位,在所述规划路线样本中的终止链路所对应的元素之后所添加的第三标志位。In some embodiments of the present application, based on the foregoing solution, the first generation unit is configured to: according to the position of the specified link among the multiple links in the planned route sample, in the link expression Add the position flag bit corresponding to the specified link; wherein the position flag bit includes at least one of the following: the first flag bit added before the element corresponding to the starting link in the planned route sample, The second flag bit is added between the elements corresponding to the two specified links, and the third flag bit is added after the element corresponding to the termination link in the planned route sample.
在本申请的一些实施例中,基于前述方案,所述指定的两条链路包括:位于所述规划路线样本中的道路路口处的链路、或者所述多条链路中任意两条相邻的链路。In some embodiments of the present application, based on the foregoing solution, the specified two links include: a link located at a road intersection in the planned route sample, or any two adjacent links among the multiple links adjacent link.
在本申请的一些实施例中,基于前述方案,所述特征提取单元配置为:通过预训练模型提取所述链路表达式中的各个元素对应的词嵌入向量、位置嵌入向量和路线区间嵌入向量;其中,所述位置嵌入向量用于表示所述元素在所述链路表达式中所处的具体位置,所述路线区间嵌入向量用于表示所述元素在所述链路表达式中所在的区间。In some embodiments of the present application, based on the foregoing solution, the feature extraction unit is configured to: extract word embedding vectors, position embedding vectors, and route interval embedding vectors corresponding to each element in the link expression through a pre-training model ; Wherein, the position embedding vector is used to represent the specific position of the element in the link expression, and the route interval embedding vector is used to represent the position of the element in the link expression interval.
在本申请的一些实施例中,基于前述方案,所述第二生成单元配置为:基于设定的合并处理方式,对所述各个元素对应的多个初始嵌入特征向量进行合并处理,将合并处理的结果作为所述各个元素对应的输入特征向量。In some embodiments of the present application, based on the aforementioned solution, the second generation unit is configured to: perform a merge process on the multiple initial embedded feature vectors corresponding to the respective elements based on the set merge processing method, and combine the The result of is used as the input feature vector corresponding to each element.
在本申请的一些实施例中,基于前述方案,所述模型训练单元配置为:对所述规划路线样本中除起始链路之外的其它链路,通过设定的概率分别进行替换操作,得到处理后的规划路线样本;所述替换操作包括以下至少一种:替换为设定标志位、替换为随机链路、保持不变;将所述各个元素对应的中间结果向量作为输入,将所述设定标志位所代表的链路恢复为所述规划路线样本中的实际链路作为第一训练任务所对应的优化目标,进行模型训练处理。In some embodiments of the present application, based on the foregoing solution, the model training unit is configured to: perform replacement operations on the links other than the initial link in the planned route samples with set probabilities, Obtain the processed planned route sample; the replacement operation includes at least one of the following: replace with a set flag bit, replace with a random link, and keep it unchanged; take the intermediate result vector corresponding to each element as input, and use the The link represented by the set flag bit is restored to the actual link in the planned route sample as the optimization target corresponding to the first training task, and the model training process is performed.
在本申请的一些实施例中,基于前述方案,对所述规划路线样本中除起始链路之外的其它链路,通过设定的概率分别进行替换操作,包括:对所述规划路线样本中除起始链路之外的其它链路,通过第一概率分别确定是否要进行替换操作;对于需要进行替换操作的链路,通过替换为设定标志位的第二概率、替换为随机链路的第三概率和保持不变的第四概率分别进行替换操作。In some embodiments of the present application, based on the foregoing solution, performing replacement operations on links other than the initial link in the planned route samples according to set probabilities, including: For links other than the initial link, determine whether to perform the replacement operation through the first probability; for the link that needs to be replaced, replace it with the second probability of setting the flag bit, and replace it with a random chain The third probability of the way and the fourth probability that remains unchanged are replaced respectively.
在本申请的一些实施例中,基于前述方案,所述模型训练单元配置为:对所述规划路线样本中的后半部分链路,通过设定的概率替换为随机链路;其中,所述规划路线样本在指定的两条链路处划分为前半部分链路和后半部分链路;将所述链路表达式中在起始链路所对应的元素之前添加的第一标志位所对应的中间结果向量作为输入,将所述随机链路恢复为所述规划路线样本中的后半部分链路作为第二训练任务所对应的优化目标,进行模型训练处理。In some embodiments of the present application, based on the aforementioned solution, the model training unit is configured to: replace the second half of the links in the planned route samples with random links by a set probability; wherein, the The planned route sample is divided into the first half link and the second half link at the two specified links; the first flag bit added before the element corresponding to the starting link in the link expression corresponds to The intermediate result vector of is used as input, and the random link is restored to the second half of the links in the planned route sample as the optimization target corresponding to the second training task, and the model training process is performed.
在本申请的一些实施例中,基于前述方案,所述路线处理装置还包括:处理单元,配置为通过收敛后的预训练模型提取所述各个元素对应的目标嵌入向量;根据所述各个元素对应的目标嵌入向量,生成所述规划路线样本所对应的路线嵌入向量;将所述路线嵌入向量和用于对所述预训练模型进行调整的目标输入信息作为输入,将设定业务作为优化目标,对所述预训练模型的模型参数进行调整。In some embodiments of the present application, based on the aforementioned solution, the route processing device further includes: a processing unit configured to extract the target embedding vector corresponding to each element through the converged pre-training model; The target embedding vector of the target is generated to generate the route embedding vector corresponding to the planned route sample; the route embedding vector and the target input information used to adjust the pre-training model are used as input, and the business is set as the optimization target, Adjusting the model parameters of the pre-trained model.
在本申请的一些实施例中,基于前述方案,所述处理单元配置为:根据所述规划路线样本中起始链路所对应的多个目标嵌入向量,计算得到所述起始链路对应的目标嵌入向量均值;根据所述规划路线样本中包含的多个链路分别对应的多个目标嵌入向量,计算得到所述多个链路对应的目标嵌入向量均值;根据所述规划路线样本中终止链路所对应的多个目标嵌入向量,计算得到所述终止链路对应的目标嵌入向量均值;根据所述起始链路对应的目标嵌入向量均值、所述多个链路对应的目标嵌入向量均值和所述终止链路对应的目标嵌入向量均值,生成所述规划路线样本所对应的路线嵌入向量。In some embodiments of the present application, based on the foregoing solution, the processing unit is configured to: calculate the target embedding vector corresponding to the starting link in the planned route sample to obtain the The mean value of the target embedding vector; according to the multiple target embedding vectors respectively corresponding to the multiple links included in the planned route sample, calculate the target embedding vector mean value corresponding to the multiple links; A plurality of target embedding vectors corresponding to the link is calculated to obtain the mean value of the target embedding vector corresponding to the terminating link; according to the mean value of the target embedding vector corresponding to the starting link, the target embedding vector corresponding to the multiple links The mean value and the mean value of the target embedding vector corresponding to the terminated link generate a route embedding vector corresponding to the planned route sample.
在本申请的一些实施例中,基于前述方案,用于对所述预训练模型进行调整的目标输入信息包括以下至少一种:通过特征工程获取到的所述规划路线样本的路线特征;根据所述规划路线样本的路线特征,通过机器学习模型进行所述设定业务的预测处理得到的预测结果。In some embodiments of the present application, based on the foregoing solution, the target input information used to adjust the pre-training model includes at least one of the following: route features of the planned route samples obtained through feature engineering; The route features of the planned route samples are the prediction results obtained by performing the prediction processing of the setting business through the machine learning model.
在本申请的一些实施例中,基于前述方案,所述的路线处理装置还包括:第一预测单元;所述第一生成单元还配置为:根据待处理的目标规划路线所包含的链路,以及各条链路的属性信息,生成所述目标规划路线对应的链路表达式;所述特征提取单元还配置为:通过收敛后的预训练模型提取所述目标规划路线中的各条链路所对应的目标嵌入向量;所述第一预测单元配置为:基于所述目标规划路线中的各条链路所对应的目标嵌入向量进行设定业务的预测处理。In some embodiments of the present application, based on the foregoing solution, the route processing device further includes: a first prediction unit; the first generation unit is further configured to: plan the links included in the route according to the target to be processed, And the attribute information of each link, generate the link expression corresponding to the target planning route; the feature extraction unit is also configured to: extract each link in the target planning route through the converged pre-training model The corresponding target embedding vector; the first predicting unit is configured to: perform forecasting processing of setting services based on the target embedding vector corresponding to each link in the target planned route.
在本申请的一些实施例中,基于前述方案,所述第一预测单元配置为:基于所述目标规划路线中的各条链路所对应的目标嵌入向量,对所述目标规划路线进行以下至少一种处理:异常链路检测处理、所述目标规划路线中缺失链路的补全处理、后续规划路线的生成处理、路线的相关性处理。In some embodiments of the present application, based on the foregoing solution, the first prediction unit is configured to: perform at least the following on the target planned route based on the target embedding vectors corresponding to each link in the target planned route One processing: abnormal link detection processing, completion processing of missing links in the target planned route, generation processing of subsequent planned routes, and route correlation processing.
在本申请的一些实施例中,基于前述方案,所述的路线处理装置还包括:第二预测单元;所述第一生成单元还配置为:根据待处理的目标规划路线所包含的链路,以及各条链路的属性信息,生成所述目标规划路线对应的链路表达式;所述第二预测单元配置为:将所述链路表达式作为收敛后的预训练模型的输入,通过所述收敛后的预训练模型输出所述目标规划路线针对所述设定业务的预测结果;其中,所述设定业务包括以下至少一种:行驶轨迹与所述目标规划路线的覆盖率、所述目标规划路线的行驶时间、所述目标规划路线的规划合理性、所述目标规划路线的导航完成率、所述目标规划路线的流量。In some embodiments of the present application, based on the foregoing solution, the route processing device further includes: a second prediction unit; the first generation unit is further configured to: plan the links included in the route according to the target to be processed, And the attribute information of each link, generate the link expression corresponding to the target planning route; the second prediction unit is configured to: use the link expression as the input of the converged pre-training model, through the The converged pre-training model outputs the prediction result of the target planned route for the set business; wherein the set business includes at least one of the following: the coverage rate of the driving trajectory and the target planned route, the The travel time of the target planned route, the planning rationality of the target planned route, the navigation completion rate of the target planned route, and the traffic of the target planned route.
根据本申请实施例的一个方面,提供了一种计算机可读介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上述实施例中所述的路线处理方法。According to an aspect of the embodiments of the present application, a computer-readable medium is provided, on which a computer program is stored, and when the computer program is executed by a processor, the route processing method as described in the foregoing embodiments is implemented.
根据本申请实施例的一个方面,提供了一种电子设备,包括:一个或多个处理器;存储装置,用于存储一个或多个计算机程序,当所述一个或多个计算机程序被所述一个或多个处理器执行时,使得所述电子设备实现如上述实施例中所述的路线处理方法。According to an aspect of the embodiments of the present application, an electronic device is provided, including: one or more processors; a storage device for storing one or more computer programs, when the one or more computer programs are executed by the When executed by one or more processors, the electronic device implements the route processing method as described in the foregoing embodiments.
根据本申请实施例的一个方面,提供了一种计算机程序产品,该计算机程序产品包括计算机程序,该计算机程序存储在计算机可读存储介质中。电子设备的处理器从计算机可读存储介质读取并执行该计算机程序,使得该电子设备执行上述各种可选实施例中提供的路线处理方法。According to an aspect of the embodiments of the present application, a computer program product is provided, where the computer program product includes a computer program, and the computer program is stored in a computer-readable storage medium. The processor of the electronic device reads and executes the computer program from the computer-readable storage medium, so that the electronic device executes the route processing methods provided in the various optional embodiments above.
在本申请的一些实施例所提供的技术方案中,通过根据规划路线样本所包含的多条链路,以及各条链路的属性信息,生成规划路线样本对应的链路表达式,然后通过预训练模型提取链路表达式中的各个元素对应的多个初始嵌入向量,并根据多个初始嵌入特征向量生成各个元素对应的输入特征向量,之后根据各个元素对应的输入特征向量进行多层前向传播处理,并基于规划路线样本、预训练模型对应的训练任务,以及各个元素对应的中间结果向量进行模型训练处理,以基于收敛后的预训练模块对指定路线进行处理,使得可以通过对无标注的规划路线样本进行处理,解决了需要大量有标注数据进行模型训练而带来的工作量巨大的问题,并且由于可以通过多层前向传播处理学习到规划路线样本中的细节特征,因此可以提高业务处理的准确性,同时也可以对不同的设定业务进行处理,实现了多业务领域的有效应用。In the technical solution provided by some embodiments of the present application, the link expression corresponding to the planned route sample is generated according to the multiple links contained in the planned route sample and the attribute information of each link, and then the pre- The training model extracts multiple initial embedding vectors corresponding to each element in the link expression, and generates input feature vectors corresponding to each element according to multiple initial embedding feature vectors, and then performs multi-layer forwarding according to the input feature vectors corresponding to each element. Propagation processing, and model training processing based on the planned route samples, training tasks corresponding to the pre-training model, and intermediate result vectors corresponding to each element, to process the specified route based on the converged pre-training module, so that the unlabeled The planned route samples are processed, which solves the problem of a huge workload caused by the need for a large amount of labeled data for model training, and because the detailed features in the planned route samples can be learned through multi-layer forward propagation processing, it can be improved. The accuracy of business processing can also handle different business settings, realizing the effective application of multiple business fields.
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the application.
附图说明Description of drawings
图1示出了可以应用本申请实施例的技术方案的示例性系统架构的示意图;FIG. 1 shows a schematic diagram of an exemplary system architecture to which the technical solutions of the embodiments of the present application can be applied;
图2示出了根据本申请的一个实施例的路线处理方法的流程图;FIG. 2 shows a flowchart of a route processing method according to an embodiment of the present application;
图3示出了根据本申请的一个实施例的路线处理方法的流程图;FIG. 3 shows a flowchart of a route processing method according to an embodiment of the present application;
图4示出了根据本申请的一个实施例的路线处理方法的流程图;FIG. 4 shows a flow chart of a route processing method according to an embodiment of the present application;
图5示出了根据本申请的一个实施例的路线处理流程图;FIG. 5 shows a flow chart of route processing according to an embodiment of the present application;
图6示出了根据本申请的一个实施例的对路线进行打断的示意图;Fig. 6 shows a schematic diagram of interrupting a route according to an embodiment of the present application;
图7示出了根据本申请的一个实施例的路线中的link对应的embedding特征示意图;FIG. 7 shows a schematic diagram of embedding features corresponding to links in a route according to an embodiment of the present application;
图8示出了根据本申请的一个实施例的Transformer前向传播示意图;Fig. 8 shows a schematic diagram of Transformer forward propagation according to an embodiment of the present application;
图9示出了根据本申请的一个实施例的对每个link的处理概率示意图;Fig. 9 shows a schematic diagram of processing probability for each link according to an embodiment of the present application;
图10示出了根据本申请的一个实施例的模型微调的示意图;Fig. 10 shows a schematic diagram of model fine-tuning according to an embodiment of the present application;
图11示出了根据本申请的一个实施例的路线处理装置的框图;Fig. 11 shows a block diagram of a route processing device according to an embodiment of the present application;
图12示出了适于用来实现本申请实施例的电子设备的计算机系统的结构示意图。Fig. 12 shows a schematic structural diagram of a computer system suitable for implementing the electronic device of the embodiment of the present application.
具体实施方式Detailed ways
现在参考附图以更全面的方式描述示例实施方式。然而,示例的实施方式能够以各种形式实施,且不应被理解为仅限于这些范例;相反,提供这些实施方式的目的是使得本申请更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。Example embodiments will now be described in a more complete manner with reference to the accompanying drawings. Example embodiments may, however, be embodied in various forms and should not be construed as limited to these examples; rather, these embodiments are provided so that this application will be thorough and complete, and to fully convey the concepts of example embodiments communicated to those skilled in the art.
此外,本申请所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,有许多具体细节从而可以充分理解本申请的实施例。然而,本领域技术人员应意识到,在实施本申请的技术方案时可以不需用到实施例中的所有细节特征,可以省略一个或更多特定细节,或者可以采用其它的方法、元件、装置、步骤等。Furthermore, the features, structures, or characteristics described herein may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are included so that the embodiments of the present application can be fully understood. However, those skilled in the art should realize that when implementing the technical solutions of the present application, it is not necessary to use all the detailed features in the embodiments, one or more specific details can be omitted, or other methods, elements, and devices can be used , steps, etc.
附图中所示的方框图仅仅是功能实体,不一定必须与物理上独立的实体相对应。即,可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。The block diagrams shown in the drawings are merely functional entities and do not necessarily correspond to physically separate entities. That is, these functional entities may be implemented in software, or in one or more hardware modules or integrated circuits, or in different networks and/or processor devices and/or microcontroller devices entity.
附图中所示的流程图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。The flow charts shown in the drawings are only exemplary illustrations, and do not necessarily include all contents and operations/steps, nor must they be performed in the order described. For example, some operations/steps can be decomposed, and some operations/steps can be combined or partly combined, so the actual order of execution may be changed according to the actual situation.
需要说明的是:在本文中提及的“多个”是指两个或两个以上。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。It should be noted that: the "plurality" mentioned in this article refers to two or more than two. "And/or" describes the association relationship of associated objects, indicating that there may be three types of relationships. For example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently. The character "/" generally indicates that the contextual objects are an "or" relationship.
可以理解的是,在本申请的具体实施方式中,涉及到规划路线等相关的数据,当本申请以上实施例运用到具体产品或技术中时,需要获得用户许可或者同意,且相关数据的收集、使用和处理需要遵守相关国家和地区的相关法律法规和标准。It can be understood that in the specific implementation of this application, related data such as planned routes are involved. When the above embodiments of this application are applied to specific products or technologies, it is necessary to obtain user permission or consent, and the collection of relevant data , use and processing need to comply with relevant laws, regulations and standards of relevant countries and regions.
如图1所示,在地图导航领域中,当地图使用者在地图上选定起点位置和终点位置之后,可以规划出一条从起点位置到终点位置的路线,具体如图1中所示的包含Link1、Link2、Link3和Link4的规划路线。其中,Link是描述道路的最小数据单元,是一组结构化数据,包含但不限于Link(链路)的长度、宽度、道路等级等属性。As shown in Figure 1, in the field of map navigation, after the map user selects the starting point and the ending point on the map, he can plan a route from the starting point to the ending point, specifically as shown in Figure 1. The planned routes of Link1, Link2, Link3, and Link4. Among them, Link is the smallest data unit describing a road, and it is a set of structured data, including but not limited to attributes such as the length, width, and road grade of a Link.
在得到规划路线之后,通常可以对规划路线进行诸如合理性评估等相关业务的处理,以基于评估结果改进路径规划的策略。在对规划路径进行评估时可以采用人工智能(Artificial Intelligence,简称AI)中的机器学习算法。其中。人工智能是利用数字计算机或者数字计算机控制的机器模拟、延伸和扩展人的智能,感知环境、获取知识并使用知识获得最佳结果的理论、方法、技术及应用系统。换句话说,人工智能是计算机科学的一个综合技术,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。人工智能也就是研究各种智能机器的设计原理与实现方法,使机器具有感知、推理与决策的功能。人工智能基础技术一般包括如传感器、专用人工智能芯片、云计算、分布式存储、大数据处理技术、操作/交互系统、机电一体化等技术。人工智能软件技术主要包括计算机视觉技术、语音处理技术、自然语言处理技术以及机器学习/深度学习、自动驾驶、智慧交通等几大方向。After the planned route is obtained, related business processing such as rationality evaluation can usually be performed on the planned route, so as to improve the path planning strategy based on the evaluation result. A machine learning algorithm in artificial intelligence (Artificial Intelligence, AI for short) may be used when evaluating the planned path. in. Artificial intelligence is the theory, method, technology and application system that uses digital computers or machines controlled by digital computers to simulate, extend and expand human intelligence, perceive the environment, acquire knowledge and use knowledge to obtain the best results. In other words, artificial intelligence is a comprehensive technique of computer science that attempts to understand the nature of intelligence and produce a new kind of intelligent machine that can respond in a similar way to human intelligence. Artificial intelligence is to study the design principles and implementation methods of various intelligent machines, so that the machines have the functions of perception, reasoning and decision-making. Artificial intelligence basic technologies generally include technologies such as sensors, dedicated artificial intelligence chips, cloud computing, distributed storage, big data processing technology, operation/interaction systems, and mechatronics. Artificial intelligence software technology mainly includes several major directions such as computer vision technology, speech processing technology, natural language processing technology, machine learning/deep learning, automatic driving, and intelligent transportation.
机器学习(Machine Learning,简称ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。机器学习是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。机器学习和深度学习通常包括人工神经网络、置信网络、强化学习、迁移学习、归纳学习、示教学习等技术。Machine learning (Machine Learning, ML for short) is a multi-field interdisciplinary subject, involving probability theory, statistics, approximation theory, convex analysis, algorithm complexity theory and other disciplines. Specializes in the study of how computers simulate or implement human learning behaviors to acquire new knowledge or skills, and reorganize existing knowledge structures to continuously improve their performance. Machine learning is the core of artificial intelligence and the fundamental way to make computers intelligent, and its application pervades all fields of artificial intelligence. Machine learning and deep learning usually include techniques such as artificial neural networks, belief networks, reinforcement learning, transfer learning, inductive learning, and teaching and learning.
相关技术中,在对规划路线进行诸如合理性评估等相关业务的处理时,通常需要开发人员基于行业经验来进行建模,并基于特征工程来实现对模型的训练,这种方案不仅存在工作量巨大的问题,而且业务处理结果的准确性较低。In related technologies, when processing related businesses such as rationality evaluation on planned routes, developers usually need to model based on industry experience and implement model training based on feature engineering. This solution not only has a workload Huge problem, and less accurate business processing results.
基于此,在本申请的一个实施例中提出了一种新的路线处理方案,如图1所示,当车辆终端101在电子地图上选定起点与终点之后,服务器102可以根据该起点与终点生成一条包含Link1、Link2、Link3和Link4的规划路线。为了对该规划路线进行诸如合理性评估等业务处理,服务器102可以基于规划路线样本对预训练模型进行训练,然后通过收敛后的预训练模型来对规划路线进行评估等处理。Based on this, a new route processing scheme is proposed in one embodiment of the present application. As shown in FIG. 1, when the vehicle terminal 101 selects the starting point and the ending point on the electronic map, the Generate a planned route including Link1, Link2, Link3 and Link4. In order to perform business processing such as rationality evaluation on the planned route, the
在本申请的一个实施例中,服务器102基于规划路线样本对预训练模型进行训练时,可以根据规划路线样本所包含的多条链路,以及各条链路的属性信息,生成规划路线样本对应的链路表达式;然后通过预训练模型提取链路表达式中的各个元素对应的多个初始嵌入向量,并根据这多个初始嵌入特征向量生成链路表达式中的各个元素对应的输入特征向量;之后根据链路表达式中的各个元素对应的输入特征向量进行多层前向传播处理,并基于该规划路线样本、该预训练模型对应的训练任务,以及多层前向传输处理得到的各个元素对应的中间结果向量进行模型训练处理;在模型收敛后,可以基于收敛后的预训练模块对指定路线进行处理。比如,可以通过收敛后的预训练模型提取链路表达式中的各个元素对应的目标嵌入向量,并基于该目标嵌入向量进行设定业务的预测处理。比如对规划路线样本的合理性进行评估等。In one embodiment of the present application, when the
需要说明的是,服务器102可以是独立的一个物理服务器,也可以是至少两个物理服务器构成的服务器集群或者分布式系统,还可以是提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、内容分发网络(ContentDelivery Network,CDN)、以及大数据和人工智能平台等基础云计算服务的云服务器。车辆终端101具体可以是指具有车载功能的智能手机、智能音箱、有屏音箱、智能手表等等,但并不局限于此,比如车辆终端101也可以通过飞行器等移动终端进行替换。各个车辆终端以及服务器可以通过有线或无线通信方式进行直接或间接地连接,同时,车辆终端以及服务器的数量可以为一个或至少两个,本申请在此不做限制。It should be noted that the
以下对本申请实施例的技术方案的实现细节进行详细阐述:The implementation details of the technical solutions of the embodiments of the present application are described in detail below:
图2示出了根据本申请的一个实施例的路线处理方法的流程图,该路线处理方法可以由服务器来执行,也可以由终端设备(如图1中所示的车辆终端101)来执行,还可以是由服务器与终端设备共同完成。参照图2所示,该路线处理方法至少包括步骤S210至步骤S230,详细介绍如下:FIG. 2 shows a flow chart of a route processing method according to an embodiment of the present application. The route processing method may be executed by a server or by a terminal device (such as the vehicle terminal 101 shown in FIG. 1 ), It can also be completed jointly by the server and the terminal device. Referring to Fig. 2, the route processing method includes at least step S210 to step S230, which are described in detail as follows:
在步骤S210中,根据规划路线样本所包含的多条链路,以及各条链路的属性信息,生成规划路线样本对应的链路表达式。In step S210, a link expression corresponding to the planned route sample is generated according to the multiple links contained in the planned route sample and the attribute information of each link.
在一些可选的实施例中,链路即为Link,是描述道路的最小数据单元,链路的属性信息包含但不限于链路的ID、长度、宽度、道路等级、路况状态、流量等属性。In some optional embodiments, a link is a Link, which is the smallest data unit describing a road, and the attribute information of the link includes but not limited to the ID, length, width, road grade, road condition, traffic and other attributes of the link .
在一些可选的实施例中,根据规划路线样本所包含的多条链路,以及各条链路的属性信息,生成规划路线样本对应的链路表达式的过程可以是:根据各条链路的属性信息所包含的至少一个属性特征,生成各条链路对应的用于表示属性特征的元素,然后按照多条链路在规划路线样本中的顺序,对多条链路分别对应的元素进行组合,生成规划路线样本对应的链路表达式。比如,若根据链路的ID来生成链路表达式,那么规划路线样本R可以表示为:路线R={link1,link2,link3…};其中link1,link2,link3…分别表示对应链路的ID,在链路表达式中即为对应于链路的元素。In some optional embodiments, according to the multiple links contained in the planned route sample and the attribute information of each link, the process of generating the link expression corresponding to the planned route sample may be: according to each link At least one attribute feature contained in the attribute information of the link, generate the elements corresponding to each link used to represent the attribute feature, and then according to the order of the multiple links in the planned route sample, the elements corresponding to the multiple links are respectively Combined to generate the link expression corresponding to the planned route sample. For example, if the link expression is generated according to the ID of the link, then the planned route sample R can be expressed as: route R={link 1 , link 2 , link 3 ...}; where link 1 , link 2 , link 3 ... are respectively Indicates the ID of the corresponding link, which is the element corresponding to the link in the link expression.
若根据链路的道路等级、路况状态和流量来生成链路表达式,那么规划路线样本R表示为:路线R={rc_rs_flpw1,rc_rs_flow2,rc_rs_flow3…};其中,rc_rs_flow1表示link1的道路等级、路况状态和流量,在链路表达式中即为对应于链路1的元素;rc_rs_flow2表示link2的道路等级、路况状态和流量,在链路表达式中即为对应于链路2的元素;rc_rs_flow3表示link3的道路等级、路况状态和流量,在链路表达式中即为对应于链路3的元素。If the link expression is generated according to the road level, road condition and flow of the link, then the planned route sample R is expressed as: route R = {rc_rs_flpw 1 , rc_rs_flow 2 , rc_rs_flow 3 ...}; where rc_rs_flow 1 represents the link 1 Road grade, traffic status and flow are the elements corresponding to link 1 in the link expression; rc_rs_flow 2 indicates the road grade, traffic status and flow of link 2 , which is corresponding to the link in the
在一些可选的实施例中,在生成规划路线样本对应的链路表达式时,还可以根据多条链路中指定链路在规划路线样本中的位置,在链路表达式中添加指定链路对应的位置标志位;其中,位置标识位包括以下至少一个:在规划路线样本中的起始链路所对应的元素之前所添加的第一标志位、在指定的两条链路所对应的元素之间所添加的第二标志位,在规划路线样本中的终止链路所对应的元素之后所添加的第三标志位。即通过第二标志位将链路表达式分为前半部分和后半部分。可选地,第一标志位可以是CLS,第二标志位和第三标志位都可以是SEP。In some optional embodiments, when generating the link expression corresponding to the planned route sample, the specified link can also be added to the link expression according to the position of the specified link in the planned route sample among the multiple links The position flag corresponding to the road; wherein, the position flag includes at least one of the following: the first flag added before the element corresponding to the start link in the planned route sample, the element corresponding to the two specified links The second flag bit is added between elements, and the third flag bit is added after the element corresponding to the terminating link in the planned route sample. That is, the link expression is divided into the first half and the second half through the second flag bit. Optionally, the first flag bit may be CLS, and both the second flag bit and the third flag bit may be SEP.
在一些可选的实施例中,在将链路表达式分为前半部分和后半部分时可以在位于规划路线样本中的道路路口处进行划分,也可以在任意两条相邻的链路处进行划分。即前述实施例中指定的两条链路包括:位于规划路线样本中的道路路口处的链路、或者多条链路中任意两条相邻的链路。In some optional embodiments, when the link expression is divided into the first half and the second half, it can be divided at the road intersection located in the planned route sample, or at any two adjacent links to divide. That is, the two links specified in the foregoing embodiment include: a link located at a road intersection in the planned route sample, or any two adjacent links among multiple links.
继续参照图2所示,在步骤S220中,通过预训练模型提取链路表达式中的各个元素对应的多个初始嵌入向量,并根据多个初始嵌入特征向量生成各个元素对应的输入特征向量。Continuing to refer to FIG. 2, in step S220, multiple initial embedding vectors corresponding to each element in the link expression are extracted through the pre-training model, and input feature vectors corresponding to each element are generated according to the multiple initial embedding feature vectors.
需要说明的是,链路表达式中的元素包含了各条链路对应的用于表示属性特征的元素,也可以包含上述实施例中位置标志位对应的元素。It should be noted that the elements in the link expression include the elements corresponding to each link for representing attribute features, and may also include the elements corresponding to the position flags in the above embodiments.
在一些可选的实施例中,各个元素对应的多个初始嵌入向量可以包括:各个元素对应的词嵌入向量(tokenembedding)、位置嵌入向量(positionembedding)和路线区间嵌入向量(segmentembedding);其中,位置嵌入向量用于表示元素在链路表达式中所处的具体位置,路线区间嵌入向量用于表示元素在链路表达式中所在的区间(即位于前半部分还是后半部分)。可选地,各个元素对应的多个初始嵌入向量也可以包括:词嵌入向量和位置嵌入向量。In some optional embodiments, the multiple initial embedding vectors corresponding to each element may include: a word embedding vector (tokenembedding), a position embedding vector (positionembedding) and a route interval embedding vector (segmentembedding) corresponding to each element; wherein, position The embedding vector is used to indicate the specific position of the element in the link expression, and the route interval embedding vector is used to indicate the interval where the element is located in the link expression (that is, whether it is located in the first half or the second half). Optionally, the multiple initial embedding vectors corresponding to each element may also include: word embedding vectors and position embedding vectors.
在一些可选的实施例中,根据多个初始嵌入特征向量生成各个元素对应的输入特征向量的过程可以是:基于设定的合并处理方式,对各个元素对应的多个初始嵌入特征向量进行合并处理,将合并处理的结果作为各个元素对应的输入特征向量。比如,可以将各个元素对应的多个初始嵌入向量进行叠加,将叠加结果作为对应的输入特征向量。In some optional embodiments, the process of generating the input feature vector corresponding to each element according to the multiple initial embedded feature vectors may be: based on the set merging processing method, merging the multiple initial embedded feature vectors corresponding to each element Processing, the result of the merge processing is used as the input feature vector corresponding to each element. For example, multiple initial embedding vectors corresponding to each element may be superimposed, and the superposition result may be used as a corresponding input feature vector.
在步骤S230中,根据各个元素对应的输入特征向量进行多层前向传播处理,并基于规划路线样本、预训练模型对应的训练任务,以及多层前向传输处理得到的各个元素对应的中间结果向量进行模型训练处理,以基于收敛后的预训练模块对指定路线进行处理。In step S230, perform multi-layer forward propagation processing according to the input feature vector corresponding to each element, and based on the planned route samples, training tasks corresponding to the pre-training model, and the intermediate results corresponding to each element obtained by multi-layer forward transfer processing The vector performs model training processing to process the specified route based on the converged pre-training module.
在一些可选的实施例中,基于规划路线样本、预训练模型对应的训练任务,以及多层前向传输处理得到的各个元素对应的中间结果向量进行模型训练处理的过程可以包括:对规划路线样本中除起始链路之外的其它链路,通过设定的概率分别进行替换操作,得到处理后的规划路线样本;该替换操作包括以下至少一种:替换为设定标志位、替换为随机链路、保持不变;然后将各个元素对应的中间结果向量作为输入,将设定标志位所代表的链路恢复为规划路线样本中的实际链路作为第一训练任务所对应的优化目标,进行模型训练处理。该实施例的技术方案即为将原始的规划路线样本中除起始链路之外的链路进行概率替换,然后通过恢复规划路线样本为优化目标来进行模型训练。In some optional embodiments, the process of performing model training processing based on the planned route samples, the training tasks corresponding to the pre-trained model, and the intermediate result vectors corresponding to each element obtained from the multi-layer forward transmission process may include: The other links in the sample except the initial link are replaced by the set probability to obtain the processed planned route sample; the replacement operation includes at least one of the following: replace with set flag bit, replace with The random link remains unchanged; then the intermediate result vector corresponding to each element is used as input, and the link represented by the set flag bit is restored to the actual link in the planned route sample as the optimization target corresponding to the first training task , to perform model training processing. The technical solution of this embodiment is to perform probabilistic replacement of the links in the original planned route samples except the initial link, and then perform model training by recovering the planned route samples as optimization targets.
可选地,在对规划路线样本中除起始链路之外的其它链路,通过设定的概率分别进行替换操作时,可以先对规划路线样本中除起始链路之外的其它链路,通过第一概率分别确定是否要进行替换操作,对于需要进行替换操作的链路,通过替换为设定标志位的第二概率、替换为随机链路的第三概率和保持不变的第四概率分别进行替换操作。比如第一概率可以为50%、第二概率可以为50%、第三概率可以为5%、第四概率可以为45%。即第二概率、第三概率和第四概率之和为1。Optionally, when performing replacement operations on links other than the initial link in the planned route sample by using set probabilities, the other links in the planned route sample except the initial link can be replaced first. The first probability is used to determine whether to perform the replacement operation. For the link that needs to be replaced, the second probability of setting the flag bit is replaced, the third probability is replaced by a random link, and the unchanged first The four probabilities perform replacement operations respectively. For example, the first probability may be 50%, the second probability may be 50%, the third probability may be 5%, and the fourth probability may be 45%. That is, the sum of the second probability, the third probability and the fourth probability is 1.
在一些可选的实施例中,基于规划路线样本、预训练模型对应的训练任务,以及多层前向传输处理得到的各个元素对应的中间结果向量进行模型训练处理的过程可以包括:对规划路线样本中的后半部分链路,通过设定的概率替换为随机链路;其中,规划路线样本在指定的两条链路处划分为前半部分链路和后半部分链路;将链路表达式中在起始链路所对应的元素之前添加的第一标志位所对应的中间结果向量作为输入,将随机链路恢复为规划路线样本中的后半部分链路作为第二训练任务所对应的优化目标,进行模型训练处理。该实施例的技术方案即为将原始的规划路线样本的后半部分进行概率替换,然后通过恢复规划路线样本为优化目标来进行模型训练。In some optional embodiments, the process of performing model training processing based on the planned route samples, the training tasks corresponding to the pre-trained model, and the intermediate result vectors corresponding to each element obtained from the multi-layer forward transmission process may include: The second half of the links in the sample are replaced with random links by the set probability; among them, the planned route sample is divided into the first half of the links and the second half of the links at the two specified links; the link expression In the formula, the intermediate result vector corresponding to the first flag bit added before the element corresponding to the starting link is used as input, and the random link is restored to the second half of the link in the planned route sample as the second training task. The optimization goal of , and perform model training processing. The technical solution of this embodiment is to replace the second half of the original planned route samples with probability, and then perform model training by recovering the planned route samples as optimization targets.
可选地,步骤S230中的指定路线可以是规划路线样本,也可以是在实际应用时规划的路线,还可以是任意一条选定的路线。Optionally, the specified route in step S230 may be a planned route sample, may also be a route planned during actual application, or may be any selected route.
在一些可选的实施例中,在预训练模型收敛之后,基于收敛后的预训练模块对指定路线进行处理,具体可以是通过收敛后的预训练模型提取所述各个元素对应的目标嵌入向量;根据各个元素对应的目标嵌入向量,生成规划路线样本所对应的路线嵌入向量,然后将路线嵌入向量和用于对预训练模型进行调整的目标输入信息作为输入,将设定业务作为优化目标,对预训练模型的模型参数进行调整。In some optional embodiments, after the pre-training model converges, the specified route is processed based on the converged pre-training module, specifically, the target embedding vector corresponding to each element may be extracted through the converged pre-training model; According to the target embedding vector corresponding to each element, the route embedding vector corresponding to the planned route sample is generated, and then the route embedding vector and the target input information used to adjust the pre-training model are used as input, and the business is set as the optimization goal. The model parameters of the pre-trained model are adjusted.
在本申请的实施例中,各个元素对应的目标嵌入向量同样也可以包含词嵌入向量(tokenembedding)、位置嵌入向量(positionembedding)和路线区间嵌入向量(segmentembedding)。In the embodiment of the present application, the target embedding vector corresponding to each element may also include a token embedding vector (token embedding), a position embedding vector (position embedding) and a route segment embedding vector (segment embedding).
该实施例的技术方案是通过各个元素对应的目标嵌入向量以及目标输入信息来对预训练模型进行微调处理。可选地,该实施例中的设定业务包括以下至少一种:评估行驶轨迹与规划路线样本的覆盖率、预估规划路线样本的行驶时间、评估规划路线样本的规划合理性、预估规划路线样本的导航完成率、预估规划路线样本的流量。The technical solution of this embodiment is to fine-tune the pre-trained model through the target embedding vector and target input information corresponding to each element. Optionally, the setting service in this embodiment includes at least one of the following: evaluating the coverage rate of the driving track and the planned route sample, estimating the driving time of the planned route sample, evaluating the planning rationality of the planned route sample, and estimating the planning The navigation completion rate of the route sample, and the estimated flow of the planned route sample.
在一些可选的实施例中,根据各个元素对应的目标嵌入向量,生成规划路线样本所对应的路线嵌入向量的过程可以是:根据规划路线样本中起始链路所对应的多个目标嵌入向量,计算得到起始链路对应的目标嵌入向量均值;根据规划路线样本中包含的多个链路分别对应的多个目标嵌入向量,计算得到多个链路对应的目标嵌入向量均值;根据规划路线样本中终止链路所对应的多个目标嵌入向量,计算得到终止链路对应的目标嵌入向量均值;然后根据起始链路对应的目标嵌入向量均值、多个链路对应的目标嵌入向量均值和终止链路对应的目标嵌入向量均值,生成规划路线样本所对应的路线嵌入向量。比如,可以将起始链路对应的目标嵌入向量均值、多个链路对应的目标嵌入向量均值和终止链路对应的目标嵌入向量均值作为规划路线样本所对应的路线嵌入向量。In some optional embodiments, according to the target embedding vector corresponding to each element, the process of generating the route embedding vector corresponding to the planned route sample may be: according to the multiple target embedding vectors corresponding to the starting link in the planned route sample , calculate the mean value of the target embedding vector corresponding to the starting link; calculate the mean value of the target embedding vector corresponding to multiple links according to the multiple target embedding vectors corresponding to the multiple links included in the planned route sample; according to the planned route According to the multiple target embedding vectors corresponding to the termination link in the sample, the mean value of the target embedding vector corresponding to the termination link is calculated; then according to the mean value of the target embedding vector corresponding to the starting link, the mean value of the target embedding vector corresponding to multiple links and The mean value of the target embedding vector corresponding to the termination link is used to generate the route embedding vector corresponding to the planned route sample. For example, the mean value of target embedding vectors corresponding to the starting link, the mean value of target embedding vectors corresponding to multiple links, and the mean value of target embedding vectors corresponding to the terminating link may be used as the route embedding vectors corresponding to the planned route samples.
在一些可选的实施例中,用于对预训练模型进行调整的目标输入信息可以包括以下至少一种:通过特征工程获取到的规划路线样本的路线特征;根据规划路线样本的路线特征,通过机器学习模型进行设定业务的预测处理得到的预测结果。可选地,该机器学习模型可以是决策树模型。In some optional embodiments, the target input information used to adjust the pre-training model may include at least one of the following: the route features of the planned route samples obtained through feature engineering; according to the route features of the planned route samples, by The machine learning model is the prediction result obtained by performing the prediction processing of the set business. Optionally, the machine learning model may be a decision tree model.
可选地,路线特征可以包含挖掘出的特征、实时特征和静态特征中的一种或多种。挖掘出的特征可以包括规划路线样本的历史到达时长、历史行驶速度等;实时特征可以包括规划路线样本的实时路况、实时行驶速度等;静态特征可以包括规划路线样本的道路属性,如道路宽度、道路类型(如高速、省道还是国道)等。Optionally, the route features may include one or more of mined features, real-time features and static features. The excavated features can include the historical arrival time and historical driving speed of the planned route samples; the real-time features can include the real-time road conditions and real-time driving speed of the planned route samples; the static features can include the road attributes of the planned route samples, such as road width, Road type (such as expressway, provincial road or national road), etc.
图3示出了根据本申请的一个实施例的路线处理方法的流程图,该路线处理方法可以由服务器来执行,也可以由终端设备(如图1中所示的车辆终端101)来执行,还可以是由服务器与终端设备共同完成。参照图3所示,该路线处理方法至少包括步骤S310至步骤S330,详细介绍如下:FIG. 3 shows a flow chart of a route processing method according to an embodiment of the present application. The route processing method may be executed by a server or by a terminal device (such as the vehicle terminal 101 shown in FIG. 1 ), It can also be completed jointly by the server and the terminal device. Referring to Figure 3, the route processing method includes at least step S310 to step S330, which are described in detail as follows:
在步骤S310中,根据待处理的目标规划路线所包含的链路,以及各条链路的属性信息,生成目标规划路线对应的链路表达式。In step S310, a link expression corresponding to the planned target route is generated according to the links contained in the planned target route to be processed and the attribute information of each link.
该步骤的具体实现细节与步骤S210类似,不再赘述。The specific implementation details of this step are similar to those of step S210 and will not be repeated here.
在步骤S320中,通过收敛后的预训练模型提取目标规划路线中的各条链路所对应的目标嵌入向量。In step S320, the target embedding vector corresponding to each link in the target planned route is extracted through the converged pre-training model.
在本申请的实施例中,预训练模型可以通过图2所示实施例的技术方案进行训练,各条链路所对应的目标嵌入向量可以包含词嵌入向量(tokenembedding)、位置嵌入向量(positionembedding)和路线区间嵌入向量(segmentembedding)。In the embodiment of the present application, the pre-training model can be trained through the technical solution of the embodiment shown in Figure 2, and the target embedding vector corresponding to each link can include a word embedding vector (token embedding), a position embedding vector (position embedding) and route interval embedding vector (segmentembedding).
在步骤S330中,基于目标规划路线中的各条链路所对应的目标嵌入向量进行设定业务的预测处理。In step S330 , based on the target embedding vectors corresponding to each link in the target planned route, the forecast processing of setting traffic is performed.
在一些可选的实施例中,基于目标规划路线中的各条链路所对应的目标嵌入向量,可以对目标规划路线进行以下至少一种处理:异常链路检测处理、目标规划路线中缺失链路的补全处理、后续规划路线的生成处理、路线的相关性处理。In some optional embodiments, based on the target embedding vectors corresponding to the links in the target planned route, at least one of the following processing may be performed on the target planned route: abnormal link detection processing, missing links in the target planned route Road completion processing, follow-up planning route generation processing, and route correlation processing.
具体而言,对于异常链路检测业务而言,可以通过目标嵌入向量来针对目标规划路线中的各条链路生成一个预测值,该预测值表示各条链路属于目标规划路线的概率,如果某条链路对应的这个预测值较小,则可以说明这条链路可能存在异常。缺失链路的补全处理可以是在目标规划路线中缺失某条链路时,通过目标嵌入向量来预测缺失的链路应该通过哪条链路进行补充。后续规划路线的生成处理可以是在已知起点位置和终止位置之后,根据目标嵌入向量来预测起点位置与终止位置之间缺失的链路或者应该补充的链路。路线的相关性处理可以是根据路线对应的目标嵌入向量来计算路线之间的距离,进而根据距离值来确定相关性。Specifically, for the abnormal link detection service, a prediction value can be generated for each link in the target planning route through the target embedding vector, and the prediction value indicates the probability that each link belongs to the target planning route, if If the predicted value corresponding to a certain link is small, it may indicate that there may be an anomaly in this link. The completion of the missing link can be when a certain link is missing in the target planning route, and the target embedding vector is used to predict which link the missing link should be supplemented with. The generation process of the subsequent planned route may be to predict the missing link or the link that should be supplemented between the starting location and the ending location according to the target embedding vector after the starting location and the ending location are known. The correlation processing of the routes may be to calculate the distance between the routes according to the target embedding vectors corresponding to the routes, and then determine the correlation according to the distance value.
图4示出了根据本申请的一个实施例的路线处理方法的流程图,该路线处理方法可以由服务器来执行,也可以由终端设备(如图1中所示的车辆终端101)来执行,还可以是由服务器与终端设备共同完成。参照图4所示,该路线处理方法至少包括步骤S410至步骤S420,详细介绍如下:FIG. 4 shows a flow chart of a route processing method according to an embodiment of the present application. The route processing method may be executed by a server or by a terminal device (such as the vehicle terminal 101 shown in FIG. 1 ), It can also be completed jointly by the server and the terminal device. Referring to Figure 4, the route processing method includes at least step S410 to step S420, which are described in detail as follows:
在步骤S410中,根据待处理的目标规划路线所包含的链路,以及各条链路的属性信息,生成目标规划路线对应的链路表达式。In step S410, a link expression corresponding to the planned target route is generated according to the links contained in the planned target route to be processed and the attribute information of each link.
该步骤的具体实现细节与步骤S210类似,不再赘述。The specific implementation details of this step are similar to those of step S210 and will not be repeated here.
在步骤S420中,将链路表达式作为收敛后的预训练模型的输入,通过收敛后的预训练模型输出目标规划路线针对设定业务的预测结果。In step S420, the link expression is used as an input of the converged pre-training model, and the predicted result of the target planned route for the set service is output through the converged pre-training model.
在一些可选的实施例中,设定业务包括以下至少一种:行驶轨迹与目标规划路线的覆盖率、目标规划路线的行驶时间、目标规划路线的规划合理性、目标规划路线的导航完成率、目标规划路线的流量。In some optional embodiments, the setting service includes at least one of the following: the coverage rate of the driving trajectory and the target planned route, the driving time of the target planned route, the planning rationality of the target planned route, and the navigation completion rate of the target planned route , The traffic of the target planning route.
本申请上述实施例的技术方案可以通过对无标注的规划路线样本进行处理,解决了需要大量有标注数据进行模型训练而带来的工作量巨大的问题,并且由于可以通过多层前向传播处理学习到规划路线样本中的细节特征,因此可以提高业务处理的准确性,同时也可以对不同的设定业务进行处理,实现了多业务领域的有效应用。The technical solutions of the above-mentioned embodiments of the present application can solve the problem of huge workload caused by the need for a large amount of labeled data for model training by processing unlabeled planned route samples, and because it can be processed through multi-layer forward propagation The detailed features in the planned route samples are learned, so the accuracy of business processing can be improved, and different set businesses can be processed at the same time, realizing the effective application in multiple business fields.
以下结合图5至图10,以预估路线合理性为例,对本申请实施例的技术方案的实现细节进行详细阐述:The implementation details of the technical solution of the embodiment of the present application are described in detail below in conjunction with FIGS. 5 to 10 , taking the rationality of the estimated route as an example:
在相关技术中,对路线合理性进行预估的方案主要有以下几种:方案1,通过对路线进行人工建模,采用机器学习模型对一个特征定长的路线样本进行合理性估计,机器学习模型例如可以选择逻辑回归模型、GBDT(Gradient Boosting Decision Tree,梯度下降树)模型、LambdaRank(一种排序算法)模型等。方案2,通过深度学习结合人工建模的方法,例如通过人工特征提取,对路线样本进行定长特征建模,结合深度模型结构的路线合理性预估方案。方案3,通过embedding方法、深度学习、人工建模的方法,例如通过双塔模型结构,对路线及使用者进行人工特征提取,同时分别对路线的数据单元和使用者进行embedding,之后通过深度网络结构对路线进行合理性预估。In related technologies, there are mainly the following schemes for estimating the rationality of routes:
但是,相关技术中的方案1和方案2中的人工建模强依赖于开发人员的行业经验及业务理解,难以达到业务建模的完备性,因此难以达到业务目标下的最优效果。方案3中路线embedding方案是基于路线link拓扑结构开展的,embedding结果的信息主要包含了路线构成的路网的拓扑属性,与预期的业务目标难以匹配,适用场景较小。However, the manual modeling in
基于此,在本申请所提供的技术方案中,如图5所示,所采用的数据包括高质量导航路线,高质量导航路线是指link串构成的路线是合理的、可接受的。合理性的量化方式通常包括:历史行驶轨迹与导航路线的覆盖率、在该导航路线下的导航完成率、导航路线的合理性概率等。Based on this, in the technical solution provided by the present application, as shown in FIG. 5 , the data used include high-quality navigation routes, which means that routes composed of link strings are reasonable and acceptable. The quantification of rationality usually includes: the coverage rate of the historical driving trajectory and the navigation route, the navigation completion rate under the navigation route, the rationality probability of the navigation route, etc.
需要说明的是:导航路线是由一连串路网拓扑结构中连续的link构成,link数据单元包含:1、道路的地理位置信息,例如经纬度坐标、长度、道路等级、限速情况、行政从属信息等;2、道路拓扑信息,例如上下游linkid、周边设施等;3、实时信息,例如某时刻下的车辆通行速度、路况状态、历史时刻下的车辆通行速度等。It should be noted that the navigation route is composed of a series of continuous links in the topological structure of the road network. The link data unit includes: 1. Geographic location information of the road, such as latitude and longitude coordinates, length, road grade, speed limit, administrative subordinate information, etc. ;2. Road topology information, such as upstream and downstream linkids, surrounding facilities, etc.; 3. Real-time information, such as vehicle speed at a certain moment, road conditions, vehicle speed at historical moments, etc.
在获得高质量导航路线之后,可以进行处理来得到预训练路线数据。After the high-quality navigation route is obtained, it can be processed to obtain the pre-training route data.
具体地,可以进行如下设计作为预训练模型的输入样本:Specifically, the following designs can be used as input samples for the pre-training model:
首先,使用link的id串作为路线样本的表达。比如,若根据链路的ID来生成链路表达式,那么路线样本R可以表示为:路线R={link1,ink2,ink3…};其中link1,ink2,ink3…分别表示对应链路的ID。First, use the id string of the link as the expression of the route sample. For example, if the link expression is generated according to the ID of the link, then the route sample R can be expressed as: route R={link 1 , ink 2 , ink 3 ...}; where link 1 , ink 2 , ink 3 ... respectively represent ID of the corresponding link.
也可针对不同的业务场景使用link属性组合的方式作为路线样本的表达,比如路线样本R={道路等级_路况状态_流量…},具体表示为:路线R={rc_rs_flow1,c_rs_flow2,c_rs_flow3…};其中,rc__flow1表示link1的道路等级、路况状态和流量;rc__flow2表示link2的道路等级、路况状态和流量;rc__flow3表示link3的道路等级、路况状态和流量。It is also possible to use the combination of link attributes as the expression of route samples for different business scenarios. For example, route sample R={road grade_traffic status_flow...}, specifically expressed as: route R={rc_rs_flow 1 ,c_rs_flow 2 ,c_rs_flow 3 …}; Among them, rc__flow 1 indicates the road level, traffic status and flow of link 1 ; rc__flow 2 indicates the road level, traffic status and flow of link 2 ; rc__flow 3 indicates the road level, traffic status and flow of link 3 .
需要说明的是:对于不同表达方式的路线R,预训练会产生不同embedding结果。It should be noted that for routes R with different expressions, pre-training will produce different embedding results.
其次,如图6所示,在路线R的任意路口处对路线R进行打断,或者也可在任意两个link间对路线R进行打断,组成路线的前半部分和后半部分。然后在路线R的起始link前添加标志位CLS,在打断处及终点link后添加标志位SEP。那么得到一个预训练模型的输入样本Rsample:Secondly, as shown in Figure 6, the route R is interrupted at any intersection of the route R, or the route R can be interrupted between any two links to form the first half and the second half of the route. Then add the flag bit CLS before the start link of the route R, and add the flag bit SEP after the break and end link. Then get an input sample R sample of a pre-trained model:
Rsample={CLS,link1,link2,link3,SEP,link4,link5,link6,SEP}R sample = {CLS, link 1 , link 2 , link 3 , SEP, link 4 , link 5 , link 6 , SEP}
在得到预训练模型的输入样本之后,可以执行图5中所示的步骤S501进行模型的预训练过程。After obtaining the input samples of the pre-training model, step S501 shown in FIG. 5 can be executed to perform the pre-training process of the model.
在本申请的一个实施例中,预训练时可以采用BERT(Bidirectional EncoderRepresentations from Transformers,基于变换器的双向编码器表示)模型。BERT模型的输入训练样本是一句话的前半部分及后半部分,可以对应于本申请实施例中路线的前半部分及后半部分,路线中的link可以对应一句话中的一个单词。具体地,如图7所示,路线中的link可以具有三种embedding:TokenEmbedding、SegmentEmbedding和PositionEmbedding。其中,Segment Embeddings标识一个link是位于前半部分还是后半部分,如果位于前半部分,则可以表示为EA;如果位于后半部分,则可以表示为EB。Position Embeddings用于表示每个link在路线中的位置特征。In one embodiment of the present application, a BERT (Bidirectional Encoder Representations from Transformers, Transformer-based bidirectional encoder representation) model may be used for pre-training. The input training samples of the BERT model are the first half and the second half of a sentence, which may correspond to the first half and the second half of the route in the embodiment of this application, and a link in the route may correspond to a word in a sentence. Specifically, as shown in FIG. 7 , a link in a route may have three types of embeddings: TokenEmbedding, SegmentEmbedding, and PositionEmbedding. Among them, Segment Embeddings identifies whether a link is located in the first half or the second half. If it is located in the first half, it can be expressed as E A ; if it is located in the second half, it can be expressed as E B . Position Embeddings are used to represent the positional characteristics of each link in the route.
本申请实施例中BERT模型的前向传播分为两个阶段:Transformer结构前向传播和两个子任务的前向传播,以下分别进行介绍。The forward propagation of the BERT model in the embodiment of this application is divided into two stages: the forward propagation of the Transformer structure and the forward propagation of two subtasks, which will be introduced separately below.
Transformer结构前向传播过程具体为:在Embedding阶段,对于路线样本中的每个link及标志位,在Embedding数据中查找对应的Token Embedding;根据每个link及标志位所在的路线部分,查找对应的Segment Embedding;根据每个link及标志位所在的路线位置,查找对应的Position Embedding。然后将每个link及标志位查找到的TokenEmbedding、Segment Embedding、Position Embedding向量累加(在本申请的其它实施例中,也可以是基于Token Embedding、Segment Embedding、Position Embedding的其它运算处理),得到这个link或标志位在这个路线样本中的Embeddinginput,也即图8中所示的E1、E2、…、EN。The forward propagation process of the Transformer structure is as follows: in the Embedding stage, for each link and flag in the route sample, search for the corresponding Token Embedding in the Embedding data; according to the part of the route where each link and flag are located, find the corresponding Token Embedding Segment Embedding; Find the corresponding Position Embedding according to the route position of each link and marker. Then the TokenEmbedding, Segment Embedding, and Position Embedding vectors found by each link and flag bit are accumulated (in other embodiments of the application, it can also be based on Token Embedding, Segment Embedding, and Position Embedding) to obtain this The embedding input in this route sample is a link or flag, that is, E 1 , E 2 , . . . , E N shown in FIG. 8 .
继续参照图8所示,使用Embeddinginput作为输入进行多层Transformer前向传播(图8中示出了两层的示例,在其它实施例中可以是更多层),在最后一层Transformer输出时,得到中间结果向量Transfermorout,也即图8中所示的T1、T2、…、TN,依赖于Transformer结构的注意力机制,Embeddinginput对应位置的中间结果Transfermorout融合了路线样本上其他位置的link信息。Continue to refer to shown in Figure 8, use Embedding input as input to carry out multi-layer Transformer forward propagation (shown in Figure 8 the example of two layers, can be more layers in other embodiments), when the last layer of Transformer output , to obtain the intermediate result vector Transfermor out , that is, T 1 , T 2 , ..., T N shown in Figure 8, depending on the attention mechanism of the Transformer structure, the intermediate result Transfermor out of the corresponding position of the Embedding input is fused with the route sample Link information for other locations.
两个子任务的前向传播过程具体为:由于BERT模型设计了两种子任务,分别为MLM(Mask Language Model,掩码语言模型)和NSP(Next Sentence Prediction,下一句预测)。The forward propagation process of the two subtasks is specifically: because the BERT model designs two subtasks, namely MLM (Mask Language Model, mask language model) and NSP (Next Sentence Prediction, next sentence prediction).
对于MLM任务,首先对输入样本Rsample进行处理,具体是:样本的首位link不操作;对于其余的每个link,如图9所示,以Pop的概率操作一个link,被操作的link以PMASK的概率置为标志位MASK,以PRAND的概率替换为随机link,以PKEEP的概率保持link不变。可选地,Pop=50%,PMASK=50%,PRAND=5%,PKEEP=45%。For the MLM task, the input sample R sample is first processed, specifically: the first link of the sample is not operated; for each of the remaining links, as shown in Figure 9, a link is operated with the probability of P op , and the operated link is The probability of P MASK is set as the flag MASK, the probability of P RAND is replaced with a random link, and the probability of P KEEP is kept unchanged. Optionally, P op =50%, P MASK =50%, P RAND =5%, P KEEP =45%.
处理后的样本包含标志位MASK及随机linkRAND,MLM任务输入路线中每个link及标志位的中间结果向量Transfermorout,通过DNN(Deep Neural Network,深度神经网络)模型对每一个MASK标志位计算softmax,得到这个MASK标志位上所有link的概率分布,然后对比被置为MASK标志位的真值linkid,计算梯度并反向传播。可选地,在本申请的其它实施例中,DNN模型也可以替换为其它深度学习网络模型。The processed samples include flag MASK and random link RAND , and the intermediate result vector Transfermor out of each link and flag in the MLM task input route is calculated for each MASK flag through the DNN (Deep Neural Network, deep neural network) model softmax, get the probability distribution of all links on the MASK flag, and then compare the true value linkid set as the MASK flag, calculate the gradient and backpropagate. Optionally, in other embodiments of the present application, the DNN model may also be replaced with other deep learning network models.
对于NSP任务,首先对输入样本Rsample进行处理,具体是对SEP标志位标识的路线后半部分,以Pop概率替换为随机下半部分路线,可选地,Pop=50%。NSP任务输入路线起始位置CLS标志位的中间结果向量Transfermorout,通过DNN模型计算softmax,得到后半部分路线属于Rsample的概率,对比是否被替换,计算梯度并反向传播。For the NSP task, the input sample R sample is firstly processed, specifically, the second half of the route identified by the SEP flag is replaced with a random second half of the route with the probability of P op , optionally, P op =50%. The NSP task inputs the intermediate result vector Transfermor out of the CLS flag at the starting position of the route, calculates the softmax through the DNN model, and obtains the probability that the second half of the route belongs to the R sample , compares whether it is replaced, calculates the gradient and backpropagates.
通过预训练,可以在海量路线样本中优化得到收敛的Token Embedding、SegmentEmbedding、Position Embedding结果,及每层Transformer结构。Through pre-training, it is possible to optimize the converged Token Embedding, SegmentEmbedding, Position Embedding results, and the Transformer structure of each layer in a large number of route samples.
图5中所示的步骤S502的微调过程具体是针对路线业务做出如下处理:首先,路线级别的embedding表达通过路线中起始link的embedding、路线平均embedding和终止link的embedding构成。具体如下所示:The fine-tuning process of step S502 shown in FIG. 5 specifically deals with the route business as follows: First, the embedding expression of the route level is composed of the embedding of the start link, the average embedding of the route and the embedding of the end link in the route. Specifically as follows:
Embeddingstart=∑Token Embeddingstart,Segment Embeddingstart,PositionEmbeddingstart Embedding start =∑Token Embedding start ,Segment Embedding start ,PositionEmbedding start
Embeddingend=ΣToken Embeddingend,Segment Embeddingend,PositionEmbeddingend Embedding end =ΣToken Embedding end ,Segment Embedding end ,PositionEmbedding end
其中,TokenEmbeddingstart、SegmentEmbeddingstart和PositionEmbeddingstart是起始link的embedding;TokenEmbeddingend、SegmentEmbeddingend和PositionEmbeddingend是终止link的embedding;TokenEmbeddingi、SegmentEmbeddingi和PositionEmbeddingi是第i个link的embedding;n表示路线中link的数量。在本申请的其它实施例中,路线级别的embedding也可以基于Token Embedding、Segment Embedding、Position Embedding向量的其它运算处理结果。Among them, TokenEmbedding start , SegmentEmbedding start and PositionEmbedding start are the embeddings of the starting link; TokenEmbedding end , SegmentEmbedding end and PositionEmbedding end are the embeddings of the ending link; TokenEmbedding i , SegmentEmbedding i and PositionEmbedding i are the embeddings of the i-th link; n indicates the route The number of links in . In other embodiments of the present application, the route-level embedding may also be based on other calculation and processing results of Token Embedding, Segment Embedding, and Position Embedding vectors.
其次,可以获取人工特征工程设计的路线特征,以及通过决策树模型的机器学习方法输出的预估结果,将这两部分作为微调模型的输入信息。Secondly, the route features designed by artificial feature engineering and the estimated results output by the machine learning method of the decision tree model can be obtained, and these two parts can be used as the input information of the fine-tuning model.
可选地,路线特征可以包含挖掘出的特征、实时特征和静态特征中的一种或多种。挖掘出的特征可以包括规划路线样本的历史到达时长、历史行驶速度等;实时特征可以包括规划路线样本的实时路况、实时行驶速度等;静态特征可以包括规划路线样本的道路属性,如道路宽度、道路类型(如高速、省道还是国道)等。Optionally, the route features may include one or more of mined features, real-time features and static features. The excavated features can include the historical arrival time and historical driving speed of the planned route samples; the real-time features can include the real-time road conditions and real-time driving speed of the planned route samples; the static features can include the road attributes of the planned route samples, such as road width, Road type (such as expressway, provincial road or national road), etc.
最后,使用历史行驶轨迹与导航路线的覆盖率T作为路线合理性的量化标准来作为模型的优化目标对模型进行微调,更合理的路线具有更高的覆盖率,其中T∈(0,1)。微调过程如图10所示,路线级别的embedding向量(即Embeddingstart、Embeddingavg和Embeddingend)分别通过多层感知机MLP1变换到D1向量。链接Embeddingstart、Embeddingavg和Embeddingend向量,通过多层感知机MLP2、MLP3、MLP4变换到D2向量、D3向量和D4向量。之后将人工提取的特征和树模型的预测结果作为输入,链接D4构建出D5向量。通过多层感知机MLP5、MLP6和MLP7变换得到D6向量、D7向量和D8向量。可选地,D1=128,D2=1536,D3=384,D4=8,D5=8+N(features)+1,D6=64,D=16,D8=1。D8向量为1维向量,即路线合理性预估结果输出。图10中所示的多层感知机的层数仅为示例,在本申请的其它实施例中可以有更多的层数。Finally, the coverage rate T of the historical driving trajectory and the navigation route is used as the quantitative standard of the route rationality to fine-tune the model as the optimization target of the model. A more reasonable route has a higher coverage rate, where T∈(0,1) . The fine-tuning process is shown in Figure 10. Route-level embedding vectors (ie, Embedding start , Embedding avg , and Embedding end ) are transformed into D1 vectors through the multi-layer perceptron MLP 1 . Link the Embedding start , Embeddingavg and Embeddingend vectors, and transform them into D2 vectors, D3 vectors and D4 vectors through multi-layer perceptrons MLP2, MLP 3 and MLP 4 . Then, the artificially extracted features and the prediction results of the tree model are used as input, and the D5 vector is constructed by linking D4. The D6 vector, the D7 vector and the D8 vector are obtained by transforming the multi-layer perceptrons MLP 5 , MLP 6 and MLP 7 . Optionally, D1=128, D2=1536, D3=384, D4=8, D5=8+N(features)+1, D6=64, D=16, D8=1. The D8 vector is a 1-dimensional vector, which is the output of route rationality estimation results. The number of layers of the multi-layer perceptron shown in FIG. 10 is only an example, and there may be more layers in other embodiments of the present application.
在本申请上述技术方案中,通过预训练得到的Token Embedding、SegmentEmbedding、Position Embedding结果,可以使路线合理性预估的过程中充分考虑到整条路线的构成是否合理。不同于一般人工特征提取的机器学习方案中由于路线全局特征设计导致模型在预测过程中会丢失路线细节信息。本申请上述技术方案中基于Transformer结构中的注意力机制使得较高合理性的路线具有更优质的路线局部。并且本申请上述实施例中通过预训练得到的Embedding结果,还可以用于异常路线检测、路线补全、路线自动生成、道路相关性分析、城市道路规划等业务,可以实现基于前序轨迹预测后续路线的功能。此外,本申请上述实施例的技术方案不仅可以进行路线合理性预估任务,而且可以通过修改预训练子任务优化目标,还可用于路线的时间预估、路线合理性量化、路线概率预估、路线流量预估等业务。In the above technical solution of this application, the Token Embedding, SegmentEmbedding, and Position Embedding results obtained through pre-training can fully consider whether the composition of the entire route is reasonable in the process of route rationality estimation. In machine learning schemes that are different from general manual feature extraction, due to the design of the global feature of the route, the model will lose the detailed information of the route during the prediction process. In the above technical solution of the present application, based on the attention mechanism in the Transformer structure, routes with higher rationality have better quality route parts. In addition, the embedding results obtained through pre-training in the above-mentioned embodiments of the present application can also be used for abnormal route detection, route completion, automatic route generation, road correlation analysis, urban road planning, etc. The function of the route. In addition, the technical solutions of the above-mentioned embodiments of the present application can not only perform the route rationality prediction task, but also can optimize the target by modifying the pre-training subtask, and can also be used for route time estimation, route rationality quantification, route probability estimation, Route traffic forecasting and other services.
本申请上述实施例的技术方案在预训练阶段是一种无监督的学习方案,在导航业务场景下,路线数据是一种较难收集用户反馈的数据,而本申请实施例的方案通过海量无标注的数据,使用预训练方法可以提取无标注数据中面向导航业务的信息。通过预训练获取的信息,在微调模型阶段通过使用更小规模的标注数据,即可得到效果更优的路线合理性预估模型,有效解决业务领域数据欠标注、数据噪音、Position-Bias等问题。此外,预训练阶段获取的信息丰富多元,且信息倾向依赖预训练方案的结构设计,因此针对不同的路线学习目标,可以针对性的设计预训练模型结构,本申请实施例的技术方案具有很强的通用性及扩展性,适用于不同目标的业务问题。例如:路线的时间预估、路线合理性量化、路线概率预估、路线流量预估等。The technical solutions of the above-mentioned embodiments of the present application are an unsupervised learning solution in the pre-training stage. In the navigation business scenario, route data is a kind of data that is difficult to collect user feedback. For the labeled data, the navigation service-oriented information in the unlabeled data can be extracted by using the pre-training method. The information obtained through pre-training can be used to use smaller-scale labeling data in the fine-tuning model stage to obtain a more effective route rationality prediction model, which can effectively solve problems such as under-labeling of data in the business field, data noise, and Position-Bias. . In addition, the information obtained in the pre-training stage is rich and diverse, and the information tends to depend on the structural design of the pre-training scheme. Therefore, for different route learning objectives, the pre-training model structure can be designed in a targeted manner. The technical solution of the embodiment of the application has strong Versatility and scalability, applicable to business problems with different goals. For example: route time estimation, route rationality quantification, route probability estimation, route traffic estimation, etc.
以下介绍本申请的装置实施例,可以用于执行本申请上述实施例中的路线处理方法。对于本申请装置实施例中未披露的细节,请参照本申请上述的路线处理方法的实施例。The following introduces device embodiments of the present application, which can be used to implement the route processing method in the foregoing embodiments of the present application. For the details not disclosed in the device embodiment of the present application, please refer to the embodiment of the above-mentioned route processing method in the present application.
图11示出了根据本申请的一个实施例的路线处理装置的框图。Fig. 11 shows a block diagram of a route processing device according to an embodiment of the present application.
参照图11所示,根据本申请的一个实施例的路线处理装置1100,包括:第一生成单元1102、特征提取单元1104、第二生成单元1106和模型训练单元1108。Referring to FIG. 11 , a
其中,第一生成单元1102配置为根据规划路线样本所包含的多条链路,以及各条链路的属性信息,生成所述规划路线样本对应的链路表达式;特征提取单元1104配置为通过预训练模型提取所述链路表达式中的各个元素对应的多个初始嵌入向量;第二生成单元1106配置为根据所述多个初始嵌入特征向量生成所述各个元素对应的输入特征向量;模型训练单元1108配置为根据所述各个元素对应的输入特征向量进行多层前向传播处理,并基于所述规划路线样本、所述预训练模型对应的训练任务,以及所述多层前向传输处理得到的所述各个元素对应的中间结果向量进行模型训练处理,以基于收敛后的预训练模块对指定路线进行处理。Wherein, the
在本申请的一些实施例中,基于前述方案,所述第一生成单元1102配置为:根据所述各条链路的属性信息所包含的至少一个属性特征,生成所述各条链路对应的用于表示属性特征的元素;按照所述多条链路在所述规划路线样本中的顺序,对所述多条链路分别对应的元素进行组合,生成所述规划路线样本对应的链路表达式。In some embodiments of the present application, based on the foregoing solution, the
在本申请的一些实施例中,基于前述方案,所述第一生成单元1102配置为:根据所述多条链路中指定链路在所述规划路线样本中的位置,在所述链路表达式中添加所述指定链路对应的位置标志位;其中,所述位置标识位包括以下至少一个:在所述规划路线样本中的起始链路所对应的元素之前所添加的第一标志位、在指定的两条链路所对应的元素之间所添加的第二标志位,在所述规划路线样本中的终止链路所对应的元素之后所添加的第三标志位。In some embodiments of the present application, based on the foregoing solution, the
在本申请的一些实施例中,基于前述方案,所述指定的两条链路包括:位于所述规划路线样本中的道路路口处的链路、或者所述多条链路中任意两条相邻的链路。In some embodiments of the present application, based on the foregoing solution, the specified two links include: a link located at a road intersection in the planned route sample, or any two adjacent links among the multiple links adjacent links.
在本申请的一些实施例中,基于前述方案,所述特征提取单元1104配置为:通过预训练模型提取所述链路表达式中的各个元素对应的词嵌入向量、位置嵌入向量和路线区间嵌入向量;其中,所述位置嵌入向量用于表示所述元素在所述链路表达式中所处的具体位置,所述路线区间嵌入向量用于表示所述元素在所述链路表达式中所在的区间。In some embodiments of the present application, based on the foregoing solution, the
在本申请的一些实施例中,基于前述方案,所述第二生成单元1106配置为:基于设定的合并处理方式,对所述各个元素对应的多个初始嵌入特征向量进行合并处理,将合并处理的结果作为所述各个元素对应的输入特征向量。In some embodiments of the present application, based on the foregoing solution, the
在本申请的一些实施例中,基于前述方案,所述模型训练单元1108配置为:对所述规划路线样本中除起始链路之外的其它链路,通过设定的概率分别进行替换操作,得到处理后的规划路线样本;所述替换操作包括以下至少一种:替换为设定标志位、替换为随机链路、保持不变;将所述各个元素对应的中间结果向量作为输入,将所述设定标志位所代表的链路恢复为所述规划路线样本中的实际链路作为第一训练任务所对应的优化目标,进行模型训练处理。In some embodiments of the present application, based on the foregoing solution, the
在本申请的一些实施例中,基于前述方案,对所述规划路线样本中除起始链路之外的其它链路,通过设定的概率分别进行替换操作,包括:对所述规划路线样本中除起始链路之外的其它链路,通过第一概率分别确定是否要进行替换操作;对于需要进行替换操作的链路,通过替换为设定标志位的第二概率、替换为随机链路的第三概率和保持不变的第四概率分别进行替换操作。In some embodiments of the present application, based on the foregoing solution, performing replacement operations on links other than the initial link in the planned route samples according to set probabilities, including: For links other than the initial link, determine whether to perform the replacement operation through the first probability; for the link that needs to be replaced, replace it with the second probability of setting the flag bit, and replace it with a random chain The third probability of the way and the fourth probability that remains unchanged are replaced respectively.
在本申请的一些实施例中,基于前述方案,所述模型训练单元1108配置为:对所述规划路线样本中的后半部分链路,通过设定的概率替换为随机链路;其中,所述规划路线样本在指定的两条链路处划分为前半部分链路和后半部分链路;将所述链路表达式中在起始链路所对应的元素之前添加的第一标志位所对应的中间结果向量作为输入,将所述随机链路恢复为所述规划路线样本中的后半部分链路作为第二训练任务所对应的优化目标,进行模型训练处理。In some embodiments of the present application, based on the aforementioned solutions, the
在本申请的一些实施例中,基于前述方案,所述路线处理装置1100还包括:处理单元1110,配置为通过收敛后的预训练模型提取所述各个元素对应的目标嵌入向量;根据所述各个元素对应的目标嵌入向量,生成所述规划路线样本所对应的路线嵌入向量;将所述路线嵌入向量和用于对所述预训练模型进行调整的目标输入信息作为输入,将设定业务作为优化目标,对所述预训练模型的模型参数进行调整。In some embodiments of the present application, based on the foregoing solution, the
在本申请的一些实施例中,基于前述方案,所述处理单元1110配置为:根据所述规划路线样本中起始链路所对应的多个目标嵌入向量,计算得到所述起始链路对应的目标嵌入向量均值;根据所述规划路线样本中包含的多个链路分别对应的多个目标嵌入向量,计算得到所述多个链路对应的目标嵌入向量均值;根据所述规划路线样本中终止链路所对应的多个目标嵌入向量,计算得到所述终止链路对应的目标嵌入向量均值;根据所述起始链路对应的目标嵌入向量均值、所述多个链路对应的目标嵌入向量均值和所述终止链路对应的目标嵌入向量均值,生成所述规划路线样本所对应的路线嵌入向量。In some embodiments of the present application, based on the foregoing solution, the processing unit 1110 is configured to: calculate and obtain the corresponding target link of the starting link according to the multiple target embedding vectors corresponding to the starting link in the planned route sample. The mean value of the target embedding vectors; according to the multiple target embedding vectors corresponding to the multiple links contained in the planned route sample, calculate the target embedding vector mean value corresponding to the multiple links; according to the planned route sample A plurality of target embedding vectors corresponding to the termination link is calculated to obtain the target embedding vector mean value corresponding to the termination link; according to the target embedding vector mean value corresponding to the start link, the target embedding vector value corresponding to the multiple links The vector mean value and the target embedding vector mean value corresponding to the terminated link generate a route embedding vector corresponding to the planned route sample.
在本申请的一些实施例中,基于前述方案,用于对所述预训练模型进行调整的目标输入信息包括以下至少一种:通过特征工程获取到的所述规划路线样本的路线特征;根据所述规划路线样本的路线特征,通过机器学习模型进行所述设定业务的预测处理得到的预测结果。In some embodiments of the present application, based on the foregoing solution, the target input information used to adjust the pre-training model includes at least one of the following: route features of the planned route samples obtained through feature engineering; The route features of the planned route samples are the prediction results obtained by performing the prediction processing of the setting business through the machine learning model.
在本申请的一些实施例中,基于前述方案,所述的路线处理装置1100还包括:第一预测单元;所述第一生成单元1102还配置为:根据待处理的目标规划路线所包含的链路,以及各条链路的属性信息,生成所述目标规划路线对应的链路表达式;所述特征提取单元1104还配置为:通过收敛后的预训练模型提取所述目标规划路线中的各条链路所对应的目标嵌入向量;所述第一预测单元配置为:基于所述目标规划路线中的各条链路所对应的目标嵌入向量进行设定业务的预测处理。In some embodiments of the present application, based on the foregoing solutions, the
在本申请的一些实施例中,基于前述方案,所述第一预测单元配置为:基于所述目标规划路线中的各条链路所对应的目标嵌入向量,对所述目标规划路线进行以下至少一种处理:异常链路检测处理、所述目标规划路线中缺失链路的补全处理、后续规划路线的生成处理、路线的相关性处理。In some embodiments of the present application, based on the foregoing solution, the first prediction unit is configured to: perform at least the following on the target planned route based on the target embedding vectors corresponding to each link in the target planned route One processing: abnormal link detection processing, completion processing of missing links in the target planned route, generation processing of subsequent planned routes, and route correlation processing.
在本申请的一些实施例中,基于前述方案,所述的路线处理装置1100还包括:第二预测单元;所述第一生成单元1102还配置为:根据待处理的目标规划路线所包含的链路,以及各条链路的属性信息,生成所述目标规划路线对应的链路表达式;所述第二预测单元配置为:将所述链路表达式作为收敛后的预训练模型的输入,通过所述收敛后的预训练模型输出所述目标规划路线针对所述设定业务的预测结果;其中,所述设定业务包括以下至少一种:行驶轨迹与所述目标规划路线的覆盖率、所述目标规划路线的行驶时间、所述目标规划路线的规划合理性、所述目标规划路线的导航完成率、所述目标规划路线的流量。In some embodiments of the present application, based on the foregoing solution, the
图12示出了适于用来实现本申请实施例的电子设备的计算机系统的结构示意图。Fig. 12 shows a schematic structural diagram of a computer system suitable for implementing the electronic device of the embodiment of the present application.
需要说明的是,图12示出的电子设备的计算机系统1200仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。It should be noted that the
如图12所示,计算机系统1200包括中央处理单元(Central Processing Unit,CPU)1201,其可以根据存储在只读存储器(Read-Only Memory,ROM)1202中的程序或者从存储部分1208加载到随机访问存储器(Random Access Memory,RAM)1203中的程序而执行各种适当的动作和处理,例如执行上述实施例中所述的方法。在RAM 1203中,还存储有系统操作所需的各种程序和数据。CPU 1201、ROM 1202以及RAM 1203通过总线1204彼此相连。输入/输出(Input/Output,I/O)接口1205也连接至总线1204。As shown in FIG. 12 , a
以下部件连接至I/O接口1205:包括键盘、鼠标等的输入部分1206;包括诸如阴极射线管(Cathode Ray Tube,CRT)、液晶显示器(Liquid Crystal Display,LCD)等以及扬声器等的输出部分1207;包括硬盘等的存储部分1208;以及包括诸如LAN(Local AreaNetwork,局域网)卡、调制解调器等的网络接口卡的通信部分1209。通信部分1209经由诸如因特网的网络执行通信处理。驱动器1210也根据需要连接至I/O接口1205。可拆卸介质1211,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器1210上,以便于从其上读出的计算机程序根据需要被安装入存储部分1208。The following components are connected to the I/O interface 1205: an
特别地,根据本申请的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本申请的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的计算机程序。在这样的实施例中,该计算机程序可以通过通信部分1209从网络上被下载和安装,和/或从可拆卸介质1211被安装。在该计算机程序被中央处理单元(CPU)1201执行时,执行本申请的系统中限定的各种功能。In particular, according to the embodiments of the present application, the processes described above with reference to the flowcharts can be implemented as computer software programs. For example, the embodiments of the present application include a computer program product, which includes a computer program carried on a computer-readable medium, where the computer program includes a computer program for executing the method shown in the flowchart. In such an embodiment, the computer program may be downloaded and installed from a network via
需要说明的是,本申请实施例所示的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本申请中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的计算机程序。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的计算机程序可以用任何适当的介质传输,包括但不限于:无线、有线等等,或者上述的任意合适的组合。It should be noted that the computer-readable medium shown in the embodiment of the present application may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the two. A computer readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples of computer-readable storage media may include, but are not limited to, electrical connections with one or more wires, portable computer diskettes, hard disks, random access memory (RAM), read-only memory (ROM), erasable Programmable Read-Only Memory (Erasable Programmable Read Only Memory, EPROM), flash memory, optical fiber, portable compact disk read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical storage device, magnetic storage device, or any suitable The combination. In the present application, a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device. In this application, however, a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, in which a computer-readable computer program is carried. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. A computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. . A computer program embodied on a computer readable medium can be transmitted using any appropriate medium, including but not limited to: wireless, wired, etc., or any suitable combination of the above.
附图中的流程图和框图,图示了按照本申请各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。其中,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,上述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图或流程图中的每个方框、以及框图或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机程序的组合来实现。The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present application. Wherein, each block in the flowchart or block diagram may represent a module, a program segment, or a part of the code, and the above-mentioned module, program segment, or part of the code includes one or more executable instruction. It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved. It should also be noted that each block in the block diagrams or flowchart illustrations, and combinations of blocks in the block diagrams or flowchart illustrations, can be implemented by a dedicated hardware-based system that performs the specified function or operation, or can be implemented by a It is realized by a combination of special hardware and computer programs.
描述于本申请实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现,所描述的单元也可以设置在处理器中。其中,这些单元的名称在某种情况下并不构成对该单元本身的限定。The units described in the embodiments of the present application may be implemented by software or by hardware, and the described units may also be set in a processor. Wherein, the names of these units do not constitute a limitation of the unit itself under certain circumstances.
作为另一方面,本申请还提供了一种计算机可读介质,该计算机可读介质可以是上述实施例中描述的电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。上述计算机可读介质承载有一个或者多个计算机程序,当上述一个或者多个计算机程序被一个该电子设备执行时,使得该电子设备实现上述实施例中所述的方法。As another aspect, the present application also provides a computer-readable medium. The computer-readable medium may be included in the electronic device described in the above embodiments; it may also exist independently without being assembled into the electronic device. middle. The above-mentioned computer-readable medium carries one or more computer programs, and when the above-mentioned one or more computer programs are executed by an electronic device, the electronic device is made to implement the methods described in the above-mentioned embodiments.
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本申请的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。It should be noted that although several modules or units of the device for action execution are mentioned in the above detailed description, this division is not mandatory. Actually, according to the embodiment of the present application, the features and functions of two or more modules or units described above may be embodied in one module or unit. Conversely, the features and functions of one module or unit described above can be further divided to be embodied by a plurality of modules or units.
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本申请实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、触控终端、或者网络设备等)执行根据本申请实施方式的方法。Through the description of the above implementations, those skilled in the art can easily understand that the example implementations described here can be implemented by software, or by combining software with necessary hardware. Therefore, the technical solutions according to the embodiments of the present application can be embodied in the form of software products, which can be stored in a non-volatile storage medium (which can be CD-ROM, U disk, mobile hard disk, etc.) or on the network , including several instructions to make a computing device (which may be a personal computer, server, touch terminal, or network device, etc.) execute the method according to the embodiment of the present application.
本领域技术人员在考虑说明书及实践这里公开的实施方式后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。Other embodiments of the present application will be readily apparent to those skilled in the art from consideration of the specification and practice of the embodiments disclosed herein. This application is intended to cover any modification, use or adaptation of the application, these modifications, uses or adaptations follow the general principles of the application and include common knowledge or conventional technical means in the technical field not disclosed in the application .
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。It should be understood that the present application is not limited to the precise constructions which have been described above and shown in the accompanying drawings, and various modifications and changes may be made without departing from the scope thereof. The scope of the application is limited only by the appended claims.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310161446.1A CN116295409B (en) | 2023-02-14 | 2023-02-14 | Route processing method, device, computer readable medium and electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310161446.1A CN116295409B (en) | 2023-02-14 | 2023-02-14 | Route processing method, device, computer readable medium and electronic device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116295409A true CN116295409A (en) | 2023-06-23 |
CN116295409B CN116295409B (en) | 2025-02-14 |
Family
ID=86837157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310161446.1A Active CN116295409B (en) | 2023-02-14 | 2023-02-14 | Route processing method, device, computer readable medium and electronic device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116295409B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117349775A (en) * | 2023-10-30 | 2024-01-05 | 浙江大学 | Cluster computing-oriented abnormal subtask identification method and device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190042859A1 (en) * | 2017-08-02 | 2019-02-07 | X Development Llc | Systems and Methods for Determining Path Confidence for Unmanned Vehicles |
WO2021051221A1 (en) * | 2019-09-16 | 2021-03-25 | Beijing Didi Infinity Technology And Development Co., Ltd. | Systems and methods for evaluating driving path |
US20210223056A1 (en) * | 2020-06-30 | 2021-07-22 | Beijing Baidu Netcom Science And Technology Co., Ltd. | Method and apparatus for generating route planning model, and storage medium |
CN113239986A (en) * | 2021-04-25 | 2021-08-10 | 浙江吉利控股集团有限公司 | Training method and device for vehicle track evaluation network model and storage medium |
CN113485380A (en) * | 2021-08-20 | 2021-10-08 | 广东工业大学 | AGV path planning method and system based on reinforcement learning |
US20220128370A1 (en) * | 2020-10-28 | 2022-04-28 | Uber Technologies, Inc. | Route selection using machine-learned safety model |
-
2023
- 2023-02-14 CN CN202310161446.1A patent/CN116295409B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190042859A1 (en) * | 2017-08-02 | 2019-02-07 | X Development Llc | Systems and Methods for Determining Path Confidence for Unmanned Vehicles |
WO2021051221A1 (en) * | 2019-09-16 | 2021-03-25 | Beijing Didi Infinity Technology And Development Co., Ltd. | Systems and methods for evaluating driving path |
US20210223056A1 (en) * | 2020-06-30 | 2021-07-22 | Beijing Baidu Netcom Science And Technology Co., Ltd. | Method and apparatus for generating route planning model, and storage medium |
US20220128370A1 (en) * | 2020-10-28 | 2022-04-28 | Uber Technologies, Inc. | Route selection using machine-learned safety model |
CN113239986A (en) * | 2021-04-25 | 2021-08-10 | 浙江吉利控股集团有限公司 | Training method and device for vehicle track evaluation network model and storage medium |
CN113485380A (en) * | 2021-08-20 | 2021-10-08 | 广东工业大学 | AGV path planning method and system based on reinforcement learning |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117349775A (en) * | 2023-10-30 | 2024-01-05 | 浙江大学 | Cluster computing-oriented abnormal subtask identification method and device |
CN117349775B (en) * | 2023-10-30 | 2024-04-26 | 浙江大学 | A method and device for identifying abnormal subtasks in cluster computing |
Also Published As
Publication number | Publication date |
---|---|
CN116295409B (en) | 2025-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023065545A1 (en) | Risk prediction method and apparatus, and device and storage medium | |
CN112905801B (en) | Stroke prediction method, system, equipment and storage medium based on event map | |
CN112863180B (en) | Traffic speed prediction method, apparatus, electronic device and computer readable medium | |
Zhao et al. | A deep inverse reinforcement learning approach to route choice modeling with context-dependent rewards | |
CN114202120B (en) | Urban traffic journey time prediction method for multi-source heterogeneous data | |
CN113762595B (en) | Traffic time prediction model training method, traffic time prediction method and equipment | |
CN114519932A (en) | Regional traffic condition integrated prediction method based on space-time relation extraction | |
CN114663848A (en) | A target detection method and device based on knowledge distillation | |
CN112182423A (en) | Information propagation evolution trend prediction method based on attention mechanism | |
Zhao et al. | Traffic inflow and outflow forecasting by modeling intra-and inter-relationship between flows | |
CN116740664A (en) | Track prediction method and device | |
CN117474009A (en) | A cross-sentence event causality identification system and method based on graph neural network | |
CN116882503A (en) | Scientific and technological innovation service decision support method based on knowledge reasoning model | |
CN116295409A (en) | Route processing method, route processing device, computer readable medium and electronic equipment | |
CN116415005A (en) | A Relation Extraction Method for Scholar Academic Network Construction | |
Yan et al. | Improving multi-modal transportation recommendation systems through contrastive De-biased heterogenous graph neural networks | |
CN113495929B (en) | Triplet extraction method based on self-attention | |
Xiao et al. | Streaming traffic flow prediction based on continuous reinforcement learning | |
CN112699203A (en) | Road network data processing method and device | |
CN112686457B (en) | Route arrival time estimation method and device, electronic equipment and storage medium | |
CN111754019B (en) | A road segment feature representation learning algorithm based on the spatiotemporal graph information maximization model | |
Liu et al. | GMTP: Enhanced Travel Time Prediction with Graph Attention Network and BERT Integration | |
CN115273472A (en) | Traffic time prediction method and system for representing road based on graph convolution network | |
Yang et al. | Sequence‐to‐sequence transfer transformer network for automatic flight plan generation | |
CN119476646B (en) | Uncertainty train arrival late prediction method based on quantile regression and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 40088392 Country of ref document: HK |
|
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |